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Abstract 

Background: It is important for porcine models to replicate gene mutations pre‑
sent in human diseases to improve the translatability of animal studies. In this study, 
the high efficacy of a whole exome sequencing kit was demonstrated for the improved 
pig reference genome (Sus scrofa 11.1) to profile biomedically relevant swine breeds 
and enable high‑depth sequencing required for intratumor heterogeneity profiling.

Results: We identify a total of 751,624 single nucleotide variants (SNVs) and 113,597 
insertions and deletions (INDELs) across 93 samples from 12 porcine breeds. The 
identified mutations and affected pathways are correlated to muscle‑to‑fat ratios 
between different porcine breeds and further inform their utility as models of obesity 
and cardiovascular disease. Finally, 7935 SNVs and 358 INDELs are present in an Onco‑
pig hepatocellular carcinoma (HCC) cell line and samples from a single Oncopig 
HCC tumor, with pathways related to hepatic fibrosis, WNT/B‑catenin, ATM signaling, 
and p53 signaling enriched.

Conclusions: These results demonstrate the kit’s high efficacy and utility for iden‑
tifying mutations in the context of obesity, cardiovascular disease, and cancer 
across a range of pig models used in biomedical research.

Keywords: Porcine animal models, Single nucleotide variants, Liver cancer, Exome 
sequencing

Background
Porcine models have proved themselves valuable for studying a wide variety of human 
diseases and developing therapeutic applications including but not limited to wound 
healing [1], cardiovascular disease [2, 3], obesity [4], organ transplantation [5], and can-
cer research [6]. Pigs have greater similarities to humans in terms of size, anatomy, phys-
iology, metabolism, immunology, and genetics compared to other animal models [7]. 
As gene mutations implicated in human diseases such as atherosclerosis [8], coronary 
artery disease [9, 10], cancer [11], and obesity [12] continue to be identified, it will be 
important for porcine models to replicate gene mutations seen in humans and to model 
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relevant comorbidities to ultimately improve the translatability of animal studies. There-
fore, the assembly of a porcine genome sequence (Sus scrofa) was instrumental in accel-
erating porcine biomedical research [13].

Whole genome and whole exome sequencing represent two common approaches 
for identification of germline and somatic variation. While whole genome sequencing 
permits evaluation of the entire genome, whole exome sequencing is restricted to pro-
tein-coding regions. Previous studies have demonstrated that whole exome sequencing 
decreased costs by approximately 15-fold while allowing for evaluation of genetic vari-
ation in exon coding regions where the majority of disease-causing variants are found 
[14]. Previously, a whole exome sequencing kit was developed and validated for the pig 
reference genome Sus scrofa 10.2 [15]. Since then, an improved version of the pig ref-
erence genome, Sus scrofa 11.1 (Sscrofa11.1), was assembled that has higher continuity 
and accuracy by greater than 90-fold when compared to version 10.2 [16]. Therefore, 
there is a need for an updated porcine exome sequencing kit for utilization in conjunc-
tion with this improved pig reference genome.

The origin of each porcine breed, its history of breeding, and random mutations con-
tribute to the genetic diversity of porcine breeds. Although a recent study identified sin-
gle nucleotide variants (SNVs) to help differentiate different types of swine breeds [17], 
it would be helpful to investigate SNVs and insertion and deletions (INDELs) associated 
with porcine breeds used in biomedical research to improve modeling of human disease 
and translatability of results. For example, naturally occurring mutations could inform 
the selection of a porcine model for biomedical research to improve the translatability of 
studies, better understand phenotypic differences across breeds, and provide insight into 
mechanisms of human diseases. In addition to investigating germline genomic variation 
relevant to human disease research, a porcine exome sequencing kit could also be useful 
for delineating somatic variation in the context of porcine cancer research, as intratu-
mor heterogeneity is increasingly being recognized as a critical component of preclini-
cal modeling due to the impact of distinct genotypic profiles on treatment response and 
recurrence [18]. In the clinic setting, tumor profiling is often performed using exome 
or other targeted approaches. However, extensive profiling of intratumor heterogene-
ity in porcine cancer models is prohibitively expensive due to the use of whole genome 
sequencing and the high sequence depth (150 ×) required to identify somatic variation 
[14].

In this study, a porcine whole-exome sequencing kit based on the Sscrofa11.1 genome 
sequence and assembly was developed and tested to address gaps in the availability of 
porcine genomic tools. The utility of this kit was demonstrated across 12 domestic and 
minipig breeds commonly utilized in porcine biomedical research studies. Both minipig 
and domestic pigs were utilized to demonstrate the utility of the kit across pig breeds 
with significant variation in genetics and biomedically relevant phenotypes. For exam-
ple, while domestic pigs typically have a full-grown weight between 140 and 300 kg, 
minipigs typically have a full-grown weight between 30 and 95 kg at about 2 years of age 
[19]. In addition, livestock animals are large and lean animals selected to build muscle 
mass, so while high-calorie diets in young minipigs lead to obesity, metabolic syndrome, 
visceral fat deposition, decreased insulin sensitivity, and increased blood cholesterol and 
triglycerides [20], these phenotypes are not observed in response to high-calorie diets in 
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domestic pigs with higher muscle-to-fat ratios than minipigs [21, 22]. Furthermore, the 
utility of the newly developed porcine whole exome sequencing kit to characterize intra-
tumor heterogeneity was demonstrated using the Oncopig hepatocellular carcinoma 
(HCC) liver cancer model [14, 23, 24]. Dysregulated pathways were investigated further 
to characterize the biological relevance of the model.

