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Stable inheritance of DNA methylation
allows creation of epigenotype maps and
the study of epiallele inheritance patterns
in the absence of genetic variation
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Abstract

Background: Differences in DNA methylation can arise as epialleles, which are loci that differ in chromatin state
and are inherited over generations. Epialleles offer an additional source of variation that can affect phenotypic
diversity beyond changes to nucleotide sequence. Previous research has looked at the rate at which spontaneous
epialleles arise but it is currently unknown how they are maintained across generations.

Results: We used two Arabidopsis thaliana mutation accumulation (MA) lines and determined that over 99.998%
of the methylated regions in the genome are stably inherited across each generation indicating that spontaneous
epialleles are rare. We also developed a novel procedure that determines genotypes for offspring of genetically
identical parents using only DNA methylation data. The resulting epigenotype maps are highly accurate and
strongly agree with expected allele frequency and crossover number. Using epigenotype maps, we explore the
inheritance of methylation states in regions of differential methylation between the parents of genetic crosses.
Over half of the regions show methylation levels consistent with cis inheritance, whereas the other half show
evidence of trans-chromosomal methylation and demethylation as well as other possibilities.

Conclusions: DNA methylation is stably inherited by offspring and spontaneous epialleles are rare. The epigenotyping
procedure that we describe provides an important first step to epigenetic quantitative trait loci mapping in genetically
identical individuals.
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Background
Epigenetic alleles (epialleles) are alleles with differential
chromatin states that are mitotically and/or meiotically
inherited and are a source of variation that can result in
phenotypic diversity. Epialleles have been implicated in
numerous phenomena such as hybrid vigor [1–3], gen-
etic incompatibility [4, 5], and stress response (reviewed
in [6–8]). Understanding how epialleles are formed and
maintained is important for crop improvement, as they
represent an untapped source of allelic variation [9, 10].
Epialleles most often arise from changes in cytosi-

ne methylation, which is traditionally associated with

transcriptional silencing and transposable element (TE)
repression. In plants, DNA methylation occurs in three
unique sequence contexts: CG, CHG, and CHH where H
represents A, C, or T. Each context is maintained by
unique pathways and has distinct roles in gene regulation
(reviewed in [11]). Genes heavily methylated in all se-
quence contexts are often transcriptionally silent, whereas
only CG methylation in gene bodies (gene body methyla-
tion (gbM)) is commonly associated with actively tran-
scribed genes [12, 13].
Spontaneous epialleles occur independent of changes

in DNA sequence. Notable examples include the peloric
epiallele in toadflax caused by hypermethylation of the
Lcyc allele [14] and the COLORLESS NON-RIPENING
(CNR) epiallele in tomato caused by hypermethylation of
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the cnr promoter [15]. The mantled phenotype of oil
palm is additionally caused by a spontaneous epiallele,
resulting in the hypomethylation of a retrotransposon
within the DEFICIENS gene. This epiallele is of signifi-
cant agricultural importance, as it results in a substantial
loss of yield in affected individuals [16]. Beyond these
drastic phenotypes, epialleles also increase phenotypic
variation of additional agriculturally important traits
such as floral transition [17–20], plant height [18, 19],
root length [20], overall crop yield [16, 21], and disease
resistance [19, 22]. Collectively, epialleles caused by al-
tered DNA methylation are suggested to be a source of
observed missing heritability [23].
Understanding the rate at which epialleles naturally

arise continues to be an active area of research. The rate
of spontaneous epiallele formation is often confounded
by genetic variation, as an epiallele caused by a change
in DNA sequence is not truly epigenetic [24, 25]. Pre-
vious research involving the use of epigenetic recombi-
nant inbred lines (epiRILs) has greatly increased the
understanding of how epialleles are inherited. epiRILs
are created using parent plants with the same genetic
background, except one parent has a mutation resulting
in vastly lowered levels of DNA methylation. Previous
studies with epiRILs have shown stable inheritance of
DNA methylation over multiple generations and that
DNA methylation is mainly additive, although selection
against demethylated alleles has been noted [18, 19].
Additionally, epiRILs show extensive phenotypic va-
riation with differentially methylated regions (DMRs)
highly associated with altered phenotypes [20, 26–28].
Additional work has taken advantage of different Arabi-

dopsis thaliana accessions to explore the inheritance of
DNA methylation over generations. After crossing diffe-
rent accessions, known single nucleotide polymorphisms
(SNPs) between parents were used to determine chromo-
somal parent-of-origin and to look for regions of non-
additive DNA methylation [29–33]. This strategy has also
been applied in crop species such as soybean and corn
using recombinant inbred lines [25, 34–36]. These studies
showed inherited DNA methylation is mainly additive
with rare exceptions, possibly caused by the formation of
spontaneous epialleles.
Although the use of epiRILs and differing accessions has

greatly expanded the knowledge of how epialleles arise,
genetic variation has the capacity to confound results
using these two methods. Transposable element reactiva-
tion in epiRIL lines as well as genetic variation found in
different accessions or inbred lines have the potential to
create epialleles which are the result of genetic variation,
and thus not truly spontaneous. Previous studies noted
that no identified epialleles were near areas of genetic va-
riation; however, this does not eliminate the possibility of
trans-acting effects or paramutations [25, 36, 37].

An additional approach used to minimize genetic
variation is the use of mutation accumulation (MA)
lines. Previously, Shaw et al. [38] created a set of A.
thaliana MA lines from a single Col-0 progenitor. Each
line was maintained by single-seed descent for 30 gene-
rations [38]. Using whole-genome bisulfite sequencing
(WGBS) of early and late generation individuals from
MA lines, Schmitz et al. [39] found DNA methylation
was consistent for 91% of methylated cytosines. Further
analysis has estimated the rate of spontaneous change in
DNA methylation at a single cytosine, termed epimuta-
tion, to be four to five orders of magnitude greater than
nucleotide mutation rate (10−4 compared to 10−9 per
generation per haploid genome, respectively), with losses
of DNA methylation more likely than gains [40, 41].
Additionally, epimutations did not accumulate linearly;
the number of differentially methylated positions did not
increase at a constant rate per generation [41, 42]. How-
ever, the number of differentially methylated regions per
generation was comparable to the number of nucleotide
mutations per generation [39, 42].
Differential methylation of a single cytosine has not

