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Abstract 

Background: Adenine base editors (ABEs) enable the conversion of A•T to G•C base 
pairs. Since the sequence of the target locus influences base editing efficiency, efforts 
have been made to develop computational models that can predict base editing out-
comes based on the targeted sequence. However, these models were trained on base 
editing datasets generated in cell lines and their predictive power for base editing 
in primary cells in vivo remains uncertain.

Results: In this study, we conduct base editing screens using SpRY-ABEmax and SpRY-
ABE8e to target 2,195 pathogenic mutations with a total of 12,000 guide RNAs in cell 
lines and in the murine liver. We observe strong correlations between in vitro datasets 
generated by ABE-mRNA electroporation into HEK293T cells and in vivo datasets 
generated by adeno-associated virus (AAV)- or lipid nanoparticle (LNP)-mediated 
nucleoside-modified mRNA delivery (Spearman R = 0.83–0.92). We subsequently 
develop BEDICT2.0, a deep learning model that predicts adenine base editing efficien-
cies with high accuracy in cell lines (R = 0.60–0.94) and in the liver (R = 0.62–0.81).

Conclusions: In conclusion, our work confirms that adenine base editing holds 
considerable potential for correcting a large fraction of pathogenic mutations. We 
also provide BEDICT2.0 – a robust computational model that helps identify sgRNA-ABE 
combinations capable of achieving high on-target editing with minimal bystander 
effects in both in vitro and in vivo settings.
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Background
Adenine base editors (ABEs) enable the precise conversion of A•T to G•C nucleotides 
without causing DNA double-strand breaks or requiring homology-directed repair from 
DNA donor templates [1–3]. They are composed of laboratory-evolved E.coli adeno-
sine deaminases (ecTadA) fused to nuclease-impaired Cas9 (D10A) proteins, and a sin-
gle guide RNA (sgRNA) which guides the base editor complex to the desired locus in 
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the genome [4, 5]. Among the most frequently used ABE variants are ABEmax, a fusion 
of Streptococcus pyogenes SpCas9(D10A) and the codon-optimized ecTadA7.10 [6], 
and ABE8e, in which the processivity of the adenine deaminase was further enhanced 
by phage assisted directed protein evolution [7]. As the targeting range of these ABE 
variants is constrained by the NGG protospacer-adjacent motif (PAM) requirement of 
SpCas9 [8–12], researchers engineered variants towards extended PAM recognition, 
such as SpG that recognizes NGN motifs or SpRY that recognizes NRN and to a lesser 
extent NYN motifs [13–21].

With these PAM-relaxed base editors at hand, nearly any site in the genome can be tar-
geted, allowing to shift the position of the target base within the protospacer. While this 
strategy can be used to maximize on-target editing and minimize unintended bystander 
editing (conversion of neighbouring adenines) [2, 22], it requires experimental testing 
of different sgRNA-ABE combinations. This is a laborious and time-consuming process, 
making computational models that predict base editing efficiencies in silico highly valu-
able [23–27]. However, currently available models are only trained and tested on base 
editing datasets generated in vitro in cell lines, and their accuracy for predicting in vivo 
base editing outcomes in tissues remains uncertain [28].

To address this limitation, we conducted ABE screens not only in cell lines but also in 
the murine liver, and developed a machine-learning model capable of predicting editing 
efficiencies with high accuracy in both contexts.

Results
ABE screening in cell lines

To generate adenine base editing datasets, we performed screens in HEK293T cells, 
where cell pools containing target-matched sgRNA libraries were transfected with plas-
mids encoding for different ABE variants (Fig.  1a-b). For our library, 2,195 G-to-A or 
C-to-T transition point mutations causing monogenic diseases were selected from the 
ClinVar [29] and LOVD [30] databases. Depending on the availability of SpRY-com-
patible PAM sequences (NRN, NCW and NTR), each mutation was targeted by up to 
six sgRNAs, enabling us to shift the target base between positions 2 to 12 of the proto-
spacer (Fig. 1a). Oligonucleotides containing sgRNA sequences paired with their target 
sites (20-nt protospacer flanked with the genomic context) were synthesized and cloned 
into a lentiviral vector for transduction into HEK293T cells at an MOI of 0.3 (Fig. 1b). 
Subsequently, cells were transfected with different ABE variants (SpCas9-ABEmax, 
SpCas9-ABE8e, SpG-ABEmax, SpG-ABE8e, SpRY-ABEmax, and SpRY-ABE8e), and cul-
tured under selection for either 5 or 10 days prior to genomic DNA extraction and high-
throughput amplicon sequencing (HTS).

We observed high library coverage and a strong correlation of editing rates between 
the three biological replicates after data processing and filtering (Additional file 1: Figs. 
S1 and S2). Additionally, we noted a strong correlation in base editing outcomes between 
the datasets with 5 and 10  days of selection (Spearman’s R = 0.78–0.97, and Pearson’s 
r = 0.9–0.96; Fig. S1b), prompting us to focus only on the 10  days dataset for further 
analysis (termed HEK-Plasmid dataset). When we first assessed PAM preferences of 
the different ABE variants, we found that they closely resembled those of the respective 
Cas9 nuclease variants (Fig.  1c) [13]. Specifically, SpRY-ABE variants achieved editing 
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on all NRN and to a lesser extend NYN motifs, while SpG-ABE variants were primarily 
limited to NGN and NAN PAMs and SpCas9-ABE variants were restricted to NGG and 
NAG PAMs.