Results
Sequence and coverage statistics

The exons of protein-coding genes annotated in the Ensembl Sscrofa11.1 genome assem-
bly have a total length of 73.84 megabases (Mb). To determine the efficacy of the devel-
oped porcine exome sequencing kit for targeting these regions, sequence data from a 
range of domestic and minipig breeds was generated (Table 1). Across the 12 pig breeds 
tested, an average of 7.38 ×  107 reads were obtained per sample, with an average of 7.37 
×  107 reads aligning to the genome. Of the reads aligning to the genome, an average 
of 88.92% aligned to target exon regions, resulting in an off-target rate of 11.08%. This 
resulted in an average coverage of 294.19 Mb per sample, 72.91 Mb of which correspond 
to exon sites, resulting in an average exome coverage of 98.74% at an average depth of 
104.26 ×. This represents a significant enrichment compared to the average coverage of 

Table 1 Sequencing statistics for the whole exome sequencing kit across 12 porcine breeds

Mean (standard deviation)

Whole 
exome 
sequencing

Total 
number of 
reads

Number 
of reads 
mapped to 
genome

Percent 
of reads 
aligning to 
exons (%)

Percent of 
off-target 
reads (%)

Average 
depth in 
off-target 
regions

Average 
depth 
in exon 
regions

Percent 
of exome 
coverage 
(%)

Duroc
(n = 6)

6.75E7
(1.20E7)

6.73E7
(1.22E7)

88.24
(0.97)

11.76
(0.97)

10.77
(1.25)

96.86
(17.41)

98.81
(0.15)

Gottingen
(n = 6)

9.28E7
(1.92E7)

9.26E7
(1.92E7)

88.83
(1.09)

11.17
(1.09)

12.12
(2.44)

135.87
(29.83)

98.89
(0.11)

Hanford
(n = 5)

7.04E7
(6.25E6)

7.03E7
(6.24E6)

89.78
(0.63)

10.22
(0.63)

11.59
(1.03)

102.94
(9.53)

98.70
(0.09)

Large White
(n = 6)

6.94E7
(6.69E6)

6.92E7
(6.67E6)

90.48
(0.39)

9.52
(0.39)

1.27
(0.52)

102.79
(10.04)

98.80
(0.11)

Meishan
(n = 7)

6.62E7
(8.32E6)

6.61E7
(8.31E6)

89.01
(1.03)

10.99
(1.03)

11.12
(1.28)

96.22
(12.69)

98.68
(0.11)

Oncopig
(n = 9)

1.13E8
(6.61E7)

1.13E8
(6.60E7)

86.00
(1.68)

13.57
(1.68)

10.28
(1.46)

131.72
(51.25)

99.92
(0.26)

Ossabaw
(n = 9)

6.59E7
(5.07E6)

6.58E7
(5.06E6)

89.43
(0.99)

10.57
(0.99)

10.67
(1.03)

95.38
(7.55)

98.62
(0.12)

Pietrain
(n = 5)

6.71E7
(9.36E6)

6.69E7
(9.31E6)

90.09
(0.35)

9.91
(0.35)

11.75
(1.06)

98.65
(14.06)

98.73
(0.13)

Sinclair
(n = 7)

6.48E7
(5.87E6)

6.47E7
(5.86E6)

89.14
(0.52)

10.86
(0.52)

10.67
(0.38)

93.49
(8.56)

98.62
(0.11)

Wisconsin 
Miniature 
Swine
(n = 19)

7.46E7
(1.14E7)

7.45E7
(1.14E7)

88.56
(0.72)

11.44
(0.72)

10.84
(0.95)

108.73
(17.02)

98.85
(0.13)

Yorkshire
(n = 5)

5.73E7
(1.95E7)

5.72E7
(1.96E7)

89.34
(1.55)

10.66
(1.55)

10.68
(2.52)

83.49
(30.36)

98.51
(0.46)

Yucatan
(n = 9)

6.30E7
(7.33E6)

6.29E7
(7.32E6)

89.49
(0.47)

10.51
(0.47)

10.79
(0.40)

91.11
(11.32)

98.57
(0.22)

Total
(n = 93)

7.38E7
(2.63E7)

7.37E7
(2.63E7)

88.92
(1.34)

11.08
(1.34)

11.05
(1.33)

104.26
(25.49)

98.74
(0.21)
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11.08% in the off-target regions at an average depth of 11.05 ×. However, a depth greater 
than 5 × was only observed in 27.83% of the off-target sequenced regions. While some 
variability was observed between porcine breeds, these numbers were largely consistent 
(Table 1), demonstrating the ability of the porcine exome sequencing kit to effectively 
cover and enrich for Sscrofa11.1 exon regions across a range of breeds commonly uti-
lized in biomedical research.

Within each multigene family, more than 99% of all reads had a mapping quality score 
greater than 20, indicating less than a 1% probability that a read had been incorrectly 
mapped to a location within each multigene family. This provides confidence that genes 
within each multigene family were distinguishable from one another. Across different 
multigene families, an average gene depth ranging from 94.80 to 122.37 was observed 
compared to an average gene depth of 104.26 across all exon regions. However, varia-
tion in gene depth within each multigene family (standard deviation from 25.48 to 69.88) 
was observed (Additional file 1: Table S1), which may represent multiple genes that have 
been collapsed in the genome assembly. For example, the largest variation in average 
gene depth was seen in the transcription factor multigene family, varying from 20.43 
(PREB) to 1265.13 (FOSB) (Additional file 1: Table S1).