been sufficiently linked to altered phenotypes in plants.
In contrast, epialleles are known to associate with
changes of gene expression and phenotype, but the sta-
bility of epialleles through either self-fertilization or out-
crossing remains unclear. Furthermore, it is unclear how
frequently epialleles arise over sequential generations. In
this study, we discover that 99.998% of the methylated
regions in the genome were faithfully inherited over ge-
nerations in two independent MA lines. However, rare
spontaneous epialleles were identified and were used to
assess the stability of newly formed methylation states
using an outcrossing population. As there are not a sig-
nificant number of nucleotide mutations to distinguish
the parental genotypes, a novel epigenotyping method
was implemented to determine the parent-of-origin for
each of the F2 progeny. Implementing this method re-
vealed that over half of the newly formed parental epial-
leles segregated in a Mendelian manner. This novel
epigenotyping procedure and the resulting data suggest
that spontaneous epialleles are sources of allelic varia-
tion in crop genomes that are likely stable enough to be
used in breeding programs.

Results
Transgenerational stability of DNA methylation states
In previous studies, WGBS was used to assess the inhe-
ritance of DNA methylation at individual cytosines over
multiple generations [39, 41, 42]. Additionally, previous
studies have also explored the spontaneous formation of
DMRs between distant generations [39, 42], but it is un-
known how stable the newly formed methylation status
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of these regions is between consecutive generations. To
investigate this further, we obtained WGBS data from
consecutive generations in two A. thaliana Col-0 MA
lines [38], line 12 and line 69 (Fig. 1a; Additional file 1:
Table S1). Because the majority of the A. thaliana gen-
ome is unmethylated, we first identified all methylated
regions in the genome (methylome). This revealed
23,761 regions (27 Mb) and 21,545 regions (28 Mb) for
lines 12 and 69, respectively. We then identified DMRs
within each line independently for all generations
using differential DNA methylation analysis in all

sequence contexts, which revealed 23 DMRs (2157 bp)
and 41 DMRs (3981 bp) in lines 12 and 69, respectively
(Additional file 1: Table S2). Of the DMRs identified in
each line, only four were the same. In these two lines,
DMRs constituted less than 0.003% (Fig. 1b) of the methy-
lome and most were specific to each line (Fig. 1b inset).
Next, the stability of the newly formed methylation

states at these DMRs was examined. Ten of the 23 DMRs
in line 12 and 19 of 41 DMRs in line 69 had a change in
DNA methylation states between a single generation
(Fig. 1c), indicating a spontaneous epiallele formed that

Fig. 1 Transgenerational stability of DNA methylation. a Experimental set up of MA lines used. Filled circles indicate WGBS available. b Heatmap
showing methylation level of methylated regions in the genome and identified epiallele loci (inset) identified in line 12 (n = 19), line 69 (n = 37),
or both lines (n = 4). Each column is a region and each row is a sample. Darkness of color indicates methylation level. c Distribution of number of
novel spontaneous epialleles per epilocus. d Distribution of underlying genomic characteristics for all methylated regions (white), epialleles in line
12 (red), and epialleles in line 69 (blue). Abbreviations: TE transposable element, IGR intergenic region, Pro promoter, UTR untranslated region, CDS
coding sequence, ncRNA non-coding RNA
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was subsequently faithfully inherited (Additional file 2:
Figure S1a). However, 13 regions with multiple changes in
DNA methylation states between generations in line 12
and 22 in line 69 were also identified, indicating regions of
instability or “hotspots” (Additional file 2: Figure S1b).
Overall, DNA methylation states were stably inherited
over generations as 99.998 and 99.997% of the methylome
identified in lines 12 and 69, respectively, did not contain
an epiallele.
Finally, we were interested to know where the epial-

leles are located in the genome in regards to genomic
features (Fig. 1d; Additional file 1: Table S2). Most meth-
ylated regions occurred in transposable elements (TEs).
However, the majority of the epialleles identified oc-
curred within gene promoters (Pro), defined as 1 kb
upstream of the transcription start site. A large portion
of epialleles also occurred in intergenic regions (IGRs).
Relatively few occurred in TEs and rarely occurred in
untranslated regions (UTRs), coding sequences (CDSs),
introns, and non-coding RNA (ncRNA) regions (Fig. 1d;
Additional file 1: Table S2).

Inheritance of epialleles upon outcrossing
To help separate genetic effects on the inheritance of
spontaneous epialleles during outcrossing, we crossed an
individual from line 49 and line 69 of the Shaw et al.
MA lines [38] (Fig. 2a). Line 49 generation 24 (G24) was
the maternal parent, and line 69 generation 20 (G20)
was the paternal parent. From the resulting offspring,
the F1 generation, a single random individual was
chosen and self-crossed to produce the F2 generation.
Twenty F2 individuals were randomly selected for further
analysis by WGBS to assess the inheritance of DNA methy-
lation of differentially methylated regions between the two
parents. Additionally, both parents were self-crossed to
produce the G′1 generation. A random individual from
each G′1 population was subsequently self-crossed to
produce the G′2 generation. The individuals used in
the G′1 crosses and a randomly selected G′2 individ-
ual for each line were subjected to WGBS (Fig. 2a;
Additional file 1: Table S1).
In previous studies, the ability to study the inheritance

of DNA methylation states relied on utilizing genetic
variation, often SNPs, in sequenced data to assign re-
gions to each parent, making it possible to compare
DNA methylation between parents and progeny. As the
MA lines used in this experiment have nearly identical
genomes, this approach could not be used, and instead
required the development of a method that is not
dependent on genetic variation to assign regions to the
correct parent in each of the progeny. We hypothesized
that if DNA methylation is stably inherited for the vast
majority of methylated regions in the genome, DNA
methylation data could be used to create a genetic

