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Abstract 

Background:  Cell-free RNAs (cfRNAs) can be detected in biofluids and have emerged 
as valuable disease biomarkers. Accurate identification of the fragmented cfRNA 
signals, especially those originating from pathological cells, is crucial for understand-
ing their biological functions and clinical value. However, many challenges still need 
to be addressed for their application, including developing specific analysis methods 
and translating cfRNA fragments with biological support into clinical applications.

Results:  We present cfPeak, a novel method combining statistics and machine 
learning models to detect the fragmented cfRNA signals effectively. When test in real 
and artificial cfRNA sequencing (cfRNA-seq) data, cfPeak shows an improved per-
formance compared with other applicable methods. We reveal that narrow cfRNA 
peaks preferentially overlap with protein binding sites, vesicle-sorting sites, structural 
sites, and novel small non-coding RNAs (sncRNAs). When applied in clinical cohorts, 
cfPeak identified cfRNA peaks in patients’ plasma that enable cancer detection and are 
informative of cancer types and metastasis.

Conclusions:  Our study fills the gap in the current small cfRNA-seq analysis at frag-
ment-scale and builds a bridge to the scientific discovery in cfRNA fragmentomics. We 
demonstrate the significance of finding low abundant tissue-derived signals in small 
cfRNA and prove the feasibility for application in liquid biopsy.
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Graphical Abstract

Background
Cell-free RNAs (cfRNAs), also known as extracellular RNAs (exRNAs), refer to RNA 
molecules that are released or sorted from various cell types due to natural or pathologi-
cal events like active EV secretion [1], autophagy, apoptosis, and necrosis [2]; they mixed 
together and can circulate in biofluids. CfRNA molecules are usually degraded into frag-
ments due to the digestion of various types of RNase [3, 4]. However, some short or even 
long fragments can survive being fully degraded due to different protection factors like 
protein-binding, formation of local RNA secondary structure (RSS), and extracellular 
vesicles (EV) [3, 5].

Recently, noncanonical small RNA species have been found in the cellular environ-
ment, including tRNA-derived-small fragments (tsRNAs, tRFs) [6–9], ribosomal-
derived-small RNA fragments (rsRNAs) [6, 8, 10], mRNA-derived-small fragments 
(msRNA) [8, 11, 12], lncRNA-derived-small fragments (lncsRNA) [8, 12], and other 
unannotated small RNA species [5, 13], many of which have been shown to play impor-
tant roles in cellular regulation and disease pathogenesis and have specific biogenesis 
pathways that closely related to RNase degradation [8, 9, 11]. Some tools and databases 
have been developed to study these classes of sncRNAs in (small) RNA-seq data [14, 15]. 
As most cfRNA fragments are derived from multiple tissue-of-origin (TOO), far more 
than well-known cell-free miRNA [16–18], diverse sncRNA species are also present in 
cell-free biofluids and can be detected in cfRNA-seq data [11–13], and some have been 
proposed as promising biomarkers for a wide range of diseases, including cancer, car-
diovascular, and neurological disorders [17, 19–23], which was also stated in our previ-
ous work [24]. Two available cfRNA/exRNA sequencing data analysis pipelines utilized 
a similar strategy; they map clean reads to transcriptome and calculate read counts 
for each annotated transcript [25, 26]. However, this cannot fully explore the locally 
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fragmented profile of cfRNA; read counts from full-length transcripts (tx) could not 
always represent the cfRNA’s abundance and biological significance at the local frag-
ment-scale. On the other hand, many pathological cell-derived cfRNA fragments of low 
abundance or in unannotated regions may be discarded or overlooked, some of which 
have been found with diagnostic potential [13, 27, 28]. In summary, the lack of proper 
tools to identify and quantify fragmented cfRNA signals limits scientific discovery and 
clinical application.

In addition to the traditional analysis methods, several cfRNA studies tried to find 
local read clusters (peaks) in long- or short-range using peak calling methods, which are 
usually implemented in cross-linking immunoprecipitation sequencing (CLIP-seq) or 
RNA immunoprecipitation sequencing (RIP-seq) data analysis. Yao et  al. [5] explored 
total cfRNA profile in healthy donors’ plasma by MACS2 using their well-developed 
library workflow and found a series of interesting results, including the report of many 
protein-binding and structured cfRNA peaks in plasma. However, the study was not 
extended to broad validation and clinical application. Another drawback is that MACS2 
was mainly designed for genomic peaks like chromatin immunoprecipitation sequenc-
ing (ChIP-seq) peaks, which might be unsuitable for cfRNA. Felden et  al. [13] identi-
fied cfRNA/exRNA peaks in unannotated regions from patients’ plasma, validated their 
presence in EV, and tested their diagnostic performance in large cancer cohorts, which 
was helpful for small cfRNA’s clinical applications. This work has two limitations. First, 
it only focused on peaks in unannotated regions, and the vast number of peaks in anno-
tated regions was not considered. Second, the peak identification procedures lacked 
background correction and filtering steps, which might lead to redundant and noisy 
peaks of low confidence. As far as we know, no systematic peak analysis method evalu-
ated for cfRNA considering their specific properties has been reported, and the cfRNA 
peaks in biofluids for clinical applications need further biological explanation and in-
depth evaluation.

Here we present a fragment-scale peak calling method, cfPeak, which considers 
cfRNA’s characteristics. When applied in real and artificial cfRNA datasets, cfPeak was 
more sensitive than other methods in the identification of true peaks as well as applica-
ble to multiple data types. When applied to clinical cohorts, cfPeak identified narrow 
peaks that could detect cancer, identify cancer types, and predict metastatic status. Fur-
thermore, we demonstrated the importance of rescuing low abundant cfRNA peaks with 
potential cancer tissue-origin in liquid biopsy.

Results
Narrow peaks can be recurrently detected in small cfRNA‑seq data

We compared the read coverage profiles of cellular CLIP-seq (CL-CLIP-seq), cellu-
lar small RNA-seq (CL-smRNA-seq), and cell-free small RNA-seq (CF-smRNA-seq). 
Clean reads were mapped to known transcripts and then called peaks traditionally 
using CLIPper [29]. Four example regions in transcripts (peak precursors) of known 
cfRNA species were shown. Generally, for non-captured or non-immunoprecipitated 
sequencing data like CL- and CF-small RNA-seq, peaks also exist in different tran-
script species across multiple library strategies, which is consistent with previous 
studies [10, 30]. Moreover, we observed some notable differences. Peaks in CL- and 
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CF-smRNA-seq have relatively sharper peak ranges and more diverse peak locations 
than CL-CLIP-seq. Some peaks in CF-smRNA-seq were recurrently detected and 
overlapped with annotated regions, which implied potential biological significance. 
For example, peaks in the rRNA example overlapped with RBP-binding sites (RBPBS), 
EV-sorting sites, and RNA G-quadruplexes structural (RGS) sites. We also identified 
a unique peak across CF-smRNA-seq datasets in mRNA precursor that overlapped 
with EV-sorting sites, which could be explained by the cell-free-specific EV-sorting 
mechanism (Fig. 1A).

