
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified 
the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The 
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of 
this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

RESEARCH

Wu et al. Genome Biology          (2025) 26:128  
https://doi.org/10.1186/s13059-025-03604-8

Genome Biology

New insights into the cold tolerance 
of upland switchgrass by integrating 
a haplotype-resolved genome and multi-omics 
analysis
Bingchao Wu1†, Dan Luo1†, Yuesen Yue2, Haidong Yan1, Min He3, Xixi Ma1, Bingyu Zhao4, Bin Xu5, Jie Zhu1, 
Jing Wang6, Jiyuan Jia1, Min Sun1,7, Zheni Xie1, Xiaoshan Wang1 and Linkai Huang1* 

Abstract 

Background: Switchgrass (Panicum virgatum L.) is a bioenergy and forage crop. 
Upland switchgrass exhibits superior cold tolerance compared to the lowland ecotype, 
but the underlying molecular mechanisms remain unclear.

Results: Here, we present a high-quality haplotype-resolved genome of the upland 
ecotype “Jingji31.” We then conduct multi-omics analysis to explore the mechanism 
underlying its cold tolerance. By comparative transcriptome analysis of the upland 
and lowland ecotypes, we identify many genes with ecotype-specific differential 
expression, particularly members of the cold-responsive (COR) gene family, under cold 
stress. Notably, AFB1, ATL80, HOS10, and STRS2 gene families show opposite expression 
changes between the two ecotypes. Based on the haplotype-resolved genome of “Jin-
gji31,” we detect more cold-induced allele-specific expression genes in the upland 
ecotype than in the lowland ecotype, and these genes are significantly enriched 
in the COR gene family. By genome-wide association study, we detect an association 
signal related to the overwintering rate, which overlaps with a selective sweep region 
containing a cytochrome P450 gene highly expressed under cold stress. Heterologous 
overexpression of this gene in rice alleviates leaf chlorosis and wilting under cold 
stress. We also verify that expression of this gene is suppressed by a structural variation 
in the promoter region.

Conclusions: Based on the high-quality haplotype-resolved genome and multi-omics 
analysis of upland switchgrass, we characterize candidate genes responsible for cold 
tolerance. This study advances our understanding of plant cold tolerance, which pro-
vides crop breeding for improved cold tolerance.
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Background
Switchgrass (Panicum virgatum L.) is a perennial C4 grass utilized as both a forage 
crop and a dedicated feedstock for bioenergy production [1, 2]. It comprises two dis-
tinct ecotypes, lowland and upland, displaying substantial variations in morphology 
and environmental adaptability [3, 4]. The lowland ecotype typically thrives in warm, 
moist environments, featuring greater plant height and broader leaves. In contrast, 
the upland ecotype predominantly inhabits cold, arid areas and is able to overwinter 
in colder temperate zones [5]. The upland ecotype likely contains gene resources con-
ferring cold tolerance that differ from those in the lowland ecotype.

Due to the frequent occurrence of extreme weather events caused by global climate 
change, stable crop production faces significant challenges. Cold stress is one of the 
most threatening abiotic stresses in the growth and development of plants, impacting 
the geographical distribution of plants and even leading to plant mortality, thereby 
causing a decrease in crop yield [6]. Additionally, planting switchgrass on marginal 
lands is an effective way to increase its cultivation area, but these lands often face 
various abiotic stresses, especially the threat of low temperature. Upland switchgrass 
represents an ideal model for understanding how plants respond to cold stress, as it 
can successfully overwinter in northern cold regions compared to lowland ecotypes. 
However, few studies have explored the molecular mechanisms underlying the regu-
lation of cold stress responses in the upland ecotype relative to the lowland ecotype, 
and these mechanisms remain largely uncharacterized.

For most plants with an open-pollination mechanism, the improvement of off-
spring traits typically results from increased genetic variation and specific expression 
of allelic genes at certain loci [7]. The time and space-specific expression of different 
allelic genes can result in significant differences in gene products and lead to distinct 
phenotypes [8, 9]. Traditional de novo assembly algorithms for most species repre-
sent samples as haploid genomes. For highly heterozygous switchgrass, the previ-
ously reported collapsed representation may have overlooked half of the heterozygous 
variants in the genome [10]. It could have introduced assembly errors in regions of 
divergence between haplotypes. The construction of a haplotype-resolved genome 
assembly for switchgrass will provide a complete view of the genome and its com-
plex genetic variations, facilitating a comprehensive understanding of allele-specific 
expression (ASE) genes.

In this study, we uncovered the cold tolerance mechanism of upland switchgrass by 
constructing a high quality and haplotype-resolved reference genome of upland switch-
grass “Jingji31” along with transcriptomic, population genetic, and functional valida-
tion assays. We identified a large number of cold-responsive (COR) genes with opposite 
expression trends in upland and lowland switchgrass under cold stress, which may con-
tribute to the cold tolerance differences between the two ecotypes. Additionally, ASE 
genes were widely present in switchgrass, particularly certain COR genes, whose ASE 
was induced by cold stress. The genome-wide association study (GWAS) and selective 
sweep analysis identified a large number of candidate genes potentially associated with 
cold tolerance, among which the overexpression of one candidate gene was found to 
positively regulate cold tolerance. Our findings not only improve the understanding of 
cold tolerance in upland switchgrass, which may accelerate genome-assisted breeding of 
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cold tolerance in this important model energy plant, but also hold promise for promot-
ing comparative genomics studies in other crops.

Results
Assembly and annotation of the upland switchgrass genome

The genome size of the switchgrass upland ecotype “Jingji31” (2n = 4x = 36, abbrevi-
ated as “JJ31”) was estimated to be ~ 1.19 Gb using k-mer analysis based on 67.8 Gb (57 
× coverage) of Illumina short-read data (Fig. 1a, Additional file 2: Table S1-2). In addi-
tion, 53.2 Gb (44.7 × coverage) of PacBio high-fidelity long read (HiFi) sequences and 
145.2 Gb (122 × coverage) of Illumina-sequenced Hi-C data were generated (Addi-
tional file  2: Table  S1). Due to the high heterozygosity (1.55%), Hifiasm was used for 
haplotype-resolved de novo assembly using phased assembly graphs [11]. Two phased 
haplotypes, “JJ31-A” and “JJ31-B,” were anchored to pseudo-chromosomes using Hi-C 
reads. The Hi-C interaction map demonstrated that our chromosome-level anchoring 
was of high quality and reliability (Fig. 1b). Furthermore, through co-linearity analysis 
with the previously published lowland ecotype switchgrass “AP13” genome, all pseudo-
chromosomes of the two haplotypes were successfully assigned to different subgenomes, 
bearing the same chromosome IDs “K” and “N” [10] (Fig. 1c, Additional file 1: Fig. S1). 
Ultimately, the genome sizes of “JJ31-A” and “JJ31-B” were determined to be 1.14 Gb 
and 1.11 Gb, respectively, with 98.47% (“JJ31-A”) and 99.02% (“JJ31-B”) of sequences 

Fig. 1 High-quality haplotype-resolved genome assembly of upland switchgrass JJ31. a Flowering 
morphology of the upland ecotype JJ31. b Whole genome Hi-C heat map for “JJ31-A” (left) and “JJ31-B” (right). 
c The chromosome collinearity between the genomes of JJ31 and Alamo. Numbers represent chromosome 
identifiers. d Genome features of the JJ31 genome. Track “a”: chromosome length; track “b”: gene density; 
track “c”: transposable element (TE) density; track “d”: GC content; track “e–g”: gene expression levels in roots, 
stems, and leaves; track “h”: collinearity between chromosomes of “JJ31-A” and “JJ31-B”
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anchored across 18 chromosomes (Fig. 1d, Table 1, Additional file 2: Table S3-4). Their 
respective Contig N50 values were 4.9 times and 4.7 times higher than that of the “AP13” 
genome (5.5 Mb) [10] (Table 1).

We then employed various strategies to assess the quality of the haplotype-resolved 
genomes. By realigning paired-end reads to the two haploid genomes, we observed 
alignment rates of 98.07 and 97.93%, respectively (Additional file 2: Table S3). Further-
more, the embryophyta Benchmarking Universal Single-Copy Orthologs (BUSCO) anal-
ysis indicated completeness rates of 98.4 and 98.1% for the two haplotypes (Additional 
file 2: Table S3). Using Merqury to calculate quality values (QV), “JJ31-A” and “JJ31-B” 
achieved values of 45.16 and 50.27, respectively, exceeding the Vertebrate Genomes Pro-
ject standard of QV40 [12] (Table  1). The long terminal repeat (LTR) assembly index 
(LAI) for both phased haplotype genomes approached 20, nearly meeting the golden 
standard [13] (Additional file 2: Table S3). These results affirm the accuracy, complete-
ness, and contiguity of our two haploid genome assemblies.