map—termed an epigenotype map [24]. To test this, cy-
tosines in all sequence contexts were identified that were
differentially methylated in the parents. Using these in-
formative positions, we then obtained the methylation
level [43] of positions sufficiently covered in all samples
to be analyzed. Next, each chromosome was split into
non-overlapping bins. Bins with less than three informative
positions were combined with adjacent bins to minimize
the predictive bias of bins with little discriminatory power.
The “mid-parent” methylome was computed for all posi-
tions in the bin by averaging the methylation level of the
parents at each position. When available, additional mid-
parent methylomes were created from parental replicates.
With the methylation values, a logistic regression classifier
was trained for the mother, mid-parent, and father sam-
ples. Classification states were weighted by the expected
heterozygosity of F2 individuals, 0.25, 0.5, and 0.25 (1:2:1)
for mother, mid-parent, and father, respectively. The
trained classifier was applied to all samples and the
state (classification) with the highest probability at
each bin was used as the putative epigenotype (Fig. 2b;
Additional file 2: Figure S2).
Crossovers are not expected to occur at high frequen-

cies over small regions of chromosomes, which required
the addition of a smoothing method to minimize these
likely spurious events. This was accomplished by a
forward-backward algorithm, which is commonly used
in signal decoding to correct for noise [44]. The algo-
rithm generated posterior probabilities to determine the
most likely state at each bin (Fig. 2c). The state with the
highest probability was used as the next putative epige-
notype (Additional file 2: Figure S3). The centromere
and pericentromeric heterochromatin caused difficulties
for the logistic regression classifier due to their repetitive
nature. The logistic regression classifier predicted the
centromere of all samples to be the mid-parent state
even when regions just outside of the centromere were
classified as mother or father (Additional file 2: Figure S3).
To overcome this, the centromere was masked when cal-
culating posterior probability (see “Methods”).
After applying the forward-backward algorithm, the

Viterbi algorithm was applied to find the most likely
sequence of states across the chromosome (Fig. 2d;
Additional file 2: Figure S4) [44]. The centromere re-
gion was again masked when applying the Viterbi algo-
rithm. The predicted states from the Viterbi algorithm
were used as the final predicted epigenotype (Fig. 2e).
Bins predicted as the mother state and the father state
represented homozygous maternal and paternal epigen-
otype, respectively. Bins predicted as the mid-parent state
represented the heterozygous epigenotype. Adjacent bins
with the same epigenotype represented inherited haplo-
type blocks and changes in epigenotype between adjacent
bins represented crossovers.
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Simulation testing for prediction of epigenotypes
To test the correctness of the proposed procedure, we
generated a series of simulated datasets using the paren-
tal methylation values of chromosome 3. A. thaliana has
an average of one to two crossovers per chromosome
[45, 46]. It was important to test for increasing number
of crossovers to determine potential limits of the proce-
dure. For each simulation iteration, 20 samples were cre-
ated with zero to 19 potential points of crossover on the
chromosome (see “Methods”). Each region of the samples
was randomly assigned an epigenotype as maternal ho-
mozygous, heterozygous, or paternal homozygous with

probabilities 0.25, 0.5, and 0.25 (1:2:1), respectively, as ex-
pected by Mendelian inheritance. For each sample, simu-
lated methylomes were created using the parental
methylation level of each position within the region. To
test the ability of the procedure to handle error around
expected methylation levels, additional methylomes
were created using randomly generated values within
± 10 to 100% of the parental methylation value. Each
set of samples for a given error level was tested with
the procedure using six bin sizes of 10 to 500 kb. The
final epigenotype prediction was then compared to the
assigned epigenotype and accuracy was computed. This

Fig. 2 Set-up of MA line 49 × line 69 and overview of epigenotyping procedure. a Experimental set up for genetic cross of A. thaliana Col-0 MA
line 49 × line 69. Filled circles indicate WGBS data are available. After obtaining methylation level of all informative cytosines for a bin for all samples, b
use logistic regression classifier to get initial epigenotype predictions and probabilities for classifiers mother, mid-parent, and father for each bin. c
Then, apply forward-backward algorithm to find the most likely epigenotype at each bin. d Next, apply the Viterbi algorithm to find the
most likely sequence of epigenotypes across the chromosome. d The resulting map of the Viterbi algorithm is used as the final predicted
epigenotype. For b–e, background color indicates epigenotype prediction at each step. Line indicates prediction probability, posterior probability
from forward-backward algorithm, and scaled score from the Viterbi algorithm. Maternal epigenotype is shown in yellow, mid-parent/heterozygous green,
and paternal blue. Centromere is denoted by gray stars and lighter background color
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process was applied for 25 total iterations (Additional
file 2: Figure S5).
The epigenotyping procedure worked well when

methylation values were within ±50% of the expected
parental methylation values and when using bin sizes
greater than 10 kb (Fig. 3a). Larger bin sizes were less
accurate for samples with increasing number of cross-
overs because a bin could potentially span multiple
crossovers (Additional file 2: Figure S6). Additionally,
larger bin sizes were better able to handle increasing
error values than smaller bin sizes (Fig. 3a). Overall, 50-
kb bins and ±30% variability had the highest accuracy at

98.69%, validating the utility of the epigenotyping
method (Additional file 1: Table S3). Using 50-kb bins
was robust to increasing numbers of breakpoints and in-
creasing error around the expected parental methylation
(Additional file 2: Figure S6). For these reasons, 50-kb
bins were used for further analysis of our genetic cross.

Epigenotyping of met1 epiRILs
To test the procedure on existing datasets, epiRILs were
subsequently analyzed. In an epiRIL population, each
line had a mosaic methylome of normal DNA methyla-
tion inherited from the wild type (WT) parent and

Fig. 3 Validation of epigenotyping procedure. a Distribution of accuracy for samples tested using different combinations of bin size and error
around the parental methylation value. Each data point is the mean accuracy of 25 simulations for a given sample, bin size, and error value. Dark
bar indicates median, box denotes first and third quartile, and whiskers are 1.5 times the interquartile range. b Epigenotype maps for chromosome 1
of three met1 epiRIL samples. Blue denotes wild type (WT)-derived region of chromosome and yellow denotes met1-derived region. Maps for
chromosomes 2-5 are in Additional file 2: Figure S7 c Comparison of genetic maps using SNPs created by Greaves et al. [33] to epigenotype maps for
chromosome 1. Blue denotes C24 homozygous region, yellow denotes Ler homozygous region, and green denotes heterozygous region as predicted by
each method. Gray indicates regions where genotype could not be determined. Maps for chromosomes 2–5 are in Additional file 2: Figure S8
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hypomethylation inherited from the mutant parent, with
minimal genetic differences [18, 19]. We used previously
published WBGS data for Col-0 WT, Col-0 met1-3,
and F8 generation of three met1 epiRILs [39, 47, 48]
(Additional file 1: Table S1). The class weights were
adjusted to account for the expected low residual he-
terozygosity of F8 individuals. Additionally, the logis-
tic regression classifier was biased towards the WT
sample. To overcome this, it was necessary to adjust
the input probabilities when applying the forward-
backward algorithm (see “Methods”). Due to remethy-
lation events which have been previously documented
in the epiRILs [19, 48], using cytosines in all contexts
produced ambiguous maps. By using only CG cytosines
within gene body methylated genes, which are unlikely to
be remethylated [48], we were able to successfully create
epigenotype maps for three independent met1 epiRILs
(Fig. 3b; Additional file 2: Figure S7).