Variation across breeds

Principal component analysis of all SNVs resulted in breed-specific clustering con-
sistent with previously published genetic relationships between breeds (Fig. 1) [13]. A 
total of 751,624 SNVs and 113,597 INDELs were observed across the 93 samples rep-
resenting 12 breeds (Table 2). The number of SNVs present in each of the 12 breeds 
varied from 229,685 (Duroc) to 406,823 (Meishan) with an average of 309,263 SNVs. 
The number of INDELs present in each of the 12 breeds varied from 48,453 (Pietrain) 
to 65,494 (Meishan) with an average of 55,397 INDELs. Variants that were unique 

Fig. 1 Principal component analysis of single nucleotide variants present in each porcine sample. PC, 
principal component
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to 1 breed were defined as variants in > 75% of the samples representing that breed 
not present in other breeds, based on samples sequenced as part of this study. The 
number of unique breed SNVs varied from 6 (Yorkshire) to 10,406 (Meishan) with 
an average of 2250 SNVs. The number of unique breed INDELs present in a breed 
varied from 1 (Yorkshire) to 995 (Meishan) with an average of 224 INDELs. Novel 
unique breed SNVs and INDELs were not present in the PigVar database or in any 
of the 23 porcine sequencing studies in the European Variation Archive (EVA) at the 
time of publication. Approximately 22% of unique Duroc SNVs but > 90% of all other 
unique breed SNVs were novel (Fig. 2). Of all the unique breed INDELs identified in 
this study, only one Göttingen INDEL was previously identified. The impact of unique 
breed SNVs and INDELs on the protein level was quantified and stratified by high 
impact, moderate impact, low impact, and noncoding effects (Table 2).

Table 2 Number of breed‑unique variant effects stratified by variant type and level of impact

SNVs single nucleotide variants, INDELs insertions and deletions, WMS Wisconsin Miniature Swine

Number of 
samples

Total SNVs Unique 
SNVs

Unique 
SNV 
effects

High 
effects

Moderate 
effects

Low 
effects

Noncoding 
effects

Duroc 6 229,685 314 1036 1 123 159 753

Gottingen 6 367,712 9052 32,369 30 2589 5151 24,599

Hanford 5 280,763 1520 5782 0 572 875 4335

Large 
White

6 320,205 27 84 0 2 22 60

Meishan 7 406,823 10,406 37,716 28 2565 5823 29,300

Oncopig 9 332,524 235 778 0 97 93 588

Ossabaw 9 325,796 891 3322 3 277 488 2554

Pietrain 5 259,234 532 1893 1 231 288 1373

Sinclair 7 328,441 1164 4554 9 374 723 3448

WMS 19 325,271 935 3442 12 375 591 2464

Yorkshire 5 284,382 6 13 0 2 4 7

Yucatan 9 250,322 1914 6826 4 782 972 5068

Mean 309,263 2250 8151 7 666 1266 6212

Number of 
samples

Total 
INDELs

Unique 
INDELs

Unique 
INDEL 
effects

High 
effects

Moderate 
effects

Low 
effects

Noncoding 
effects

Duroc 6 48,515 76 286 14 0 2 270

Gottingen 6 61,006 904 3445 42 57 17 3329

Hanford 5 50,885 155 586 13 12 2 559

Large 
White

6 56,225 4 15 0 2 0 13

Meishan 7 65,494 995 3782 46 37 10 3689

Oncopig 9 59,037 23 103 1 0 2 100

Ossabaw 9 57,836 85 306 7 6 0 293

Pietrain 5 48,453 50 167 3 6 0 158

Sinclair 7 57,206 111 437 4 3 1 429

WMS 19 60,030 65 279 6 11 2 260

Yorkshire 5 51,270 1 1 0 0 0 1

Yucatan 9 48,803 216 801 11 27 3 760

Mean 55,397 224 851 12 13 3 822
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Biological implications of breed specific variation

Pathways enriched for unique breed variants were identified (Additional file 1: Tables 
S2–S3), including pathways associated with obesity (Table 3) and cardiovascular dis-
ease (Table 4) in several porcine breeds.

Novel high impact variants resulting in premature stop codons were identified 
in the following genes associated with enriched obesity pathways in Meishan pigs: 
PLIN1 (adipogenesis, white adipose tissue browning), GRB10 (insulin receptor sign-
aling), and ACOT4 (stearate biosynthesis I) (Table  5). A novel frameshift variant 
was identified in ABCC9 (dilated cardiomyopathy signaling) in Meishan pigs. These 

Fig. 2 Novel vs previously identified unique breed single nucleotide variants. (SNVs = single nucleotide 
variants)

Table 3 Number of genes with variants associated with obesity‑related pathways in various porcine 
breeds

WMS Wisconsin Miniature Swine

Pathways Adipogenesis Apelin 
adipocyte 
signaling

Insulin 
receptor 
signaling

Leptin 
signaling 
in obesity

Stearate 
biosynthesis I

Type II 
diabetes 
mellitus 
signaling

White 
adipose 
tissue 
browning 
pathway

Gottingen 22 genes 37 genes 20 genes 43 genes 33 genes

Hanford 8 genes

Meishan 38 genes 42 genes 22 genes 19 genes 43 genes 35 genes

Ossabaw 3 genes

Sinclair 7 genes 5 genes 9 genes

WMS 6 genes 10 genes 11 genes

Yorkshire 1 gene 1 gene 1 gene 1 gene 1 gene

Yucatan 9 genes
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unique Meishan variants were novel as they were not previously identified in the Pig-
Var database or in the EVA.