To further evaluate the difference among the three data types statistically, we 
focused on one representative dataset for each data type with a similar library strat-
egy. The meta coverage plot in the extended peak regions showed CL-CLIP-seq 
libraries have a relatively broader reads clustering pattern. Peak length distribution 
demonstrated a slightly smaller peak size in CF-smRNA-seq. We also found that 
CF-smRNA-seq has more diverse peak precursor species (Fig. 1B–E). In conclusion, 
recurrent peaks with potential biological significance can be detected across different 

Fig. 1  Narrow peaks can be recurrently detected in small cfRNA-seq data. A Four example regions with 
recurrent peaks. X axis and Y axis of each region stand for transcriptomic coordinate relative to full-length 
transcript and min–max scaled read depth. Two random samples/tracks were plotted for each dataset. 
B–E Comparison of representative datasets (GSE50676, GSE148861, and GSE71008) from three different 
data types. B Ridge plot showed read clusters’ distribution around peak regions. X axis stands for extended 
50 nt from scaled peak regions. Top: Y axis means scaled read depth. Bottom: Y axis of heatmap means 
regions ranked by mean of scaled depth each data type, color intensity means scaled count signal. C Ridge 
plot showed peak length distribution. D Ridge plot showed peak abundance distribution. E Stacked bar 
plot showed ratio of different peak precursor (transcript) species. NEB, NEBnext small RNA-seq Kit; TGIRT, 
thermostable group II intron reverse transcriptases
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CF-smRNA-seq samples and datasets, many of which tend to be in narrow sizes and 
low abundance while with more positional diversities.

Overview of cfPeak and analysis pipeline for fragmented cfRNA

Considering the differences we observed, one may face the risk of improper modeling 
or inadequate parameters when exploring small cfRNA-seq with traditional peak callers 
developed for CLIP- and RIP-seq. Thus, we introduce a peak calling method, cfPeak, to 
fill this gap. CfPeak is organized into six steps with multiple advantages over other meth-
ods (Fig. 2A, Additional file 1: Fig. S1B–F) and is wrapped into a computational pipe-
line (Fig. 2B). In short, clean reads are sequentially mapped to contamination sequences, 
known annotated RNA transcripts, and optionally other regions that have been shown 
to host potential novel transcripts [31–34]. Multi-mapped reads have been reported 
to occupy a considerable part of available reads; thus, EM-based reads’ reassignment 
is deployed before cfPeak since it can significantly improve the identification of peaks 
that are located in repetitive regions [35] (Additional file 1: Fig. S1A). After peak call-
ing of each sample by cfPeak, recurrent peaks among samples (consensus peaks) can be 
obtained, and a count matrix is reported by counting consensus peaks for each sam-
ple and compiling all samples (Additional file 1: Fig. S2). More details were described in 
Additional file 1: “Supplementary Methods” section.

CfPeak sensitively finds peaks in the public and artificial datasets

We next systematically compared the performance of cfPeak with other methods in 
identifying cfRNA peaks in known transcripts. An in silico pooled cell-free sample 
from healthy donors in the reference plasma small RNA-seq dataset (GSE71008) was 
generated to avoid heterogeneity. Basic statistics of peaks in this sample were summa-
rized, including peak number, peak abundance, and peak length (Fig. 3A, Additional 

Fig. 2  Overview of cfPeak and analysis pipeline for fragmented cfRNA. A Peak calling modules of cfPeak. First, 
multi-mapped reads rescued by EM are extracted and converted to 1D vector of depth for each transcript. 
Second, full-length transcript is divided into half-overlapped bins and valid bins are merged; positions of 
local maxima and minima are located for each merged bin. Third, redundant maxima are removed iteratively 
and block region is located for each reduced maximum. Fourth, peak boundaries are located by shuffling 
observed reads to background region for each local maximum. Fifth, Poisson test to remove insignificant 
peaks supported by fewer reads. Sixth, optional CNN-assisted filtering based on peak shape in a fixed local 
window. B Whole pipeline of peak analysis for fragmented cfRNA
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file 1: Fig. S3A). CfPeak identified more peaks than other methods, and all their abun-
dance was at a similar scale, except Piranha which was higher. For adjacent peaks with 
varying differences in peak depth or abundance, the smaller ones that tended to be 
discarded by other methods were rescued by cfPeak (Fig. 3A). We compared the over-
laps of peak regions with each other; cfPeak identified more unique peaks (n = 1027) 
than CLIPper (n = 301), CLAM (n = 124), and Piranha (n = 0). CfPeak, CLIPper, and 
CLAM seemed to have the highest number of overlapped peaks, which implied the 
consensus results of different methods (Additional file 1: Fig. S3C). Moreover, peaks 
from AGO CLIP-seq typically host miRNA seed motifs [34, 35], and therefore we 
hypothesized a similar enrichment might exist since recent studies have revealed the 
presence of AGO2 protein in cell-free plasma [36, 37]. As expected, we obtained a 
similar pattern in AGO2-binding-sites-overlapped peaks, and they enriched more 
seed motifs from top abundant miRNAs in plasma (Additional file 1: Fig. S3D).

To better compare the performance of different methods, we defined a gold-stand-
ard true peak set (noisy truth) by filtering peaks above the predefined recurrence 
of samples and datasets using available public CF-smRNA-seq data. This strategy is 
referred to as plasma-benchmark and is applicable to plasma small RNA-seq datasets. 
We also developed another complementary general-benchmark based on the theory 

Fig. 3  CfPeak sensitively finds peaks in the public and artificial datasets. A Peak number, abundance (CPM), 
and fold change of adjacent peak depth of four methods (consensus peak). B Recall, precision, and F1 
score of four methods using plasma-benchmark. C Recall, precision, and F1 score of four methods using 
general-benchmark. D Example regions with peaks were variably detected by four methods. Y axis: min–max 
scaled depth. X axis: transcriptomic coordinates in full-length transcript. Alternative transcripts were plotted 
below if exist. E Illustration of artificial data generation. F Recall of four methods in artificial plasma samples 
with different minor-origin fraction. Tx, transcripts; FC, fold change
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and rationale of unique-mapped reads tend to map to multiple false sites after being 
shortened [35, 38], which is applicable to all datasets (Additional file  1: Fig. S4). In 
such a way, we found cfPeak recalled more true peaks (Fig.  3B, C), some of which 
were low abundant and less detectable for other methods (Fig. 3D). We also evaluated 
the precision, F1 score, and false positive rate (FPR) of the four methods. CfPeak pre-
sented the higher F1 score in plasma-benchmark despite rescuing many low abundant 
peaks (Fig. 3B), and also showed higher FPR and highest recall in general-benchmark 
(Additional file 1: Fig. S5B).