To next evaluate the average editing efficiencies of different base editor variants, we 
filtered the datasets based on the preferred PAM sequences of the Cas9 variants: NRN 
for SpRY, NGN for SpG, and NGG for SpCas9. Subsequent high-throughput sequencing 
(HTS) analysis revealed higher average editing rates for SpCas9 ABEs on NGG PAMs 
(36.0% for SpCas9-ABEmax and 64.9% for SpCas9-ABE8e) compared to SpG and SpRY 
ABEs on NGN or NRN PAMs, respectively (17.4% for SpG-ABEmax, 34.2% for SpG-
ABE8e, 20.2% for SpRY-ABEmax and 33.9% for SpRY-ABE8e; Additional file 1: Fig. S2b, 
c).

Consistent with previous findings, the analysis of A-to-G conversions across the entire 
protospacer showed an editing window of approximately 7 bases for ABEmax and 11 
bases for ABE8e variants (Fig.  1d) [1, 7, 13]. Consequently, correction of pathogenic 

Fig. 1 High-throughput ABE screening in HEK293T cells using target-matched sgRNA libraries. a Strategy of 
correcting pathogenic mutations without bystander editing by sgRNA tiling. The sgRNA not including the 
coding bystander within the editing window is shadowed darker. b Schematics of the ABE screen in HEK293T 
cells using plasmid transfection for ABE delivery. c Total editing efficiencies for each PAM in HEK293T cells 
after 10 days ABE selection with SpRY-ABE8e and SpRY-ABEmax (top row), SpG-ABE8e and SpG-ABEmax 
(middle row), SpCas9-ABE8e and SpCas9-ABEmax (bottom row). Y-axis indicates the 1st nucleotide of the PAM 
motif, the x-axis the 2nd and 3.rd nucleotide of the PAM. d Editing window for SpRY-ABE8e and SpRY-ABEmax 
(top row), SpG-ABE8e and SpG-ABEmax (middle row), SpCas9-ABE8e and SpCas9-ABEmax (bottom row). 
Datasets were filtered for best PAMs (NRN for SpRY, NGN for SpG, and NGG for SpCas9). e Correction of 
pathogenic mutations in the library with- or without inducing non-silent bystander mutations for different 
base editors. Cut-offs were ≥ 10% for on-target editing and ≤ 0.5% for bystander editing. Target sites with 
on-target editing below 10% were defined as not corrected. Number of target sites (n) for SpRY-ABE8e: 
11838, SpRY-ABEmax: 11497, SpG-ABE8e: 10287, SpG-ABEmax: 9400, SpCas9-ABE8e: 7540, SpCas9-ABEmax: 
9702, ABE combined: 12000
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mutations often included bystander editing. Since coding bystander mutations can be 
problematic, especially for translational applications, we evaluated the frequency at 
which pathogenic mutations could be corrected without inducing bystanders with at 
least one of the sgRNA-ABE combinations. Our analysis revealed that among the 36.9% 
of pathogenic A-to-G mutations that could be corrected with efficiencies above 10%, 
69.4% did not exhibit bystander editing using a cut-off of ≤ 0.5% (Fig. 1e).

ABE screening in the murine liver

To determine whether in vitro adenine base editing outcomes in cell lines are compa-
rable to editing outcomes in primary cells in vivo, we next conducted ABE screens in 
the murine liver. Lentiviral vectors encoding for the target-matched sgRNA library were 
intravenously injected into new-born mice for stable genomic integration into hepato-
cytes [31, 32]. After six weeks mice were treated with nucleoside-modified and purified 
mRNA-LNP encoding for SpRY-ABE8e or SpRY-ABEmax (termed mRNA-LNP dataset), 
or with AAV9 vectors encoding for intein-split variants of SpRY-ABE8e or SpRY-ABE-
max (termed AAV dataset; Fig. 2a) [33, 34]. One week after mRNA-LNP treatment or 
six weeks after AAV treatment hepatocytes were isolated and editing rates were ana-
lysed by HTS. Our results revealed strong correlations between individual replicates 
(R = 0.79—0.88; Additional file 1: Fig. S3a, b) and between the AAV- and mRNA-LNP 
datasets (R = 0.88 for SpRY-ABE8e and R = 0.85 for SpRY-ABEmax; Fig. 2b). Moreover, 
in both datasets the mean editing efficiencies were higher for SpRY-ABE8e (41.9% for 
the AAV dataset and 19.7% for the mRNA-LNP dataset) compared to SpRY-ABEmax 
(9.3% for the AAV dataset and 9.5% for the mRNA-LNP dataset) (Fig. 2c), and features 
such as PAM recognition, the width of the editing window, or the preference for specific 
tri-nucleotide motifs (nucleotides flanking the target base) did not differ (Fig. 2d-f ). Of 
note, we also conducted ABE screens in mice where the target-matched sgRNA library 
was delivered via AAV vectors and genomically integrated into hepatocyte genomes via 
Sleeping Beauty (SB) transposition (see methods section for details) [35, 36]. Support-
ing our results from the screens with the lentiviral target-matched sgRNA library, these 
experimental changes did not affect the distribution of editing outcomes (Additional 
file 1: Figs. S3c-d and S4).