Oncopig HCC intratumor heterogeneity

A total of 7935 SNVs (Additional file 1: Table S4) and 358 INDELs (Additional file 1: 
Table  S5) were identified using whole exome sequencing within a single Oncopig 
HCC cell line and biopsies from 5 distinct regions of the Oncopig HCC tumor. Lim-
ited overlap of SNVs (Fig.  3a) and INDELs (Fig.  3b) was observed between regions 
demonstrating high intratumor heterogeneity. A total of 29,088 effects (Table 6) were 
associated with SNVs with 547 high impact effects, 6262 missense effects, and 530 
nonsense effects present. For the 1350 effects associated with the INDELs (Table 6), 
134 were predicted to be high impact with 0 missense and nonsense effects. Together, 
identified SNV and INDEL impacted 7958 genes (Table  6). Organ toxicity analysis 
identified variants in 3124 genes associated with liver hyperplasia, 869 genes associ-
ated with HCC, 222 genes associated with hepatic steatosis, and 196 genes associ-
ated with hepatic fibrosis. Of the 753 cancer driver genes from the COSMIC v101 
database, 309 were affected by gene variants (Additional file 1: Table S6). Of these, 10 
driver genes were affected by high impact variants (Table 7).

Table 4 Number of genes with variants associated with cardiac pathways in various porcine breeds

WMS  Wisconsin Miniature Swine

Pathways Atherosclerosis 
signaling

Apelin 
cardiomyocyte 
signaling

Cardiac 
adrenergic 
signaling

Cardiac 
hypertrophy 
signaling

Cardiac 
hypertrophy 
signaling 
(enhanced)

Dilated 
cardiomyopathy 
signaling

Gottingen 29 genes 60 genes 111 genes 39 genes

Hanford 15 genes 15 genes 31 genes

Meishan 33 genes 66 genes 136 genes 44 genes

Oncopig 6 genes 3 genes

Ossabaw 6 genes

Sinclair 6 genes 11 genes 21 genes 9 genes

Yorkshire 1 gene 1 gene 1 gene

WMS 6 genes 12 genes 12 genes 9 genes

Table 5 High impact novel unique Meishan variants associated with phenotypic differences related 
to obesity and cardiovascular disease

Fs frameshift

p.#* = indicates presence of premature stop codon at a particular amino acid

Breed Gene Mutation type Amino acid 
length of 
gene

Normal gene function

Meishan ABCC9 c.116 delT p.Val39fs 1603 Regulatory subunit of a cardiac ATP‑sensitive potassium 
channel

Meishan ACOT4 p.Ser6* 464 Hydrolyze fatty acyl‑CoAs into fatty acids and CoA in 
peroxisomes and mitochondria

Meishan PL1 N1 p.Ser494* 578 Mobilization of fats in adipose tissue

Meishan GRB10 p.Lys534* 548 Growth factor
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The HCC cell line had a tumor purity estimate of 0.99 while the 5 tumor biopsies 
had tumor purity estimates between 0.18 and 0.29, which is important to note in the 
context of variant allele frequency (VAF) analyses. SNVs and INDELS had a mean 
VAF of 0.060 and 0.117, respectively (Fig. 4a) which was generally consistent across 
all regions of the Oncopig HCC tumor (Fig. 4b). A total of 832 SNVs (17 high impact) 
(Additional file  1: Table  S4) and 197 INDELs (12 high impact) (Additional file  1: 
Table S5) identified in the HCC cell line displayed increased VAFs in at least 1 region 
of the in vivo Oncopig HCC tumor. Examples of genes with these high impact variants 
include ATAD2 [25], BCL9  [26], CP [27], DBF4 [28], DTNA [29], FGF23 [30], IFIT1  
[31], MSRB1 [32], NID1 [33], NSUN5 [34], QRICH1 [35], TP53BP1  [36], and ZWINT 
[37] (Table 8; Additional file 1: Tables S4–S5) which have been previously linked to 
HCC proliferation and progression. Other genes harboring high impact variants with 
increased VAFs in the in vivo Oncopig HCC tumor compared to the Oncopig HCC 
cell line include CCDC47, GFM2, IRF2BP1, LRRC10B, MICU3, MTCL1, OR51B2, 
PCDHAC2, PRUNE2, RDX, THBS3, URB2, and ZMYM6 genes (Table 8). Limited pre-
vious literature is available describing the relationship between these genes and HCC, 
indicating further research is required to investigate the role of these variants in HCC 
initiation, establishment, and growth.

Fig. 3 Intratumor heterogeneity depicting variants shared across Oncopig hepatocellular carcinoma model: 
a SNVs across cell line and 5 tumor regions, b INDELs across cell line and 5 tumor regions. SNVs, single 
nucleotide variants; INDELs, insertions and deletions

Table 6 Variant effects in Oncopig hepatocellular carcinoma model stratified by variant type and 
level of impact

SNVs single nucleotide variants, INDELs insertions and deletions

Number of effects 
associated with SNVs

Number of effects 
associated with INDELs

Number of total 
genes impacted (SNVs 
+ INDELs)

Total 29,088 1350 7958

High impact 547 134 256

Moderate impact 6257 84 2189

Low impact 3144 8 1168

Modifier 19,140 1124 6077

Missense 6262 0 2168

Nonsense 530 0 201
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Table 7 High impact mutations in cancer driver genes in the Oncopig hepatocellular carcinoma 
model

HCC hepatocellular carcinoma, VAF variant allele frequency

p.#* indicates presence of premature stop codon at a particular amino acid

Gene Mutated amino acid Number of 
amino acids in 
gene

VAF in 
Oncopig HCC 
cell line

VAF in 
Oncopig HCC 
tumor

Pathways relevant 
to HCC enriched for 
variants

CASP8 p.Glu89* 486 N/A 0.036 Molecular mechanisms 
of cancer
MYC mediated apoptosis 
signaling

EZR p.Gln322* 562 N/A 0.034 Actin cytoskeleton 
signaling

MAP3K1 p.Glu865* 1508 N/A 0.029 Regulation of the epithe‑
lial mesenchymal transi‑
tion by growth factors
Integrin signaling
EGF signaling
PDGF signaling