To better evaluate the performance and limit-of-detection of different methods in an 
ideal situation, we simplified the multi-origin model of plasma small cfRNA as consist-
ing of one major-origin contribution (e.g., blood-derived) and one minor-origin contri-
bution (e.g., colon-derived), and artificially generated such a dataset (Fig.  3E). Details 
were described in Additional file 1: “Supplementary Methods” section. We further tested 
cfPeak in this artificial dataset and observed similar results; minor-origin-derived low 
abundant peaks in RNA admixture could be detected sensitively by cfPeak (90%, 90%, 
and 70% recall at 50%, 5%, and 0.5% minor-origin fraction, respectively), many of which 
were discarded by traditional methods (Fig. 3F).

Various library strategies have been used in generating CF-smRNA-seq datasets; 
thus, we sought to test the performance of cfPeak beyond the reference dataset. CfPeak 
acquired similarly competent performance in different datasets using two benchmark 
metrics, implying its generality and robustness (Additional file 1: Fig. S5A,B). Also, we 
found that cfPeak was also potentially applicable to CLIP-seq dataset; additional peaks of 
interest were identified from a previous study [39] (Additional file 1: Fig. S5C). Together, 
these observations suggested cfPeak is a promising and generalized tool for peak analysis 
that highlights fragmented and low abundant peak regions with heterogeneous cellular 
origins for multiple bulk sequencing data types in broad biofluids.

CfPeak is capable of identifying cfRNA peaks in known and novel transcripts

We next investigated the extensive profile of cfRNA peaks in known transcripts using 
cfPeak. First, focused on mature miRNA (peak) with known boundaries, we found the 
proportion of boundaries that were precisely determined by cfPeak (GSE71008 aver-
age: 49.9%) was higher than other methods (Additional file  1: Fig. S3B). While most 
CF-smRNA-seq studies focused on canonical small RNA species like miRNA, many 
reads that cannot be mapped to miRNA transcripts (GSE71008 pool: 74.2%) were dis-
carded. Therefore, we next tested whether peaks in previously known cell-free sncRNA 
species other than miRNA can be appropriately located using cfPeak. Previous studies 
have reported tsRNA as a prominent sncRNA species in cell-free environments [30, 
40, 41]. We thus checked tRNA-mapped reads and tRNA-hosted peaks in the reference 
dataset. Grouping reads by tRNA amino acid classes, we found lengths of most reads 
spanned between 15 and 40 nt, which were slightly longer than the average lengths of 
all available reads. We also summarized read numbers by known tsRNA classes [42] 
and found tRNA transcripts tended to have different preferences in fragmentation posi-
tion. The read number was also distributed in a biased way; Glu and Gly tRNA occupied 
the majority (GSE71008 pool: 80.9%) of tRNA-mapped reads (Gly 5p-tR-halves: 36.1%, 
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Glu 5p-tR-halves: 28.1%, Glu misc-tRFs: 7.0%), which has been reported to form sta-
ble homodimers or heterodimers in cell-free environments that are resistant to RNase 
[40] (Additional file 1: Fig. S6B). We also found that the density distribution pattern of 
peaks was similar to that of reads (Additional file 1: Fig. S6C). Collectively, these implied 
cfPeak could accurately locate small cfRNA peaks in known transcripts.

Current human transcript reference is still expanding, and many novel transcripts 
may exist and could be detectable in sequencing data [5, 43], and reads unmappable 
(GSE71008 pool: 17.2%) to known transcripts might still be mappable to the human 
genome. To test whether cfPeak could find some cfRNA peaks that are located in those 
unannotated or novel transcripts, we further mapped left reads in the reference dataset 
to introns, promoters, enhancers, and repeats; these regions have been reported to host 
unannotated transcripts or newly identified species (e.g., intron-derived miRNA, intron-
derived kink-turn RNA, promoter-derived transcription initiation RNA, enhancer 
RNA, repeats-derived small RNA) [31–34, 44] (Fig.  4A). We surprisingly found many 
peaks overlapped with novel sncRNA candidates, including miRNA(-like), snoRNA(-
like), tRNA(-like), and ktRNA(-like) transcripts, most of which can bind RBPs or form 
locally stable structures (Fig. 4B–C, Additional file 1: Fig. S7B–F). The number of novel 
sncRNA candidates discovered in peak-related regions (± 100 nt from boundaries) is 
significantly higher than that in randomly shuffled background regions (Additional file 1: 
Fig. S7A). We also noticed peak regions with potential stem-loop or G-quadruplex (G4) 
structure, and some even with evolutionary conservation, suggesting potential unknown 
transcripts (Additional file 1: Fig. S7F). Interestingly, some predicted sncRNA candidates 
have already been curated in the latest transcript annotation (GENCODE v43 and UCSC 
RefSeq track) (Fig. 4C, Additional file 1: Fig. S7 F). Their existence in cell-free environ-
ments was also reported but less studied [13, 43]. Some notes need to be mentioned 
when interpreting the results above. First, some peak regions seemed shorter than the 
predicted novel sncRNA, probably due to the degradation or inefficient capture of full-
length sncRNA in miRNA-orientated small RNA libraries, consistent with a previous 
study [13]. Second, we defined those as novel (sncRNA) transcripts for simplicity, but 
they are not always produced by ab initio transcription from the genome since one major 
biogenesis pathway of sncRNA (candidate) is degradation from longer transcript precur-
sors [8]. All these observations showed cfPeak’s ability to locate small cfRNA peaks in 
novel transcripts and highlighted its potential to assist in identifying novel sncRNA.

