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Abstract 

Background: The incidence and mortality of endometrial cancer (EC) is on the rise. 
Eighty-five percent of ECs depend on estrogen receptor alpha (ERα) for proliferation, 
but little is known about its transcriptional regulation in these tumors.

Results: We generate epigenomics, transcriptomics, and Hi-C datastreams in healthy 
and tumor endometrial tissues, identifying robust ERα reprogramming and profound 
alterations in 3D genome organization that lead to a gain of tumor-specific enhancer 
activity during EC development. Integration with endometrial cancer risk single-
nucleotide polymorphisms and whole-genome sequencing data from primary tumors 
and metastatic samples reveals a striking enrichment of risk variants and non-coding 
somatic mutations at tumor-enriched ERα sites. Through machine learning-based pre-
dictions and interaction proteomics analyses, we identify an enhancer mutation which 
alters 3D genome conformation, impairing recruitment of the transcriptional repressor 
EHMT2/G9a/KMT1C, thereby alleviating transcriptional repression of ESR1 in EC.

Conclusions: In summary, we identify a complex genomic-epigenomic interplay in EC 
development and progression, altering 3D genome organization to enhance expres-
sion of the critical driver ERα.

Keywords: Endometrial cancer, Estrogen receptor, Epigenetic plasticity in tumor 
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Background
Endometrial cancer (EC) is the second most-common gynecological cancer with over 
417,000 new cases and 97,000 deaths in 2020, with global incidence rates increasing 
every year [1]. Surprisingly, and in stark contrast to most other cancers, survival rates 
for endometrial cancer are decreasing [1, 2]. This gradual deterioration of EC survival 
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is likely related to the relatively understudied nature of the disease, with many molec-
ular mechanisms driving tumor development and progression remaining largely 
elusive.

Endometrial tissue is under tight endocrine control, and this remains the case upon 
tumorigenesis. The majority of endometrial cancers (∼85%) are classified as low grade 
endometrioid tumors, expressing estrogen receptor alpha (ERα) and progesterone recep-
tor (PR) [3–5]. PR agonists are used in the treatment of endometrial tumors as alterna-
tive to chemotherapy and hysterectomy to retain uterine function in young patients [6]. 
Furthermore, the estrogen competitive ERα antagonist tamoxifen is also prescribed to 
patients with endometrial cancer, often alternated with PR agonists (reviewed in ref [7]). 
Thus, while PR acts in a tumor suppressive manner, ERα serves as driver of tumor pro-
gression which is therapeutically blocked in endometrial cancer care.

ERα is an enhancer-acting transcription factor, regulating expression of its respon-
sive genes through long-range 3D genome interactions [8, 9]. To date, most literature 
on promoter-enhancer communication and ERα activity has been focused on breast 
cancer [9] and is far less understood in endometrial tumors. Between breast cancer and 
endometrial cancer, substantial differences are observed in ERα chromatin binding pro-
files [10–12], highlighting the highly context-dependent nature of ERα genomic action. 
Paradoxically, while tamoxifen can be prescribed in the treatment of endometrial cancer, 
its use in the treatment of breast cancer is also reported as risk factor for endometrial 
tumorigenesis [13]. Previously, we showed that tamoxifen treatment in endometrial tis-
sue reprograms the ERα chromatin interaction landscape, phenocopying profiles found 
in breast cancer cells, driving endometrial tumor growth [14]. These observations high-
lighted that the endometrial cancer epigenome is not fixed, but rather dynamically 
affected by oncogenic factors.

Both ERα in breast tissue [15] and androgen receptor (AR) in prostate tissue [16–18] 
undergo extensive reprogramming throughout the genome during tumorigenesis. In 
case of prostate cancer, both somatic mutations and risk single-nucleotide polymor-
phisms (SNPs) are enriched at tumor-gained AR sites, with only a small fraction of 
which causally affecting transcriptional output [17]. In endometrial cancer, such studies 
have thus far not been reported, and functional interplay between somatic mutations, 
epigenetic alterations, and the impact on 3D genome organization remain fully elusive.

Here, we investigated the plasticity of ERα genomic action upon endometrial tumor 
development, by comparing the epigenome of primary human healthy and tumor endo-
metrial tissues (ERα and H3K27ac ChIP-seq) and the effects on 3D genome organiza-
tion (Hi-C, 4C-seq, and H3K27ac HiChIP). Secondly, we studied the crosstalk between 
epigenetic alterations and somatic variant events (WGS) that are associated with EC 
progression. We identified substantial epigenetic reprogramming upon tumorigenesis 
that results in the ERα re-localization at tumor-specific regions throughout the genome, 
which coincided with the occurrence of somatic variants in metastatic samples. In par-
ticular, we discovered an EC-specific ESR1 enhancer which is selectively found mutated 
in metastatic EC. In  vitro analyses show diminished capacity to bind lysine methyl-
transferase G9a/EHMT2/KMT1C to this region when mutated, and perturbation of G9a 
expression enhanced ERα expression in cell line studies. Cumulatively, we show that 
non-coding mutations in endometrial cancer may have direct pro-tumorigenic potential, 
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through a tight interplay with epigenetic alterations and changes in the 3D genome 
structure.

Results
ERα enhancer plasticity in endometrial tumorigenesis

To investigate the role of ERα signaling in endometrial tumor development, we first 
sought to assess how the ERα cistrome differs between endometrial tumors and healthy 
endometrial tissue. We collected five fresh-frozen endometrial tumors from post-men-
opausal patients that did not receive any estrogen receptor targeting for cancer therapy, 
as well as four fresh-frozen samples from post-menopausal women with pathologically 
normal endometrial tissue (Fig. 1a and Additional file 1: Fig. S1a, for clinicopathological 
characteristics see Additional file 2: Table S1). All samples were subjected to ERα and 
H3K27 acetylation (H3K27ac) ChIP-seq in order to identify active regulatory elements 
that are under ERα control. On average, we identified 20,815 ERα peaks (range 1399–
51,888) and 44,824 H3K27ac peaks (range 8791–71,898) in our samples. The ChIP-seq 
library size was comparable among the different samples for both targets (Additional 
file  1: Fig. S1b). Interestingly, the number of ERα peaks was higher in tumor samples 
compared to healthy tissue (Mann-Whitney P = 0.063, Fig. 1b) while the global num-
ber of H3K27ac peaks for these samples was comparable between both groups (Mann-
Whitney P = 0.29, Fig.  1c). To assess data quality and reproducibility, we performed 
principal component analysis (PCA) on the peak intensities which revealed a cluster-
ing of the samples by ChIP target (first component) and tissue type (second compo-
nent) (Additional file  1: Fig. S1c). Furthermore, given the relatively small sample size, 
we tested for over-training and performed unsupervised permutation clustering analy-
ses that showed a clear separation of the two tissues types, except for the sample T33 
showing mixed features, between normal and tumor tissues (Additional file 1: Fig. S1d), 
possibly due to a lower tumor cell representation in those sections that were used for 
ChIP-seq studies. Similarly, sample T119—even though clustering with the other tumor 

(See figure on next page.)
Fig. 1 ERα cistrome changes upon tumorigenesis. a Schematic workflow of the multi-omics approach 
applied in this work. Boxplot depicting the distribution of peak number detected by ERα (b) or H3K27ac (c) 
ChIP-seq in healthy (blue) or tumor (orange) endometrial tissues. d Venn diagram of the overlap between 
consensus ERα binding sites detected in healthy (blue) and tumor (orange) tissues. Consensus peaks of 
each group have been defined as peaks present in at least 75% of the samples belonging to that specific 
group. e MA plot of differential binding analyses performed on the consensus ERα ChIP-seq peaks (healthy 
vs tumor). Differential binding sites (FDR ≤ 0.05 and |log2(FoldChange)| ≥ 1) are highlighted in pink. Tornado 
plot of the ERα (f) or H3K27ac (g) ChIP-seq signal at tumor-depleted (blue, upper blocks) or tumor-enriched 
(orange, lower blocks) ERα consensus peaks for all the 4 healthy (blue, left heatmaps) and 5 tumor (orange, 
right heatmaps) endometrial tissues. On the top of each heatmap is plotted the average density signal for 
each region group. h Stacked bar plot depicting the genomic localization frequency of tumor-depleted 
and tumor-enriched ERα ChIP-seq consensus peaks. i Stacked bar plot displaying the distance to associated 
gene TSS frequency distribution of tumor-depleted and tumor-enriched ERα ChIP-seq consensus peaks. 
j Wordcloud of the top-50 enriched motifs at tumor-depleted (blues) and tumor-enriched (oranges) ERα 
consensus peaks. Size and color intensity are proportional to the −log10(E-value). k The upper part of the 
heatmap shows the individual tumor-depleted (blues) and tumor-enriched (oranges) ERα consensus peaks 
colored by signal intensity. On the lower part, each black bar represents an overlapping peak of ChIP-seq data 
of several targets publicly available for the Ishikawa endometrial cancer cell line. l Heatmap of the percentage 
of tumor-depleted or tumor-enriched ERα consensus peaks overlapping with each ChIP-seq target in 
Ishikawa cells from (k). Ranking is performed by descending number of overlaps in tumor-depleted peaks
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samples (Additional file 1: Fig. S1d)—displays ERα signal at the tumor-depleted regions 
(Fig.  1f ). While tissues were selected based on a high tumor percentage (Additional 
file 2: Table S1), we cannot exclude that further sections used in our analyses may have 
a relatively larger non-tumor cell fraction. On the other hand, as we cannot exclude that 
this phenomenon may represent inter-patient epigenetic heterogeneity, we therefore 
decided to retain all samples for further analyses.

Differential binding analysis (DiffBind [19]) for ERα between tumor and nor-
mal samples revealed 10,292 differentially bound genomic locations (FDR ≤ 0.05 and 

Fig. 1 (See legend on previous page.)
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|log2(FoldChange)| ≥ 1) (Fig. 1d–e, Additional file 1: Fig. S1f, and Additional file 1: Fig. 
S2), of which 6488 ERα sites were lost and 3804 ERα sites gained in tumor samples, here-
after referred to as “tumor-depleted” (blue) and “tumor-enriched” (orange) ERα bind-
ing sites, respectively. Tornado plots depicting normalized ERα ChIP-seq signal for all 
10,292 differential-enriched ERα sites (Fig. 1f ), and label-swap permutation differential 
binding analyses (Additional file 1: Fig. S1e), confirmed the selective enrichment of sig-
nals between samples, with high reproducibility. As ERα is a transcription factor that 
acts predominantly by occupying enhancers [8, 9], we next analyzed the differential ERα 
sites for presence of H3K27ac, inferring regulatory element activity. Interestingly, per-
sistent activity in both tissue states was observed at tumor-depleted ERα sites, while 
tumor-enriched ERα sites showed a marked increase of activity upon tumorigenesis 
(Fig. 1g and Additional file 1: Fig. S2).