When we next compared results from our in  vivo screens to our in  vitro screen 
(HEK-Plasmid dataset), we obtained substantially weaker correlations (R = 0.54–0.63 
for SpRY-ABE8e and 0.79–0.86 for SpRY-ABEmax; Fig. 3a, Additional file 1: Fig. S5a). 
This led us to investigate whether certain sequence-derived features such as melting 
temperature, GC content and DeepSpCas9 score influenced editing outcomes differ-
ently in in  vitro and in  vivo experiments. However, neither linear correlation analysis 
(Additional file 2: Table S1-5), nor SHAP (Shapley Additive exPlanations [37]) analysis 
on XGBoost regression models trained to predict editing outcomes revealed significant 
differences between in vitro and in vivo datasets (Additional file 1: Fig. S5b, c). We then 
revisited the base editing datasets and noticed a significant difference in the distribution 
of editing efficiencies in vitro and in vivo, with an accumulation of editing efficiencies 
at around 40% for the SpRY-ABE8e and 30% for the SpRY-ABEmax in the HEK-Plas-
mid datasets (Figs.  2c and 3a). Speculating that this skew could be caused by a satu-
ration of editing rates in the cells that express the base editor, we adapted the in vitro 
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screening protocol and electroporated the HEK293T cell pool containing the lentiviral 
library with either 0.2 pmol, 1 pmol or 5 pmol of mRNA encoding for SpRY-ABE8e or 
SpRY-ABEmax (termed HEK-mRNA dataset). Three days post-electroporation, DNA 
was extracted and editing rates were analysed by HTS. We observed high Spearman cor-
relations between replicates across the three mRNA-ABE concentrations, ranging from 
0.91 to 0.98 for SpRY-ABE8e and 0.69 to 0.94 for SpRY-ABEmax (Additional file 1: Fig. 
S6). Moreover, while median editing rates increased with the mRNA dose, ranging from 
25.0% at 0.2  pmol to 51.2% at 5  pmol for SpRY-ABE8e and from 8.3% at 0.2  pmol to 
15.5% at 5 pmol for SpRY-ABEmax, they were more evenly distributed compared to the 
HEK-Plasmid dataset (Fig. 3b). When we then compared the in vitro HEK-mRNA data-
set to the in vivo datasets, we observed a substantial increase in correlations for SpRY-
ABE8e as well as SpRY-ABEmax (mRNA-LNP: R = 0.87 and 0.88, r = 0.83 and 0.87; AAV: 
R = 0.83 and 0.83, r = 0.84 and 0.86; Fig. 3b, Additional file 1: Fig. S7).

Fig. 2 High-throughput ABE screening in the liver cells with target-matched sgRNA libraries reveals 
correlation to cell culture. a The sgRNA library was injected in p1 pups prior to ABE injection in juvenile 
mice. Editing rates were analysed by HTS. b Correlation of total A-to-G editing between the mRNA-LNP 
and AAV dataset with SpRY-ABE8e (n = 2176) and SpRY-ABEmax (n = 7247). The red line represents linear 
regression. c Violin plot of total editing efficiency for SpRY-ABE8e and SpRY-ABEmax in the indicated datasets. 
Datasets were filtered for most efficient PAMs (NRN) and mean editing efficiency is plotted (grey line). n for 
SpRY-ABE8e = 7882, 1623, 3459 and SpRY-ABEmax = 7644, 5170, 5852. d Total editing efficiency for each PAM 
present in the library for SpRY-ABE8e (left) and SpRY-ABEmax (right) for the mRNA-LNP and AAV datasets. e 
Editing window in the mRNA-LNP and AAV datasets are for SpRY-ABE8e (left) and SpRY-ABEmax (right) filtered 
for best PAMs (NRN). f Proportion of the different tri-nucleotide motifs for loci above mean editing efficiency 
(top) and below mean editing efficiency (bottom) for SpRY-ABE8e (left) and SpRY-ABEmax (right) of various 
screening methods
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Development of a deep learning model for predicting adenine base editing

Next, we utilized the ABE datasets to develop and train computational models for 
predicting adenine base editing efficiencies. We adapted the BE-DICT model archi-
tecture [25] by changing its design from an encoder-decoder to an encoder-encoder 
neural network [38], reducing its computational complexity (denoted as BEDICT1.2). 
The new model takes both, the reference sequence (the target sequence) and an out-
put sequence (each potential editing outcome) as input and estimates the probability 
of obtaining this output sequence, substantially decreasing the computation time of 
the model.

To determine which parts of the target sequences are crucial for predicting editing effi-
ciencies, we trained the model on the HEK-Plasmid datasets (80% train, 10% test, 10% 
validation; split performed on a gene level to avoid information leakage between nearby 
pathogenic sequences) using three different input configurations: either only the 20nt 
protospacer, the protospacer plus the 4nt PAM, or the protospacer plus the 4nt PAM 
and plus 5nt flanking sequences (Additional file 1: Fig. S8a). As expected, including the 
PAM in the input significantly improved the predictive accuracy of the model, whereas 
including the flanking sequences did not affect the model performance. Consequently, 
we restricted the input sequence to the protospacer plus the PAM.