Epigenotyping for C24-Ler crosses
For further validation, we sought to test the procedure
on a cross with additional genetic diversity. This would
allow us to compare the genetic map created using SNPs
to the epigenotype map. We used previously published
methylation for a cross between A. thaliana accessions
C24 and Ler [31] and six F2 samples [33] (Additional file 1:
Table S1). The epigenotype map was able to recapitulate
the SNP-based genetic map at 99.8% of bins (Fig. 3c;
Additional file 2: Figure S8) and was able to predict all re-
combination events except for one event on chromosome
4 of F2-E that occurred at the heterochromatic knob
(Additional file 2: Figure S8). The average difference in
breakpoints between the two methods was 18 kb
(Additional file 1: Table S4).

Epigenotype maps
Confident the epigenotyping procedure worked as
intended, the procedure was applied to all samples in
the genetic cross using cytosines in all sequence contexts
(CG, CHG, and CHH) with 50-kb bins and centromere
masking. Methylomes of the G′1 generation and G′2
generation were used as parental replicates. The final
maps showed large contiguous blocks of consistent epi-
genotype with inferred locations of crossovers (Fig. 4a).
The average number of crossovers observed in the F2
samples per chromosome compared well to previous
studies using genetic approaches [45, 46] (Additional
file 1: Table S5). There was no significant difference
in the observed distribution and expected distribution
of crossovers for each chromosome (Fig. 4b; Additional
file 1: Table S5). Additional support for high-quality epi-
genotype maps was observed by comparing expected and
observed allele frequencies in the F2 samples. From the
law of segregation, maternal and paternal alleles should

occur in equal frequencies at each locus in the F2 samples.
Inferring F2 alleles from the epigenotype map, the ex-
pected 1:1 ratio could not be rejected for any bin on any
chromosome (Fig. 4c; Additional file 1: Table S6).
The parental samples of this cross are nearly genetically

identical; however, 36 SNPs were identified between later
generations of lines 49 and 69 [40]. After eliminating SNPs
that had not occurred in the parents, SNPs that could not
be differentiated with bisulfite sequencing, and SNPs with
insufficient coverage (Additional file 1: Table S7), 18 SNPs
remained available for analysis (Additional file 2: Figure
S9a). Overall, the epigenotype and SNP genotype were in
agreement for 96.4% of the SNPs (Fig. 4d; Additional file 1:
Table S8). Most of the F2 samples (12/20) had all SNPs in
agreement and 6/20 samples had only a single mismatch,
which could be due to a number of reasons (Additional file
2: Figure S9b). Five of the 13 inconsistencies were centro-
meric, which was known to be more difficult to epigen-
otype due to the repeat content. Five other mismatch
positions could be due to sequencing errors. For example, a
predicted heterozygous SNP occurred in F2-3 on chromo-
some 1 at 23 Mb in a large block of predicted homozygous
maternal. The SNP genotype could be incorrect to a se-
quencing error on the one read which supports the hetero-
zygous genotype (Additional file 1: Table S8). Using
multiple independent populations with and without genetic
variation we conclude that we are able to create a genetic
map solely using DNA methylation data.

Inheritance of parental epialleles in F2 progeny
To observe inheritance of DNA methylation states of
spontaneous epialleles, 107 DMRs between the parents
were identified. If DNA methylation inheritance is
mainly additive, a maternal homozygous F2 at a DMR is
expected to have a methylation level near the methyla-
tion level of the mother. Similarly, a paternal homozy-
gous F2 at the DMR would be expected to have a
methylation level near the father. A heterozygous F2
would be expected to have a methylation level between
the mother and father levels. Because the parent samples
sequenced were siblings of the plants used in the cross,
it was important to filter DMRs that were specific to the
sequenced sibling and were not due to a spontaneous
epiallele. For each line, DMRs were identified between
each of the parents, and their subsequent G′1 and G′2
progeny (Additional file 1: Table S9 and Table S10).
These regions were eliminated and 100 DMRs remained
for subsequent analysis.
For each region of differential methylation between

the parents, the epigenotype for each F2 was determined
and the methylation level across the region was com-
puted. Then, the distribution of methylation levels for
the F2s with the same epigenotype was compared for
differences in mean methylation level between the
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Fig. 4 (See legend on next page.)
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epigenotypes (Additional file 2: Figure S10; Additional
file 1: Table S11). Regions were then categorized into
four groups based on the observed pattern of inheritance
(Additional file 1: Table S12). In the first group, the
distribution of methylation levels agreed with the epi-
genotype (Fig. 5a). These regions indicated additive
methylation inheritance. The second group, parental
dominant, consisted of regions where all F2 samples had
a methylation level close to one parent, regardless of epi-
genotype (Fig. 5b). These regions could be explained by
trans-chromosomal methylation (TCM) and trans-
chromosomal demethylation (TCdM) [31]. The third
group of regions showed no association between methy-
lation level and epigenotype (Fig. 5c). These regions
could occur as a result of spontaneous events. Regions
in the final group were ambiguous, likely a result of the
small sample size or large variability of methylation
levels of the F2s (Fig. 5d).
Over half of the regions had the inheritance pattern

expected by additive methylation inheritance (Add-
itional file 2: Figure S11). In these regions where par-
ental methylation is substantially different, a high
proportion of additive inheritance was still observed.
Only three regions were categorized as a parental
dominant region, suggesting that TCM and TCdM
are not commonly associated with spontaneous epial-
leles. In the cases where small sample size or high
variability affected classification, increasing the num-
ber of F2 samples analyzed would potentially correct
misclassifications.
We were also interested to see if there was any associ-

ation between inheritance pattern observed and the
underlying genetic characteristics (Fig. 5e; Additional file
1: Table S12). Similar to the transgenerational MA lines,
most epialleles were in gene promoters. There did not
appear to be a correlation between inheritance pattern
and genomic feature.