CfRNA peaks are recurrently protected by proteins, vesicles, and local structures

CfDNA has been reported under the protection of protein-binding and local structures 
[45–51], while recurrently protected cfRNA fragments are seldom evaluated systemati-
cally. Previous efforts have been made to individually explain these recurrently protected 
cfRNA fragments by the protection of RBP-binding, EV encapsulation, and RNA sec-
ondary structure [5, 40]. We hypothesized that noncanonical secondary structures (e.g., 
RGS) could be another potential protection factor. Inspired by cfDNA studies [45, 52], 
we defined the tWPS (transcriptomic window protection score) to describe the protec-
tion level in transcriptomic regions (Fig. 5A) (details in Additional file 1: “Supplementary 
Methods” section). We first focused on peaks in known transcripts and found similar 
patterns in the curve of tWPS near the center of cfRNA peaks detected by cfPeak in the 
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reference plasma small RNA-seq dataset (GSE71008), implying these narrow peaks were 
also protected from degradation (Fig. 5B). To confirm our hypothesis, we summarized 
peaks that overlapped with annotated potential binding sites of protection factors and 
observed significantly more peak regions that overlapped with RBP-binding, EV-sorting, 
RGS, and RSS sites compared to size-matched background regions (fold change with 95% 
CI. RBP: 1.73 [1.68, 1.78]; EV: 72.13 [65.39, 78.87]; RGS: 1.17 [1.09, 1.25]; RSS-MFE: 1.25 

Fig. 4  CfPeak is capable of identifying cfRNA peaks in novel transcripts. A Peak number distribution across 
known transcripts from 11 RNA species and novel transcripts from four regions. Peaks in repeats regions were 
shown in detail. B First column: Venn plot showed the number of intron-derived novel miRNA candidates 
newly identified by miRDeep2 and detected by cfPeak. Stem-loop RNA structure plot showed an example of 
novel miRNA candidate. Second column: pie plot showed the number of novel snoRNA candidates of two 
types identified by snoscan and snoGPS. Stem-loop RNA structure plot showed an example of novel C/D 
box snoRNA candidate. Third column: pie plot showed the number of novel tRNA candidates of two types 
identified by tRNAscan-SE. Stem-loop RNA structure plot showed an example of standard tRNA candidate. 
Fourth column: pie plot showed number of novel ktRNA candidates of two types identified by kturnSeeker. 
Stem-loop RNA structure plot showed an example of forward ktRNA candidate. Parts of peak regions 
detected in cfRNA sample (GSE71008 pool) were filled with red color in stem-loop RNA structure plot. C 
Coverage of extended regions in different cfRNA-seq datasets and several UCSC tracks near four candidates 
mentioned above. Y axis: min–max scaled depth. X axis: hg38 genomic coordinate. TGIRT, thermostable 
group II intron reverse transcriptases sequencing library; N4, optimized small RNA library (four degenerate 
nucleotides at the ligation ends); RGS, RNA G4 structural sites; RSS, RNA secondary structure
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[1.22, 1.27]; RSS-reactivity: 0.88 [0.84, 0.92]) (Fig. 5C). The meta coverage plot and heat-
map of these four annotations’ occurrences in the extended peak regions showed that 
peak regions overlapped with more annotation records than the adjacent flank regions. 
Further motif analysis in peak regions found that peaks overlapped with AGO2-binding 
sites hosted seed motifs from let-7*−5p (one of the top abundant miRNA families in 
plasma). Peaks overlapped with EV-sorting sites significantly enriched binding motifs of 
EV-abundant RBPs like recently reported SSB protein [53]. Peaks overlapped with RGS 

Fig. 5  CfRNA peaks are recurrently protected by proteins, vesicles, and local structures. Recurrently protected 
regions in the reference dataset (GSE71008). A Illustration of (RBP) protected peak region in cell-free 
environments. B Scaled meta plot of reads coverage and tWPS around peak center. Dash line means peak 
center position. Ribbon area means 95% CI calculated from multiple regions. C Left: bar plot showed ratio of 
RBP-, EV-, and RGS-intersected peak number to total in peak and size-matched background regions. Right: 
bar plot showed MFE and mean mRNA icSHPAE reactivity value in the extended peak and size-matched 
background regions. Error bar means SEM calculated from multiple samples. D Scaled frequency meta plot 
and heatmap of annotated RBP-binding sites, EV-sorting sites, and RGS sites occurrence in the extended peak 
regions. Ribbon area means 95% CI calculated from multiple samples. Regions in heatmap were ranked by 
mean of scaled occurrence. Representative motif patterns enriched from AGO2-binding-sites-overlapped, 
EV-sorting, and RGS peak regions were shown below. E Upset plot showed overlapped contribution of four 
protection factors in all annotation-overlapped consensus peaks. Venn plot was shown in the top right. F 
Stacked bar plot showed the percentage of top 5 RBPs (ranked by overlapped peak number) by transcript 
species in all RBP-binding-sites-overlapped consensus peaks. RGS related RBPs (G4RBP) were highlighted in 
black triangle. *P value < 0.05, **P value < 0.01, ***P value < 0.001, ****P value < 0.0001, Wilcoxon rank sum 
test, one-tailed (peak has higher ratio and lower MFE or reactivity than background). MFE, minimum free 
energy; RGS, RNA G4 structure; RSS, RNA secondary structure; tWPS, transcriptomic window protection score. 
FC: fold change (peak/background). Delta: difference (peak-background)
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sites enriched repetitive G-rich motifs (Fig. 5D). Notably, peaks in novel transcripts also 
significantly overlapped with these annotation regions (Additional file 1: Fig. S8B).

As the protection contribution of these factors may overlap, one peak region may be 
explained by more than one protection factor. To find their overlapping involvement, 
we defined an overlapping score, and the peak was considered protected by one factor 
if the overlapping score was higher than the given threshold. The protection factor with 
the highest overlapping score was assigned to the peak if multiple overlapping records 
exist (details in “ Methods” section). In such a way, we found most of the cfRNA peaks 
(53.7%) identified by cfPeak were defined as protected by one of the four factors men-
tioned above (Fig. 5E). In around 38.1% of peaks that were protected by RBPs (n = 2437), 
we found AGO2 was frequently reported as one of the top-ranked RBPs that protected 
most of the cfRNA peaks, especially primary miRNA. This could be explained by abun-
dant AGO2 protein in cell-free environments reported as small cfRNA carrier (miRNA-
mediated silencing complex) [36, 37, 53]. Also, we found many RBPs were annotated to 
bind RGS, which implied the combined involvement of multiple protection factors [54, 
55] (Fig. 5F). Similar results could also be observed from other peak callers (Additional 
file  1: Fig. S8C–E) and plasma cfRNA-seq datasets. Collectively, these results implied 
that a considerable fraction of cfRNA fragments are protected by proteins, vesicles, and 
local structures.