Both haplotype-resolved genomes were annotated with a comprehensive strategy that 
combined homolog prediction, de novo prediction, and other evidence-driven predic-
tions. In the two haplotypes, 79,672 and 79,416 protein-coding genes were predicted, 
with 98.9% supported by known gene function databases (Table 1 and Additional file 2: 
Table S3). The gene models of the two haploid genomes had an average coding sequence 
length of ~ 1 kb and an average of four exons per gene (Additional file 2: Table S3). We 
also identified 0.62 and 0.59 Gb repeat sequences, accounting for 54.19 and 53.48% of 
the two haplotypes, respectively, of which 42.09 and 41.51% were LTRs (Additional file 2: 
Table  S3). Additionally, we identified 2245 and 2206 miRNAs, 1264 and 1291 tRNAs, 
9171 and 5221 rRNAs, and 1190 and 1154 snRNAs in the two haplotype genomes, 
respectively (Additional file 2: Table S3). Considering the overall superior quality of the 
“JJ31-B” haplotype, it was selected for subsequent analysis unless otherwise stated.

Enhanced cold tolerance and subgenome dominance in upland switchgrass indicated 

by comparative genomics analysis

To understand the evolutionary relationship between the two ecotypes of switch-
grass, we performed a comparative genomic analysis that included several closely 
related species. The phylogenetic tree showed that the K and N subgenomes of 
switchgrass diverged approximately 6.6 million years ago (Mya), while the divergence 

Table 1 Summary of assembly and annotation of two haplotype genomes in upland switchgrass

JJ31-A JJ31-B

Contig N50 (Mb) 27.05 25.98

Contig length (Mb) 1124.57 1136.95

Scaffold N50 (Mb) 67.96 62.02

Scaffold length (Mb) 1143.31 1110.80

Chromosome anchoring rate (%) 98.47 99.02

Gene no 79,672 79,416

Repeat sequence length (Mb) 619.58 594.02

Repeat ratio (%) 54.19 53.48

QV 45.16 50.27
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between switchgrass and P. hallii occurred around 8.8 Mya, consistent with previous 
studies [10] (Fig. 2a). Notably, the K subgenomes of the two ecotypes diverged at 2.3 
Mya, and the N subgenomes at 2.6 Mya (Fig. 2a), suggesting that ecotype divergence 
occurred during this period. We further determined the divergence time between the 
two ecotypes to be ~ 2.2 Mya (Ks peak at 0.03) by calculating the synonymous substi-
tution rate (Ks) of orthologous gene sets between the different subgenomes of the two 
ecotypes (Fig. 2b, Additional file 2: Table S5). Combining our findings with the previ-
ous report on the tetraploidization time of switchgrass (< 4.6 Mya) [10], we propose 
an evolutionary scenario in which the N and K subgenomes diverged first, followed by 
tetraploidization and later ecotype differentiation.

It was reported that upland switchgrass exhibits greater cold tolerance than the 
lowland ecotype [14–16]. Compared to the “AP13,” a total of 4147 expanded, 5030 
positively selected, and 4873 specific genes were identified in “JJ31” (likelihood ratio 
test, P < 0.05). These genes were enriched in several stress-responsive pathways and 
biological processes (Additional file  1: Fig. S2). The expanded and specific genes in 
“JJ31” were primarily enriched in calcium channel activity, calcium ion transmem-
brane transporter activity, melatonin receptor activity, and sphingolipid metabolic 
pathways, which are believed to play crucial roles in protecting plants from cold 
stress [17–21]. These positively selected specific genes were associated with G-pro-
tein coupled receptor activity, which is involved in signal transduction of plant stress 

Fig. 2 Comparative genomics and subgenome dominance analysis. a Phylogenetic tree and divergence 
time estimates of “JJ31” and five closely related species. The right panel shows the distribution of single-copy, 
multi-copy, unique, and other gene orthologs. b Evolutionary analysis of the “JJ31” and “AP13.” The Ks 
distribution is shown for orthologs in the switchgrass genomes. K and N represent two subgenomes, 
respectively. The parentheses contain the X-axis and Y-axis values corresponding to the peaks. c–h 
Assessment of subgenomic dominance in two haplotype genomes. Gene density of the two subgenomes in 
the “JJ31-A” (c) and “JJ31-B” (d). TE density of the two subgenomes in the “JJ31-A” (e) and “JJ31-B” (f). Number of 
dominantly expressed genes in the two subgenomes of the “JJ31-A” (g) and “JJ31-B” (h). The statistical window 
size is 1 Mb
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responses [22]. The above results may help explain the enhanced cold tolerance of 
upland switchgrass compared to the lowland ecotype.

Subgenome dominance is a common phenomenon in polyploid plants, prompting our 
investigation into the subgenome characteristics within the two haplotypes of upland 
switchgrass. We applied a sliding window approach (window size 1 Mb) to evaluate gene 
and transposable element (TE) densities across the two subgenomes. Compared to the 
N subgenomes in “JJ31-A” and “JJ31-B,” the K subgenomes exhibited higher gene density 
(71.2 versus 66.2 genes per Mb and 73 versus 67.6 genes per Mb, P < 0.01), more genes 
with dominant expression (4662 versus 4305 and 4715 versus 4403, P < 0.01), and less 
TE density (53.5 versus 56.4 TEs per Mb and 52.5 versus 55.7 TEs per Mb, P < 0.01) 
(Fig. 2c–h, Additional file 2: Table S6-9). Additionally, the cold stress transcriptome data 
from both ecotypes revealed slightly more DEGs on the K subgenome (Additional file 2: 
Table S10). In summary, all metrics indicated that the K subgenome is dominant in both 
haplotypes, consistent with observations in the “AP13” genome [10].

Contribution of specific differential expression of COR gene families to the cold tolerance 

differences between the two ecotypes

The upland ecotype “JJ31” exhibited greater cold tolerance than the lowland ecotype 
“Alamo” (noting that “AP13” was a line/clone selected from “Alamo”) [14] based on the 
phenotypic and physiological indicators under cold stress (Fig.  3a–c). Leaves of both 
ecotypes showed significant wilting after 56 days of cold treatment, but only “JJ31” 
regrew new leaves after returning to room temperature (Fig.  3a). In addition, relative 
water content (RWC), relative electrical conductivity (REC), and malondialdehyde 
(MDA) showed significant changes (P < 0.05) in “JJ31” after 21 days of cold stress com-
pared to the control, while in “Alamo,” RWC significantly decreased and REC and MDA 
significantly increased after 14 days of cold stress compared to the control (P < 0.05) 
(Fig. 3b,c). The slower physiological changes under cold stress might indicate better cold 
tolerance in “JJ31” than in “Alamo.”

To understand the molecular response mechanisms underlying the greater cold 
tolerance of upland switchgrass, we conducted transcriptome sequencing on the 
leaves and roots of “JJ31” and “Alamo” at three time points under cold stress (Addi-
tional file  2: Table  S1). Based on KEGG enrichment analysis, the DEGs identified 
from each comparison group were mainly enriched in circadian rhythm, MAPK 
signaling pathway, and plant hormone signal transduction pathway (Fig.  3d, Addi-
tional file 1: Fig. S3). Although both ecotypes relied on similar pathways to respond 
to cold stress, we found that genes related to cold tolerance within these pathways 
exhibited ecotype-specific expression (Fig. 3e). During the initial exposure of plants 
to cold stress,  Ca2+ influx induces the activity of calmodulin (CaM), which activates 
downstream MEKK1 to positively regulate plant cold tolerance [23, 24]. Our study 
found that three members of the CaM family and one member of the MEKK1 family 
were specifically upregulated in “JJ31,” while two and one members of the respec-
tive families were specifically downregulated in “Alamo” (Fig. 3e). Two transcription 
factors, PIF3 and PIF4, are known as negative regulators in plant cold tolerance by 
inhibiting the expression of CBF, while the EIN3-BINDING F-BOX 1/2 (EBF1/2) 
proteins enhance cold tolerance by degrading PIF3 [25, 26]. We found that nine PIF3 
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genes were specifically downregulated in “JJ31,” while nine PIF3 and two PIF4 genes 
were specifically upregulated in “Alamo” (Fig. 3e). The two EBF1/2 genes also exhib-
ited opposite expression changes between the two ecotypes (Fig.  3e). Additionally, 
one LHY, one HY5, and two SNRK2 genes were specifically upregulated in “JJ31,” 