Collectively, these data suggest a selective gain of regulatory element potential upon 
tumorigenesis, marked by dynamically altered ERα sites.

Genomic distributions and transcription complex composition at differential ERα sites

To further investigate the nature of the ERα regions differentially bound upon tumo-
rigenesis, we first inspected their genome-wide distribution with respect to different 
genomic elements. In agreement with previous reports from us (tumors [10, 14]) and 
others (cell lines [11]), tumor-enriched ERα sites were mostly found at distal intergenic 
and intronic regions (Fig.  1h) and at larger distance from the associated transcription 
start site (TSS) (Fig. 1i). However, tumor-depleted ERα sites, selectively occupied by ERα 
in healthy endometrial tissue, display a strong enrichment for promoter regions of genes 
involved in cell cycle regulation and DNA damage processes (Additional file 1: Fig. S1g). 
To determine whether loss of ERα binding at these promoters leads to transcriptional 
deregulation of the associated genes in tumor samples, we performed RNA sequencing 
(RNA-seq) in 3 healthy and 3 tumor endometrial tissues from post-menopausal patients 
that did not receive any prior estrogen receptor targeting for cancer therapy (Additional 
file 2: Table S1). Principle component analyses display a clear separation of normal and 
tumor tissues with a higher variability for tumor samples than healthy ones (Additional 
file  1: Fig. S3a). Differential expression analyses identified 1945 genes to be downreg-
ulated and 2392 to be upregulated in tumors, compared to healthy tissue (Additional 
file 1: Fig. S3b). Next, we analyzed the expression of the tumor-depleted ERα promoter-
bound genes included in the previously identified over-represented biological processes 
(Additional file 1: Fig. S1g and Additional file 1: Fig. S3c). This investigation confirmed 
our former results highlighting a significant deregulation of cell division and DNA-repair 
related genes (Additional file 1: Fig. S3c). Furthermore, results from gene set enrichment 
analyses (GSEA) for the “hallmarks” (H) dataset also corroborated with these findings 
in a more global manner (Additional file 1: Fig. S3d). Of note, we observed that differ-
entially expressed genes associated with tumor-enriched ERα binding sites were mostly 
upregulated in tumor samples compared to genes associated with tumor-depleted ERα 
binding sites (Fisher’s exact P < 2.2 ×  10−16, OR 6.8, 95% CI 4.35–10.84; Additional file 1: 
Fig. S3e–f).

Consensus motifs for ERα/β (ESR1/2) and AP-1 (JUN, FOS) binding sites were spe-
cifically enriched at tumor-depleted ERα regions, whereas tumor-enriched regions 
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demonstrated an overabundance of SOX and FOX transcription factor family member 
motifs (Fig. 1j). Interestingly, tumor-enriched ERα binding sites, despite the consensus 
ERα/ESR1 motif being poorly detected, do harbor this motif in around 85% of the cases 
in a measure comparable to the tumor-depleted sites (Additional file 1: Fig. S1h), albeit 
highly degenerated as compared to tumor-depleted or common ones (Additional file 1: 
Fig. S1i). Differential motif enrichment analyses led us to hypothesize that the ERα tran-
scription complex may differ between tumor-enriched and tumor-depleted sites. To test 
this hypothesis, we next integrated our tumor-enriched and tumor-depleted sites with 
publicly available ChIP-seq data from the Ishikawa endometrial cancer cell line (Fig. 1k 
and Additional file  3: Table  S2), revealing striking differences between transcription 
and epigenetic factors on chromatin occupancy for the two ERα binding site categories. 
Interestingly, ERα chromatin binding in hormone-deprived cells showed a significant 
overlap with the tumor-depleted ERα peaks (adjusted Fisher’s exact P = 3.15 ×  10−21), 
while ERα peaks from estradiol-stimulated cells showed significant overlap with the 
tumor-enriched ERα peaks (adjusted Fisher’s exact P = 4.60 ×  10−59, Fig. 1l). In addi-
tion, both FOXM1 and FOXA1 binding sites in Ishikawa showed significant overlaps 
with our tumor enriched regions (adjusted Fisher’s exact P = 3.37 ×  10−21 and P = 6.25 
×  10−57, respectively, Fig.  1l). These findings were successfully confirmed by GIGGLE 
[20] analyses (testing for overlap in a large repository of thousands of publicly available 
ChIP-seq datasets) at differential ERα binding sites (Additional file 1: Fig. S1j) implicat-
ing a strongly divergent transcription complex composition between tumor-enriched 
and tumor-depleted ERα sites.

Altogether, these data suggest prominent enhancer plasticity in endometrial tumo-
rigenesis, with ERα relocating to alternatively engaged and activated non-canonical 
enhancers in endometrial cancer.

3D high‑order chromatin structures are altered in tumors

Enhancer regions can modulate gene transcription through interactions with promot-
ers in 3D genomic space [21]. With the observed plasticity of ERα chromatin profiles 
in tumorigenesis, we hypothesized that these epigenetic alterations were accompa-
nied by reorganization of the 3D chromatin structure. To test this hypothesis, we per-
formed high-throughput chromosome conformation capture (Hi-C) analyses on healthy 
endometrial tissue (n = 3) and primary tumors (n = 3) derived from post-menopausal 
women that did not receive any previous systemic therapy (Fig.  2a, for clinicopatho-
logical features see Additional file  2: Table  S1). Hi-C is particularly suitable to study 
translocations in cancer [22], which were not observed in any of the tumor samples we 
analyzed (Additional file  1: Fig. S4a). We did however observe a distinct clustering of 
the healthy tissues from the tumor specimens, based on 3D genome organization (Addi-
tional file 1: Fig. S4b) and independent of Hi-C contact quality bias, intrinsic to the tis-
sue type (Additional file 1: Fig. S4c). In addition, tumor samples displayed a higher Hi-C 
contact heterogeneity in comparison to the more correlated healthy tissues (Additional 
file 1: Fig. S4b). Next, we quantified the relative Hi-C contact probability (RCP) as func-
tion of the contact distances. Interestingly, tumors displayed an increased probability of 
shorter-range interactions (<2 Mb) relative to healthy tissue, which is concomitant with 
a loss of longer-range chromatin contacts (Fig. 2b–d and Additional file 1: Fig. S4 d–e), 
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highlighting a major 3D genome reorganization in tumor samples independently of the 
inter-individual variability. Furthermore, analyzing the distribution of the loop distances 
(Fig. 2e and Additional file 1: Fig. S5), we found that loops whose anchors include tumor-
enriched ERα binding sites tend to be shorter in tumor tissues than in healthy tissues. 
On the other hand, tumor-depleted and shared ERα binding sites do not show differ-
ences in loop length between two tissues stages. We therefore investigate the distribution 
of the Hi-C contacts as function of the distance from different categories of ERα bind-
ing sites, by performing paired-end spatial chromatin analysis (PE-SCAn [23]) between 
healthy and tumor tissues (Fig. 2f ). We observed that shared and tumor-depleted ERα 
binding sites lose chromatin interaction in their surrounding regions in tumor tissues, 
whereas tumor-enriched binding sites show an increase in relatively shorter-range inter-
actions (Fig. 2f ). We next wondered whether the loop shortening, and increased chro-
matin contacts, at tumor-enriched binding sites in tumor samples was associated with 
changes in chromatin compartmentalization. Analysis of compartment polarization 
(Fig. 2b, g–i and Additional file 1: Fig. S4f–g) revealed decreased compartment strength 
in tumor samples compared to healthy tissues. In particular, we observed that A com-
partments (euchromatin) were more robust in healthy samples, while B compartments 
(heterochromatin) were slightly stronger in tumor tissues (Fig. 2h and Additional file 1: 
Fig. S4g). Overall, around one third of compartments (A: 565/1431 (39.5%); B: 440/1306 
(33.6%)) underwent class switching in tumor samples (Fig.  2i). These compartment 
switches are associated to coherent differences in the expression of genes included in 
these compartments, when comparing tumors with normal tissue (Additional file 1: Fig. 
S4h): genes found located in A-to-B are downregulated, while genes located in B-to-A 
regions are upregulated, in tumors relative to healthy tissue. To investigate whether this 
compartment class switch was occurring specifically in compartments where ERα was 

Fig. 2 3D genome landscape is remodeled during tumorigenesis. a Schematic of the Hi-C library preparation 
starting from fresh frozen tissues. Ten 30-µm-thick slices of flash-frozen tissue are cross-linked 25 min in 2% 
formaldehyde. Then, electronically homogenized tissues are filtered using a 75-µm cell strainer and subjected 
to Hi-C library preparation. Hi-C libraries are then sequenced and resulting reads are analyzed by the snHiC 
[24] pipeline. b On the left, 40-kb-resolution matrices of the average Hi-C score in tumor (n = 3) and healthy 
endometrial tissues (n = 3) at chromosome 6. On the right, differences of the scores shown on the left side 
(tumor − healthy). c Relative Hi-C contact probability (RCP) as function of the distance for each individual 
sample (40-kb resolution). d Violin plot of the distribution of the short-range (<2 Mb) over long-rage (>2 
Mb) Hi-C contacts ratio in each individual sample (40-kb resolution). For each comparison, the Wilcoxon’s 
test P value is indicated. e Distribution of the Hi-C loop distance (10-kb resolution) for loops overlapping 
with tumor-depleted, tumor-enriched, or shared ERα consensus peaks in combined healthy (blue) or tumor 
(orange) endometrial tissues. f PE-SCAn results in healthy and tumor tissues at common, tumor-depleted, and 
tumor-enriched ERα binding sites. For each panel, top and middle rows depict the 3D and 2D, respectively, 
representation of the Hi-C contact frequency distribution in healthy (left) and tumor (right) tissues; lower row 
shows the difference of Hi-C contact frequencies between tumor (orange) and healthy (blue) tissue scores. 
g Compartment polarization ratio (100-kb resolution), defined as (AA + BB)/(AB + BA), for each individual 
sample. h Top: saddle plot of A/B compartments interactions as computed in g for each individual sample. 
Bottom: difference of saddle-score with the reference H.005.A2 (healthy tissue), where orange indicates 
a higher score in tumor samples while purple indicates a higher score in healthy tissues. i Sankey plot 
depicting the proportion of compartment state transition (100-kb resolution) of healthy compartments (left) 
upon tumorigenesis (right). j Upset plot showing the overlaps between different compartment transition 
states (100-kb resolution) in healthy compared to tumor as in g (A-to-A, B-to-B, A-to-B, B-to-A) and different 
categories of ERα consensus peaks. k Stacked bar plot of the proportion of compartment transition status as 
in g for individual genomic bins overlapping with only one of the different categories of ERα consensus peaks