CfRNA peaks in plasma are informative of cancer and cancer types

Recently, well-established cfDNA’s metrics that are based on the protection of protein-
binding and local structures have shed light on the rising of cfDNA fragmentomics for 
clinical utilities [48–50], but the clinical potential of recurrently protected cfRNAs is 
rarely evaluated broadly. CfPeak can sensitively detect cfRNA peaks derived from the 
minor-origin tissue, and this advantage can be exploited in liquid biopsy where the low 
fraction of pathological tissue-derived cfDNA or cfRNA usually hinders the noninvasive 
detection of pathological onset or progression [27, 56]. Thus, we further tested cfPeak’s 
application potential in serving as a diagnostic approach using a public colorectal can-
cer (CRC) plasma small RNA-seq cohort (PRJNA540919) that includes CRC and normal 
control (NC) individuals. We first used the logistic regression (LR) models to classify 
plasma samples between CRC and NC utilizing all peaks in known and novel transcripts. 
We found models using all peaks in known transcripts had a better classification perfor-
mance (AUROC = 0.996) than those using miRNA peaks only (AUROC = 0.967), and 
peaks in novel transcripts also had a high diagnostic value (AUROC = 0.998) (Fig. 6A). A 
detailed AUROC bar plot by transcript species showed peaks from previously discarded 
species like mRNA also had a high AUROC, implying the necessity of inclusion of other 
transcript species in small cfRNA studies of liquid biopsy (Additional file 1: Fig. S9A). 
We next explored the relationship between cfRNA peaks’ abundance in plasma and clas-
sification importance in the LR models, and noticed a substantial fraction of low abun-
dant peaks with high importance, while those highly expressed in CRC tissue relative to 
primary blood cell showed significantly higher classification importance, which implied 
cancer tissue-derived peaks contributed to a better classification (Fig. 6B).
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Fig. 6  CfRNA peaks in plasma are informative of cancer and cancer types. A AUROC bar plot by different 
peak matrices in the CRC plasma small RNA-seq cohort (PRJNA540919). B Scatter plot showed the relation 
between peak abundance and classification importance in the CRC plasma cohort (PRJNA540919). X axis 
means log-transformed absolute coefficient in the LR models (higher value means more importance). Y 
axis means log-transformed CPM value. CRC highly expressed (relative to primary blood cell) peaks were 
highlighted in orange. C Left: expression profiles of CRC plasma-enriched RBP set across several human tissue 
types from GTEx. Right: expression profiles (GSVA score) of CRC plasma-enriched RBP set were overexpressed 
compared with those of randomly shuffled background RBP set across GTEx colon tissue data (n = 779). D 
Left: expression profiles of CRC plasma-enriched RBP set across several human cancer types from TCGA. Right: 
expression profiles (GSVA score) of CRC plasma-enriched RBP set were overexpressed compared with those of 
randomly shuffled background RBP set across TCGA COAD cancer tissue data (n = 469). CRC plasma-enriched 
RBP set: 16 RBPs enriched from high abundant peaks (top 500 P value ranked) in the CRC relative to NC 
plasma (PRJNA540919). Background RBP set: randomly shuffled RBP set with the same number (n = 16, 
permutation = 2000). Wilcoxon’s rank sum test, two-sided. The centers of the boxplots are median values; the 
bounds of the boxes are 25% and 75% quantiles. The minima are 25% quantile − 1.5*interquartile range (IQR) 
and the maxima are 75% quantile + 1.5*IQR. E 3D t-SNE plot showed the top 500 P value ranked cfRNA peaks 
identified by cfPeak in plasma are informative of cancer types in the three-cancer plasma small RNA-seq 
discovery cohort (GSE71008). Significance of group distance fraction below was calculated by permutation, 
same as right. F 3D t-SNE plot showed the top 500 P value ranked cfRNA peaks from plasma are informative 
of cancer types in the three-cancer tissue small RNA-seq validation cohort (TCGA)
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To investigate whether cfRNA peaks from cancer tissue alone could be used for robust 
cancer detection, we defined the subset of peaks with differentially higher abundance 
and frequency in specific tissue type relative to primary blood cell as tissue dominantly 
contributed peaks (TDCPs) (details in “ Methods” section). A total of 1745 CRC TDCP 
candidates were compiled from the CRC tissue small RNA-seq discovery cohort (TCGA) 
(Additional file 1: Fig. S10A–D). Based on the assumption that plasma samples in CRC 
patients constitute more colon- or CRC-derived cfRNA fragments than those in NC, we 
proposed a TDCP candidates-based peak-index without training for noninvasive CRC 
detection and observed the CRC peak-index kept high performance (AUROC = 0.99) in 
separating CRC from NC samples in the CRC plasma small RNA-seq validation cohort 
(PRJNA540919) (Additional file 1: Fig. S10E).

We further checked the presence of specific tissue-derived cfRNA peaks in 1745 iden-
tified CRC TDCP candidates from TCGA cancer tissue samples, and 109 peaks were 
reidentified in plasma as CRC TDCPs with potential colon-origin under the same filter-
ing metric of tissue (Additional file 1: Fig. S11A). We found many of these tissue-derived 
detectable peaks in plasma were low abundant, consistent with previous observations 
in long RNA transcripts [27]. These TDCPs showed differential coverage with sample 
heterogeneity between groups in plasma as expected, among which one known mature 
miRNA (miR-6803-5p, ENST00000615997.1) peak overlapped with annotated protec-
tion factors and was reported as CRC biomarker in plasma nanovesicles [57] (Additional 
file 1: Fig. S11B). These results demonstrated that cfRNA peaks in plasma identified by 
cfPeak are informative of cancer, and tissue-derived small fragments alone can serve for 
robust detection in clinical cohort.

CfDNA studies have shown the transcription factor-binding status in cancer tis-
sue could be revealed by plasma cfDNA profiling [45, 46, 51, 58]. As cfRNA fragments 
with different origins can be protected by multiple protection factors, some of which 
are involved in cellular post-transcriptional regulation, we next investigated whether 
some cfRNA peaks can potentially inform the biological status of the original tissue 
like RBP-binding footprint. We focused on peaks that overlapped with annotated RBP-
binding sites in known transcripts. RBP-binding motif enrichment analysis from peaks 
with differentially higher abundance in CRC plasma found 16 RBPs that could bind CRC 
patients’ cfRNA, many of which also have been reported to associate with CRC devel-
opment or progression (e.g., WDR5, PCBP2, NONO, IGF2BP3, GEMIN5, AGGF1). 
Gene set variation analysis showed relatively higher expression of enriched RBPs than 
size-matched permutated RBPs in GTEx colon tissue samples, and a similar result was 
observed in TCGA COAD cancer tissue samples for these enriched RBPs (Fig. 6C–D). 
These implied cfRNA peaks in plasma could potentially be utilized to infer the RBP-
binding footprint in the original tissue.