Fig. 3 Transcriptional landscape differences between the two ecotypes under cold stress. a Phenotypic 
changes of JJ31 and Alamo on days 0, 28, and 56 under cold stress at 4 °C and recover at room temperature 
for 28 days. Scale bar indicates 7 cm. b Changes in physiological indicators of JJ31 under control (room 
temperature) and cold stress (4 °C). From left to right: RWC, REC, and MDA. ** indicates P < 0.005. c Changes 
in physiological indicators of Alamo under control (room temperature) and cold stress (4 °C). From left to 
right: RWC, REC, and MDA. ** indicates P < 0.005. d KEGG enrichment of all compared DEGs identified in 
leaves and roots of JJ31 and Alamo under cold stress. e Expression changes of cold-tolerance-related genes 
in the circadian rhythm, MAPK signaling pathway, and plant hormone signaling transduction pathways in 
two ecotypes. f Expression changes of key genes in the CBF-dependent cold response pathway in the two 
ecotypes
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while one SNRK2 and one PYL were specifically downregulated in “Alamo” (Fig. 3e). 
These genes have been reported to positively regulate plant cold tolerance [27–30]. 
These results suggest that the ecotype-specific expression of these cold stress regu-
latory genes might explain differences in cold tolerance between the two ecotypes.

The above results imply that there may be more cold-response (COR) genes with 
ecotype-specific expression. We identified 795 COR genes in switchgrass based on 
the 109 COR gene families reported in Arabidopsis [31] (Additional file 2: Table S11). 
We identified 182 and 251 specific DEGs significantly enriched in COR genes in 
“JJ31” and “Alamo,” respectively (P = 0.035 and P = 1.0745e − 5, Additional file  1: 
Fig. S4, Additional file 2: Table S12-13 and Additional file 3: Note S1). These COR 
genes belonged to 58 and 55 families, respectively, among which members of 25 
families showed specifically differential expression in the leaves or roots of only one 
ecotype (Additional file 1: Fig. S5a). The members of 44 COR gene families exhibited 
differential expression in both ecotypes, where some of these genes showed opposite 
expression changes between the two ecotypes (Additional file 1: Fig. S5b).

The auxin signaling F-box protein 1 (AFB1)-mediated auxin signaling pathway 
is involved in plant tolerance to abiotic stress, and its overexpression can enhance 
plant tolerance to salt and cold stresses [32]. Three AFB1 genes were upregulated 
in “JJ31,” while four AFB1 genes were downregulated in “Alamo” (Additional file 1: 
Fig. S5b). ATL80, an E3 ubiquitin ligase and negative regulator in plant cold toler-
ance [33], had three genes downregulated in “JJ31” and one gene upregulated in 
“Alamo” (Additional file  1: Fig. S5b). The Arabidopsis mutant hos10-1 completely 
lost the cold acclimatization response [34]. We found 15 HOS10 genes upregulated 
in “JJ31,” while 11 were downregulated in “Alamo” (Additional file 1: Fig. S5b). Inter-
estingly, although STRESS RESPONSE SUPPRESSOR2 (STRS2) was reported to 
negatively regulate Arabidopsis tolerance to salt, osmotic, and heat stress, and not 
cold stress [35], our study revealed that three STRS2 genes were downregulated in 
“JJ31” and two were upregulated in “Alamo” (Additional file 1: Fig. S5b), which may 
highlight the role of STRS2 in response to cold stress in switchgrass. In summary, 
the ecotype-specific expression of the above COR genes, as well as their opposite 
expression changes between the two ecotypes, may contribute to the observed dif-
ferences in cold tolerance.

The transcriptional regulatory pathway dependent on CBF is crucial for the plant 
response to cold stress [36–38]. Similarly, we found that cold response genes in 
the CBF-dependent pathway were activated to varying degrees in both “JJ31” and 
“Alamo,” with slight differences between leaves and roots (Fig. 3f ). We observed that 
the specific differential expression of MEKK1 and SIZ1 genes occurred only in the 
leaves. In contrast, the specific differential expression of CRLKs and ICE1 genes 
occurred only in the roots (Fig.  3f ). Additionally, members of the CaM, MPK3/6, 
and CIPKs families tended to exhibit opposite expression trends between the two 
ecotypes (Fig. 3f ). In conclusion, through the identification of COR gene families and 
comparative transcriptome analysis, we comprehensively revealed the landscape of 
differential expression of COR genes between the two ecotypes, which may contrib-
ute to the superior cold tolerance of the upland compared to the lowland ecotype.
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The involvement of ASE in response to cold stress revealed by haplotype-resolved genome

The phenomenon of allele-specific expression has been found to be widespread in plants 
as more genomes are elevated to the level of haplotype resolution, and alleles exhibit-
ing this characteristic are referred to as ASE genes [39]. The haplotype-resolved genome 
of upland switchgrass enabled us to use RNA-seq data to identify ASE genes, which 
profoundly impact plant growth and development [40]. According to the correlation 
between the number of ASE genes and the number of transcriptome samples used in 
the analysis, we aimed to obtain a complete ASE gene collection in switchgrass by using 
sufficient data. We found that the number of ASE genes stabilized when the number of 
transcriptome samples reached 15 by utilizing transcriptome data reported by Zuo et al. 
(with at least two replicates, Fig. 4a) [41]. A total of 16,801 ASE genes were identified 
in switchgrass, with the number of alleles biased toward the expression of “JJ31-A” sig-
nificantly exceeding those biased toward the expression of “JJ31-B” (Fig. 4b, Additional 
file 2: Table S14). To understand the impact of natural selection on ASE genes and non-
ASE genes, we calculated the Ka/Ks ratio between allele pairs. Although most allele pairs 
exhibited low Ka and Ks values, ASE genes experienced significantly stronger purify-
ing selection pressure compared to non-ASE genes (Fig. 4c, Additional file 2: Table S15). 
To further investigate potential causes of ASE, we examined the distribution patterns 
of SNPs surrounding ASE genes and equivalently expressed alleles (EEAs). Compared 
to EEAs, ASE genes exhibited significantly higher SNP density in the upstream, exonic, 
intronic, and downstream regions, consistent with previous findings in other plants [42] 
(Fig. 4d). The SNP density in the upstream region was higher than that in other regions, 
suggesting that the occurrence of ASE might correlate with the greater variation in the 
upstream region of the gene.

Similarly, we utilized the transcriptome data obtained in this study under cold stress to 
identify ASE genes, aiming to explore whether the response of ASE to cold stress differs 
between the two ecotypes (Additional file 3: Note S2). Compared to the control group, a 
significant increase in ASE genes were detected in “JJ31” after experiencing cold stress, 
whereas no significant change was observed in “Alamo,” indicating that more ASE genes 
were induced by cold stress in “JJ31” (Fig. 4e, Additional file 2: Table S16-17). In total, 
we identified 10,775 and 8430 cold-induced ASE genes in the two tissues of “JJ31” and 
“Alamo,” respectively (Additional file  1: Figs. S6 and S7, Additional file  2: Table  S18). 
Among these ASE genes, 5680 were specific to JJ31, 3,335 were specific to Alamo, and 
5095 were shared between the two ecotypes (Additional file  1: Fig. S8a). Additionally, 
cold-induced ASE genes specific to “JJ31” were significantly enriched in COR genes (P = 
0.02, Fig. 4f and Additional file 1: Fig. S8b), whereas those specific to “Alamo” showed no 
significant enrichment (P = 0.63, Additional file 1: Fig. S8c), supporting the importance 
of ASE in responding to cold stress in “JJ31.”