(See figure on next page.)
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bound in a tissue type-specific manner, we overlapped the compartments with the dif-
ferential ERα occupied regions upon tumorigenesis (Fig.  2j). We found that compart-
ments switching from A to B class were enriched for tumor-depleted ERα binding sites, 
relative to tumor-enriched ones (A-to-B depleted/enriched ratio 2.65 (135/51)). In con-
trast, compartments switching from B-to-A were clearly enriched for tumor-gained ERα 
binding sites (B-to-A depleted/enriched ratio 0.33 (35/105)). These findings were further 
confirmed studying the behavior of smaller genomic regions (compartment bins) rela-
tive to differentially occupied ERα binding sites, excluding regions that harbor multiple 
ERα binding site categories (Fisher’s exact test: B-to-A depleted-vs-enriched: P = 1.317 

Fig. 2 (See legend on previous page.)
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×  10−56, OR 0.20; A-to-B depleted-vs-enriched: P = 6.013 ×  10−11, OR 1.87) (Fig. 2k and 
Additional file 1: Fig. S4i).

Taken together, our findings highlight a widespread reorganization of the 3D genome 
upon tumorigenesis that leads to a loss of chromatin compartment polarization. This 
was accompanied by an extensive class switching, with tumor-enriched ERα binding 
sites being enriched in B-to-A compartments. Moreover, we identified a gain of rela-
tively shorter-range chromatin interactions upon tumor development, at the expense of 
longer-range contacts.

Somatic mutations are selectively found at a higher frequency at tumor‑enriched ERα 

binding sites

Recently, pan-cancer whole-genome analysis highlighted the presence of driver muta-
tions in non-coding regulatory elements [25]. To determine whether that might also 
be the case in endometrial cancer, we re-analyzed whole-genome sequencing (WGS) 
data of 41 primary endometrial cancer samples from the TCGA Uterine Corpus Endo-
metrial Carcinoma (UCEC) cohort [26] (see “  Methods” for details on the case selec-
tion). Most of the mutations were located in intronic and intergenic non-coding regions 
(Fig. 3a). Mutational signatures (Fig. 3b) and variant counts (Fig. 3c) well correlated with 
the micro-satellite stability (MSS) status of the source samples. These analyses show 
that most of the micro-satellite instable (MSI) samples are characterized by UV light 
exposure (SBS7c) and defective DNA mismatch repair (SBS15/44) signatures (Fig. 3b), 
accompanied by a higher number of mutations per sample (Fig. 3c). On the other hand, 
micro-satellite stable (MSS) samples, as expected, display a lower number of somatic 
mutation counts (Fig. 3c) and prevalently mutational signatures associated to defective 
DNA (polymerase ε exonuclease domain mutations, SBS10b) (Fig. 3b).

To investigate whether somatic mutations in primary tumors are associated with 
selective ERα activity, we compared the number of somatic mutations that are overlap-
ping with the different categories of ERα binding sites. We found that tumor-enriched 
binding sites have a higher representation of somatic mutations over the tumor-depleted 
ones (Fisher’s exact P = 1.143 ×  10−5, OR 1.89, 95% CI 1.41–2.53; Fig. 3d). Notably, the 
somatic variants overlapping with the ERα binding sites are carried almost exclusively by 
hypermutated samples (Additional file 1: Fig. S7a). Interestingly, analyzing the enrich-
ment of genome-wide association study (GWAS) loci associated with endometrial can-
cer risk at ERα-binding sites [27], we observed that tumor-enriched binding sites are 
significantly enriched (Padj = 0.006) for endometrial cancer risk single-nucleotide pol-
ymorphisms (rSNP) in comparison to tumor-depleted regions (Padj = 0.995) (Fig.  3e). 
These data imply that both germline as well as somatic variants are not equally distrib-
uted over the genome, but rather show a selective occurrence at tumor-gained ERα sites.

As somatic mutations were enriched at tumor-enriched ERα binding sites, we 
explored whether the altered ERα binding in tumor samples may be impacted by per-
turbation and/or acquisition of ESR1 motifs upon tumorigenesis. To test this, we gen-
erated a “mutated genome” introducing, in silico, the somatic mutations identified in 
primary endometrial tumors from the TCGA-UCEC [26] cohort. Subsequently, ESR1 
motifs were scored in reference versus our “mutated genome,” for all three categories 
of ERα binding sites (common, tumor-enriched, tumor-depleted), to identify possible 
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Fig. 3 Tumor-enriched ERα binding sites represent non-coding regions target of somatic mutation in 
metastatic endometrial cancer tumor. Genomic localization (a), mutational signature (b), and counts (c) 
distribution of the somatic mutations detected by WGS in the primary endometrial cancer samples form 
a selection of samples from the TCGA-UCEC cohort (n = 41). d Stacked bar blot depicting the fraction of 
ERα peaks overlapping with somatic mutations identified in the primary cohort. e Variant set enrichment 
(VSE) analysis depicting the enrichment of differentially bound ERα sites over endometrial cancer risk 
loci identified by genome-wide association study (GWAS, P < 1 ×  10−5) [27]. Density plot represents 
distribution for the Z-score from matched controls defining the null distribution. Blue (tumor-depleted) or 
orange (tumor-enriched) vertical lines represent observed enrichments, with tumor-enriched enrichment 
being statistically significant (Padj = 0.0060). Gray vertical lines define 0, 25, 75, and 100 percentiles of 
the distribution, while dotted black line indicates the median. f Scheme of the number metastases and 
metastatic site, for all metastatic samples used for the WGS analyses. Genomic localization (g) and mutational 
signature (h) distribution of the somatic mutations detected by WGS in the metastatic samples described in 
f. i In the outer plot, it is shown the number of different types of somatic variants detected in each metastatic 
sample. In the inner plot, stacked bar plot of the most-frequently protein sequence mutated genes and 
relative number and type of somatic variants identified in metastatic samples. j Stacked bar blot depicting 
the fraction of ERα peaks overlapping with somatic mutations identified in the metastatic cohort. k MA plot 
of differential expression analyses in Ishikawa cell lines upon 8 h of 10 nM β-estradiol (E2) stimulation. Black 
dots indicate genes which promoter has been linked, by H3K27ac Hi-C analyses, to a tumor-depleted or 
tumor-enriched ERα-bound regulatory element bearing somatic mutations in metastatic samples (n = 311). 
Differentially expressed genes (|Fold Change expression| ≥ 1.5 and Padj < 0.05) upon estradiol stimulation 
have been labeled and highlighted by a red dot (n = 12). l Ishikawa endometrial cancer cells were treated or 
not for 6 or 12 h with 10 nM estradiol. Whole-cell extracts were analyzed by immunoblotting with antibodies 
against ERα and GAPDH (loading control). m Progression-free Kaplan-Meier curve of endometrial cancer 
patients (TCGA data) divided into two groups using the median of ESR1 expression (FPKM) as cutoff
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gain-of-function (GOF) or loss-of-function (LOF) effects on ESR1 motifs (Additional 
file  1: Fig. S8). To define the regions displaying a GOF, we selected regions that do 
not show any motif  (PWMScoreref = 0) in the reference, but display a positive score 
for the “mutated genome” regions  (PWMScoremut > 0) (Additional file  1: Fig. S8a). 
Inversely, for LOF regions, we analyzed regions that present ESR1 motifs in the refer-
ence  (PWMScoreref > 0) and that lose this motif upon introduction of the mutations 
 (PWMScoremut = 0) (Additional file 1: Fig. S8b). ESR1 motif LOF was observed for a 
small subset of tumor-depleted regions (22.9%: 200/872, cutoff:  PWMScoreref > 3 × 
 105), suggesting that decreased ERα binding at these regions may be invoked by per-
turbation of its ERE. In contrast, neither GOF nor LOF was observed at the tumor-
enriched binding sites.

To investigate whether somatic variant enrichment for particular ERα sites also per-
sisted after endometrial cancer progression, we next analyzed WGS data of 26 fresh 
frozen biopsy samples, derived from 24 cases of advanced endometrial cancer. Biop-
sies were collected from tumors that metastasized to lung, liver, and other abdominal 
regions (Fig.  3f and Additional file  4: Table  S3). In these tumors, the vast majority 
(>96%) of variants were located at non-coding regions, with 85% of the identified 
variants found to populate intronic and intergenic regions. Considerably, less vari-
ants (mean 9%, range 8.1–10.3) were located proximally upstream of a coding gene, 
potentially representing promoter regions (Fig. 3g). To assess WGS data quality and 
explore additional genomic features of our samples, we investigated mutational sig-
natures, counts, and frequently mutated genes (Fig. 3h–i). Four samples were hyper-
mutated and displayed 20–67% of variants associated with defective DNA mismatch 
repair (SBS15). Six samples from tumors pre-treated with carboplatin showed traces 
of signatures 31 and 35, both associated with platinum treatment [28]. Cumulatively, 
these results confirm previously described enrichment of tumor-intrinsic [29, 30] 
and treatment-induced [28] mutational features of endometrial cancer. The most-fre-
quently mutated genes with protein sequence altering mutations included ARID1A 
and various members of the PIK3CA pathway, such as PTEN, PIK3CA, and PIK3R1, 
recapitulating previous observations for endometrial tumor [29].