Fig. 3 Correlation of editing efficiencies between in vitro and in vivo ABE screening datasets. a Correlation 
of total A-to-G editing efficiency between in vivo (mRNA-LNP and AAV) and in vitro (HEK-Plasmid) screening 
datasets for SpRY-ABE8e (left, n = 2418, 5233) and SpRY-ABEmax (right, n = 7817, 8770). b Violin plots of total 
editing efficiency in mRNA-ABE datasets with SpRY-ABE8e (top) and SpRY-ABEmax (bottom) with 0.2 pmol, 
1 pmol or 5 pmol mRNA transfection. Datasets were filtered for best PAMs (NRN) and mean editing efficiency 
is given (grey line). n for SpRY-ABE8e = 6361, 6424, 5730 and SpRY-ABEmax = 6159, 6322, 5961. c Correlation 
of total A-to-G editing efficiency between in vivo (mRNA-LNP and AAV) and in vitro (HEK-mRNA) screening 
datasets for SpRY-ABE8e (left, n = 2388, 5018) and SpRY-ABEmax (right, n = 7308, 7897). The red line in all 
plots represents linear regression
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During training, we noticed that BEDICT1.2 predominantly focuses on accurately 
predicting the unedited sequences, as these typically constitute a high proportion of 
all reads at the target sites (most target sites contain multiple A bases, leading to vari-
ous combinations of edited outcomes at low frequencies). To address this issue, we 
split the BEDICT1.2 model into two distinct components: one dedicated to predicting 
the total editing efficiency (combination of all edited reads—Efficiency Model) and 
the other dedicated to estimating the distribution within the edited reads (Propor-
tion Model). The resulting model, referred to as BEDICT2.0 (Fig. 4a, Additional file 1: 
Fig. S8b), combines the values of the Efficiency and Proportion models and demon-
strates improved prediction accuracy compared to BEDICT1.2 when applied to the 
HEK-Plasmid test dataset (BEDICT2.0: SpRY-ABE8e R = 0.81 r = 0.85, SpRY-ABEmax 
R = 0.82 r = 0.87; Fig. 4b). However, when we next applied BEDICT2.0 to our in vivo 
test datasets, the performance was substantially lower (SpRY-ABE8e: R = 0.5 and 
r = 0.43 for mRNA-LNP and R = 0.66 and r = 0.66 for AAV; SpRY-ABEmax: R = 0.68, 
r = 0.59 for mRNA-LNP and R = 0.66, r = 0.61 for AAV; Fig. 4c). Consequently, we also 
trained BEDICT2.0 on the HEK-mRNA dataset, which compared to the HEK-plasmid 
dataset showed a higher correlation to the in vivo datasets (Fig. 3a,b). This resulted 
in increased performance, comparable to BEDICT2.0 models that were directly 
trained on the in vivo datasets (SpRY-ABE8e: R = 0.68, r = 0.68 tested on mRNA-LNP, 
R = 0.73, r = 0.75 tested on AAV; SpRY-ABEmax: R = 0.72, r = 0.8 tested on mRNA-
LNP, R = 0.71, r = 0.77 tested on AAV; Fig. 4c,d, Additional file 1: Fig. S8c,d).

To investigate whether increasing the size of the base editing dataset could fur-
ther enhance the prediction accuracy of BEDICT2.0, we subdivided the HEK-mRNA 
datasets into bins of varying sizes, ranging from 10 to 100% of the total data (Addi-
tional file 1: Fig. S8e). Our analysis revealed that larger dataset bins improved editing 
prediction accuracy. However, the improvements plateaued, suggesting that further 
increasing the library size would result in only marginal gains in the prediction accu-
racy of BEDICT2.0.

(See figure on next page.)
Fig. 4 Establishment and evaluation of BEDICT2.0, a machine learning model predicting ABE activity in vitro 
and in vivo. a Schematics of BEDICT2.0 machine learning algorithm. BEDICT2.0 includes an Efficiency Model 
(predicts total editing efficiency) and a Proportion Model (predicts distribution within the edited reads). 
Outputs of both models are combined to predict editing efficiency. b Comparison of the performance 
of BEDICT1.2 or BEDICT2.0 on various HEK-Plasmid test datasets generated in this study. c Comparison of 
the performance of BEDICT2.0 trained on either HEK-Plasmid and tested on the in vivo datasets, trained 
on HEK-mRNA and tested on the in vivo datasets or trained and tested on the in vivo datasets. d Editing 
efficiency predicted by BEDICT2.0 plotted against the measured efficiency for SpRY-ABE8e (top) and 
SpRY-ABEmax (bottom) for HEK-mRNA (5 pmol), mRNA-LNP or AAV datasets. The red line represents linear 
regression. e Comparison of BEDICT2.0 to other base editing prediction models on adenine base editing 
datasets from target-matched sgRNA library screens. Datasets used for comparison are SpCas9-ABEmax 
(mES-12kChar) [23] and SpCas9-ABE7.10 (HT-ABE Train) [24]. ML-models used for predicting ABE editing 
outcome: DeepABE [24], BE-Hive-ABE-HEK293T [23] and BEDICT2.0 (this study). f Total A-to-G editing 
efficiency at endogenous loci in various datasets correlated to BEDICT2.0 (trained on the HEK-plasmid 
dataset) predictions. n for Marquart-HEK293T [25]: 18, Song-HEK293T: 72, Song-U2OS: 22, Song-HCT116: 41 
[24]. g Spearman and Pearson correlation of measured and predicted editing efficiencies with BE-HIVE [23], 
DeepABE [24] and BEDICT2.0 (trained on HEK-plasmid) on various datasets generated on endogenous loci. 
h Spearman and Pearson correlation of measured and predicted editing efficiencies of BE-HIVE [23] and 
DeepABE [24] on the different SpRY-ABEmax datasets. Datasets were filtered for protospacers with NGG PAMs 
for DeepABE, as the model can only be applied for NGG PAMs
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We then benchmarked the performance of BEDICT2.0 to other machine learning 
models designed to predict base editing outcomes with ABEmax, including BE-HIVE 
[23], a deep conditional autoregressive model, and DeepABE [24], a convolutional neu-
ral network (CNN) model (Additional file  3: Table  S1). To minimize the influence of 
experimental biases, we compared BEDICT2.0 to BE-HIVE using the DeepABE train-
ing dataset, and BEDICT2.0 to DeepABE using the BE-HIVE training dataset. In these 
comparisons, BEDICT2.0 performed slightly better than DeepABE and comparable to 
BE-HIVE (Fig. 4e). Subsequently, we tested all three models on datasets in which SpCas9 
ABEmax was used to edit endogenous target sites (Song et al., 2020 [24] and Marquart 