We selected the well-known COR gene, CBF, to validate the accuracy of ASE, as this 
gene undergoes cold-induced ASE in both “JJ31” and “Alamo.” We observed that the two 
alleles of the CBF gene, PVA_6 K02793.1 and PVB_6 K02781.1, did not show differential 
expression in the control groups except for the 12 and 24 h control groups of “Alamo,” 
but PVB_6 K02781.1 exhibited significantly preferential expression in all cold treat-
ment groups (Fig.  4g). Although the sequence similarity between the two alleles is as 
high as 98.82%, four SNPs cause changes in three amino acids (Additional file 1: Fig. S9). 
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Fig. 4 Characteristics of ASE genes in switchgrass. a ASE gene numbers increase with the quantity of 
RNA-seq samples. The specified number sets were selected randomly from 23 ASE gene sets with three 
replicates. b Dominant expressed alleles in two haplotype genomes. c Ka/Ks of ASE and non-ASE genes. 
Minima and maxima are present in the lower and upper bounds of the whiskers, respectively, and the width 
of the violin are densities of the Ka/Ks value. P values were calculated with a two-sided Student’s t test. d 
SNP density in ASE genes and equivalently expressed alleles (EEAs). The y axis represents SNP numbers every 
100 bp. P values were calculated with two-sided Student’s t test. *** indicates P < 0.0005. e Number of ASE 
genes identified in JJ31 (left) and Alamo (right) under control (room temperature) and cold stress (4 °C). P 
values were calculated with two-sided Student’s t test. NS indicates not significant. f The expression changes 
of 67 COR alleles enriched in JJ31-specific ASE genes under control (room temperature) and cold stress (4 
°C) conditions. The suffixes “L” and “R” represent leaves and roots, respectively. g The expression levels (TPM) 
of two alleles of the CBF gene (PVA_6 K02793.1 and PVB_6 K02781.1) across different transcriptome samples 
in JJ31 and Alamo. ** indicates adjusted P-value < 0.01. h Pattern diagram of PVB_6 K02781.1 advantage 
expression. Red and blue indicate the allele IDs, corresponding bases, and encoded amino acid types in 
“JJ31-A” and “JJ31-B,” respectively. “RNA-seq reads” represents the proportion of reads containing different SNP 
types that map to “JJ31-B.” From left to right, RNA-seq reads aligned to the SNP sites are as follows: 79 reads 
(C: 92%, G: 8%), 100 reads (G: 45%, C: 55%), and 67 reads each for the third and fourth sites (T: 81%, A: 19%; G: 
85%, T: 13%)
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We aligned the RNA-seq data to the reference genome “JJ31-B” and observed a higher 
proportion of reads containing SNPs corresponding to the B allele type, supporting the 
dominant expression of PVB_6 K02781.1 (Fig. 4h). In conclusion, our findings indicate 
the widespread presence of ASE in switchgrass, with more ASE genes involved in cold 
stress responses in upland ecotype.

Identification of genes associated with cold tolerance by population genetic analysis

To explore cold tolerance genes in upland switchgrass at the population level, we aligned 
resequencing data from 340 accessions (242 uplands and 98 lowlands) reported previ-
ously to the “JJ31” genome [10] (Additional file  2: Table  S19), resulting in 10,654,902 
SNPs and 243,831 SVs (Additional file 1: Fig. S10, Additional file 2: Table S20 and Addi-
tional file  3: Note S3). A total of 103.7 and 125.9 Mb of genomic sequences covering 
5084 and 8428 genes were detected using the sliding window method based on SNPs 
and SVs, respectively (Additional file 1: Fig. S11). We found that 66 and 111 genes from 
the two datasets were significantly (P = 0.0196 and P = 0.0018, respectively) annotated 
as belonging to the COR gene family (Additional file 1: Fig. S11). Among the COR genes 
identified based on SNPs and SVs, approximately 54.5% (36 out of 66) and 62.2% (69 out 
of 111), respectively, showed differential expression under cold stress (Additional file 2: 
Table S21). These results suggest that the differential selection of certain COR genes in 
the two ecotypes potentially contributes to the differences in cold tolerance.

To identify candidate genes related to cold tolerance in switchgrass, we conducted a 
GWAS based on both mixed linear model and logistic model approaches, using two var-
iant datasets and previously reported overwintering rates of 340 switchgrass accessions 
[10] (Additional file 1: Fig. S12-S15, Additional file 2: Table S22-23). An association signal 
on Chr3 K was simultaneously detected in both SV-GWAS and SNP-GWAS, including 
an overlapping region with the selective sweep region (Fig. 5a). We examined the expres-
sion of 14 genes around the association signal and found that only PVB_3 K03605.1 and 
PVB_3 K03611.1 were highly expressed under cold stress (Fig. 5b and Additional file 1: 

Fig. 5 Selective sweep analysis between the upland and lowland ecotype populations and GWAS analysis 
of overwintering rate. a Top: Selective sweep detection between two ecotypes on chromosome 3 K using 
SNPs and SVs (Fst method). The black dashed line indicates the top 5% sweep regions. Middle: GWAS of 
overwintering rate on chromosome 3 K. The black dashed line shows the significance threshold (− log10(P) 
> 6.69). Gray bars mark overlapping regions between selective sweeps and GWAS. Bottom: Schematic of 
PVB_3 K03611.1 and its upstream 61-bp deletion. b The expression levels (TPM) of PVB_3 K03611.1 under 
control and cold stress. *** indicates adjusted P-value < 0.001. The suffixes “L” and “R” represent leaves and 
roots, respectively. c Left: Luciferase (LUC) reporter gene expression observed by soaking in substrate 
solution; Right: Quantitative detection of the firefly luciferase and renilla luciferase in leaves inoculated 
with different recombinant vectors using a microplate plate-based fluorescence assay. The error bars 
indicate the mean ± s.d.; n = 3 biological replicates. * indicates P < 0.05 and **** indicates P < 0.0001. d The 
distribution proportions of three genotypes with a 61-bp deletion across different ecotypes of germplasm. 
0/0 means consistent with the reference genome, 0/1 means heterozygous, and 1/1 means homozygous. e 
Overwintering survival rate of lowland accessions with three genotypes in BRKG (the name of the common 
garden) area. f Phenotypic changes of rice wild type and overexpression lines on days 0, 3, and 6 under 4 °C 
cold stress, scale bar represents 7 cm. The number in the suffix represents the overexpression line number. g 
Physiological parameters of PVB_3 K03611.1 overexpression lines and WT under cold stress. Top left: Relative 
expression levels of PVB_3 K03611.1 (N.D. indicates not detected). Remaining panels: SOD and POD activities, 
and MDA content in WT and overexpression lines after 24 h of cold stress at 4 °C. * indicates P < 0.05, ** 
indicates P < 0.01, and *** indicates P < 0.005

(See figure on next page.)
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Fig. S16). Interestingly, only PVB_3 K03611.1 appeared in the overlapping region, which 
encodes cinnamate-4-hydroxylase belonging to the CYP450 gene family.

We found a 61-bp deletion located 300 bp upstream of the promoter region of PVB_3 
K03611.1 (Fig.  5a). We confirmed that the presence of this deletion in the promoter 
region inhibits the expression of the reporter gene using a dual-luciferase reporter sys-
tem in tobacco (Nicotiana tabacum) leaves (Fig. 5c). We further observed this deletion 
with frequency differences between the two ecotypes, where the 0/1 (heterozygous) and 
1/1 (homozygous) genotypes were present in about 40% of the lowland accessions, while 
the deletion was absent in the upland accessions (Fig. 5d). Analysis of the overwinter-
ing survival rate of lowland accessions revealed that 35% and 56% of accessions with 0/0 
(same as the reference) and 0/1 genotypes, respectively, could survive the winter, while 

Fig. 5 (See legend on previous page.)
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this proportion decreased to 14% in accessions with the 1/1 genotype (Fig. 5e). These 
results indicated that the deletion could reduce the expression of the target gene and 
might be under purifying selection in the upland accessions.

To validate the role of PVB_3 K03611.1 in cold tolerance, we overexpressed it in rice. 
Compared to the wild type (WT) rice, the transgenic lines exhibited less leaf yellow-
ing and withering under cold stress (Fig. 5f and Additional file 1: Fig. S17a). Addition-
ally, the transgenic lines displayed significantly higher activities of superoxide dismutase 
(SOD) and peroxidase (POD), as well as significantly lower levels of MDA than those in 
WT plants when exposed to low temperatures, indicating that overexpression of PVB_3 
K03611.1 enhances the cold tolerance of the transgenic lines (Fig.  5g and Additional 
file  1: Fig. S17b). Collectively, these results support that the deletion in the promoter 
region may inhibit the expression of PVB_3 K03611.1, leading to a reduction in cold 
tolerance.