As expected, analogously to the primary tumor analyses (Fig.  3a), somatic muta-
tions in metastatic samples were also predominantly occurring in non-coding regions. 
Next, we integrated these somatic mutation data with tissue-type enriched ERα ChIP-
seq data (Fig. 3j), and again found differentially bound ERα regions were significantly 
enriched for somatic mutations (11.9%, 1221/10,292), relative to the total number 
of ERα-bound sites from our entire cohort, not found to differ between normal tis-
sue and tumors (8%, 5881/73,312; Fisher’s exact P = 5.64 ×  10−36, OR 1.54, 95% CI 
1.44–1.65). All samples contributed to this enrichment, with a median somatic vari-
ant count of 18 (range 1–358) in differentially ERα-bound sites. Moreover, comparing 
tumor-enriched with tumor-depleted regions, we observed a significant enrichment 
of somatic variants in the tumor-enriched ERα sites compared to tumor-depleted 
ones (14.5% vs 10.1%, Fisher’s exact P = 2.98 ×  10−11, OR 1.51, 95% CI 1.34–1.71, 
Fig.  3j). In contrast to primary tumors, these observations are independent of the 
mutational frequency status (Additional file 1: Fig. S7b). In most instances (n = 1002), 
regions overlapped with only one somatic variant, while some ERα-bound regions 
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were observed to harbor 2 (183 regions), 3 (34 regions), or 4 (2 regions) somatic 
mutations.

To investigate genes whose expression may be affected by enhancer mutations, we 
intersected tumor-depleted and tumor-enriched ERα binding sites (FDR ≤ 0.01) bearing 
mutations with H3K27ac HiChIP chromatin looping data in Ishikawa cells (Additional 
file  5: Table  S4), aimed to couple putative enhancers with the transcription start sites 
(TSS) they control, yielding a total of 331 genes. Out of these, 13 genes were differen-
tially expressed in Ishikawa endometrial cancer cells upon 8 h of estradiol stimulation 
[31] (Fig. 3k). Interestingly, ESR1 (encoding ERα) was represented as well, being mod-
estly downregulated at both RNA and protein level (Fig. 3k–l and Additional file 1: Fig. 
S9c, Additional file 6), and harboring 3 metastatic somatic mutations in two cis-regula-
tory elements upstream of the ESR1 locus, hereafter referred as “Enhancer 1” (P17 and 
P22; non-hypermutated) and “Enhancer 2” (P03b; hypermutated) (Fig. 4a and Additional 
file 1: Fig. S9b). Of note, high ESR1 expression is associated with favorable outcome in 
primary endometrial cancer patients (TCGA [26]) (Fig. 3m). Of note, these two enhanc-
ers are specific to the endometrium cancer samples, relative to healthy endometrial tis-
sues and breast cancer specimens, based on ATAC-seq (TCGA [32]) and ERα ChIP-seq 
signal (our previous work [33]) (Additional file 1: Fig. S9b–c) at the ESR1 locus.

ESR1 enhancer mutation alters 3D genome contacts and decreases EHMT2/G9a 
enhancer binding to boost ERα expression

Since ESR1 expression is strongly associated with favorable outcome in endometrial 
cancer (Fig. 3h), alterations in its transcriptional regulation may have direct implications 
on tumor development and progression. Since both Enhancer 1 and Enhancer 2—found 
mutated in metastatic, but not primary endometrial cancer—showed induction of ERα 
binding and H3K27ac signals in tumors (Fig.  4a), we investigated whether these loci 
may undergo alternative regulation in different stages of tumor progression leading to 
ESR1 expression deregulation. Of note, in both our RNA-seq data (Additional file 1: Fig. 
S6a) and the publicly available TNM plot analyses [34] (Additional file 1: Fig. S6b), ESR1 
expression in primary tumors was comparable to the levels found in normal tissue.

Hi-C analyses of endometrial tumors (Fig.  4b) illustrated increased short-range and 
decreased long-range chromatin interactions at this locus, when compared to healthy 
endometrial tissue. These data were confirmed with 4 C-seq analyses using the ESR1 
promoter as view-point (Fig. 4c), showing tumor-specific gained interactions of newly 
ERα-engaged enhancers with the ESR1 promoter (Additional file 1: Fig. S4j).

To identify which ESR1 enhancer mutation had a higher probability to impact ESR1 
gene regulation and potentially drive tumor progression, we employed the Akita [35] 
machine learning tool to predict the effect of the somatic mutations on the 3D genome 
organization (Fig.  4d). Our analyses predicted the mutation occurring at position 
chr6:152,002,679 (TTC-to-T, P22) of Enhancer 1 to affect chromatin architecture sur-
rounding the ESR1 locus. Based on these results, this specific mutation was selected for 
further analyses.

To determine whether enhancer mutations can alter the composition of the transcrip-
tion complex recruitment, we performed DNA affinity purification experiments coupled 
to quantitative mass spectrometry. To this end, we incubated nuclear extracts from Ishi-
kawa endometrial cancer cells with immobilized DNA-oligonucleotides encompassing 
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the center of the ERα-bound site at the Enhancer 1—containing either the reference or 
mutant sequence—with a ±25-bp window around it (Fig. 5a–b). Quantitative proteom-
ics identified 13 gained and 11 lost proteins upon mutation of the regulatory element, 
respectively (Fig. 5b). To identify differentially bound proteins that may directly regulate 
ESR1 expression, we used publicly available RNA-seq (TCGA [26]) data of 589 endome-
trial cancer tissues to correlate the expression of ESR1 with the expression of genes cor-
responding to the 24 differentially bound proteins (Fig. 5c). Then, we selected the genes 
that most-strongly positively (POLK, ZBTB21, XPA, SIN3A) or negatively (GTF2IRD1, 
EHMT2, ZNF768) correlated with ESR1 expression (Additional file  1: Fig. S10a). For 
these genes, expression was analyzed in relation to the progression-free survival prob-
ability of endometrial cancer patients (TCGA [26]) (Fig.  5d and Additional file  1: Fig. 

Fig. 4 Short-range chromatin contacts at the ESR1 locus are stronger in tumors. a ChIP-seq genomic tracks 
for ERα (upper block) and H3K27ac (lower block) in healthy (blue) and tumor (orange) endometrial primary 
tissues at the ESR1 locus. ESR1 Enhancer 1 and Enhancer 2 are indicated, as well as the mutations found by 
WGS analyses in metastatic samples. b Representation of the averaged 40-kb resolution Hi-C matrix at 
the ESR1 locus for the 3 healthy (top) and 3 tumor (middle) tissues or the score difference (bottom) tumor 
− healthy, where orange indicates higher scores in the tumors while purple higher scores in healthy. The 
matrices scores are dived by the sum of the matrix. Black lines indicate the topologically associated domains 
(TADs) identified. c 4C-seq genomic tracks at the ESR1 locus using the ESR1 TSS as view-point (VP) for 2 
healthy (top, blue) and 3 tumor (middle, orange) endometrial tissues, and the average difference of score 
tumor − healthy (bottom). With green arcs are depicted loops detected by H3K27ac HiChIP in Ishikawa 
endometrial cancer cells. The ribbon around the 4C-seq signal lines indicates the standard error mean (SEM) 
among biological replicates. d In the top row, observed/expected matrices of sequence-based machine 
learning prediction in a ±500-kb window surrounding the ESR1 locus. In order from left to right can be found: 
wild-type sequence, point mutation in a genomic desert (negative control), deletion of the full Enhancer 1 
sequence (positive control), introduction of SNVs found by WGS analyses of metastatic endometrial cancer 
samples. On the bottom row is showed the difference of observed/expected score over the wild-type 
sequence, where orange indicates higher scores in the altered sequence and purple a higher score in the 
wild-type one
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S10b). Interestingly, our analyses identified only one of the 7 genes analyzed—the lysine 
methyl-transferase EHMT2 (also known as G9a or KMT1C)—to significantly associate 
with a poor outcome of endometrial cancer patients (Fig. 5d and Additional file 1: Fig. 
S10b).

EHMT2/G9a interacts with ERα (Fig.  5e and Additional file 1: Fig. S10c, Additional 
file  7), based on co-immunoprecipitation experiments. In line with this, ChIP-qPCR 
revealed that EHMT2/G9a was recruited to both Enhancer 1 and promoter of the ESR1 
gene in Ishikawa cells, following estradiol treatment (Fig. 5f ). As negative control, these 
experiments were reperformed in the ERα-negative endometrial cancer cell line AN3CA 
(Additional file  1: Fig. S11a–b). In line with the absence of ERα expression, estradiol 
treatment did not alter tumor cell growth (Additional file 1: Fig. S11c–d). In absence of 
ERα, there is little recruitment of EHMT2/G9a to the ESR1 Enhancer1 and promoter 
when compared to the negative control region (Additional file  1: Fig. S11e). Further-
more, siRNA-mediated knock-down of EHMT2/G9a in Ishikawa cells resulted in an 
increase of ERα protein expression (Fig. 5g and Additional file 1: Fig. S10d, Additional 
file 8), confirming the reciprocal relationship between these proteins. Interestingly, we 
observed a slight decrease in EHTM2/G9a protein levels upon estradiol stimulation, an 
effect that was abolished when ERα was targeted for degradation [36] by ICI 182,780 
(fulvestrant) treatment (Fig.  5g and Additional file  1: Fig. S10d). As negative control, 