Discussion
Plants have multiple pathways for maintaining DNA
methylation. Although the epimutation rate of individual
cytosines is high (10−4 per generation per haploid gen-
ome) [41], methylation across regions is very stably
inherited (Fig. 1b). Of the methylated regions in the

genome, less than 0.003% are not faithfully inherited by
the next generation. The combined methylation across a
region is more crucial than methylation at single po-
sitions because it is altered methylation of regions, not
positions, that can have documented effects in plants
[14–16]. When a spontaneous epiallele arose, we ob-
served approximately 45.3% of the newly formed methy-
lation states are subsequently stably inherited over the
generational timescales explored (Fig. 1c). In systems
with perturbed methylomes like epiRILs, some regions
of abnormal methylation return to the original methyla-
tion state after several generations [18, 19, 49]. This sug-
gests there are underlying characteristics leading to the
re-methylation, such as sequence, small RNAs, or trans-
posable element content. Most regions, however, are
maintained in the newly methylated state. DNA methy-
lation is dynamic but also incredibly stable between ge-
nerations for most of the methylome.
Variation in DNA methylation is a potential source

of alleles that can lead to natural phenotypic diversity.
Crop plants tend to have large genomes and many si-
lenced regions, which could provide an even greater
source of phenotypic variation as compared to A.
thaliana. This could be particularly useful for agricul-
turally important traits. With the invention of epimu-
tagenesis and targeted epigenome editing, it is
important that induced epialleles are stable through
several generations for them to be useful in crop im-
provement [50]. The research suggests that although
most methylated regions of the genome are stably
inherited, locations of natural epialleles have varying
stability over generational time. Future work will be
needed to explore the factors affecting epiallele stability to
avoid inducing epialleles that are unlikely to be stable.
DNA methylation in plants is inherited in cis, which

has allowed us to develop a procedure to determine
genotype from only DNA methylation (Fig. 2). The epi-
genotyping procedure performed well for simulated
data, previously published epiRILs, and a cross between
A. thaliana accessions (Fig. 3). The procedure was ap-
plied to genetically identical F2 progeny and the result-
ing maps agreed well with the expected number of
crossovers in A. thaliana, with the expected allele fre-
quencies based on Mendelian inheritance and with SNP

(See figure on previous page.)
Fig. 4 Results of epigenotyping in F2 samples. a Final epigenotype maps for all chromosomes in the F2 population of A. thaliana Col-0 MA line
49 × line 69. Yellow indicates homozygous maternal, green heterozygous, and blue homozygous paternal. Lighter color background denotes the
centromere. Heatmaps above chromosomes show gene and repeat density across the chromosome. b Distribution of observed number of cross-
overs per chromosome, in black, compared to expected number based on Poisson distribution, in gray. c Epigenotype predicted allele frequencies
across each chromosome. From the law of segregation, maternal (yellow) and paternal (blue) alleles are expected in a 1:1 ratio. d Agreement of
predicted epigenotype based on epigenotype map and predicted genotype based on reads for F2 samples at SNPs. Width of bar indicates
number of SNPs on the chromosome. Yellow, green, and blue indicate both methods predicted maternal homozygous, heterozygous, and
paternal homozygous, respectively. Gray indicates mismatch between the methods
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data (Fig. 4). This method provides an important first
step for epigenetic quantitative trait loci (epiQTL) iden-
tification in genetically identical individuals. With add-
itional testing and validation, epigenotype maps created
from this procedure can be used to link complex traits
to regions of differential methylation in experimental
and natural plant populations, including crops.

The epigenotyping procedure has allowed us to un-
couple newly formed epialleles from potential genetic
causes to accurately identify spontaneous epialleles and
more clearly understand patterns of inheritance. Of the
epialleles differing between the parents, over half show
expected additive inheritance in the F2 offspring (Fig. 5).
Few regions showed possible evidence of TCM or TCdM

Fig. 5 Inheritance patterns of epialleles. Examples of a expected, b parental dominant, c no association, and d ambiguous DMRs identified. Yellow
and blue lines indicate methylation level for mother and father, respectively. Green dashed line is the computed mid-parent methylation level.
Yellow square, green diamond, and blue circle indicate predicted epigenotype of each F2 individual at the DMR as maternal homozygous,
heterozygous, and paternal homozygous, respectively. e Distribution of underlying genomic characteristics of regions identified by inheritance
category. Abbreviations: TE transposable element, IGR intergenic region, Pro promoter, UTR untranslated region, CDS coding sequence
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[31]. Sampling additional F2 progeny would be beneficial
for future studies to accurately categorize regions with
ambiguous patterns.

Conclusions
This study reveals that DNA methylation within discrete
regions is stably inherited across generations with few
spontaneous epialleles arising each generation even
though the single cytosine epimutation rate is much
higher. DNA methylation is inherited in cis, which
allowed the creation of a procedure to create accurate
epigenotype maps in offspring of a genetic cross with al-
most no genetic variation. Applying this procedure,
more than half of differentially methylated regions be-
tween the parents were inherited as expected, with DNA
methylation levels in the region in agreement with the
predicted epigenotype.

Methods
Plant material
Seeds from Shaw et al. [38] were obtained for genera-
tions indicated in Fig. 1a. Seeds were planted and grown
in 16-h day lengths and tissue was harvested from young
leaf tissue. Tissue was flash frozen in liquid nitrogen
and DNA was isolated using a Qiagen Plant DNeasy kit
(Qiagen, Valencia, CA, USA) according to the manufac-
turer’s protocol.

MethylC-seq library construction and sequencing
Line 12 samples, met1-3, Col-0 wild type, met1 epiRILs,
C24 wild type, Ler wild type, and C24-Ler F2 samples
were previously published [31, 33, 39, 41, 47, 48]. Raw
sequence reads were downloaded and reanalyzed. The li-
braries for the C24-Ler F2 samples comprised paired
end reads, so to maintain consistency with other sam-
ples, only the first reads were used.
All other libraries were prepared according to the

protocol described in Urich et al. [51]. MethylC-seq li-
braries were sequenced to 150 bp using Illumina Next-
Seq500 (Illumina, San Diego, CA, USA).