Discussion
The application scope and geographical distribution of switchgrass have gradually 
expanded since 1992, when it was chosen as a model species for bioenergy feedstock 
[43]. During the formation of modern tetraploid switchgrass, interspecific hybridiza-
tion between unknown ancestors, polyploidization, whole-genome duplication and dip-
loidization may have occurred [44]. Although the Phytozome database (https:// phyto 
zome- next. jgi. doe. gov/) has released genome data for two upland switchgrass, these 
data are subject to “restrictions on dataset usage”, particularly for comparative genomic 
analysis. We conducted a comparative analysis of the genomes of “JJ31” and the pre-
viously published “AP13” and revealed that the divergence between the ecotypes is a 
relatively recent event that occurred after the subgenome differentiation. These results 
indicated a high degree of homology between the two ecotypes, which might explain 
why the upland and lowland ecotypes could easily hybridize at the tetraploid level [45]. 
Subgenome dominance is a widespread phenomenon in allopolyploids and plays a cru-
cial role in plant evolution and adaptation. A study on cotton (Gossypium raimondii) 
suggested that differences in TE density between subgenomes might be a determining 
factor of subgenome dominance [46], and our research further supports this perspec-
tive. Another study in cotton has shown that, in addition to epigenetic modifications, 
chromatin dynamics are also important factors influencing subgenome dominance [47]. 
Whether these factors similarly contribute to subgenome dominance in switchgrass 
requires further investigation with sufficient data.

The haplotype genomes allowed the identification of ASE genes, addressing the limita-
tions of the previous chimeric assembly genomes. Similar to previous reports [48, 49], we 
found a positive correlation between the number of ASE genes and the number of tran-
scriptome samples in switchgrass, and these ASE genes were widely present throughout 
growth and development. ASE genes accounted for 25.88% (16,801 out of 64,928) of all 
annotated alleles in our study, which is higher than the approximately 7.5% (2676 out of 
35,525) identified in the autopolyploid sugarcane (Saccharum spontaneum L.) [50]. We 
found more ASE genes biased toward “JJ31-A,” indicating that the number of ASE genes 
biased toward different parents is not balanced, which is consistent with a report in cot-
ton [51]. Additionally, we discovered that there were more cold-induced ASE genes in 

https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/
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the upland ecotype compared to the lowland ecotype. These results indicated that the 
dominant effects of alleles played a crucial role in the growth, development, and defense 
against abiotic stresses in switchgrass. Further exploration of the mechanisms underly-
ing ASE can enhance the efficiency and accuracy of genome-assisted breeding strategies.

The two ecotypes of switchgrass are ideal models for studying plant cold tolerance 
mechanisms. Although upland and lowland ecotypes can coexist in transition zones, the 
southern regions of the USA are dominated by lowland ecotypes, while the northern 
regions are dominated by upland ecotypes [52]. This distribution pattern results in dif-
ferences in cold tolerance between the two ecotypes, with upland ecotypes well adapted 
to USDA Hardiness Zones 3 to 7, and lowland ecotypes well adapted to USDA Hardiness 
Zones 5 to 9 [52]. We identified a large number of genes involved in photomorphogen-
esis and circadian rhythms (e.g., PIF3, PIF4) that participate in the cold stress response 
in switchgrass. While their roles in cold tolerance have been demonstrated in Arabi-
dopsis [25, 26], the ecotype-specific expression mechanisms regulating cold tolerance 
in switchgrass require further investigation. Although transcriptomic analysis under 
4 °C treatment has to some extent revealed the potential mechanisms underlying the 
cold tolerance differences between the two ecotypes in this study, whether lower treat-
ment temperatures, particularly freezing stress (< 0 °C), would produce more informa-
tive results remains to be further investigated. Future exploration of potential regulatory 
mechanisms beyond the COR gene families at the transcriptional level, as well as epige-
netic regulation and post-transcriptional regulation, will provide a more comprehensive 
understanding of the mechanisms underlying cold tolerance differences between the two 
ecotypes.

Based on a high-quality upland reference genome, we employed stringent filtering cri-
teria to identify SNPs and SVs in the resequencing data from switchgrass populations 
planted in cold regions. Based on these variations, we identified a large number of sig-
nals associated with overwintering survival rate in switchgrass. It should be noted that 
the lambda value of GWAS using the mixed linear model in this study showed a cer-
tain degree of underestimation, which may be caused by the following reasons. Firstly, 
as a cross-pollinated allotetraploid, the complex genotype and subgenome interaction 
effects of switchgrass may lead to systematic bias in statistical analysis [53]. Further-
more, the winter survival rate in this study is a complex trait represented by a binary 
variable, which may further exacerbate the abnormality of the lambda value. Finally, we 
incorporated the kinship matrix and population structure matrix (Additional file 1: Fig. 
S18) into the model analysis to mitigate the lambda value abnormality as much as pos-
sible. Additionally, we performed GWAS on the dataset using the SwitchgrassGWAS 
R package based on a logistic model (Additional file  1: Fig. S13 and S15). The results 
showed that the lambda values for both SNP-GWAS (0.98) and SV-GWAS (0.87) were 
improved, indicating more effective control of genomic inflation. Importantly, the asso-
ciation signals identified in this study were consistently detected by both models, fur-
ther supporting the reliability of our conclusions. When interpreting GWAS results, it 
is crucial to consider the limitations mentioned above. Selecting signals that pass strin-
gent significance thresholds and integrating multi-omics evidence and validation experi-
ments remains an effective strategy for identifying reliable candidate genes. In the genes 
identified through selective sweep analysis and GWAS, over 25 and 28% (Additional 
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file 1: Fig. S19) respectively showed differential expression in at least one tissue after cold 
stress, indicating that multi-omics integrated analysis is an effective approach for identi-
fying candidate genes. The CYP450 family has been found to play a crucial role in plant 
development and stress responses [54, 55]. Some studies have suggested the potential 
role of certain CYP450 gene family members in cold tolerance in sorghum [56] and per-
ennial ryegrass [57], but their specific functions remain experimentally unverified. We 
identified a 61-bp deletion that reduces the expression of the downstream gene CYP450 
(PVB_3 K03611.1), thereby influencing cold tolerance and providing new evidence for 
CYP450-mediated cold tolerance in plants. Current breeding strategies for cold toler-
ance in switchgrass primarily focus on selecting lowland germplasm resources with both 
cold resistance and high biomass potential [14]. The SV markers developed in this study 
provide novel molecular tools for cold-tolerant germplasm screening, especially for the 
rapid identification of cold tolerance at the early seedling stage. Furthermore, the regula-
tory mechanisms of CYP450 in the cold stress response need to be further elucidated to 
design cold-tolerant breeding strategies with multi-target synergistic regulation.

Conclusions
In this study, we constructed a high-quality haplotype-resolved genome for the upland 
switchgrass “JJ31.” Comparative analysis with the lowland genome revealed that the 
divergence between the two ecotypes occurred after the differentiation of the two sub-
genomes. Through genome-wide identification of the COR gene family and compara-
tive transcriptome analysis, we found no significant difference in the number of COR 
gene family members between the two ecotypes. However, a large number of COR genes 
exhibited opposite expression patterns under cold stress, which may contribute to the 
differences in cold tolerance between the two ecotypes. Based on the haplotype-resolved 
genome, we identified a large number of ASE genes in switchgrass, with more cold-
induced ASE genes present in the upland ecotype. Compared to the lowland ecotype, 
cold-induced ASE genes in the upland ecotype were significantly enriched in COR 
genes, indicating their important contribution to cold tolerance. Additionally, through 
the analysis of resequencing data from 340 collected switchgrass accessions, we gener-
ated a comprehensive map of genetic variation in switchgrass. Selective sweep analy-
sis and GWAS identified numerous candidate genes associated with cold tolerance. A 
newly identified cold-tolerance candidate gene, CYP450 (PVB_3 K03611.1), improved 
cold tolerance when heterologously expressed in rice. A deletion in the promoter region 
of this gene was confirmed to affect the expression of downstream genes, and this dele-
tion, mainly present in lowland germplasms, was negatively correlated with overwinter 
survival rates. In summary, our research findings provide valuable resources for future 
genomic studies of switchgrass and other plant species, advancing genome-assisted 
breeding for cold tolerance in this important bioenergy crop.