Expanding catalogs of tissue-specific sncRNAs have been reported [4, 59], but 
a study using cell-free sncRNA for the tissue-of-origin investigation has not been 
conducted yet. As parts of cfRNA peaks were tissue-derived (Additional file  1: Fig. 
S11), and some of them were under the protection of RBP in the original tissue, 
which could be an important pathway in the cellular biogenesis of sncRNA [11], we 
thus wondered whether these cfRNA peaks could discriminate different cancer tis-
sue types (Additional file 1: Fig. S12A). Using a three-cancer plasma small RNA-seq 
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cohort (GSE71008), we next tested the multi-classification potential of cfRNA peaks 
in plasma. Their abundance levels in each group were compared with those in the rest 
groups and peaks with differential abundance were selected as group-specific candi-
dates (Additional file 1: Fig. S12B). As expected, t-SNE results of the abundance matrix 
of candidate peaks showed that these cfRNA peaks in plasma could separate different 
cancer types in the three-cancer plasma cohort. When validated in TCGA cancer tis-
sue small RNA-seq data, we surprisingly found that the same candidate peaks were 
also informative of these cancer types (Fig.  6E–F). This highlighted the potential of 
cfRNA peaks in plasma identified by cfPeak for cancer-type discrimination.

CfRNA peaks in plasma are informative of cancer metastatic status

We next explored whether cancer status in a closer view could be obtained from 
cfRNA peaks. Oral cancer is characterized by poor prognosis and low survival rate 
despite sophisticated surgical and radiotherapeutic modalities. Lymphatic metasta-
sis of oral cancer is a complex process involving multiple post-transcriptional bio-
logical processes. Thus, noninvasive cancer metastasis detection in plasma could be 
challenging and beneficial. We recruited a metastatic cohort of oral squamous cell 
carcinoma (OSCC), a common oral cancer, and profiled small cfRNA in plasma sam-
ples. We found that cfRNA peaks with differential abundance in plasma could clearly 
distinguish patients who had localized OSCC from those who had metastatic OSCC 
(Fig.  7A). Overrepresentation analysis showed many cancer- and metastasis-related 
KEGG pathways could be enriched in precursor or nearest genes of upregulated 
(higher abundance in metastasis group) peaks, especially for those in novel tran-
scripts (Fig. 7B). We observed one of the differentially abundant peaks within lncRNA 
LINC01108 (ENST00000635227) had differential coverage among samples from two 
groups, and the peak’s locations seemed to overlap with local RSS site, implying RSS 

Fig. 7  CfRNA peaks in plasma are informative of cancer types and metastatic status. Identification of 
informative cfRNA peaks in the metastatic OSCC plasma small RNA-seq cohort (in-house). A Heatmap 
showed the relative abundance (logCPM) of differentially abundant (top 1000 P value ranked) peaks in OSCC 
plasma samples. B Dot plot showed enriched KEGG pathways of differentially abundant (top 1000 P value 
ranked) peaks that grouped by the trend of abundance in metastatic relative to localized OSCC plasma. C 
Differential normalized coverage (CPM) between groups in two extended example peak regions
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protection might contribute to the peak formation. Also, another peak in the minus 
strand of repeats was close to CDH4 gene, which has been reported to inhibit ferrop-
tosis in OSCC cells [60], and ferroptosis has been known to relate to cancer metasta-
sis [61, 62] (Fig. 7C). Collectively, these results implied the potential of cfRNA peaks 
identified by cfPeak for noninvasive detection of the metastatic status of cancer.

Discussion
Peak calling is an essential step in the upstream preprocessing of transcriptomic 
sequencing data, which aims to identify enriched read clusters against background 
noise [63]. There are many statistics-based peak callers, such as Piranha [64], CLIPper 
[29], and CLAM [35], which were developed for the discovery of significant signals in 
post-transcriptional regulations like RBP-binding and RNA modification events. Pira-
nha internally contains two modes; the original ZTNB (zero-truncated negative bino-
mial) mode determines a fixed depth as the threshold. The other covariates-adjusted 
ZTNB mode allows correction of different transcripts’ abundance at bin scale; both 
modes generally sacrifice sensitivity for accuracy, leading to much fewer peaks than 
other methods, as previously stated [65]. CLIPper and CLAM indirectly infer dif-
ferent statistical backgrounds in regions of fixed length near peaks or at full-length 
transcript-scale to handle background noise (Additional file  1: Table  S1). All these 
traditional RNA-seq peak callers tend to underestimate short fragment size-matched 
local regions. Meanwhile, with the biological applications of machine learning meth-
ods based on deep neural networks, genomic peak callers employing a CNN model 
were developed to predict high-quality peaks in a supervised manner, like CNN-
peaks [66], LanceOtron [67], and DEOCSU [68]. These models rely on peaks labeled 
by human researchers and learn the latent patterns from visual inspections. We thus 
expect that newly developed transcriptomic peak caller assisted by machine learning 
models could also learn transcriptomic-specific peak patterns.

Some essential differences exist among cellular CLIP-seq, cellular small RNA-seq, 
and cell-free small RNA-seq. First, most small cfRNA-seq datasets were generated 
using low-input cfRNA samples fragmented by cell-free RNase with no size-matched 
control and no additional cross-linking or immunoprecipitation step. Second, unlike 
CLIP-seq that mainly captures RBP-binding sites, small cfRNA-seq captures frag-
ments protected from more diverse factors, additionally including EV-sorting and 
local structure, but the effect size is relatively small (Additional file 1: Fig. S13). These 
differences point to the critical characteristics among data types that require addi-
tional consideration during peak analysis.

In addition to the risk of improper modeling or inadequate parameters [5, 11], 
another significant limitation of applying traditional methods to small cfRNA-seq 
is that most of them are insensitive to the discovery of low-abundance signal sites. 
However, this overlooked situation is highlighted in cfRNA studies; many cfRNA 
molecules are fragmented before secreting from cell and during circulating, and 
adjacent peaks in small cfRNA-seq may have different cellular origins with vary-
ing sorting mechanisms and regulatory functions, such as sncRNA fragments that 
recently reported [5, 69]. Low abundant peaks near high abundant peaks tend to be 
masked by traditional methods, but they may originate from tissues that contribute 
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a small fraction to the cfRNA admixture, which happen to be valuable in liquid 
biopsy since they may carry the information of the tissue of interest and should not 
be missed out. Furthermore, their abundance in traditional sequencing data types 
does not always represent their actual biological importance; sometimes the under-
estimation was caused by insufficient capturing or amplification bias during library 
preparation [12, 69, 70]. In summary, the fragmented and heterogeneous origin 
characteristics of cfRNA pose unique challenges for identifying informative cfRNA 
peaks (Additional file 1: Fig. S14).