UBR5 p.Gly1240* 2705 N/A 0.036
0.010

N/A

PRPF40B p.Ser244* 980 N/A 0.016
0.010

Spliceosomal cycle

BCL9 p.Arg667* 1426 0.010 0.047 Regulation of the 
epithelial‑mesenchymal 
transition
WNT/B‑catenin signaling

PDGFRA p.Trp878* 1088 N/A 0.022 Hepatic fibrosis signaling/
stellate cell activation
PTEN signaling
PDGF signaling

SETDB1 p.Glu115* 1332 N/A 0.036 N/A

TCF7L2 p.Cys534fs 669 0.133 0.094
0.026
0.024

Hepatic fibrosis signaling
Epithelial adherens junc‑
tion signaling
Regulation of the 
epithelial‑mesenchymal 
transition
WNT/B‑catenin signaling

GRM3 p.Gln408* 879 N/A 0.016 N/A

Fig. 4 Distribution of variant allele frequencies in Oncopig HCC model: a Density frequency distribution of 
SNVs and INDELs. b Mean variant allele frequency across different regions. SNVs, single nucleotide variants; 
INDELs, insertions and deletions
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Pathways enriched for genes with identified somatic variants (Additional file  1: 
Table  S7) included molecular mechanisms of cancer (893 variant effects across 335 
genes), hepatic fibrosis signaling (435 variant effects across 170 genes), ATM Signal-
ing (134 variant effects across 46 genes; Additional File 2: Fig. S1), p53 Signaling (125 
variant effects across 40 genes; Additional File 2: Fig. S2), and WNT/β-catenin signal-
ing (198 variant effects across 69 genes; Additional File 2: Fig. S3).

The molecular mechanisms of cancer pathway included variants in the following 
COSMIC driver genes: CASP8 (high impact; VAF = 0.036 in HCC tumor) and ATM 
(moderate impact; VAF = 0.029 in HCC cell line and VAF = 0.012 in HCC tumor). 
In the ATM signaling pathway, a high impact mutation (premature stop codon) in 
TP53BP1 (VAF = 0.012 in HCC cell line to VAF = 0.019 in HCC tumor) was identi-
fied. In the WNT/β-catenin signaling pathway, a high impact (premature stop codon) 

Table 8 High impact variants with increased allele frequency in Oncopig HCC tumor compared to 
cell line

HCC hepatocellular carcinoma, VAF variant allele frequency, INDEL insertion and deletion, SNV single nucleotide variant

Gene Variant type VAF in Oncopig HCC 
cell line

Highest VAF in a region 
of the Oncopig HCC 
tumor

ATAD2 INDEL: frameshift 0.071 0.333

BCL9 SNV: stop gain 0.010 0.047

CCDC47 SNV: stop gain 0.016 0.037

CP INDEL: frameshift 0.05 0.125

DBF4 INDEL: frameshift 0.007 0.053

DTNA SNV: splice acceptor 0.010 0.033

ENSSSCG00000033117 SNV: stop gain 0.020 0.034

ENSSSCG00000033287 INDEL: frameshift 0.423 0.556

ENSSSCG00000042907 INDEL: frameshift 0.009 0.066

FGF23 INDEL: frameshift 0.042 0.152

GFM2 SNV: stop gain 0.013 0.042

IFIT1 INDEL: frameshift 0.019 0.083

IRF2BP1 INDEL: frameshift 0.029 0.066

LRRC10B INDEL: frameshift 0.033 0.046

MICU3 INDEL: frameshift 0.079 0.154

MSRB1 SNV: stop gain 0.015 0.048

MTCL1 SNV: stop gain 0.009 0.016

NID1 SNV: stop gain 0.008 0.016

NSUN5 SNV: splice acceptor 0.025 0.029

OR51B2 SNV: stop gain 0.208 0.396

PCDHAC2 SNV: splice donor 0.045 1.00

PRUNE2 INDEL: frameshift 0.063 0.231

QRICH1 SNV: stop gain 0.002 0.010

RDX INDEL: frameshift 0.031 0.109

THBS3 SNV: stop gain 0.013 0.017

TP53BP1 SNV: stop gain 0.012 0.019

URB2 SNV: stop gain 0.013 0.014

ZMYM6 SNV: stop gain 0.010 0.048

ZWINT SNV: splice acceptor 0.010 0.032
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mutation (VAF = 0.010 in HCC cell line to VAF = 0.047 in HCC tumor) and missense 
mutation (VAF = 0.028 in HCC tumor) in BCL9 was identified.

Somatic mutations associated with the hepatic fibrosis pathway included missense 
mutations in several COSMIC driver genes including PDGFRB (VAF = 0.020 to 0.053 
in HCC tumor regions) and PTCH1 (VAF = 0.019 in HCC tumor). Finally, high-impact 
frameshift mutations in TCF7L2 (VAF = 0.133 in HCC cell line and VAF = 0.024 to 
0.094 in HCC tumor regions) and CACNA1E (VAF = 0.089 in HCC tumor) were identi-
fied in the hepatic fibrosis pathway.

Discussion
This study aimed to develop and quantify the efficacy of the porcine exome sequencing 
kit to target exon regions in the updated Sscrofa11.1 genome across 12 porcine breeds. 
While an exome sequencing kit based on the Sus scrofa 10.2 reference genome was pre-
viously developed [15] that achieved 91.11% exome coverage with 67.75% of reads map-
ping to target regions, significant improvements in the Sscrofa 11.1 reference genome 
assembly and annotation warrant development of an updated kit to improve exome tar-
geting [16]. This study demonstrated high efficacy of the developed pig exome sequenc-
ing kit to target the annotated Sscrofa11.1 exon regions with 98.74% exome coverage and 
an average of 88.92% of reads aligning to the target regions.