MethylC-seq sequencing analysis
MethylC-seq reads were processed and aligned as de-
scribed in [52]. Briefly, reads were trimmed for adapters
using Cutadapt v1.1.0 [53], parameters minimum quality
score 10 and minimum read length 30 and aligned to
the TAIR10 reference genome [54] using Bowtie v1.1.0
[55] with parameters “-k 1 –m 1 –chunkmbs 3072 –best
–strata –o 4 –e 80 –l 20 –n 0”. Only uniquely mapped
reads were retained. Non-conversion rate (the rate which
unmethylated cytosines fail to convert to uracil) was cal-
culated from reads aligning to the chloroplast. Positions
were considered methylated based on the binomial test

followed by Benjamini–Hochberg false discovery rate
(FDR) correction. Non-conversion rate was used as the
expected probability for the binomial test and only posi-
tions with at least three mapped reads were included.
Methylation level is computed as the weighted methyla-
tion [43]. The weighted methylation level was calculated
as mC/(mC + uC) where mC is the number of methy-
lated reads and uC is the number of unmethylated reads.

Identification of methylated regions
Methylomes generated for transgenerational lines 12
and 69 were computationally combined to form pan-
methylomes for lines 12 and 69 independently. Specific-
ally, the number of methylated and total (methylated
plus unmethylated) reads was summed at each position
across all samples in the line. Additionally, unmethy-
lated pan-methylomes were generated by setting meth-
ylated reads to zero, while maintaining the total number
of reads as reported in each line’s pan-methylome. For
each line, the methylpy DMR identification program [52]
was applied, comparing the pan-methylome and unmethy-
lated pan-methylome to identify all C DMRs, i.e., CNN
DMRs (N =A, C, G, T). Parameters used were 3000 simu-
lations, 100 significant tests, and 250 bp maximum DMR
distance. Of these regions, regions 40+ bp long that had at
least ten cytosines covered by at least three reads in the
combined methylome were retained. A one-sided z-test
was used to test for expected methylation level of 25% in
at least one generation, i.e., 25%/8 generations = 3.125%
for line 12 and 25%/10 generations = 2.5% for line 69.
The resulting P values were adjusted using Benjamini–
Hochberg correction (n = 33,208 for line 12 and n =
31,569 for line 69). After computing methylation level
for each generation in each line, regions where all gen-
erations of a line had a methylation level less than 10%
were removed. The mean length for methylated regions
was 1138 and 1319 bp for lines 12 and 69, respectively.

Identification of transgenerational epialleles
DMRs were identified for all samples within a line using
methylpy as described above. Of these regions, only re-
gions 40+ bp long that had at least ten cytosines covered
by at least three reads in all generations of a line and at
least 20% difference in methylation level between the
highest and lowest methylation level of generations in a
line were retained. For each region in a line, a one-sided
z-test was performed to test for a significance greater
than 25% difference in methylation level between adja-
cent generations. Resulting P values were adjusted using
Benjamini–Hochberg correction (n = 910 for line 12 and
n = 1674 for line 69). A region is considered an epiallele
between generations with an adjusted P value ≤0.05
(Additional file 1: Tables S13 and S14). Regions that did
not overlap with identified methylated regions were
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eliminated. Regions with at least one epiallele were con-
sidered an epilocus. The mean length of epialleles in
both lines was 94 bp. Due to the unequal distribution in
length between identified epialleles and methylated re-
gions, estimates of stability were computed for regions
of 100 bp.

Heatmap construction
Methylated regions and epialleles identified in lines 12
and 69 were merged. At imperfect overlaps, the mini-
mum start and maximum end was used to create the
merged region. Methylated regions, excluding identified
epialleles, were ordered using R’s ward.D clustering of
the Euclidean distance of sample methylation values be-
tween regions [56]. Line 12 epialleles were ordered by
R’s ward.D clustering of the Euclidean distance of
methylation values for line 69 samples. Line 69 epialleles
were similarly ordered using methylation values of line
12 samples. Overlapping epialleles were ordered using
methylation values of samples in both lines.

Categorization of epialleles by genomic features
A genomic feature map was created such that each base
pair of the TAIR10 genome [54] was assigned a single
feature type (transposable element, promoter, untrans-
lated region, coding sequence, intron, and non-coding
RNA) based on the TAIR10 annotation [54]. Promoters
were defined as 1 kb upstream of the transcription start
site of protein-coding genes. At positions where multiple
feature types could be applicable, such as a transposon
in an intron or promoter overlapping with adjacent gene,
priority was given to non-coding RNA (highest), un-
translated regions, introns, coding sequences, promoter,
and transposon (lowest). Positions without an as-
signment were considered intergenic. Genomic feature
content of each epiallele and methylated region was
assigned proportionally based on the number of bases in
each category.

Experimental set-up for genetic cross
An individual from line 49 generation 23 (line 49-G23)
and an individual from line 69 generation 19 (line 69-
G19) of Shaw et al. [38] were each self-fertilized and
grown. Individuals from the offspring were crossed such
that line 49-G24 was the mother of the cross and line
69-G20 was the father. Siblings of these individuals were
used for WGBS. Offspring of the cross were grown to
create the F1 generation. A single randomly selected in-
dividual from the F1 was self-crossed and offspring, the
F2 generation, were grown. Twenty individuals from the
F2 generation were randomly selected for WGBS and
subsequent analysis.
Additionally, the individuals from line 49-G20 and line

69-G24 used for the cross were self-crossed and created

lines 49-G′1 and 69-G′1, respectively. One individual
from those populations was randomly selected for
WGBS and was self-crossed again to create lines 49-G′2
and 69-G′2. A single individual from each population
was randomly chosen for WGBS.
Plants were grown in 16-h day lengths and tissue was

harvested from young leaf tissue. Tissue was flash frozen
in liquid nitrogen and DNA was isolated using a Qiagen
Plant DNeasy kit (Qiagen, Valencia, CA, USA) according
to the manufacturer’s protocol.