Methods
Sample collection and DNA sequencing

The upland switchgrass cultivar “JJ31” (2n = 4x = 46) was derived from the germplasm 
repository of the Beijing Academy of Agricultural and Forestry Sciences. It is character-
ized by shorter plant height and earlier flowering time [58]. The plants were propagated 
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asexually, planted in three pots in the greenhouse, and grown at 26/22 °C (day/night) 
with a photoperiod of 14/10 h of light/dark. The leaves of plants grown at the E3 stage 
[59] were collected and immediately frozen in liquid nitrogen, followed by DNA extrac-
tion using the DNAsecure Plant Kit (TIANGEN). For Illumina short-reads sequencing, 
~ 1.5 μg of genomic DNA was extracted to construct a short insert (350 bp) library using 
a TruSeq Nano DNA HT Sample Preparation Kit. Sequencing was performed using Illu-
mina HiSeq2500 platforms. The raw reads were trimmed using Trimmomatic (v.0.36) 
[60] with default parameters. For PacBio HiFi sequencing, SMRTbell libraries were con-
structed using the SMRTbell Express Template Prep Kit 2.0 (PacBio, CA). Two single-
molecule real-time (SMRT) cells were run on the PacBio Sequel II platform. The raw 
data were processed with the SMRT Link (v.9.0) to obtain HiFi reads, using the param-
eters –min-passes = 3 and –min-rq = 0.99. For Hi-C sequencing, the library construc-
tion method was the same as the protocol previously used in our laboratory [61]. The 
constructed library was sequenced using the Illumina NovaSeq 6000 platform.

Genome size prospection

To estimate the genome size, k-mer analysis (K = 17) was performed on Illumina 
short reads using Jellyfish (v.2.3.0) [62]. The genome size, heterozygosity, and repeat 
proportion were estimated by GenomeScope (v.2.0) [63] based on the k-mer fre-
quency distribution. The principle for calculating genome size is based on the for-
mula:G = (N × (L− k + 1)− B)/D , where N is the total number of sequence reads, L 
is the average length of the reads, K is the k-mer length, B is the total number of low-
frequency k-mers, D is the estimated total depth based on k-mer distribution, and G is 
the genome size.

Genome assembly and pseudochromosome construction

HiFi reads were assembled into two haplotype-resolved draft genomes using the Hifiasm 
software (v.0.15.5) [11]. Initially, an all-vs-all pairwise comparison of HiFi reads was per-
formed for self-correction. After haplotype-aware error correction, the corrected reads 
were used to construct an assembly graph and generate bubbles within this graph. An 
initial contig assembly based on the overlap graph was obtained using a modified “best 
overlap graph” strategy. During the assembly process, optimized parameters suitable for 
polyploid genomes (–n-hap 4) were added to preserve haplotype information as much 
as possible. Filtered Hi-C reads were aligned to the initial contig assembly using BWA 
(v.0.7.8) [64], and the alignment results were used as the input in Juicer (v.1.6) [65]. The 
3D-DNA workflow selected only uniquely aligned and valid paired-end reads for fur-
ther assembly [66]. Finally, the order of scaffolds was manually adjusted using Juicebox 
(v.2.13.07) [67] to obtain the final chromosome assembly. HiCExplore (v.3.7.2) [68] was 
used to draw heatmaps of the connections between chromosomes.

Genome assessment

To assess the quality of the genome assembly for accuracy, completeness, and conti-
nuity, we used BWA (v.0.7.8) [64] to map high-quality Illumina paired-end reads to 
the genome, evaluating the alignment rate and coverage. BUSCO (v.4.1.2) [69] and the 
CEGMA (v.2.5) [70] were used to check the completeness of the genome assembly or 
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annotation. The genome quality was further assessed by calculating the QV values with 
Merqury (v.1.3) [12] and the LAI with LTR_retriever (v.2.9.8) [13].

Annotation of repetitive sequences

We annotated the repetitive sequences by combining homology-based alignment and de 
novo prediction. The homology-based alignment method used RepeatMasker (v.4.0.5) 
[71] and RepeatProteinMask (v.4.0.5) [71] to identify sequences similar to known repeti-
tive sequences based on the RepBase database (http:// www. girin st. org/ repba se) [72]. 
The de novo prediction method utilized LTR_FINDER (v.1.0.7) [73], Piler (v.3.3.0) [74], 
RepeatScout (v.1.0.5) [75], and RepeatModeler (v.1.0.8) [76] to construct a de novo 
repeat sequence library, followed by the use of RepeatMasker (v.4.0.5) [71] to predict the 
repetitive sequences in this library.

Prediction of gene structure

The gene structure was annotated by integrating de novo prediction, homology-based 
prediction, and transcriptome-based prediction. De novo prediction involved using soft-
ware such as AUGUSTUS (v.3.2.3) [77], GENSCAN (v.1.0) [78], GlimmerHMM (v.3.0.1) 
[79], geneid (v.1.4) [80], and NAP (v.2013.11.29) [81] to predict coding regions from the 
genome with repetitive sequences masked. The homology-based prediction method 
downloaded protein sequence files of Arabidopsis, rice, Panicum miliaceum, Panicum 
hallii, and the published genome of a switchgrass line “AP13” selected from the lowland 
ecotype “Alamo” in the National Center for Biotechnology Information (NCBI, https:// 
www. ncbi. nlm. nih. gov/). These protein sequences were aligned to the two haplotype 
genomes of upland switchgrass using tblastN (v.2.2.26) [82] with an e-value threshold 
of  1e−5. The Solar (v.0.9.6) [83] software was used to integrate the BLAST results, and 
GeneWise (v.2.4.1) [84] was employed to predict the precise gene structures in the cor-
responding genomic regions. The transcriptome-based prediction method used TopHat 
(v.2.0.13) [85] and Cufflinks (v.2.1.1) [86] to align transcriptome data to the two hap-
lotype genomes. Trinity (v.2.1.1) [87] was utilized to assemble RNA-seq data to create 
pseudo-expressed sequence tags (pseudo-ESTs), which were then mapped to the two 
haplotype genomes. Finally, EVidenceModeler (v.1.1.1) [88] was used to integrate the 
gene sets obtained from the three methods into a non-redundant, more complete gene 
set (EVM sets). The Program to Assemble Spliced Alignments (PASA) [89] was used 
to correct the EVM sets, adding information such as UTRs and alternative splicing, to 
obtain the final gene set.

Annotation of protein-coding genes and non-coding RNA

Six databases were used for the functional annotation of coding genes, including Swiss-
Prot (http:// www. unipr ot. org/) [90], InterPro (https:// www. ebi. ac. uk/ inter pro/) [91], 
theNon-Redundant Protein Sequence database (NR, ftp:// ftp. ncbi. nih. gov/ blast/ db/), 
Pfam (https:// pfam- legacy. xfam. org/) [92], KEGG (http:// www. genome. jp/ kegg/) [93], 
and the GO database (http:// www. geneo ntolo gy. org/ page/ go- datab ase) [94].

miRNA, rRNA, and snRNA were predicted in the genome using INFERNAL (v.1.1.5) 
[95] with the Rfam database (https:// rfam. org/) [96]. For tRNA, tRNAscan-SE (v.2.0.12) 

http://www.girinst.org/repbase
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.uniprot.org/
https://www.ebi.ac.uk/interpro/
ftp://ftp.ncbi.nih.gov/blast/db/
https://pfam-legacy.xfam.org/
http://www.genome.jp/kegg/
http://www.geneontology.org/page/go-database
https://rfam.org/
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[97] was used to predict tRNA sequences in the two haplotype genomes based on the 
structural characteristics of tRNA.

Phylogenetic tree construction and divergence time estimation

BLASTP (v.2.7.1) was used to search against the protein sequences of P. hallii, Z. mays, 
S. bicolor, and O. sativa, as well as the two subgenomes of “JJ31-B” and “AP13,” using 
a default E-value cutoff of  1e−5. Orthofinder (v.2.3.1) [98] with default parameters was 
then used to cluster the filtered BLAST results into paralogous and orthologous groups. 
The sequences of single-copy gene families were aligned using MUSCLE (v.3.8.31) [99], 
and the alignment results were concatenated to form a super alignment matrix. RAxML 
(v.8.0.19; http:// sco.h- its. org/ exeli xis/ web/ softw are/ raxml/ index. html) [100] was used 
to construct the phylogenetic tree using the maximum likelihood method, with boot-
strap values set to 100. The divergence time of each node on the phylogenetic tree was 
estimated using the MCMCTree program (v.4.5; http:// abacus. gene. ucl. ac. uk/ softw are/ 
paml. html) [100] with phylogenetic analysis by maximum likelihood (PAML) with the 
parameter settings “burn-in = 10,000, sample-number = 100,000, sample-frequency 
= 2.” The TimeTree database (http:// www. timet ree. org/) [101] provided species diver-
gence times. On the basis of the orthologous genes for the two subgenomes each of 
“JJ31-B” and “AP13,” the synonymous substitution (Ks) was calculated. The formula 
t = Ks/2r was used to estimate the divergence time between species, where r is the neu-
tral substitution rate (r = 6.96 ×  10−9) [30, 102, 103].