In regards to differences in the number of variants identified across breeds, it is likely 
that the least number of variants were identified for the Duroc breed due to the fact that 
the Sscrofa11.1 genome was established using a Duroc pig. Indeed, the evolutionary dis-
tance of each breed from the Duroc seems to be correlated with the number of variants 
identified, with domestic breeds having the least number of variants, minipigs having 
a moderate number of variants, and Meishan pigs having the greatest number of vari-
ants [13]. Variants identified across the 12 different domestic and minipig breeds were 
found to be enriched in pathways important in obesity, metabolic syndrome, and cardiac 
dysfunction. These results are consistent with known phenotypic differences between 
domestic and minipig breeds and provide insights into differential molecular alterations 
and pathway disruptions leading to similar disease phenotypes across breeds. For exam-
ple, the leptin signaling pathway was enriched for variants in genes in 7 porcine breeds, 
with the highest number of genes with variants observed in the Gottingen and Meishan 
breeds (Table 3; Additional file 1: Table S3) commonly used to study obesity and meta-
bolic syndrome [38–40]. In addition, both the white adipose tissue browning pathway 
and type II diabetes mellitus signaling pathway were enriched for the highest number of 
genes with variants in Gottingen, Meishan, and Wisconsin Miniature Swine. The ape-
lin cardiomyocyte signaling pathway was enriched for the highest number of genes with 
variants in Gottingen and Hanford pigs (Table 4; Additional file 1: Table S3). Next, the 
cardiac hypertrophy signaling (Enhanced) pathway was enriched for the highest num-
ber of genes with variants in Gottingen, Hanford, and Meishan pigs (Table  4; Addi-
tional file 1: Table S3) while the atherosclerosis signaling pathway was only enriched in 
the Meishan breed and in the Wisconsin Miniature Swine. The dilated cardiomyopathy 
pathway was enriched for the highest number of genes with variants in the Gottingen 
and Meishan breeds. Of these breeds, the Gottingen, Hanford, and Wisconsin Miniature 
Swine are commonly utilized to study cardiovascular disease [41–43].
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Use of our new pig exome sequencing kit in this study led to the discovery of 3 novel 
unique Meishan high-impact variants in the form of premature stop codons (not previ-
ously identified in the PigVar database or the EVA) in genes associated with obesity and 
metabolic syndrome (PLIN1, GRB10, and ACOT4). These variants may provide insights 
into molecular mechanisms driving their observed obesity phenotype. Similarly, a novel 
unique Meishan high-impact frameshift deletion (c.116 delT) in ABCC9, a regulatory 
subunit of a cardiac ATP-sensitive potassium channel dysregulated in the dilated cardio-
myopathy pathway [44] was observed.

Together, these results demonstrate the ability of the newly developed porcine exome 
sequencing kit to identify high-impact variants and pathways related to human disease 
phenotypes such as obesity and cardiovascular disease across a range of porcine breeds 
commonly used in biomedical research. Future studies aimed at exploring the relation-
ship between these high-impact variants and disease phenotypes in pigs may provide 
further insights into their relevance for cardiovascular disease and obesity studies.

In regard to the utility of the developed exome sequencing kit for porcine oncology 
studies, the high average sequencing depth in exon regions (131.72) enabled profil-
ing intratumor heterogeneity at a substantially lower cost compared to whole genome 
sequencing, reducing barriers related to performing intratumor heterogeneity analyses 
in porcine oncology studies. Significant intratumor heterogeneity was identified in the 
analyzed Oncopig HCC tumor, with limited overlap of variants between different tumor 
regions. Pathways known to be important in HCC development and progression (molec-
ular mechanisms of cancer, hepatic fibrosis signaling, ATM signaling, p53 signaling, and 
WNT/B-catenin Signaling) were enriched for variants.

Genes mutated in the Oncopig HCC model were also found to be mutated in HCC 
patients based on comparison to the cBioportal database. For example, a high impact 
variant resulting in a premature stop codon (p.Glu89*) in CASP8 was observed in the 
Oncopig HCC tumor. A nearly identical high impact variant (premature stop codon) was 
found in the clinical cBioportal database 6 amino acids downstream after accounting 
for homology in the proteins across species. In addition, ATM was found to be mutated 
in Oncopig HCC at a residue 11 amino acids downstream of a mutation observed in 
cBioPortal after accounting for homology. Finally, a premature stop codon (p.Arg1610*) 
was also observed in TP53BP1, a binding protein that helps ATM sense double-strand 
breaks. These mutations in ATM and TP53BP1 could lead to the partial loss of DNA 
damage repair function observed in many human cancers [36], although further studies 
are required to confirm.

A p.Ala927 Asp mutation in PTCH1, which plays a role in sonic hedgehog signaling 
[45], was observed in Oncopig HCC 7 amino acids upstream of another Ala residue 
mutated in the online cBioPortal human HCC database after accounting for homology. 
In addition, a p.Pro925Ser mutation in PDGFRB, a receptor for PDGF correlated with 
alpha-fetoprotein, tumor size, and overall survival [46], was observed in the Oncopig 
HCC model 10 amino acids downstream (after accounting for homology) from a cBio-
Portal mutation that also formed a new Ser residue.

Interestingly, genes were identified with high impact variants that displayed increased 
VAFs in different regions of the HCC tumor compared to the HCC cell line, highlighting 
their potential role in in vivo HCC tumorigenesis. These potentially novel driver genes 
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(CCDC47, GFM2, IRF2BP1, LRRC10B, MICU3, MTCL1, OR51B2, PCDHAC2, PRUNE2, 
RDX, THBS3, URB2, and ZMYM6) currently have minimal literature describing their 
relevance in HCC and therefore warrant further investigation. Together, these results 
further demonstrate the ability of the porcine whole exome sequencing kit to identify 
clinically relevant somatic variants and characterize intratumor heterogeneity in porcine 
cancer studies.