Feature density and definition of centromere
Density as number of genic base pairs per 100 kb was
computed for each chromosome. A genic base pair is
one that occurred within the gene feature coordinates of
the TAIR10 [54] annotation. A spline was constructed
using R’s smooth.spline function [56] and the minimum
of that spline was considered the centromere center for
the chromosome. For chromosomes 1, 2, 3, and 5, the
centromere was defined as 1.5 Mb on either side of the
center. This was 13.3–16.3 Mb for chromosome 1, 2.4–
5.4 Mb for chromosome 2, 12–15 Mb for chromosome
3, and 10.4–13.4 Mb for chromosome 5. Due to the bi-
modal gene distribution caused by a heterochromatic
knob on chromosome 4, the centromere was defined as
1.6–1.9 Mb and 2.9–5 Mb.

Epigenotyping procedure by MethylC-seq
First, differentially methylated positions in all sequence
contexts were identified between the mother and father.
A position was considered differentially methylated if
coverage was at least three in both parents and only one
parent was methylated based on the binomial test. Using
these positions, the weighted methylation [43] was com-
puted for all samples (mother, father, F2s, G′1 s, and G′
2 s) keeping only positions with at least three reads in all
samples.
Next, each chromosome was analyzed independently.

The chromosome was broken into bins of size x. Then
bins with less than three positions were combined with a
neighboring bin. For each bin, feature vectors (methyla-
tion level at all positions within the bin) were created for
the mother sample and father sample. These feature vec-
tors were combined to create a mid-parent value (MPV)
feature vector as the average methylation between the
parents at each position. The G′1 and G′2 samples were
used as parental replicates and additional MPV feature
vectors were created using the G′1 and G′2 samples as
the corresponding MPV replicates. The maternal, pater-
nal, and MPV feature vectors were used to train a logis-
tic regression classifier using the sklearn toolkit v0.17.1
[57] in python v3.5.2. The classifier was run with one-
versus-rest multiclass option and the liblinear solver.
Classification states were weighted 0.25 for mother and
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father and 0.5 for MPV since F2s are expected to follow
a 1:2:1 ratio. This trained logistic regression classifier
was applied to the bin in all samples, including the
mother, father, and MPV samples. The predicted pro-
bability for each state (maternal, paternal, MPV) was de-
termined and the state with the highest probability at
the bin was reported as the preliminary predicted
epigenotype.
Then, for each chromosome a transition matrix was

computed using all samples except the mother and
father. The transition from class l to class k is the sum
of bins i, i =1 to N where bin i is class l and bin i +1 is
class k. A pseudo-count of 1 was included for each tran-
sition, and the transition matrix was normalized.
A hidden Markov model was constructed with three

states (mother, mid-parent, and father) for each bin and
the transition matrix as transition probabilities. For all
states of each bin, the logistic regression prediction
probabilities were used as the emission probabilities.
Then the forward-backward procedure [44] was applied
to each chromosome of each sample. The forward-
backward procedure identifies the most likely state at
each bin based on the posterior probability distribution.
Centromere regions were masked such that only transi-
tion probabilities contributed to the posterior probabi-
lity, i.e., emission probabilities were 1.0. The state with
the highest probability for each bin was reported as the
forward-backward prediction and the posterior pro-
babilities were used as forward-backward prediction
probabilities.
Next, a new transition matrix was computed using the

forward-backward predictions.
The Viterbi algorithm [44] was applied using forward-

backward prediction probabilities as the emission pro-
babilities and new transition matrix as the transition
probabilities. It finds the most likely sequence of classes
using maximum likelihood. Again, in centromeric re-
gions, only the transition probability was used. The tra-
ceback procedure of the Viterbi decoding algorithm was
used to assign the final class prediction or predicted
epigenotype.

Simulation testing
Simulations to test the epigenotyping procedure used
the observed methylation values of differentially methy-
lated positions on chromosome 3 for parents of the line
49–line 69 cross. Twenty samples were created with zero
to 19 possible breakpoints equally spaced along the
chromosome. For all samples, genotype (maternal, he-
terozygous, paternal) was randomly assigned to each re-
gion between breakpoints along the chromosome.
Genotype probabilities were 0.25, 0.5, 0.25 for maternal,
heterozygous, and paternal to emulate the expected
probability of the F2s. Adjacent regions could be

assigned the same genotype; thus, a sample with, for ex-
ample, five possible breakpoints could have zero to five
actual breakpoints.
Let x be the expected methylation level of the assigned

genotype which equals the maternal, paternal, and mid-
parent methylation level at a position. Let y be the error
parameter such that the assigned methylation level at a
position is randomly chosen between min (0, x – y) and
max (x + y, 1). Simulations were run for values of y from
0 to 1 in 0.1 increments. The bin size parameter can
have dramatic effects on the results, so the algorithm
was run for bin sizes 10, 20, 50, 100, 200, and 500 kb.
The epigenotyping procedure was run at each bin size
using the observed mother and father samples as the
parental samples and 20 simulated samples for a given
variability y. Centromeric regions were not specified.
Accuracy of the prediction made by the algorithm was

computed as the F1-score using sklearn toolkit [57] with
“micro” for the average parameter using the assigned ge-
notypes as truth. The process of assigning sample geno-
types and subsequent analysis was repeated for a total of
25 iterations. The final accuracy reported for each sam-
ple, variability, and bin size is the average accuracy of
these 25 iterations.