(See figure on next page.)
Fig. 5 EHMT2/G9a is a negative regulator of ESR1 expression in endometrial cancer. a Schematic workflow 
used to perform DNA-oligo protein pull-downs. Biotin-conjugated wild-type or mutated DNA-oligos are 
immobilized on streptavidin magnetic beads and mixed with Ishikawa nuclear lysates. Captured proteins are 
then dimethyl labeled and analyzed by mass spectrometry. b A DNA oligo with the sequence of the ±25 bp 
surrounding the ERα binding site in the ESR1 Enhancer 1, in wild-type or chr6:152,002,679–TCT-to-T form, was 
used to perform DNA-oligo protein pull-downs in Ishikawa cells as described in a. The scatter plot shows the 
 log2 ratios of all identified and quantified proteins in both experiments plotted against each other. Proteins 
significantly enriched at the wild-type sequence are highlighted in red, and proteins significantly enriched at 
the mutant sequence are highlighted in blue. c Gene expression correlation heatmap for all corresponding 
24 differentially bound proteins identified in b in 589 endometrial cancer patients (TCGA). Dashed lines 
indicate the separation between positive and negative correlation scores. Genes are ranked by correlation 
with ESR1 gene expression. d Progression-free Kaplan-Meier curve of endometrial cancer patients (TCGA 
data) divided into two groups using the median of EHMT2/G9a expression (FPKM) as cutoff. e EHMT2/G9a 
and IgG (negative control) ChIP followed by western blot in Ishikawa endometrial cancer cells. Antibodies 
against EHMT2/G9a and ERα have been used. For EHMT2/G9a, two different exposure images were used 
for input and IP, as indicated by the vertical dashed bar. f EHMT2/G9a ChIP in Ishikawa cells stimulated for 
6 h with 10 nM β-estradiol. Bar plot shows percentage of enrichment over the input (% Input) at the ESR1 
Enhancer 1, ESR1 promoter, and CDK12 promoter (negative control) analyzed by quantitative PCR (qPCR). 
Mean of 2 independent experiments is shown. g Ishikawa endometrial cancer cells were stimulated for 72 
h with 10 nM β-estradiol in combination or not with 100 nM ICI-182,780 (fulvestrant, negative control). In all 
conditions, cells where incubated either with a non-targeting (NT) siRNA or with an siRNA against EHMT2/
G9a. Then, whole-cell extracts were analyzed by immunoblotting with antibodies against ERα, EHMT2/
G9a, and GAPDH (loading control). h Differential ERα peak centered EHMT2/G9a average ChIP-seq density 
profiles in Ishikawa cells upon 6 h treatment with 10 nM β-estradiol (purple) or DMSO (blue, control). Ribbon 
indicates SEM. Paired Wilcoxon test was performed on the average score of the highlighted area for each 
individual region analyzed; P values are indicated. i Schematic representation of the ESR1 gene regulation 
working model. Upon tumorigenesis, ERα is re-located to an endometrial cancer specific ESR1 enhancer 
(Fig. 1f–g). ERα interacts with EHMT2/G9a (e) and binds both enhancer and promoter regions of ESR1, in 
a hormone-dependent fashion (f). In a subset of metastatic endometrial cancers, a somatic mutation is 
acquired at the tumor-specific ESR1 enhancer (Fig. 4a). In vitro analyses probing this mutation revealed a loss 
of EHMT2/G9a DNA binding capacity (b), and EHMT2/G9a knockdown in endometrial cancer cell lines leads 
to an increase of ESR1 expression levels (g)
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comparable experiments performed in ERα-negative AN3CA cells, which did not show 
any gain of ERα protein levels upon EHMT2/G9a knock-down (Additional file  1: Fig. 
S11f–g).

Finally, we wondered whether the ERα-dependent chromatin recruitment of EHMT2/
G9a is a specific feature of ESR1 locus, or rather represents a more general feature of 
EHMT2/G9a action. To address this question, we studied the EHMT2/G9a ChIP-seq 
signal around the different categories of ERα binding sites in the presence or absence of 
estradiol stimulation in Ishikawa cells (Fig. 5h). These analyses revealed an absence of 
EHMT2/G9a signal at tumor-depleted and common regions, with no differences in its 
recruitment upon estradiol stimulation. In contrast, EHMT2/G9a co-localizes with ERα 

Fig. 5 (See legend on previous page.)
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at tumor-enriched binding sites with a significantly increased signal upon estradiol stim-
ulation (Fig. 5h, right), suggesting a more general behavior of EHMT2/G9a for tumor-
gained ERα sites.

Altogether, these data show that EHMT2/G9a DNA binding is impaired upon muta-
tion of the ESR1 Enhancer 1 locus, thereby enhancing expression of tumor driver ERα 
in metastatic endometrial cancer and that its activity is required to repress ESR1 expres-
sion in endometrial cancer in an ERα-dependent manner.

Discussion
High expression levels of ESR1 (encoding ERα) in endometrial cancer are associated 
with a favorable outcome (Fig.  3m), since ESR1-positive tumors typically proliferate 
slower as compared to ESR1-negative tumors. Nonetheless, for these tumors, ERα plays 
a critical role in endometrial cancer development and progression [5]; the molecular 
actions of ERα in this cancer type remain largely unknown. The notion of classical tumor 
drivers (such as ERα), while being upregulated upon tumorigenesis, can be associated 
with favorable outcome might feel counterintuitive. However, analogous to breast cancer 
[37], different subtypes exist for endometrial cancer which differ in their ERα expres-
sion status. Patients with ERα-positive tumors typically have a better outcome, as com-
pared to the more aggressive ERα-negative ones [7]. Nonetheless, in these ERα-positive 
tumors, the receptor is still the oncogenic driver and its activation status drives tumor 
growth and progression. Therefore, while expression of ERα is considered a favorable 
prognostic marker, enhanced activity or expression levels of the ERα can drive tumor 
progression in this subtype.

Through multi-omics analyses (Fig. 1a), we investigated how ERα activity is altered in 
endometrial cancer and how this feature may be leveraged by tumor cells to progress 
into the metastatic stage. Cumulatively, our findings allowed us to propose a molecu-
lar model describing the dynamic nature of ERα action in endometrial cancer develop-
ment and progression (Fig.  5i): (i) in healthy endometrial tissue, ERα regulates genes 
involved in cell cycle and DNA damage response (Additional file 1: Fig. S1 g and Addi-
tional file 1: Fig. S3c); (ii) during tumorigenesis, ERα re-localizes to the tumor-specific 
enhancers (Fig.  1f–g), including the ESR1 enhancer itself (Fig.  4c). At this enhancer 
ERα interacts with EHMT2/G9a (Fig. 5e) in estradiol depend manner (Fig. 5f ); (iii) dur-
ing tumor progression, the ESR1 enhancer acquires a somatic mutation for a subset of 
tumors (Fig. 4a). In vitro analyses revealed that this mutation impairs EHMT2/G9a DNA 
binding (Fig. 5b), and perturbation of EHMT2/G9a in Ishikawa endometrial cancer cells 
enhanced ESR1 expression (Fig. 5g). Given the low frequency of SNVs at ERα binding 
sites, many other paths to metastasis may exist, next to the mechanism we propose in 
this study. As our proposed model is based on integrated datastreams obtained from dif-
ferent models (primary and metastatic patient tissues, cell lines, in vitro experiments), 
direct causal relations would need to be confirmed in future studies using single model 
systems, when available. Another limitation of the model is that—due to tissue availabil-
ity limitations—we had to make use of different cohorts of patients to analyze ChIP-seq 
and RNA-seq/Hi-C data. While these results are consistent and provide a concord-
ant view between data streams, the use of different patient cohorts limits the complete 
transferability of our findings.
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Our analysis of the ERα cistrome in both normal and neoplastic endometrial tis-
sues revealed limited overlap of chromatin occupancy between the two tissue states. 
Importantly, despite the healthy and tumor tissues were not matched for the same 
individual patient, large-scale programmatic changes were consistently observed 
on chromatin binding of ERα, in comparing the two tissue types. Performing these 
analyses in matched healthy and tumor samples might lead to the identification of a 
higher number of significantly differentially bound sites, as noise and inter-sample 
variation is likely lower. This notion implies that our findings may reflect the strong-
est effects induced by ERα reprogramming that are to be confirmed in larger future 
studies. Interestingly, tumor-depleted ERα binding sites did not display differences in 
H3K27ac, in contrast to the tumor-enriched ones which instead showed a consist-
ent increase in this active histone mark. These results highlighted a specific gain-
of-function for newly engaged ERα-bound cis-regulatory elements in tumors, while 
the regulatory elements for which ERα binding is lost remain active through action 
of other transcription factors. Surprisingly, studying the genomic distribution of 
the ERα binding sites, we observed an unexpected enrichment of promoter regions 
for the tumor-depleted binding sites over the tumor-enriched ones. This promoter 
enrichment is in contrast to prior studies that reported ERα to primarily occupy pro-
moter-distal cis-regulatory elements rather than promoters [10, 14, 38, 39]. Impor-
tantly, as the molecular biology of this nuclear receptor has been studied mainly using 
cancer models, the non-tumor context of ERα action remains less well known and 
may involve a higher degree of promoter involvement.

Our data, combined with previous findings showing that cell-specific ERα sites lack 
high-affinity estrogen responsive elements (EREs) [11], suggest that tumor-depleted 
binding sites (enriched for ERα/β motifs) are essential for the cell maintenance in nor-
mal tissues. However, during tumorigenesis these sites progressively lose ERα binding 
in favor of sites enriched in tumors (low-affinity EREs), likely driving cell transforma-
tion. Interestingly, at these tumor-enriched binding sites we found an overrepresenta-
tion of SOX and FOX transcription factor family motifs. These finding are particularly 
relevant for the endometrial cancer biology since one of the most recurrently mutated 
genes in this cancer type is SOX17 [29], which acts as tumor suppressor [40]. Therefore, 
we can hypothesize that SOX17 loss-of-function may leave low-affinity ERα binding sites 
more accessible for ERα, increasing receptor occupancy at these regions. On the other 
hand, enrichment of motifs for forkhead pioneer transcription factor class (FOX family) 
at tumor-enriched ERα binding sites is consistent with the increased H3K27ac signal at 
these low-affinity ERα binding sites. FOXA1 is known to facilitate ERα binding through 
its pioneer activity in breast cancer [41], and we previously proposed FOXA1 to serve 
a comparable role in endometrial cancer [10]. In support of these hypothesis, tumor-
enriched ERα binding sites display an enrichment in FOXA1 ChIP-seq peaks detected 
in Ishikawa endometrial cancer cells (Fig. 1k–l and Additional file 1: Fig. S1j). Further-
more, one can speculate on this mechanism to represent a more general feature of hor-
mone-dependent cancers. Indeed, comparison between healthy prostate epithelium 
and prostate adenocarcinoma—being strongly dependent on androgen receptor (AR) 
action—showed tumor-gained AR binding sites to be selectively enriched for FOXA1 
motifs, as opposed to AR sites found exclusively in healthy tissues [16].
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Enhancers interact with promoter regions to regulate gene expression, facilitated 
through spatial rearrangement of the chromatin structure [21]. Performing Hi-C analy-
ses in healthy and tumor tissues, we observed a global enrichment of short-range (<2 
Mb) chromatin interactions, at the expense of long-range (>2 Mb) contacts. Moreover, 
chromatin loop distance in tumor tissues is reduced at tumor-enriched ERα binding sites 
when compared to normal samples, while loop distance at shared and tumor-depleted 
sites remains unchanged. This corroborates with the observed newly acquired H3K27ac 
signal at tumor-enriched ERα binding sites in tumor samples in contrast to common and 
tumor-depleted sites, where this active enhancer/promoter histone mark is persistent in 
both tissue types. Combined, these findings imply a gain of enhancer activity at tumor-
enriched binding sites that may lead to an increase in enhancer-promoter proximal con-
tacts, explaining the loop distance shortening.