Limitations of this study include the inability to directly compare the new exome 
sequencing kit targeting Sscrofa11.1 with the previous version targeting Sscrofa10.2 
due to the lack of publicly available data using the previous pig exome sequencing kit. 
Furthermore, the higher calculated performance of the developed Sscrofa 11.1 por-
cine exome sequencing kit may be partially due to known inaccuracies and gaps in the 
assembly of the Sus scrofa 10.2 genome [47]. In addition, when initiating the design of 
the exome sequencing kit, Ensembl release 93 was the most up-to-date annotation. As 
of publication, the current Ensembl release is release 113. The exome sequencing kit 
also exhibited variation in coverage in genes within a multigene family (Additional file 1: 
Table  S1), which may represent collapsed genes in the genome assembly. This study 
was also limited by the relatively small number of samples present in each breed, which 
makes definitive statements related to the breed specificity of identified variants diffi-
cult. Indeed, increasing sample sizes could result in the identification of these variants in 
other breeds at a low minor allele frequency. Finally, the relationship between identified 
variants and observed phenotypes is mainly correlative, and the inability to confirm a 
causal relationship between identified mutations and phenotypes represents a limitation 
of this study. Future studies are required to confirm the impact of the identified variants 
on disease phenotypes.

Related to the applicability of the developed kit for updated and future assemblies, it 
is important to note that in addition to the Sscrofa 11.1 assembly for the Duroc breed, 
genome assemblies for 19 other breeds exist in the Ensembl database. The Sscrofa 
11.1 assembly was utilized because it is the current pig reference genome most com-
monly used by biomedical researchers around the world. However, it is important to 
note that the additional genome builds currently available are highly relevant and used 
by researchers focused on studies involving specific breeds. When comparing the 20 
genome assemblies currently available on Ensembl (Additional file 1: Table S8), relatively 
minor variations in the golden path length (mean = 2.48 ×  109 bases, standard devia-
tion = 7.34 ×  107 bases), number of coding genes (mean = 2.09 ×  104, standard deviation 
= 8.41 ×  102), and number of gene transcripts (mean = 6.30 ×  104, standard deviation 
= 9.54 ×  103) were identified, suggesting this kit will be applicable for studies utilizing 
these genome assemblies. In order to allow researchers to evaluate the efficacy of the 
developed kit for other pig genome assembly and annotations, we have made the raw 
data from this study publicly available (PRJNA1096057 [48]; PRJEB82669 [49]). This 
resource will allow researchers to evaluate the utility of this kit for the specific breeds, 
genome assembly, and gene regions of interest to them for their particular studies before 
investing resources into using the developed kit for their experiments. As assemblies for 
additional breeds and more complete telomere-to-telomere assemblies become avail-
able, the inevitability of new genome builds replacing Sscrofa11.1 as the pig reference 
genome in the future, and growing interest in pangenome assemblies to better represent 
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the genetic diversity of a given species, the long-term utility of the developed kit may be 
impacted. As pig pangenome assemblies become available, it will be important to con-
tinue to evaluate the utility of our kit and consider the development of additional exome 
sequencing kits to improve the translatability of future porcine biomedical research 
projects.

Conclusions
The porcine whole exome sequencing kit developed based on the improved Sscrofa11.1 
assembly and annotation results in high coverage and target specificity across a range 
of domestic and minipig breeds commonly used in biomedical research studies. This 
study also focused on breed-unique variants that had high prevalence in each porcine 
breed, likely increasing their level of significance. Germline mutations present in the pig 
breeds profiled may provide insights into the molecular mechanisms underlying dis-
ease phenotypes relevant for porcine biomedical studies. Future studies may help elu-
cidate the relationship between identified variants and breed-specific predisposition to 
various diseases including cardiovascular disease, atherosclerosis, obesity, and metabolic 
syndrome, therefore providing further insights into their relevance as human disease 
models. Furthermore, the utility of the porcine whole exome sequencing kit for charac-
terizing intratumor heterogeneity and identifying clinically relevant mutations in cancer 
driver genes in the Oncopig HCC model was demonstrated. Together, these results dem-
onstrate the utility of the developed porcine whole exome sequencing kit for porcine 
biomedical studies utilizing a wide range of pig breeds focused on diseases with underly-
ing germline and somatic variants.

Methods
Whole-exome sequencing kit development

The Ensembl [50] gene annotations for the pig from release 93, corresponding to assem-
bly Sscrofa11.1 [16], were used for the design. The file Sus_scrofa.Sscrofa11.1.93.gtf was 
downloaded from the Ensembl site, all non-exon annotated regions filtered out, and the 
gtf file was converted to a bed file. Overlapping exon regions were merged using BED-
Tools v2.26 [51], resulting in a total of 217,280 exon regions spanning 73.86 Mb. The 
exome capture probes were purchased as the SeqCap EZ Prime Developer Probes sys-
tem (Roche Nimblegen). The exome capture region was provided to Roche Nimblegen 
for the design of capture probes according to their standard protocols, resulting in the 
design of probes with an estimated 98.5% coverage of the target regions. The exome 
sequencing kit developed by Roche utilized in this study is available for purchase upon 
request from the company.