Identification of the COR gene families

The protein sequences of Arabidopsis and rice were downloaded from the TAIR (https:// 
www. arabi dopsis. org) and RGAP (http:// rice. plant biolo gy. msu. edu) databases, respec-
tively. Based on the 115 COR genes reported in Arabidopsis, we used BLASTP (v.2.7.1) 
to identify the COR protein sequences in rice, with an e-value set to 1e − 10 [31]. The 
top-ranked protein sequences were combined with the Arabidopsis protein sequences to 
create a merged library. Subsequently, we identified the COR protein sequences in “JJ31-
B” using an e-value of 1e − 10 and identity > 60% [31].

Transcriptomic analyses of switchgrass under low temperature

Seeds of “JJ31” and “Alamo” were sown in plastic pots (10 × 15 × 6 cm) filled with quartz 
sand and cultivated in a growth chamber (26 °C with 14 h of light, 22 °C with 10 h of 
darkness). According to a previous study, the 4 °C treatment induces significant physio-
logical changes and the expression of cold tolerance genes in switchgrass, and was there-
fore selected as the cold stress temperature in this study [104]. Cold stress treatment 
was then applied to E3 stage [59] seedlings of both ecotypes, with conditions set to 4 °C 
with 14 h of light and 4 °C with 10 h of darkness, while the control group was maintained 
under normal conditions. After 12, 24, and 48 h of cold stress treatment, the leaves and 
roots of JJ31 and Alamo were collected and stored at − 80 °C. Three biological repli-
cates were set for each treatment and control, with each replicate consisting of a mix-
ture of three seedlings. RNA was extracted from the mixed samples using the RNeasy 
Plant Mini Kit (QIAGEN), and the quality of RNA was assessed by RNA gel electropho-
resis. High-quality RNA was used to construct cDNA libraries with the NEBNext Ultra 

http://sco.h-its.org/exelixis/web/software/raxml/index.html
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Directional RNA Library Prep Kit. Transcriptome sequencing was performed on the 
Illumina HiSeq X platform. The raw data were processed to remove adapters and low-
quality nucleotide sequences using Trimmomatic (v.0.36) [60]. The quality of the filtered 
data was assessed using FastQC (v.0.11.9, https:// www. bioin forma tics. babra ham. ac. uk/ 
proje cts/ fastqc/). A genome index file was built with Kallisto (v.0.46.0) [105] using “JJ31-
B” as the reference genome. Subsequently, the filtered transcriptome clean reads were 
aligned to the index file to obtain gene count values and transcripts per million (TPM). 
DESeq2 (v.1.24.0) [106] was employed for identifying DEGs (|log2 (fold change)|≥ 0.8 
and adjusted P-value < 0.05) based on gene count values. GO and KEGG enrichment 
analyses were performed using the OmicShare tools (http:// omics hare. com/ tools).

Physiological index measurement

Leaves of E3 stage [59] seedlings of “JJ31” and “Alamo” were used for physiological meas-
urements, with the cultivation methods and conditions being the same as those used for 
the seedlings prepared for transcriptome sequencing. The RWC, REC, and MDA con-
tent of the leaves were measured on seedlings after 1, 7, 14, 21, 28, and 35 days under 
both cold treatment and normal conditions. Transgenic rice and WT rice were culti-
vated for 45 days under 26 °C with 14 h of light and 22 °C with 10 h of darkness, followed 
by cold stress treatment at 4 °C. After 24 h of cold stress, the MDA content and the 
activities of POD and SOD enzymes were quantified using rice leaves. The RWC of the 
leaves was determined using the saturated weighing method [107] based on the formula 
RWC  = (FW-DW)/(TW-DW), where FW refers to the fresh weight of leaves taken from 
the same part of seedlings, TW is the saturated fresh weight of these leaves after absorb-
ing water, DW refers to the dry weight of leaves after soaking, blanching at 105 ℃ for 
30 min, and then drying at 65 ℃ until a constant weight is reached. The measurements 
of REC, MDA, POD, and SOD were based on the methods previously described by our 
laboratory [61].

Differential expression analysis of allelic genes

Protein sequences from the two haplotype genomes were retrieved using TBtools 
(v.2.069) [108]. The proteins in “JJ31-A” were compared with those in “JJ31-B” using 
BLASTP (v.2.7.1), and syntenic blocks within the genomes were identified using MCS-
canX [109] with default parameters. Gene pairs with unique alignment relationships 
between the “JJ31-A” and “JJ31-B” genomes were then identified, with alleles required 
to originate from the same pair of homologous chromosomes. The sequences of “JJ31-
A” and “JJ31-B” were combined into a single file [42]. An index file for the combined 
sequences was created using Kallisto (v.0.46.0) [105, 110], and the clean RNA-seq data 
were aligned to the index file to obtain gene count values. Pairwise comparisons of allelic 
genes (JJ31-A/JJ31-B) were performed using DESeq2 (v.1.24.0) [106] based on the gene 
count values to identify differentially expressed genes, with criteria set at |log2(fold 
change)|≥ 1 and adjusted P-value < 0.05. Genes meeting the following three conditions 
were identified as ASE genes: (1) the fold change of one allele compared to the other was 
> 2 or < 0.5; (2) TPM values > 1 in all transcriptome samples; (3) differential expression of 
alleles in at least one transcriptome sample. All transcriptome samples involved in ASE 
gene identification had at least two replicates.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://omicshare.com/tools
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SNP calling

SNP calling was performed using GATK (v.4.3.0.0) [111], with detection by Haplo-
typeCaller and genotyping via GenotypeGVCFs. The SelectVariants tool was used to 
obtain a collection of SNPs based on the “–select-type-to-include SNP” parameter. 
This collection was then filtered using the parameters “QD < 2.0 || FS > 60.0 || SOR 
> 3.0 || MQ < 40.0 || MQRankSum < −12.5.” Finally, VCFtools (v.0.1.16) [112] was 
employed to further filter the data using parameters with “–max-missing 0.9, –maf 
0.05, –minDP 10.”

SV detection

To improve the accuracy of SV identification, we employed three tools: Manta (v.1.6.0) 
[113], Delly (v.1.1.6) [114], and LUMPY (v.0.3.1) [115]. First, we used LUMPY with the 
parameters -P -B -S -D to detect SVs, excluding insertions. We filtered results lacking 
split read support and conducted genotyping with SVTyper (v.0.7.1) [116]. The other 
two tools were used with their default settings for both SV detection and genotyping. 
Finally, we merged and filtered the results from these three tools using SURVIVOR 
(v.1.0.7) [117], with the parameters set to “SURVIVOR merge 1000 3 1 1 0 50.” Only 
SVs identified by all three tools were retained.

Selective sweep analysis

To identify genomic regions under selection in upland relative to lowland ecotypes, 
we used VCFtools (v.0.1.16) [112] to perform Fst analysis based on a sliding window 
of 100 kb with a step size of 10 kb [118]. The top 5% windows were identified as selec-
tive sweeps [119].

Genome-wide association study

To improve the accuracy of GWAS results, we filtered the SNP and SV variant data-
sets, removing data with a minor allele frequency (MAF) < 0.05 or missing rate > 0.2. 
Association analysis was performed using GEMMA (v.0.94.1) [120] based on a mixed 
linear model. The model was defined as y = Xα + Sβ + Kμ + e, where y represents the 
phenotype, X represents the genotype, S is the population structure matrix, and K 
is the kinship matrix. Xα and Sβ represent fixed effects, while Kμ and e represent 
random effects. To better control for genomic inflation, we also performed GWAS 
using a logistic model implemented in the SwitchgrassGWAS R package [10]. The sig-
nificance cutoff was defined as the Bonferroni test threshold, which was set as 0.05/
(total number of SNPs) and 0.05/(total number of SVs)[118], which corresponded to 
− log10(P) = 8.33 for SNPs and 6.69 for SVs.

Dual-luciferase assays to assess impact of SV on gene expression

To study the impact of SV on gene expression, the activity of dual luciferase was 
detected by the instantaneous expression of tobacco. Dual-luciferase assays were per-
formed as described in a previous study [61]. The promoter fragment was recombined 
into the vector pGreenII 0800-LUC to form a reporter vector (Empty-LUC, pro-
moter (-SV)-LUC, and promoter (+ SV) -LUC), and the recombinant plasmid was 
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transformed into Agrobacterium tumefaciens GV3101 (psoup-p19) by freeze–thaw 
method. The bacterial solution was cultured to an OD600 of 0.6 and then injected 
into the abaxial side of tobacco leaves. Finally, fluorescence in tobacco leaves was 
observed using a live imaging system (FUION-FX7. EDGE), and the injection areas 
were collected and fluorescence activity was measured using a luciferase assay kit 
(Vazyme Biotech Co., Ltd, DL101).