Fig. 4 (See legend on previous page.)
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et al., 2021 [25]). While BEDICT2.0 showed a slight advantage on the dataset generated 
in our laboratory (Marquart et al. [25]) and DeepABE on the dataset generated in their 
laboratory (Song et al. [24]), overall the performance of the three models was compara-
ble (Fig. 4f,g, Additional file 1: Fig. S8f ).

BE-HIVE and DeepABE were trained on in vitro cell line datasets in which the base 
editor was delivered via plasmid. Therefore, we examined whether their performance, 
like that of BEDICT2.0 (trained on the HEK-plasmid dataset), would also decrease in 
in vivo ABEmax datasets. Applying both models to the HEK-plasmid, mRNA–LNP, and 
AAV SpRY-ABEmax datasets revealed that their performance dropped from Spear-
man and Pearson of R = 0.6, r = 0.57 (BE-HIVE) and R = 0.49, r = 0.49 (DeepABE) in 
the HEK-plasmid dataset to R = 0.52–0.59, r = 0.44–0.47 (BE-HIVE) and R = 0.4–0.45, 
r = 0.37–0.43 (DeepABE) in the in vivo datasets (Fig. 4h).

Discussion
In this study, we performed high-throughput screens to systematically evaluate the 
efficiency and accuracy of adenine base editors (ABEs) in correcting pathogenic muta-
tions. We combined six ABE variants (SpCas9-ABEmax, SpG-ABEmax, SpRY-ABEmax, 
SpCas9-ABE8e, SpG-ABE8e, and SpRY-ABE8e) with 12,000 different sgRNAs to target 
more than 2,000 pathogenic mutations. In HEK293T cells, these screens revealed that 
approximately 25% of the targeted pathogenic mutations could be corrected with effi-
ciencies above 10% and no detectable bystander editing for at least one ABE–sgRNA 
combination. Moreover, although SpRY-based ABEs enabled editing at a far broader 
range of PAMs than SpCas9- or SpG-based ABEs, their average on-target editing effi-
ciencies were lower. These findings recapitulate a trade-off previously documented in 
Cas9 nuclease studies [39], in which a broader target scope often accompanies a reduc-
tion in average editing rates.

We next assessed how different delivery modalities and cell types influence base-edit-
ing outcomes. Screening the same sgRNA library with SpRY-ABEmax or SpRY-ABE8e 
delivered into the murine liver via AAV or mRNA-LNP, we observed minimal differences 
in the distribution of editing outcomes between these two delivery methods. In contrast, 
in vivo results correlated less strongly with datasets derived from plasmid-based trans-
fection of ABEs into HEK293T cells. However, when we adapted our in vitro protocol 
to deliver the base editor into HEK cells via mRNA electroporation rather than plasmid 
transfection, the correlations with in vivo datasets improved substantially. A likely expla-
nation is that mRNA delivery better recapitulates the physiological expression levels of 
the editor after in vivo delivery—with high ABE expression after plasmid transfection 
resulting in saturating editing rates at many target sites, obscuring meaningful differ-
ences among sgRNAs at these loci. Consistent with this hypothesis, we have previously 
observed that ABE expression in HEK cells after plasmid transfection can be more than 
10,000-fold higher than after in vivo delivery via AAV or mRNA–LNP [28].

Building on our comprehensive base-editing datasets, we next developed and validated 
a deep learning model, BEDICT2.0, to predict ABE editing efficiencies. When trained on 
plasmid-based cell-line datasets, BEDICT2.0 performed on par with previously devel-
oped machine-learning models, such as BE-HIVE and DeepABE, on external datasets. 
However, as with these earlier models, its performance decreased when applied to 
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in vivo datasets. We therefore also trained BEDICT2.0 on cell line data where ABE was 
delivered via mRNA, which resulted in a model that maintained high accuracy in vivo.