Sample information

DNA from 93 individual pigs representing 12 porcine breeds was used for whole-exome 
sequencing. Breeds profiled included Duroc (n = 6), Gottingen Minipig (n = 6), Hanford 
(n = 5), Large White (n = 6), Meishan (n = 7), Oncopig (n = 9), Ossabaw (n = 9), Pietrain 
(n = 5), Sinclair (n = 7), Wisconsin Miniature Swine (WMS) (n = 19), Yorkshire (n = 5), 
and Yucatan (n = 9). In this study, whole exome analysis was performed using DNA from 
a previously sequenced (with whole genome) Oncopig HCC cell line, tumor biopsies 
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(n = 5) from one Oncopig hepatocellular carcinoma tumor, and control (kidney) tissue 
to characterize intratumor heterogeneity [14].

Whole exome sequencing

Whole-exome libraries were developed by the Carver High-Throughput DNA Sequenc-
ing and Genotyping Unit (HTS lab, University of Illinois, Urbana, IL) using the devel-
oped porcine whole-exome sequencing kit (4,000,036,110; Roche). Whole-exome 
libraries were sequenced on a NovaSeq 6000 (paired-end 150 bp reads).

Identification of variants in porcine breeds

Raw reads were trimmed for adaptors, quality, and length using Trim_Galore v0.4.4 [52] 
with default parameters. Trimmed reads were aligned to the porcine reference genome 
(Sscrofa11.1) using BWA MEM v0.7.17 [53, 54]. BEDTools v2.26 [51] and SAMtools v1.9 
[55] were used to calculate statistics related to genome and exon coverage. Multigene 
families were downloaded from the Molecular Signatures database for depth analyses. 
The GATK v4.2.6.1 pipeline for germline short variant discovery [56] was utilized to 
identify SNVs and INDELs via the following steps. Duplicate reads were removed using 
the GATK MarkDuplicates function using default parameters. The BaseRecalibrator 
and ApplyBQSR functions were used to adjust base quality scores using default param-
eters. The HaplotypeCaller function was used using default parameters to call SNVs 
and INDELs simultaneously and generate a GVCF file for each sample. The Genomic-
sDBImport function was used to consolidate GVCF files for each sample. The Geno-
typeGVCFs function was used to generate a set of jointly called SNVs and INDELs using 
default parameters. The Sscrofa 11.1 FASTA file was used as the reference sequence for 
this analysis. SNVs were hardfiltered using variant quality score recalibration (VQSR) 
with the following settings: QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, 
MQRankSum < − 12.5, and ReadPosRanksum < − 8.0. INDELs were hardfiltered using 
VQSR with the following settings: QD < 2.0, QUAL < 30.0, FS > 200.0, and ReadPosRank-
Sum < − 20.0. Principal component analysis (PCA) was performed using PLINK v1.9 
[57] with the following parameters: –double-id, –allow-extra-chr, –set-missing-var-
ids @:#, and indep-pairwise 50, 10, 0.1, with the PCA results plotted in R v4.1.0 [58]. 
BCFtools v1.9 [55] was used to identify variants unique to each breed that were pre-
sent in > 75% of the samples for downstream analyses. Unique breed variants were also 
not present in a single individual from any other breed in this study. Sequencing data 
was downloaded from the PigVar database [59], which consists of data from 280 pigs 
(including a diverse cohort of Asian and European pigs) from multiple porcine sequenc-
ing studies [13, 60–63]. Sequencing data was also downloaded from 23 porcine studies 
from the EVA on 12/10/2024. Together, the downloaded sequencing data was utilized 
to identify which unique breed variants in this study were novel and which variants had 
been identified previously.

Identification of porcine HCC intratumor heterogeneity

Raw reads were trimmed and aligned to the porcine reference genome (Sscrofa11.1) as 
described above. Duplicate reads were removed using the GATK MarkDuplicates func-
tion using default parameters [56]. Strelka v2.9 [64] was used to identify somatic SNVs 
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and INDELs using a multi-sample workaround (https:// github. com/ Illum ina/ strel ka/ 
issues/ 59), keeping variants marked as PASS in at least one sample, using default param-
eters, and specifying –exome. SNVs were hardfiltered using VQSR with the following 
settings: QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, MQRankSum < − 12.5, 
and ReadPosRanksum < − 8.0. INDELs were hardfiltered using VQSR with the follow-
ing settings: QD < 2.0, QUAL < 30.0, FS > 200.0, and ReadPosRankSum < − 20.0. Vari-
ants that passed the filter in at least one sample were utilized for downstream analyses. 
Variant allele frequencies were calculated by dividing the number of alternative alleles by 
the total number of alleles. The PureCN v2.12.0 software [65] in R v4.4.0 was utilized to 
estimate tumor purity of the Oncopig HCC cell line and of biopsies from 5 locations of 
the Oncopig HCC tumor.

Functional impact of variants

Functional impacts of SNVs and INDELs were predicted using SnpEff v5.0 [54] using 
default parameters, which categorizes the putative effect as high, medium, low, or a 
gene modifier. A detailed list of specific effects output by SnpEff has been previously 
described [54]. BioMart [50] was used to convert pig genes to their orthologous human 
genes (GRCh38.p13) for pathway analysis using Ingenuity Pathway Analysis [66]. 
Canonical pathways, upstream regulators, and organ toxicity phenotypes enriched for 
genes containing variants were identified with p-values < 0.05 designated as statistically 
significant.

Analysis of HCC mutations

The Catalogue of Somatic Mutations in Cancer (COSMIC) v101 database of 736 caus-
ally implicated driver genes in human cancers were queried [67] to identify clinically rel-
evant driver genes containing SNVs and INDELs. The cBioPortal online database [68, 
69], which has compiled clinical genomic studies for HCC, was queried to identify muta-
tions in the Oncopig HCC model that are clinically seen in patients. For genes with vari-
ants, BLAST software [70] on the Ensembl [50] website was utilized to determine the 
distance, in terms of amino acids, between mutations in the Oncopig HCC model and 
mutations in their orthologous genes in clinical HCC in humans.
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