Epigenotyping met1 epiRIL lines
The procedure was applied such that the logistic regres-
sion classifier was trained to classify WT, heterozygous,
and met1 using the WT sample for the mother and the
met1-3 sample for the father. Individuals of F8 epiRILs
are expected to have much lower levels of heterozygosity
compared to F2 individuals (0.5 vs 0.0078 for F2 and F8,
respectively). To account for this, classification states
were weighted by 0.4961, 0.0078, and 0.4961 (127:2:127)
for mother, MPV, and father, respectively, based on the
expected heterozygosity for F8 individuals. There was
strong bias towards the mother (WT) for the logistic re-
gression classifier. The prediction probability for the
father (met1) was split between the father state and
MPV state. The MPV state was not predicted in any
sample, including the MPV sample, so the computed
transition matrix remained unaffected; however, the
forward-backward algorithm overrepresented the mother
state due to the biased emission probabilities. To correct
this, the emission probabilities used by the forward-
backward algorithm were adjusted such that the emission
probability of the MPV state was added to the probability
of the father state. Due to remethylation events that can
occur in epiRILs, only CG positions within the coding
regions of gene body methylated genes [48] that were dif-
ferentially methylated between WT and met1 were used.
The epigenotyping procedure was run using 50-kb bins
and centromeres were not specified.
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Epigenotyping C24-Ler F2 samples
The epigenotyping procedure was run using cytosines in
all sequence contexts and 50-kb bins. Centromeres were
defined as previously described. The genetic maps from
Greaves et al. [33] were created using 10-kb bins, so
each 50-kb bin from the epigenotyping procedure was
separated into five 10-kb bins. Most recombination
events occurred in regions where genotype could not be
determined in the genetic map. When determining the
distance between breakpoints predicted by both maps, if
the predicted breakpoint from the epigenotyping proce-
dure occurred within the undetermined genotype region,
distance was considered zero. When the predicted
breakpoint was outside the undetermined genotype re-
gion, distance was calculated from the closest edge of
the region to the breakpoint. Bins with unknown geno-
type were not included when computing agreement be-
tween the genetic map and epigenotype map.

Identification of breakpoints and expected crossover
number
For all F2 individuals, breakpoints/crossovers were iden-
tified along each chromosome where adjacent bins had
different epigenotypes. For each chromosome, a Poisson
distribution was fitted using the mean number of cross-
overs. Confidence interval was identified using sample
standard error. Expected number of crossovers per
chromosome was found given a Poisson distribution
with the mean observed for each chromosome. Probabi-
lities were computed for x = 0 – 6 because fewer than
one of 20 individuals were expected to be observed with
more than six crossovers. In the F2s, no more than five
crossovers were observed. An exact multinomial test
[58] was used to test for a difference between expected
and observed crossover number for each chromosome.
Resulting P values were adjusted with Benjamini–
Hochberg correction.

Allele frequency inferred from epigenotype
Allele frequency or genotype ratio was tested using epi-
genotype predictions of chromosomes 1–5 of F2s from
50-kb bin size. Allele frequency is expected to be 1:1 for
maternal and paternal. At each bin, the frequency of
each allele was computed and a Chi-squared goodness
of fit test was run in R. Resulting P values from the chi-
squared test were adjusted using Benjamini–Hochberg
correction.

WGBS SNP verification
Based on Ossowski et al. [40], 36 SNPs exist between
line 49 generation 31 and line 69 generation 31. A sub-
set of these SNPs were expected to have occurred by
generation 24 in line 49 and generation 20 in line 69.
Additionally, SNPs of unmethylated cytosine to thymine

cannot be used because they are not differentiable in
WGBS. Samtools v1.12 mpileup [59] was run on the
mapped WGBS reads at positions of all possible SNPs to
get read coverage at each SNP. Of the original 36 SNPs,
18 were differentiable between the parent samples, i.e.,
at least one nucleotide was unique to each sample and
had sufficient coverage to predict genotype in all F2
samples. Using the unique nucleotides at each SNP, the
genotype of F2s was assigned maternal/paternal if it only
had reads matching the unique maternal/paternal nu-
cleotide and assigned heterozygous if it had at least one
read matching both.

Identification of sibling-specific DMRs in parents
DMRs were identified with methylpy in the CNN con-
text for line 49 (mother, 49-G′1, and 49-G′2) using the
same parameters as transgenerational DMRs. Resulting
DMRs were filtered by length and difference is weighted
methylation between the most and least methylated
samples such that only DMRs of at least 40 bp and 25%
absolute difference in methylation level were retained.
For each remaining DMR, a z-test was performed to cal-
culate the P value for a greater than 25% difference in
methylation level pairwise for line 49-G24 (mother) to
49-G′1 and line 49-G24 (mother) to 49-G′2. Resulting P
values were corrected with the Benjamini–Hochberg
procedure. A DMR was considered an epiallele if at least
one comparison was significant, adjusted P value ≤0.05.
The same procedure was applied for line 69 with line69-
G20 (father), 69-G′1, and 69-G′2.

Identification of DMRs between parents
Using WGBS from line 49-G20 and line 69-G20, the
parents of the cross, DMRs in the CNN, or all Cs, con-
text were identified using the same program and param-
eters as transgenerational DMRs. Resulting DMRs were
filtered by length and difference in weighted methylation
such that only DMRs of at least 40 bp and 25% absolute
difference in methylation level were retained. Regions
that overlapped with sibling-specific DMRs were
eliminated.

Categorization of epiallele inheritance patterns in F2
samples
At each identified epiallele differing between the parents,
methylation level was computed for the parents and F2s.
The F2 epigenotype at each epiallele was assigned from
the epigenotype map.
Regions were grouped into four categories: expected

association, parental dominant, no association, and am-
biguous. To assign each region a category, the Games–
Howell post-hoc method [60] was used to compare the
difference in mean methylation level for each F2 epigen-
otype group. For each epiallele, a t-value was obtained
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for each pairwise comparison between F2 epigenotype
groups (maternal, heterozygous, paternal). Regions where
a t-value could not be obtained were removed from ana-
lysis. Then, 2000 bootstrapped samples were run ran-
domly, assigning the same distribution of epigenotype as
the epigenotypes of F2 samples at the epiallele and t-values
obtained. This provided a null distribution on t-values to
test the observed t-value against. Each comparison was
considered significantly different if the observed t-value
was greater or equal to the 99th percentile of the boot-
strapped t-values.
If all comparisons (maternal–paternal, heterozygous–

paternal, heterozygous–maternal) were significantly dif-
ferent, the region was assigned “expected association” as
each epigenotype group had a unique mean methylation
level. If the average methylation level of all F2 samples
was within 10% of one parent’s methylation level and the
methylation level of each F2 sample was closer to the
same parent’s methylation level, the DMR was assigned
“parental dominant”. At regions with no significant het-
erozygous comparison, there was no association between
epigenotype and methylation level and region was
assigned “no association”. If only one heterozygous com-
parison (heterozygous–paternal or heterozygous–mater-
nal) was significant, indicating heterozygous samples had
methylation levels similar to one homozygous parental
epigenotype, the region was assigned “ambiguous”.
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