Our peak analysis in small cfRNA-seq also has some limitations. First, cfPeak maps 
cfRNA reads to the transcriptome sequentially before the genome; this strategy is 
more sensitive to known transcripts and more suitable if some specific transcript 
species are of interest. Second, we only included three representative methods in 
the evaluation; many other peak callers can be added and compared if compatible 
with transcriptome-mapped reads, like CLIPick [65], CTK [71], and PIPE-CLIP [63]. 
Third, the transcriptome-level EM in our pipeline is adapted from a genomic version 
[35], and we assumed that the predefined mapping order could be seen as a prefer-
ence for regions in EM reassignment. Fourth, we mainly focused on short, narrowly 
protected regions in small RNA-seq (or miRNA-seq), and cfPeak is also applicable to 
total or long RNA-seq (Figs. 1A, 4C). Fifth, we only considered four protection fac-
tors of cfRNA in the analysis for simplicity. For EV-sorting candidate peaks, we also 
carried out independent validation in plasma to show the rationale and feasibility of 
our annotation procedures (Additional file 1: Fig. S15A–C). Other annotation types 
like RBP-binding sites and G4 structural sites were downloaded from published 
database, and they might also need additional experimental validation if available. 
In fact, some other RNA carrier types or protection factors exist; further detailed 
annotation integrating more datasets may explain these cfRNA fragments more pre-
cisely and clearly, and the protection contribution might also change accordingly 
[36, 37, 53, 72]. Also, some longer fragments have been proved to exist in cell-free 
environments under different mechanisms, like full-length structured intron and 
pre-tRNA [5, 73]. Meanwhile, inter-molecular interactions were not considered, 
though heterodimer of tRNA halves has been reported to exist in cell-free environ-
ments [40]. In addition to canonical RSS, other advanced structures like i-motif, 
kink-turn, and inter-molecular G4 may also exist in cfRNA [44]. Sixth, further vali-
dation using standard assay is needed. For example, the RBP-binding sites we used 
were extracted from our previous database work [74], and the RBP-cfRNA binding 
status in vivo needs confirmation in human biofluids [53]. Notably, RGS may not be 
stable in EV-free plasma, but theoretically, it can exist in cell and EV with suitable 
ion concentration. The actual origin of cfRNA in clinical samples also needs fur-
ther confirmation, like the detection of human cfRNA in plasma samples from the 
patient-derived xenograft (PDX) mouse model. The performance cfPeak of clinical 
application might also be affected by multiple conditions like cohort size, and still 
need further validation in larger cohort.
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Conclusions
CfPeak is a new computational method designed for peak analysis in small cfRNA-
seq and is potentially applicable to broad data types. It shows an improved ability to 
identify recurrently protected cfRNA peaks and pave the way to cfRNA fragmen-
tomics. We highlight the significance of rescuing low abundant peaks that poten-
tially derived from tissue in clinical cohorts, and demonstrate the clinical potential 
of these cfRNA narrow peaks in liquid biopsy.

Methods
Cohort design, sample collection, and processing

The individuals in the metastatic oral squamous cell carcinoma (OSCC) cohort were 
recruited from Beijing Stomatological Hospital (CMU, Beijing). Informed consent was 
obtained for all patients prior to the enrolment of this study. We included six localized 
OSCC cancer patients and eight metastatic OSCC cancer patients in total; the mean age 
is 59 (male: 58, female: 60). The lymph node metastatic status of OSCC was annotated 
if TNM stage was proven N + histopathologically (Additional file 1: Table S2). The study 
was approved by the Ethics Committee of Beijing Stomatological Hospital (CMU, Bei-
jing) (CMU-IRB-KJ-PJ-2022–15) and complied with the Declaration of Helsinki.

Sample collection and processing workflow were performed as previously reported 
[75]. In short, peripheral whole blood samples were collected from individuals before 
therapy or surgery using EDTA-coated vacutainer tubes. Next, plasma was separated 
within 2 h after collection. All plasma samples were aliquoted and stored at − 80 °C. 
Then, cfRNAs were extracted using miRNeasy serum/plasma miRNA isolation kit (QIA-
GEN, Shanghai, China), and DNA contamination was removed by Recombinant DNase 
I (RNase-free) (TAKARA, Beijing, China). Small libraries were prepared according to 
the manual of QIAseq miRNA library kit (QIAGEN, Shanghai, China). Followed by 
library quantification with Qubit dsDNA HS Kit. Library fragment size and quality were 
checked with Agilent 2100 Bioanalyzer. Libraries were sequenced on Illumina HiSeq 
X-ten with PE150.

For in-house validation of EV-sorting candidate peaks, six healthy donors were 
recruited in Peking Union Medical College Hospital (PUMCH, Beijing). Informed con-
sent was obtained for all healthy donors prior to the enrolment of this study. The study 
was approved by the Ethics Committee (JS-3386D) and complied with the Declaration 
of Helsinki. Total cfRNA-seq preparation in healthy donor’s plasma, peripheral whole 
blood samples were collected from individuals before therapy or surgery using EDTA-
coated vacutainer tubes. Plasma was separated within 2 h after collection by centrifuge at 
1900 g for 10 min at 4 °C. All plasma samples were aliquoted and stored at − 80 °C. EV-
depleted plasma cfRNAs were extracted using QIAzol Lysis Reagent (QIAGEN, Beijing, 
China), and DNA contamination was removed by Recombinant DNase I (RNase-free) 
(TAKARA, Beijing, China). The total cfRNA libraries were prepared using our in-house 
protocol that improved from our previously published method, DETECTOR-seq [76]. 
Library quantification was performed by Qubit dsDNA HS Kit. Library fragment size 
and quality were checked using Agilent 2100 Bioanalyzer. Libraries were sequenced on 
DNBSEQ-T7 (MGI Tech.) with PE150.
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Peak calling in cfRNA peak analysis pipeline

We implement four peak caller options in the peak analysis pipeline: Piranha, CLIPper, 
CLAM, and cfPeak. Piranha v1.2.1 takes primary-mapped bam as input and calls peaks 
with the flag “-b 5.” CLIPper v2.1.2 takes primary-mapped bam as input and calls peaks 
with default parameters and a modified transcriptomic gtf as reference. CLAM v1.2.0 
takes multi-mapped bam as input and intrinsically reassigns multi-mapped reads and 
calls peaks with the flag “permutation_callpeak –extend 5.” CfPeak v1.0.6 takes EM-reas-
signed bam as input and calls peaks with the flag “call_peaks_localmax –boundary back-
ground –mode local –max-iter 100 –permutate-pval 0.05 –poisson-pval 1 –bin-width 
10 –min-peak-length 10 –max-peak-length 200 –thread 6 –decay 0.5 –min-cov 2”; it 
outputs a peak file where the columns represent “transcript, start, end, name, maximum 
depth, strand, maximum position, background depth, permutation P-value, Poisson 
P-value” from left to right. The CNN filtering outputs a peak file where the columns rep-
resent “transcript, start, end, name, probability to be false peak (0–1), strand.” One could 
choose to directly skip traditional Poisson significance test and CNN filtering step to get 
more peaks of low abundance by setting flag “–poisson-pval 1” in peak calling script and 
“–threshold 1” in anomaly detection script. All other parameters in peak calling mod-
ules were set as default. To ensure consistency of different methods, we further applied 
peak length filtering for each peak file from four methods, and only peaks with lengths 
between 10 and 200 nt were kept.