Next to the short-/long-range interaction alterations between heathy and tumor tis-
sues, we also observed a compartment depolarization in tumor samples. Chromatin 
compartment destabilization is observed in many tumor types [42] (e.g., colorectal can-
cer [43] and glioblastoma [44]). Interestingly, as tumor-enriched ERα binding sites were 
enriched at B-to-A compartment switched sub-regions, these data suggest that altera-
tions in 3D genome organization directly contribute to enhancer plasticity in tumorigen-
esis, concordant with increased H3K27ac signal at these sites.

As the vast majority of mutations are found at non-coding regions of the genome, we 
investigated whether tumor-enriched ERα sites could drive tumor progression through 
acquisition of mutations. Through integration of somatic mutation data with RNA-seq 
in Ishikawa cells, we concluded that most genes with proximal ERα-bound enhancer 
mutations are not under direct ERα control. This is in agreement with our previous 
observation in prostate cancer, in which only a minor fraction of SNVs at regulatory ele-
ments functionally affected their activity [17].

We also observed a depletion of somatic mutations in tumor-depleted ERα binding 
sites, relative to the common and tumor-enriched ERα sites (Fig. 3d, j). We could spec-
ulate that two mechanisms may underlie this observation. The first is based on previ-
ous reports showing that, since DNA-bound proteins prevent efficient DNA repair [45], 
somatic mutations preferentially accumulate at active TF-binding sites. On the other 
hand, accumulation of functional mutations may occur at tumor-enriched sites by other 
mechanisms. In our previous work in prostate cancer [17], we analogously observed 
that tumor-gained AR binding sites were more often somatically mutated, but were also 
more-often positive for cancer risk SNPs. These results put our current study in perspec-
tive, suggesting that the observed higher frequency of SNVs in tumor-gained regulatory 
elements for hormone receptors may be a feature that is common to hormone-depend-
ent cancers.

While the interaction between ERα and EHMT2/G9a has already been reported in 
breast [46, 47], EHMT2/G9a is considered to be an ERα co-activator in that cellular con-
text. However, studies in erythroleukemia [48, 49] describe a dual role of EHMT2/G9a 
as both gene activator and repressor depending on its interaction with mediator rather 
than JARID1, respectively. As we observed ERα expression levels being upregulated fol-
lowing knockdown of EHMT2/G9a (Fig.  5g), an ERα co-repressive role for EHMT2/
G9a in the endometrial cancer cell context is supported by our data. Due to the lack of 
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other ERα-positive endometrial cancer cell line availability [50], only Ishikawa cells were 
used in this study. Therefore, despite experiments carried out in AN3CA ERα-negative 
cells support our findings, further investigation would be required to further substanti-
ate what determines the repressive transcriptional effect of EHMT2/G9a in the interplay 
with ERα in this tumor type. Moreover, despite many data streams were generated in 
tumor tissues, EHMT2/G9a functional experiments performed in Ishikawa cells—deriv-
ing from endometrial epithelial cells—places our conclusion in an intrinsically tumor 
cell-centric context that ignores any potential influence of the microenvironment (e.g., 
stromal and immunity cells). Further studies would be required to determine whether 
the endometrial cancer stromal compartment may influence ERα regulation in the 
tumor itself.

In this study, we shed light on the molecular mechanisms underlying endometrial 
cancer development and progression, connecting alterations in 3D genome organiza-
tion with epigenetic plasticity and non-coding somatic mutations, using ESR1 enhancer 
mutation as an example. This study may serve as blueprint for studies in other hormone-
driven cancer types, in which such complex connections are yet to be identified.

Conclusion
Collectively, this study revealed that endometrial tumorigenesis involves an extensive 
rewiring of the regulatory elements occupied by ERα, which are specifically gained in 
active epigenetic marks in cancer samples. These tumor-enriched sites are enriched for 
non-coding somatic mutations in both primary tumors and metastatic samples. One of 
these mutations occurs at an endometrial cancer-selective ESR1 enhancer which is regu-
lated though the recruitment of G9a/EHTM2 in an ERα-dependent manner.

Methods
Human tissue collection and quality assessment

Fresh-frozen healthy and tumor samples were obtained from post-operative tissue at the 
Netherlands Cancer Institute (Amsterdam, the Netherlands) from patients who did not 
receive neoadjuvant endocrine treatment. Tumor content was assessed by hematoxylin 
and eosin (H&E) staining on slides taken throughout the tissue sample. For tumors, only 
samples displaying a tumor percentage greater or equal to 70% were deemed eligible for 
further analysis. Of note, non-cancerous healthy tissues were obtained from patients 
whose uterus was removed because of (a) surgery for cervical carcinoma or ovarian 
cancer and (b) endometrial cancer diagnoses, but the area that was cryo-preserved was 
devoid of tumor cells.

The study was approved by the institutional review board of the Netherlands Cancer 
Institute, written informed consent was signed by all participants enrolled in the study, 
and all research was carried out in accordance with relevant guidelines and regulations.

Cell culture and chemicals

Ishikawa (Merck Sigma Aldrich) cells were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM, Gibco) and DMEM Mixture F-12 (DMEM/F-12, Gibco), respectively, 
supplemented with 10% fetal bovine serum (FBS-12 A, Capricorn Scientific) and peni-
cillin/streptomycin (100 μg/mL, Gibco). AN3CA endometrial cancer cells (ATCC) were 



Page 20 of 31Gregoricchio et al. Genome Biology  (2025) 26:124

cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented with 
10% fetal bovine serum (FBS-12 A, Capricorn Scientific) and penicillin/streptomycin 
(100 μg/mL, Gibco). Cell lines were subjected to regular Mycoplasma testing and under-
went authentication by short tandem repeat profiling (Eurofins Genomics).

For hormone stimulation, cells were pre-cultured for 3 days in phenol red-free DMEM 
(Gibco, Ishikawa) or DMEM/F-12 (Gibco, AN3CA) supplied with 5% dextran-coated 
charcoal (DCC) stripped FBS, 2 mM L-glutamine (Gibco), and penicillin/streptomy-
cin (100 μg/mL, Gibco), then stimulated with 10 nM DMSO-solubilized 17β-estradiol 
(MedChemExpress, #HY-B0141) for the indicated amount of time. Inhibition of ERα 
activity was performed by treatment of the cells with 100 nM DMSO-solubilized fulves-
trant/ICI-182,780 (MedChemExpress, #HY-13636).

Cell proliferation analyses

Cells were plated in a 96-well plate at a density of 10,000 cells/well. Cells were treated 
with 100 nM DMSO-solubilized fulvestrant/ICI-182,780 (MedChemExpress, #HY-
13636). Cells were imaged every 4 h by using an IncuCyte ZOOM Live-Cell Analysis 
System (Essen BioScience, Sartorious), and cell confluency percentage was calculated 
using the IncucyteZoom (v2018 A) software. Normalization, by subtraction of the first 
point  (T0), and visualization were performed using Rseb [51] (v0.3.2) R-package (https:// 
github. com/ sebas tian- grego ricch io/ Rseb).

ChIP‑qPCR and ChIP‑seq library preparation

Chromatin immunoprecipitation of ERα (SantaCruz #sc-543, 5 µg/IP) and H3K27ac 
(ActiveMotif #39133, 5 µg/IP) were performed as previously described [33] employing 
the combination of DSG and formaldehyde to perform the crosslinking. The same proto-
col, but using 1% formaldehyde for the crosslinking, has been used to perform EHMT2/
G9a (Abcam #ab133482, 5 µg/IP) and Normal-IgG (Merck Millipore #12–370, same 
amount than IP) ChIPs in Ishikawa cells.

Immunoprecipitated DNA is compared to input sample by the comparative  Ct 
method, and signal enrichment is expressed as percentage of input (% Input). Real-
time quantitative PCR (RT-qPCR) was performed on the QuantStudio™ 5 Real-Time 
PCR System 384-well (Applied Biosystems, #A28140) using SenSMix™ SYBR® No-ROX 
buffer (Meridian Bioscience). The following genomic locations have been tested: ESR1_
Enhancer1−125kb (Fw: 5′-TGG TAG GTG CTC AGG AGA TAA-3′, Rv: 5′-CAG CGA 
CTC GAA CAG GAT TT-3′), ESR1_promoter-0.9kb (Fw: 5′-CCA CTC CTG GCA TTG 
TGA TTA-3′, Rv: 5′-CAG GAC ACA TGA CAC CCA AT-3′), CDK12_TSS (Fw: 5′-GGA 
CCT GAT CTC GCG TTG TT-3′, Rv: 5′-TAG CCT CTC GCG ATG TTT CG-3′).

ChIP‑seq data processing, motif, and Gene Ontology enrichment analyses

Reads were aligned to the human genome build GRCh37 using BWA 0.5.9-r26-dev 
[52]. Reads with a mapping quality (MAPQ) < 20 were removed from further analy-
sis, and duplicates were marked using GATK markDuplicates [53]. Enrichment over 
input control was determined using both MACS2 [54] (q < 0.01) and DFilter [55]. Only 
peaks identified by both methods, and not overlapping with the ENCODE GRCh37/
Hg19 blacklisted regions [56], were retained. ERα consensus peaks for a given condition 

https://github.com/sebastian-gregoricchio/Rseb
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(healthy or normal tissues) have been defined as peaks found in at least 75% of the 
samples.

Differentially bound regions between tumor and healthy samples were identified using 
the R-package DiffBind [19] (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ 
DiffB ind. html) with edgeR [57] mode at an FDR < 0.05. RPGC-normalized (Reads Per 
Genomic Content-1× coverage: (mapped reads × fragment length)/effective genome 
size; bamCoverage [58]) ChIP-seq signal at peaks was visualized using deepTools [58], 
while genomic tracks and average density profiles were generated with Rseb [51] (v0.3.2) 
R-package (https:// github. com/ sebas tian- grego ricch io/ Rseb) or pyGenomeTracks [59, 
60].