Conclusion
In conclusion, our work confirms that adenine base editing holds considerable poten-
tial for correcting a large fraction of pathogenic mutations. We also provide BEDICT2.0 
– a robust computational model that helps identify sgRNA-ABE combinations capable 
of achieving high on-target editing with minimal bystander effects in both in vitro and 
in vivo settings.

Methods
Oligo library design

2100 Target loci were selected via ClinVar [29] and LOVD [30] database (August 2020; 
‘Pathogenic’ and ‘Likely Pathogenic’ mutations, monogenic disorders, G-to-A conver-
sion mutation targetable by ABE). In order to find PAM compatible with SpRY, genomic 
region flanking the target site were extracted from UCSC server (http:// genome. ucsc. 
edu/) and scanned for NGN, NAN, NCA, NCT, NTA and NTG PAM. For each target 
loci, 5–6 sgRNA were selected in such a way, that the target base is at position 2–12 
(starting from position 6, then 5 and 7, 4 and 8, 3 and 9, 2 and 10, 11 and 12), summariz-
ing in a total of 12′000 sgRNA. The custom oligonucleotide was purchased from Twist 
Bioscience, including the following elements: G/20N spacer, SpCas9 optimized scaffold 
[40, 41], corresponding target locus containing the 3 nt PAM and 30 nucleotides over-
hang on each site of the complementary region to the spacer binding site.

Cloning of plasmids

All plasmids were either generated using isothermal assembly (NEBuilder® HiFi DNA 
Assembly Cloning Kit, NEB) or restriction digest and ligation using T4 ligase (NEB). 
PCR were conducted using NEBNext® High-Fidelity 2X PCR Master Mix (NEB).

Plasmids p2T-CMV-ABEmax -BlastR (Addgene #152989) and ABE8e (Addgene 
#138489) were gifts from David Liu. Plasmid p2T-ABE8e-SpCas9-BlastR was generated 
by ligation of the ABE8e transgene (AgeI-NotI digest of pCMV-ABE8e) into the Tol2 
compatible backbone (AgeI-NotI-EcoRV digest of p2T-CMV-ABEmax-BlastR). Plasmids 
p2T-CMV-ABEmax-SpG-BlastR and p2T-CMV-ABE8e-SpG-BlastR were generated by 
isothermal assembly of either PCR amplified ABEmax or ABE8e with SpG transgene 
into the Tol2 compatible backbone. Plasmids p2T-CMV-ABEmax-SpRY-BlastR and p2T-
CMV-ABE8e-SpRY-BlastR were generated by isothermal assembly of either PCR ampli-
fied ABEmax or ABE8e with SpRY transgene into the Tol2 compatible backbone.

Lenti-gRNA-p3-eGFP was generated by PCR amplified p3 and eGFP transgene into 
the Lenti compatible backbone (ApaI-MluI digest of Lenti-gRNA-puro, a gift from 
Hyongbum Kim [42], Addgene #84752).

AAV-library plasmid was generated as following: Linearized pcDNATM3.1/Zeo( +) 
plasmid (BglII-XbaI, V86020 ThermoFisher) and PCR Amplified hSyn1-eGFP-WPRE-
bGHp(A)-229 transgene together with the PCR amplified U6 promoter and plasmid-
library cloning site were combined by isothermal assembly. The generated plasmid was 
further linearized (NotI-XbaI digest) and ligated into the AAV compatible backbone 

http://genome.ucsc.edu/
http://genome.ucsc.edu/
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(NotI-XbaI digest of an AAV plasmid (p3_NLS-(1–1153)-GG)). In a third and fourth 
step, PCR amplified RORI and LILO fragments from the template plasmid pT2/PGK-
neo were cloned inside the newly generated plasmid by isothermal assembly, leading 
to the final cloned plasmid AAV-RORI-hSyn1-chl-GFP-WPRE-bGHp(A)-hU6-LILO 
(short: AAV-SB-Library plasmid).

All AAV-BE plasmids were generated by isothermal assembly of combinations of 
PCR amplified BE split (N-split: 1–573, C-split: 574–1368) transgene, PCR amplified 
p3 promoter, PCR amplified P2A as well as PCR amplified RFP or SB (PCR ampli-
fied from pCMV(CAT)T7-SB100, was a gift from Zsuzsanna Izsvak [43], Addgene 
#34879) into an AAV compatible backbone, over several steps.