Interval overlapping analysis

In annotation-peak overlapping analysis, length-matched background regions were gen-
erated by randomly shuffling peak regions of each sample across all 11 transcript species 
using bedtools v2.30.0 with flags “shuffle -noOverlapping.” Peak regions and annotation 
records were intersected for each sample using bedtools with flags “intersect -wao -s.” 
The overlapping score was defined as the product of intersection-peak ratio and inter-
section-annotation ratio, and an overlapping event was defined as having an overlapping 
score higher than 0.01. The ratio of annotation-overlapped peaks to all peaks was com-
pared to that calculated from background regions; group comparison was performed by 
Wilcoxon rank sum test (one-tailed), and error bar means standard error of mean (SEM) 
calculated from multiple samples (Fig. 5C).

For the meta coverage plot and heatmap of annotation records (Fig.  5D), we first 
extended 50 nt from both boundaries in peak regions of each sample, and peaks beyond 
full-length boundary were removed, then the records of three annotations (RBP-bind-
ing, EV-sorting, and RGS sites) in the extended peak regions were fed into Enriched-
Heatmap v1.16.0 R package (normalizeToMatrix function) to calculate the occurrences 
of annotation records of each sample, the value at each position was min–max scaled 
(two-rounds) across all positions in a region and smoothed (two-rounds) by loess model 
in R. Peak regions in heatmap were ranked by mean of scaled occurrence of annotation 
records.

Mature miRNA boundary positions (genomic coordinates) were downloaded from 
miRBase release 22, and only mature miRNA records of high abundance (median counts 
≥ 5) in the reference plasma small RNA-seq dataset (GSE71008) were kept for overlap-
ping analysis. Transcriptomic peak regions of the pooled sample from four methods 
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were converted into genomic coordinates and were overlapped with annotated miRNA 
regions using bedtools; overlapping records were filtered by removing those with over-
lapping bases less than 10 or overlapping score smaller than 0.01, and only one mature 
miRNA with the highest overlapping score was assigned for each peak if multiple over-
lapping records exist (Additional file 1: Fig. S3B).

In protection contribution analysis, RBP-, EV-, and RGS-protected peaks were defined 
as overlapped with annotation, and the overlapping score was higher than 0.01 (Fig. 5E).

In peak-peak overlapping analysis, peak-peak overlapping analysis (Additional file 1: 
Fig. S3C) was performed using Intervene [77] v0.6.5 using consensus peaks of the pooled 
sample.

Classification based on machine learning

We attempt to distinguish colorectal cancer (CRC) cancer patients and normal controls 
(NC) using plasma cfRNA peaks by the logistic regression (LR) models. First, we nor-
malized the raw count matrices of consensus peaks in known and novel transcripts. We 
used bootstrap strategy to perform the model evaluation. One hundred times of uni-
form resampling with replacement of all samples was performed to generate 100 dis-
covery sets, each with the same scale as the original samples. On average, in each turn 
of random resampling with replacement, 63.2% of original samples were included in the 
discovery sets, and the rest served as test sets for evaluation. The LR models (L2 regu-
larization) were trained on each discovery set with hyperparameter tuning of threefold 
cross-validation, and classification probabilities were predicted on paired test sets by the 
LR model. Then, AUROC and AUPR metrics were estimated by the final combination 
of each sample’s average predicted probabilities at every turn of resampling. The feature 
importance was estimated by peak coefficients computed by the LR model and averaged 
over all turns of bootstrap.

Identification of tissue dominantly contributed peaks

CfRNA fragments in cell-free plasma samples are mainly derived from blood cell 
(blood-derived) compared to tissue cell (tissue-derived) like colon. In cancer patients’ 
plasma samples, the fraction of cancer tissue-derived cfRNA fragments in all tends to 
increase [21, 27, 78, 79]. Tissue dominantly contributed peaks (TDCPs) were defined as 
peak regions in which cfRNA fragments are most likely tissue-derived instead of blood-
derived. For a specific cancer plasma cohort paired with normal controls, the TDCP 
candidates (part of which can be detected in plasma as TDCPs) were identified from the 
same cancer tissue and blood control sample through four criteria: (a) the 90th percen-
tile abundance (CPM) of this gene in the control group is less than 0.1, (b) the ratio of 
control samples with detectable signal (count ≥ 1) is less than 10%, (c) the ratio of spe-
cific cancer samples with detectable signal is greater than 10%, (d) the gene has differ-
entially higher abundance in the specified cancer group compared to the control group 
(P value < 0.1). The two-group differential abundance was calculated by the edgeR [80] 
v3.28.1 package (glmFit and glmLRT functions) in R.
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Cancer peak‑index

Take CRC, for example, the cancer peak-index (CPI) score was defined as the mean of 
the z-score standardized abundance (CPM) for all CRC TDCP candidates:

where i denotes the index of peak in CRC TDCP candidates, j denotes the index of 
plasma sample, CPM.LAML is the vector of abundance of CRC TDCP candidates cal-
culated from TCGA LAML small RNA-seq cohort, and CPM.ALL is the vector of abun-
dance of CRC TDCP candidates calculated from both TCGA LAML and COAD small 
RNA-seq cohort. LAML (primary blood cell) cohort was treated as control group in 
TCGA data. AUROC for each dataset was calculated by pROC v1.17.0.1 R package [81] 
using CPI score as a metric. We used the same consensus peak set from plasma to count 
reads to keep the count matrix consistent across plasma and tissue datasets.

Additional software and algorithms used in this study are listed in Additional file 1: Sup-
plementary Methods [42, 44, 54, 55, 74, 80, 82–112].
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[5], GSE221088 [76], GSE129255 [120], GSE112343 [121], GSE56686 [122], and CNP0003091 [123]. Small RNA-seq datasets 
generated in this study include GSE238204 (small cfRNA-seq) [124] and GSE278414 (EV total cfRNA-seq) [125].
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