Genomic feature annotations and distance to TSS were performed using ChIPseeker 
[61] (promoter: −2 kb:TSS: +1 kb, flanking distance: 2 kb), while for motif enrichment 
in peak regions we used AME v5.5.05 [62] algorithm from the MEME suite [63] (v.5.5.5) 
using the JASPAR database [64, 65] as reference. Visualization of the enrichment motifs 
was made using ggwordcloud R-package using the AME computed E-value.

Area proportional Venn diagrams were created using the Vennerable (https:// github. 
com/ js229/ Venne rable) R-package.

Analyses for Gene Ontology biological process (GO-BP) enrichments for tumor-
depleted ERα promoter-bound genes were performed using DAVID [66] (v6.8) and 
employing tumor-enriched ERα promoter-bound genes as background data set. Unsu-
pervised clustering permutation test was performed using ConsensusClusterPlus [67] 
(v1.54.0) on the DiffBind normalized counts using the following parameters: reps = 100 
(number of permutations), pItem = 0.8 (80% of sample shuffling), pFeature = 1 (100% 
of features to sample), clusterAlg = “hc” (hclust, hierarchical clustering), distance = 
“spearman.” To determine the ESR1/ERα motif strength at each individual ERα binding 
site, fasta-formatted sequences of the peaks were obtained using BED2 FASTA from the 
MEME suite [63] (v.5.5.5). Then, PWMScore, from PWMTools [68], was used to com-
pute the ESR1/ERα motif (JASPAR id: MA0112.3) sum occupancy score for each site. 
GIGGLE [20] analyses were performed using the Cistrome Data Browser Toolkit (http:// 
dbtoo lkit. cistr ome. org/).

Hi‑C library preparation and data processing

Flash-frozen primary tissues have been processed as described in Fig. 2a. Briefly, 10 × 
30 µm slices are cross-linked (1 mL of 2% methanol-free formaldehyde in 1× DPBS for 
25 min), washed, electronically homogenized and filtered using a 75-µm cell strainer, 
and collected in a 1.5-mL microcentrifuge loBind tube. Then, Hi-C single-index library 
preparation was performed as previously described [69] using MboI (New England Bio-
labs) restriction enzyme.

Quality and quantification of the Hi-C libraries was assessed using the 2100 Bioana-
lyzer (Agilent, DNA 7500 kit). An equimolar pool of the different samples was sequenced 
on the Illumina NextSeq 550 System in a 75-bp paired-end setup. De-multiplexed fastq 
data were analyzed at 2-kb, 10-kb, 40-kb, 100-kb, and 500-kb resolution using the snHiC 
[24] (v0.1.1) pipeline (https:// github. com/ sebas tian- grego ricch io/ snHiC) using default 
parameters and the Hg19/GRCh37 genome assembly. This pipeline relies on HiCEx-
plorer [70, 71] (v3.7.2) for the matrix generation, normalization and correction, TAD 

https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
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and loop detection, and long/short contacts ratio and quality controls. Compartments 
are identified by dcHiC [72] (v2.1). Downstream analyses have been performed using 
GENOVA [73] (v1.0.1), which was used to plot Hi-C contact matrices heatmaps, com-
pute relative contact probabilities, and perform paired-end spatial chromatin analyses 
(PE-SCAn [23]) at ERα binding sites.

To test for chromosomal translocations, we used the HiNT-TL function from the 
HiNT tool [74] using a P value cutoff of 0.001. Genome-wide normalized and corrected 
Hi-C heatmaps have been plotted using hicPlotMatrix function from HiCExplorer [70, 
71] (v3.7.2).

HiCExplorer [70, 71] (v3.7.2) hicCompartmentalization was used to quantify the com-
partment polarization. For the compartment switching computation, A and B com-
partment locations in the reference condition were obtained merging adjacent bins 
displaying positive or negative, respectively, compartmentalization scores. Then, aver-
age compartmentalization score in the two conditions was computed for each reference 
compartment. A compartment in the reference condition was defined as “switching” 
when the average compartmentalization score in the reference condition switched sign 
in the test condition. Compartment-ChIP peaks overlaps and relative upset plot have 
been computed using intervene [75], while Hi-C tracks were generated by pyGenome-
Tracks [59, 60].

Whole‑genome sequencing (WGS) analyses

Primary samples

From the full Uterine Corpus Endometrial Carcinoma (UCEC) cohort available in the 
TCGA [26] database, 41 samples have been selected in order to match the following 
criteria: gender = “FEMALE,” histological_type = “Endometrioid endometrial adeno-
carcinoma,” history_of_neoadjuvant_treatment = “No,” horm_ther = “No, I have never 
taken menopausal hormone therapy.,” menopause_status = “Post (prior bilateral ova-
riectomy OR >12 mo since LMP with no prior hysterectomy),” prior_tamoxifen_admin-
istered_usage_category = “Never Used,” radiation_therapy = “NO,” sample_type = 
“Primary Tumor,” targeted_molecular_therapy = “NO,” tumor_tissue_site = “Endome-
trial,” ESR1 TPM-normalized gene counts ≥ 5. Somatic mutation calling was performed 
on base-quality recalibrated aligned whole-genome sequencing data available under 
restricted access on the TCGA portal (data access authorization, project ID: 36269), 
using blood-derived matched normal samples as germline reference, by GATK (v 4.3.0.0) 
Mutect2 [53]. Only mutations passing the GATK FilterMutectCalls filter and displaying a 
sequencing depth greater than 20 (DP > 0) were retained.

Metastatic samples

Sampling, sequencing, and initial computational steps have been previously described 
extensively by Priestley et al. [76] and performed at the central sequencing facility at the 
Hartwig Medical Foundation.

Frequently mutated genes were determined by overlapping genes with somatic muta-
tions affecting protein coding regions in more than one sample in our dataset, with the 
mutated genes described in the endometrial carcinoma publication from TCGA [26] 
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and the OncoKB Cancer Gene List [77]. Overlap between somatic variants and ChIP-
seq regions was determined using bedtools intersect (v2.25.0) [78].

For both datasets, mutational signatures were determined using the deconstructSigs 
[79] R-package, using the COSMIC mutational signatures v3 database [80]. Genomic 
feature annotation was performed using ChIPseeker [61] (promoter: −2 kb:TSS: +1 kb, 
flanking distance: 2 kb).

To score the ESR1 motif upon in silico genome mutagenesis (Additional file  1: Fig. 
S8), we used bcftools merge to merge all the VCFs files containing the mutations identi-
fied by Mutect2 in the TCGA-UCEC primary tumors. We then generated a “mutated” 
genome using GATK FastaAlternateReferenceMaker. For both the reference genome 
and the “mutated genome”, we used PWMScore to score the ESR1 motif in reference or 
mutated conditions for the 3 categories of ERα peaks (tumor-enriched, tumor-depleted, 
common).

Risk single‑nucleotide polymorphism (rSNP) enrichment analyses

We assessed the enrichment of endometrial cancer germline risk variants among dif-
ferentially bound ERα sites using the VSE [81] (v0.99) R-package. Twenty-seven endo-
metrial cancer risk loci (lead variant P < 1 ×  10−5) were identified from a genome-wide 
association study of endometrial cancer [27]. Variants in strong LD (r2 > 0.8) with the 
lead SNP at each locus were selected using 1000 Genomes Project phase 3 [82] to gen-
erate an associated variant set (AVS). A null-distribution was built on the basis of 500 
matched random variant sets. We assessed enrichment within tumor-enriched and 
tumor-depleted ERα binding sites, with and without including a 500-bp window sur-
rounding each binding site. A Bonferroni-corrected P value < 0.05 (adjusting for four 
tests) was considered statistically significant.

Endometrial human tissue derived RNA‑seq library preparation and differential expression 

analyses

RNA from ~30 mg of endometrial healthy or tumor tissue was extracted using the 
RNeasy mini kit (Qiagen) following manufacturer instructions. Quality of the RNA 
extraction was assessed using the 2100 Bioanalyzer (Agilent, RNA 6000 Nano Kit) 
and selecting samples with a RNA integrity number (RIN) above 9. PolyA+ stranded 
RNA library was prepared using the Illumina Stranded mRNA Prep kit and quality was 
assessed by using the 2100 Bioanalyzer (Agilent, DNA 7500 kit). RNA-seq libraries have 
been pooled equimolarly and sequenced using NovaSeq6000 (Illumina) sequencer with 
a 51-bp paired-end reads setup. Fastq files have been demultiplexed by Cutadapt [83] 
and mapped on Hg38/GRCh38 genome assembly using HISAT2 [84] (v2.1.0) using the 
following parameters: --wrapper basic-0 --min-intronlen 20 --max-intronlen 500000 
--rna-strandness FR -k 5 --minins 0 --maxins 500 --fr --new-summary. HISAT2 [84] 
(v2.1.0) was used to generate raw gene counts; gene counts normalization and differ-
ential expression analyses were performed using DESeq2 [85] (v1.30.1). Differentially 
expressed genes were defined by |Fold Change expression| ≥ 2 and Padj < 0.05. Data were 
visualized using Rseb [51] (v0.3.2) (https:// github. com/ sebas tian- grego ricch io/ Rseb).

https://github.com/sebastian-gregoricchio/Rseb
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Gene set enrichment analyses (GSEA)

Differentially expressed genes were ranked by the  log2(Fold Change expression) calcu-
lated using DESeq2 [85] (v1.30.1) and used to perform GSEA analyses by clusterProfiler 
[86] (v3.18.1) on the “Hallmarks” (H) datasets retrieved through msigdbr (v7.5.1). Visu-
alization of the results was performed using Rseb [51] (v0.3.2) (https:// github. com/ sebas 
tian- grego ricch io/ Rseb).

Public RNA‑seq and differential gene expression analyses on Ishikawa cells

Ishikawa gene expression data was obtained from GEO (accession number: GSE109892 
[31]). Differential gene expression between estradiol and DMSO treated cells was com-
puted using DESeq2 [85] (v1.30.1). Differentially expressed genes were defined by |Fold 
Change expression| ≥ 1.5 and Padj < 0.05.