Plasmid‑library preparation

For plasmid-library preparation the protocol described by Marquart et  al. [25] was 
followed with minor changes to optimize the workflow. The oligonucleotide pool was 
PCR-amplified in 12 cycles (Primers stated in Supplemental Information) and Q5 
High-Fidelity DNA Polymerase (New England Biolabs, NEB) following the manufac-
turer’s instructions. The resulting amplicons were gel purified using NucleoSpin Gel 
and PCR Clean-up Mini kit (Macherey–Nagel) following the manufacturer’s instruc-
tions. Lenti-gRNA-puro, Lenti-sgRNA-p3-eGFP or AAV-SB-Library were digested 
with Esp3I restriction enzyme and Shrimp Alkaline Phosphatase (rSAP, NEB) for 12 h 
at 37°C. After gel purification, the oligo-pool amplicons were assembled into the lin-
earized Lenti-gRNA-Puro Lenti-sgRNA-p3-eGFP or AAV-SB-Library plasmid using 
NEBuilder HiFi DNA Assembly Master Mix (NEB) for 1 h at 50°C. The product was 
further purified by isopropanol precipitation using one volume of isopropanol, 0.02 
volume 5 M NaCl and 0.01 volume GlycoBlue coprecipitant (Invitrogen). After pre-
cipitation and ethanol wash, the air-dried pellet was resuspended in dH2O. 100  ng 
of plasmid library were transformed per 25 µL electrocompetent cells (ElectroMAX 
Stbl4, Invitrogen) using a GenePulser II device (Bio-Rad). Transformed cells were 
recovered in S.O.C. media and incubated for 14  h at 30°C. Colonies were scraped, 
pooled and let grow in bacterial media for another 6 h before plasmids were purified 
using a Plasmid Maxiprep kit (Qiagen).

Cell culture

HEK293T (ATCC CRL-3216) were maintained in DMEM plus GlutaMax (Thermo 
Fisher Scientific), supplemented with 10% (vol/vol) fetal bovine serum (FBS, Sigma-
Aldrich) and 1 × penicillin–streptomycin (Thermo Fisher Scientific) at 37°C and 5% 
CO2. Cells were maintained at confluency below 90% and passaged every 2–3 days. 
N2A () were maintained in EMEM plus GlutaMax (Thermo Fisher Scientific), sup-
plemented with 10% (vol/vol) fetal bovine serum (FBS, Sigma-Aldrich) and 1 × peni-
cillin–streptomycin (Thermo Fisher Scientific) at 37°C and 5% CO2. Cells were 
maintained at confluency below 90%, passaged every 2–3 days and tested negative for 
Mycoplasma contamination. Cells were authenticated by the supplier by short tan-
dem repeat analysis.
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Packaging of guide RNA library into lentivirus

HEK293T cells were used for lentivirus production. 2.65  µg pCMV-VSV-G (a gift 
from B. Weinberg [44], Addgene #8454), 5.3 µg psPAX2 (a gift from D.Trono, Addgene 
#12260) and 10.8 µg target library plasmid were mixed in 506 µL Opti-MEM (Thermo 
Fisher Scientific). After addition of 152 µL polyethyleneimine (PEI, 1  mg/mL), the 
transfection mix was vortexed for 10  s and incubated 10  min, before added gently to 
the cells at 70–80% confluency together with 25 mL serum-free DMEM. After 1 day the 
medium was changed to culture medium and 2 days later, supernatant was harvested. 
Prior to ultracentrifugation (20′000xg, 2 h), medium was filtered using a Filtropur S 0.4 
(Sarstedt) filter. Lentivirus aliquots were stored at -80 °C until use.

Pooled base editor screens

Lentivirus containing sgRNA-pool were transduced at a MOI of 0.2 and a calculated 
coverage of 1000 cells per gRNA in HEK293T cells at a confluence of 70–80%. One day 
after transduction, cells were split and selected with 2.5 µg/mL puromycin for 10 days. 
Selected HEK293T cells were frozen and for each new screen thawed with a cover-
age of 2000x. Respective base editor plasmid (9.25 ug) and helper plasmid (9.25 ug of 
pCMV-Tol2, a gift from Stephen Ekker [45], Addgene #31,823) were transfected in a 1:3 
DNA:PEI ratio per T175 flask at a coverage of 2000x. One day after transfection, cells 
were split and selected with 2.5  µg/mL puromycin and 7.5  µg/mL blasticidin for 5 or 
10 days. Cells were detached and genomic DNA was extracted using a Blood & Cell Cul-
ture DNA Maxi kit (Qiagen) according to the manufacturer’s instructions.

Nucleofections of HEK293T cells were performed using the NeonTM transfection sys-
tem using 100  µL tips. Cells were harvested and washed 3 × with phosphate-buffered 
saline (PBS) prior to counting. Cells were repeatedly spun down and resuspended in R 
buffer (DPBS supplemented with 1  mM MgCl2 and 250  mL Sucrose) to a concentra-
tion of ~ 3 ×  104 cells/µL. Reactions were prepared in PBS by the respective addition of 
mRNA for 0.2 pmol, 1 pmol and 5 pmol. For mRNA, one pulse of 1400 mV and 20 mS 
pulse width was used. After nucleofection, Cells were maintained at confluency below 
90% and passaged every 2–3  days. N2A () were maintained in EMEM plus GlutaMax 
(Thermo Fisher Scientific), supplemented with 10% (vol/vol) fetal bovine serum (FBS, 
Sigma-Aldrich) and 1 × penicillin–streptomycin (Thermo Fisher Scientific) at 37°C 
and 5% CO2 for 72 h prior to harvesting. Cells were detached and genomic DNA was 
extracted using a Blood & Cell Culture DNA Maxi kit (Qiagen) according to the man-
ufacturer’s instructions.  Modified nucleoside-containing mRNA was generated using 
N1mΨ-5′-triphosphate (TriLink) instead of UTP. Co-transcriptional addition of the tri-
nucleotide cap1 analog, CleanCap (TriLink), was used to cap the in  vitro transcribed 
mRNAs.