Transgenic rice validation

The CDS sequence of PVB_3 K03611.1 was synthesized using gene synthesis methods 
and inserted into the pCAMBIA3300-35S-EGFP vector under the control of the 35S 
promoter. The wild rice variety used for transgenic verification experiments in this study 
was Nipponbare (O. sativa L. spp. japonica). The transformation was performed using 
the Agrobacterium-mediated method as described by Hiei et al. [121]. First, Agrobacte-
rium was added to the infection solution to prepare a resuspension with  OD600 of 0.2. 
The rice callus was immersed in the Agrobacterium resuspension for 10–15 min, and 
then co-cultivated on medium at 20 °C for 48–72 h. The callus was then transferred to 
the selection medium and cultured in the dark at 26 °C for 20–30 days. The positive cal-
lus tissues screened were inoculated into the secondary screening medium and cultured 
at 26 ℃ in the dark for 7–10 days. The positive callus tissues that passed the secondary 
screening were inoculated into the differentiation medium and cultured at 25–27℃ in 
the light for 15–20 days. After the 2–5-cm buds appeared, they were inoculated into 
the rooting medium and cultured at 30 ℃ in the light for 7–10 days. PCR-positive seed-
lings were transplanted into soil and grown under conditions of 26 °C with 14 h of light 
and 22 °C with 10 h of darkness. When the plants reached the four-leaf stage, real-time 
quantitative PCR was performed, with each sample tested in three technical replicates. 
Primer information is provided in Additional file 2: Table S24.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 025- 03604-8.

Additional file 1: Fig S1-S19. Fig. S1. Synteny of 18 chromosome-level assemblies between different assemblies. Left: 
Chromosome synteny between JJ31-A and AP13; Middle: Chromosome synteny between JJ31-B and AP13; Right: 
Chromosome synteny between JJ31-A and JJ31-B. Fig. S2. Functional enrichment analysis of expanded, positively 
selected, and specific genes in JJ31. a GO enrichment. b KEGG enrichment. Fig. S3. KEGG enrichment analysis of 
DEGs in JJ31 and Alamo at three time points under cold stress. a Leaves b, Roots. Fig. S4. Venn diagram between 
different DEGs sets of two ecotypes. a Venn diagram of DEGs in JJ31 and Alamo leaves. b Venn diagram of DEGs 
in JJ31 and Alamo roots. c Venn diagram of all specific DEGs and COR genes in JJ31. d Venn diagram of all specific 
DEGs and COR genes in Alamo. The letters L and R in the gene set names represent leaves and roots, respectively. 
Fig. S5. Specifically differentially expressed COR gene families in JJ31 and Alamo. a Venn diagram of specifically dif-
ferentially expressed COR gene families in JJ31 and Alamo. b The Log2expression fold change of COR gene families 
with opposite expression changes in JJ31 and Alamo. Fig. S6. The identification of Cold-Induced ASE genes in JJ31. 
a Venn diagram of ASE genes in leaves of JJ31 in the control group and cold treatment group at three time points. 
b Venn diagram of ASE genes in roots of JJ31 in the control group and cold treatment group at three time points. 
Fig. S7. The identification of Cold-Induced ASE genes in Alamo. a Venn diagram of ASE genes in leaves of Alamo in 
the control group and cold treatment group at three time points. b Venn diagram of ASE genes in roots of Alamo 
in the control group and cold treatment group at three time point. Fig. S8. Venn diagram of ASE genes and COR 
genes. a Venn diagram of ASE genes in JJ31 and Alamo. b Venn diagram of JJ31-specific ASE genes and COR genes. 
c Venn diagram of Alamo-specific ASE genes and COR genes. d Venn diagram of shared ASE genes and COR genes. 
Fig. S9. Sequence alignment of the two alleles PVA_6 K02793.1 and PVB_6 K02781.1 of the CBF. a Alignment of CDS 
sequences. b Alignment of protein sequences. Fig. S10. Characteristics of SVs. a Density of SVs of different lengths. b 
Distribution of SVs on the genome. Fig. S11. Selective sweep detection between the two ecotype populations using 
the Fst method. a Selective sweep analysis based on SNPs variant set. b Selective sweep analysis based on SVs variant 
set. The top 5% regions were identified as selective sweep regions, with the dashed line representing the threshold. 
Fig. S12. Manhattan and QQ plots of genome-wide association studiesof BRKG_SRV using SNPs. The dashed line 
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representing the Bonferroni test threshold. Fig. S13. Manhattan and QQ plots of genome-wide association studiesof 
BRKG_SRV using SNPs based logistic model. The dashed line representing the Bonferroni test threshold. Fig. S14. 
Manhattan and QQ plots of genome-wide association studiesof BRKG_SRV using SVs. The dashed line representing 
the Bonferroni test threshold. Fig. S15. Manhattan and QQ plots of genome-wide association studiesof BRKG_SRV 
using SVs based logistic model. The dashed line representing the Bonferroni test threshold. Fig. S16. The expression 
of 14 putative genes around the GWAS signal peak. The letters L and R in the sample names represent leaves and 
roots, respectively. Fig. S17. Phenotypic and physiological changes of overexpression lines and WT under 4 °C cold 
stress. a Phenotypic changes of rice wild type and overexpression lines on days 0, 3, and 6 under 4 °C cold stress, 
scale bar represents 10 cm. b Upper left, relative expression levels of PVB_3 K03611.1 in WT and overexpression lines. 
N.D. indicates not detected; the remaining three figures depict the activities of SOD and POD, as well as the MDA 
content in WT and overexpressing rice lines after 24 h of cold stress at 4 °C. * indicates P < 0.05 and *** indicates P < 
0.005. Fig. S18. Principal component analysisand population structure analysis based on SNPs and SVs. a PCA based 
on SNPs. b Population structure analysis based on SNPs. c PCA based on SVs. d Population structure analysis based 
on SVs. Fig. S19. The proportion of DEGs in different tissues under cold stress for candidate genes identified in the 
selective sweep analysis and GWAS. a The proportion of differential expression of genes in the four cold stress groups 
based on SNP-based selective sweep analysis. b The proportion of differential expression of genes in the four cold 
stress groups based on SV-based selective sweep analysis. c The proportion of differential expression of genes identi-
fied in SNP-GWAS across the four cold stress groups. d The proportion of differential expression of genes identified 
in SV-GWAS across the four cold stress groups. The suffix “L” in the group name represents leaves, and “R” represents 
roots.

Additional file 2: Tables S1-S24. Table S1. Summary of sequencing datas from our study. Table S2. Results of Survey 
analysis. Table S3. Summary of two haplotype genomes. Table S4. Chromosome length of two haplotype genomes. 
Table S5. Peaks of each Ks distribution of orthologs in JJ31 genomes. Table S6. Gene density in different subgenomes 
of JJ31. Table S7. TE density in different subgenomes of JJ31. Table S8. Number of upregulated genes in different sub-
genomes of JJ31. Table S9. Genes with biased expression in the two subgenomes. Table S10. The number of DEGs 
in the K and N subgenomes across different transcriptome samples. Table S11. Information of cold-responsive gene 
families. Table S12. The COR genes specifically differentially expressed in JJ31. Table S13. The COR genes specifically 
differentially expressed in Alamo. Table S14. The ASE genes identified in the 23 transcriptome samples. Table S15. ASE 
genes under positiveand purifying selectionbetween two hyplotypes. Table S16. ASE genes in leaves and roots of 
JJ31 under cold stress. Table S17. ASE genes in leaves and roots of Alamo under cold stress. Table S18. Cold-induced 
ASE genes in JJ31 and Alamo. Table S19. Summary of 340 switchgrass accessions from PRJNA622568 dataset. 
Table S20. Length distribution of SVs in different categories. Table S21. The Log2expression fold change of COR genes 
identified in selective sweeps under cold stress conditions. Table S22. Summary of SNP-GWAS results related to 
BRKG_SRV. Table S23. Summary of SV-GWAS results related to BRKG_SRV. Table S24. Primer design.

Additional file 3: Notes S1-S3. Note S1. Identification of specifically differentially expressed COR genes in the two 
ecotypes. Note S2. ASE analysis under cold stress. Note S3. SV characteristics in switchgrass populations.
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