Circularized chromosome conformation capture sequencing (4C‑seq)

For each sample, 10–15 30-µM-thick slices of flash frozen tissue were cross-linked under 
rotation at room temperature for 20 min in 5 mL of 1× PBS supplemented with 2% FBS 
and 2% methanol-free formaldehyde. The cross-linked slices have been washed twice in 
10 mL of ice-cold 1× PBS before to be resuspended in 0.5–1 mL of ice-cold 1× PBS 
in 1.5-mL DNA-loBind microcentrifuge tubes. Tissues have been electronically homog-
enized and lysates filtered using a 75-µm cell strainer. Then, experiments of 4 C-seq were 
performed as previously described [87]. Briefly, nuclei were isolated and permeabilized 
to allow digestion of the chromatin by the primary RE (DpnII, New England Biolabs). 
Upon dilution, chromatin fragments have been ligated and then de-crosslinked. DNA 
was purified and digested with the secondary RE (NlaIII, New England Biolabs) and 
circularized by ligation. PCR amplification of the re-purified circular fragments have 
been performed using view-point specific primers (reading primer: 5′-tacacgacgctcttc-
cgatctAAC TCG ATT TGG AGC GAT C-3′; non-reading primer: 5′-actggagttcagacgtgt-
gctcttccgatctCTG GGA CTG CAC TTG CTC -3′) using the Expand Long Template PCR 
System (Roche). Amplicons were purified with AMPure XP beads (Beckman Coulter) in 
a 0.8× ratio and then amplified using standard indexed Illumina primers as previously 
described [87] using the Expand Long Template PCR System (Roche). Second-round 
PCR products were purified with PCR purification columns (Qiagen) and quantified by 
2100 Bioanalyzer (Agilent, DNA 7500 kit).

4C libraries have been pooled equimolarly and sequenced using Illumina MiSeq with 
a 75-bp single-end reads setup. Fastq files have been demultiplexed by Cutadapt [83] 
and mapped on Hg19/GRCh37 genome assembly and signal normalized by pipe4C [87] 
v1.1 R-package in “cis” mode and with default parameters. The signal of different tech-
nical replicates was averaged to obtain a unique signal for each sample. The, each tis-
sue sample has been considered as biological replicate. Downstream analyses of 4C-seq 
data have been performed in an R v4.0.3 environment by using get.single.base.score.
bw and genomic.track functions from Rseb [51] (v0.3.2) (https:// github. com/ sebas tian- 
grego ricch io/ Rseb) R-package in combination with ggplot2 (v3.3.5) and ggforce (v0.3.3) 
R-packages.
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Protein extraction and immunoblotting

For immunoprecipitated proteins, elution buffer (1% SDS, 0.1 M  NaHCO3) and Laemmli 
buffer, supplied with 100 mM DTT (dithiothreitol, Merck Sigma Aldrich), were added 
to input samples and beads, and then boiled at 95 °C for 30 min. For whole-cell extracts, 
cells have been lysed using 2× Laemmli buffer supplied with 100 mM DTT (dithiothrei-
tol, Merck Sigma Aldrich), boiled at 95 °C for 10 min and then DNA was sheared by 
sonication (Bioruptor® Pico, Diagenode; 4 cycles of 30 s ON + 90 s OFF). In both cases, 
proteins were then resolved by SDS-PAGE and transferred to a 0.22-μm nitrocellulose 
membrane (BioRad). Membranes were incubated for 2 h with blocking solution (BS: 1× 
PBS, 0.1% Tween20, 5% non-fat milk powder) and then incubated with primary anti-
body against ERα (ThermoFisher #MA5-14104, 1:1000 in BS), EHMT2/G9a (Abcam 
#ab133482, 1:1000 in BS), or GAPDH (ThermoFisher #PA1-987, 1:5000 in BS) overnight 
at +4 °C. After washing with washing solution (1× PBS, 0.1% Tween20), membranes 
were incubated with secondary antibodies donkey-α-mouse IRDye® 680RD (926–68073, 
LI-COR Biosciences, 1:10,000 in BS), donkey-α-mouse IRDye® 800 CW (926–32212, 
LI-COR Biosciences, 1:10,000 in BS), donkey-α-rabbit IRDye® 800 CW (926–32213, LI-
COR Biosciences, 1:10,000 in BS), or donkey-α-rabbit IRDye® 680RD (926–68073, LI-
COR Biosciences, 1:10,000 in BS) for 1 h. Membranes were washed again with washing 
solution, scanned and analyzed using an Odyssey® CLx Imaging System (LI-COR Bio-
sciences) and ImageStudio™ Lite v.5.2.5 software (LI-COR Biosciences).

Sequence‑based machine learning 3D genome folding predictions

The 3D genome organization perturbation predictions have been performed using a 
window of  220 bp around the ESR1 locus employing the convolutional neural networks 
(CNN) model from Akita [35] tool. We used the pre-existing model based on Hi-C data 
originated from human foreskin fibroblast (HFF). Heatmaps have been generated using 
matplotlib.pyplot.matshow.

DNA‑oligo protein pull‑down

Ishikawa cells were harvested and washed twice with ice-cold PBS and nuclear extracts 
were prepared as described previously [88]. Briefly, cells are washed with 1× PBS and 
trypsinized. Trypsin is neutralized by adding the appropriate SILAC medium, and 
“light”/“heavy” cells are collected separately at 4 °C. Cells are washed in 1× ice-cold 
PBS and resuspended in five volumes of ice-cold buffer A (10 mM KCl, 20 mM Hepes 
KOH pH 7.9, 1.5 mM  MgCl2). Cells are then pelleted and resuspended in two volumes 
of buffer A supplemented with protease inhibitors and 0.15% Igepal NP40 (v/v) before to 
be dounce homogenized. Nuclei are then collected and resuspended in two volumes of 
buffer C (420 mM NaCl, 20 mM Hepes KOH pH 7.9, 20% glycerol (v/v), 2 mM  MgCl2, 
0.2 mM EDTA, and 0.1% Igepal CA630 (NP40; Sigma-Aldrich, I8896), EDTA-free com-
plete protease inhibitors (Roche), and 0.5 mM DTT) and incubated for 1 h. The suspen-
sion is centrifuged, and the supernatant containing the nuclear extracts is collected.

The ~50-bp oligonucleotide probes encompassing the SNP were ordered with the for-
ward strand containing a 5′-biotin moiety (Integrated DNA Technologies) (Fw_WT: 
5′-/5Biosg/ACT GTG GAA ACT GGA AGC TGTTC TTG GAC TAT TTC GCA ACA CTT 
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TTC TCC-3′; Rv_WT: 5′-GGA GAA AAG TGT TGC GAA ATA GTC CAA GAA CAG 
CTT CCA GTT TCC ACA GT-3′; Fw_SNP: 5′-/5Biosg/ACT GTG GAA ACT GGA AGC 
TGTTTG GAC TAT TTC GCA ACA CTT TTC TCCTC-3′, Rv_SNP: 5′-GAG GAG AAA 
AGT GTT GCG AAA TAG TCC AAA CAG CTT CCA GTT TCC ACA GT-3′; mutated site 
is underlined). DNA affinity purifications, on-bead trypsin digestion and dimethyl labe-
ling were performed as described [89]. Matching light and medium labeled samples were 
then combined and analyzed using a gradient from 7 to 30% buffer B in buffer A over 44 
min, followed by a further increase to 95% in the next 16 min at flow rate of 250 nL/min 
using an Easy-nLC 1000 (Thermo Fisher Scientific) coupled online to an Orbitrap Explo-
ris 480 (Thermo Fisher Scientific). MS1 spectra were acquired at 120,000 resolution 
with a scan range from 350 to 1300 m/z, normalized AGC target of 300% and maximum 
injection time of 20 ms. The top 20 most intense ions with a charge state 2–6 from each 
MS1 scan were selected for fragmentation by HCD. MS2 resolution was set at 15,000 
with a normalized AGC target of 75%. Raw MS spectra were analyzed using MaxQuant 
software (version 1.6.0.1) with standard settings [89, 90]. Data was searched against the 
human UniProt database (downloaded 2017) using the integrated search engine. N-ter-
minal and lysine modification for dimethyl labeling was specified under “labels.” Car-
bamidomethylation was specified as a fixed modification. N-terminal acetylation and 
methionine oxidation were selected as variable modifications.

Transient small interfering RNA (siRNA) cell transfection

Transient transfections of Ishikawa and AN3CA cell lines was performed according 
to the manufacturer’s instructions using Lipofectamine™ RNAiMAX (Invitrogen) for 
siRNA knockdown experiments. The ON-TARGETplus™ siRNA SMARTpool targeting 
human EHMT2/G9a (L-006937-00-00050) and the siGENOME™ Non-Targeting control 
siRNA #5 (D-001210-05-20) were purchased from Dharmacon.

Statistical analysis

All statistical analyses were performed in R versions 3.4.4, 3.5.1, or 4.0.2 (R Core Team 
2020, https:// www.R- proje ct. org). Enrichment of Ishikawa peaks and somatic mutations 
in differentially bound regions was calculated using Fisher’s exact test and, where appro-
priate, corrected for multiple testing using the FDR.
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the fraction of tumor cells, year of birth, biopsy site, and eventual pre-treatments of the 24 metastatic endometrial 
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HiChIP data; enhancer_in_HiChIP_target_gene_promoter_anchor?: yes, enhancer is located within the HiChIP anchor 
that encompasses the gene TSS—no, enhancer is located in the HiChIP anchor distal to the gene; enhancer_ 
within_3kb_TSS_of_target_gene?: yes, enhancer is located within ±3 kb of the TSS of the gene—no, enhancer is not 
located within 3 kb of the TSS of the gene

Additional file 6: Uncropped images of blot in Fig. 3i

Additional file 7: Uncropped images of blot in Fig. 5e

Additional file 8: Uncropped images of blot in Fig. 5 g
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GEO under accession number GSE114737 [94]. Ishikawa ChIP-seq data in the form of optimal Irreproducibility Discovery 
Rate (IDR) thresholded peaks (GRCh37/Hg19 genome build) were obtained from the ENCODE data portal [50] (Addi-
tional file 3: Table S2). The H3K27ac HiChIP data in Ishikawa cells have been obtained from O’Mara et al. [95] accessible in 
GEO under accession number GSE137936 [96]. Mass spectrometry data have been deposited at the ProteomeXchange 
Consortium through the PRIDE [97] partner repository with the identifier PXD029822 [98]. The breast and endometrial 
cancer ATAC-seq, gene expression, progression-free survival and Whole Genome Sequencing (data access authoriza-
tion for project ID: 36269) used in this this work are in whole or part based upon data generated by the TCGA Research 
Network [26, 32] (https://www.cancer.gov/tcga).
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