AAV production

AAV vectors were either produced by the Viral Vector Facility of the Neuroscience 
Center Zurich or in-house. Briefly, AAV vectors were ultracentrifuged and diafiltered.

To generate Pseudotyped AAV9 vectors (AAV2/9), packaging, capsid, and helper plas-
mids (Addgene #112865 and #112867) were co-transfected in HEK293T cells and incu-
bated for six days until harvest. The vectors were then precipitated using PEG and NaCl 
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and subjected to gradient centrifugation with OptiPrep (Sigma-Aldrich) for further 
purification, following the previously described method. Subsequently, the concentrated 
vectors were obtained using Vivaspin® 20 centrifugal concentrators (VWR). Physical 
titres (vector genomes per milliliter, vg/mL) were determined using a Qubit 3.0 fluo-
rometer (Thermo Fisher Scientific). AAV2/9 viruses were stored at -80°C until they were 
used. If required, they were diluted using phosphate-buffered saline (PBS) from Thermo 
Fisher Scientific.

mRNA production and LNP encapsulation

mRNA production and LNP encapsulation were performed as previously described [46]. 
Briefly, coding sequences of base editors were cloned into an mRNA production plas-
mid, using HiFi DNA Assembly Master Mix (NEB). mRNAs were transcribed to contain 
101 nucleotide-long poly(A) tails. m1Ψ-5′-triphosphate (TriLink) instead of UTP was 
used to generate modified nucleoside-containing mRNA. Capping of the in vitro tran-
scribed mRNAs was performed co-transcriptionally using the trinucleotide cap1 analog, 
CleanCap (TriLink). mRNA was purified by cellulose (Sigma-Aldrich) purification as 
described [47]. All mRNAs were analysed by agarose gel electrophoresis and were stored 
frozen at − 20°C. The purified mRNAs were encapsulated in LNP, previously described 
in [28], and stored at -80°C until they were injected into mice.

Animal studies

Animal experiments were performed in accordance with protocols approved by the Kan-
tonales Veterinäramt Zürich (license number ZH159-20) and in compliance with all rel-
evant ethical regulations. C57BL/6 J mice were housed in a pathogen-free animal facility 
at the Institute of Pharmacology and Toxicology of the University of Zurich. Mice were 
kept in a temperature- and humidity-controlled room on a 12-h light/dark cycle. Mice 
were fed a standard laboratory chow (Kliba Nafag no. 3437 with 18.5% crude protein).

Unless otherwise noted, new-born animals (P1) received 1.2 ×  1011 (AAV; 30 µL in 
total) AAV vector genomes per animal and construct or full dose (Lentivirus; 30 µL in 
total) of lentivirus via the temporal vein. Adult mice were injected with 3 mg/kg of total 
RNA (LNP) or 1 ×  1012 AAV vector genomes per animal via tail vein at 5–6 weeks of age, 
with total injection volumes of 120 µL. The average weights of neonatal (1 day) and adult 
mice (5 weeks) were 1.5 and 20 g, respectively. In case of delivering the library via len-
tivirus, mice were euthanized 6–8 weeks after injection or further injected with LNP or 
AAV. Adult mice were euthanized 1 week (LNP) or 6 weeks (AAV) after injection, if not 
stated otherwise. In case of delivering the library via AAV and SB, mice were euthanized 
6 or 12 weeks after injection.

Primary hepatocyte isolation

Primary hepatocytes were isolated as previously described11. In short, mice were 
euthanized and immediately perfused with Hank’s Buffer (Hank’s balanced salt solu-
tion (Thermo Fisher Scientific, 0.5 mM EDTA) via inferior vena cava. Mice were further 
perfused with digestion medium (low-glucose DMEM plus 1 × penicillin–streptomycin 
(Thermo Fisher Scientific), 15 mM HEPES and freshly added Liberase (Roche)) before 
isolated livers were gently dissociated in isolation medium (low-glucose DMEM 
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supplemented with 10% (vol/vol) FBS plus 1 × penicillin–streptomycin (Thermo Fisher 
Scientific) and GlutaMax (Thermo Fisher Scientific)). Isolated Hepatocytes were fil-
tered (100 µm filter), washed with isolation media/ PBS and further pelleted for DNA 
isolation.

Library preparation for targeted amplicon sequencing of DNA

Next-generation sequencing (NGS) preparation of genomic DNA was performed 
as previously described [34]. Briefly, the library was amplified from genomic DNA by 
a first PCR using primers containing Illumina forward and reverse adaptor sequences 
(See Supplementary Note for oligonucleotides used in this study). PCR was optimized 
for high genomic DNA input using NEBNext® UltraTM II Q5 polymerase (NEB) and 
a coverage of 200-1000x, depending on screening method and replicate. PCR for each 
replicate were pooled and gel purified, before barcodes with primer containing unique 
sets of pe/p7 Illumina barcodes were added in a second PCR, using Q5 High-Fidelity 
DNA Polymerase (NEB). PCR were pooled and cleaned through gel purification before 
quantification on the Qubit 4 (Invitrogen). Pooled sgRNA screens were sequenced on 
a NovaSeq 6000 (Illumina, 300 cycles, paired-end). Amplicon sequences were analysed 
using custom Python scripts.
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