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Abstract 

The design of regulatory elements is pivotal in gene and cell therapy, where DNA 
sequences are engineered to drive elevated and cell-type specific expression. How-
ever, the systematic assessment of synthetic DNA sequences without robust metrics 
and easy-to-use software remains challenging. Here, we introduce Polygraph, a Python 
framework that evaluates synthetic DNA elements, based on features like diversity, 
motif and k-mer composition, similarity to endogenous sequences, and screening 
with predictive and foundational models. Polygraph is the first instrument for assessing 
synthetic regulatory sequences, enabling faster progress in therapeutic interventions 
and improving our understanding of gene regulatory mechanisms.
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Background
Cis-regulatory DNA elements (CREs) are DNA sequences that drive and tune gene 
expression, in part through the selective binding of transcription factors or other regula-
tory molecules necessary to initiate and maintain transcription [1]. Their cell-type spe-
cific activity makes carefully designed CREs a promising avenue for synthetic biology 
and DNA-based nucleic acid therapeutics such as cell and gene therapy [2–6]. Recent 
deep learning models trained on high-throughput sequencing data integrate the com-
plex grammar embedded in DNA and serve as powerful tools to predict the activity of 
native and synthetically generated regulatory elements [7–11]. However, evaluating and 
prioritizing designed sequences remains challenging without a comprehensive under-
standing of their properties and potential regulatory mechanisms.

Current DNA design methods range from classic optimization algorithms [12–15] to 
generative modeling approaches [16–26] aimed at driving desired expression profiles, 
transcription factor binding patterns, and other functional outcomes. These methods 
invite exciting open questions: What regulatory mechanisms do they exploit? Do they 
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converge on the regulatory grammar observed in natural sequences or identify novel 
combinations of binding motifs? How should synthetic sequences be selected from mil-
lions of computationally generated options? Our ability to answer these questions is cur-
rently limited by the lack of integrated software to predict and analyze CRE performance 
across biological contexts, and by the absence of defined metrics for CRE evaluation, 
making it difficult to standardize assessments across studies and design methods.

Here, we present Polygraph, a software package that enables systematic evaluation 
and selection of designed DNA sequences through sequence analysis, transcription fac-
tor motif composition analysis, embedding analysis, predictive modeling, and language 
modeling. By facilitating the comparison of design algorithms and prioritization of CRE 
candidates, Polygraph provides a path toward robust and interpretable CRE engineering.

Results
The Polygraph package

Polygraph is a Python package that accepts DNA sequences of any length (Fig. 1A), ana-
lyzes their properties, and compares them to user-defined reference sequences such as 
genomic regulatory elements. Polygraph also supports statistical significance testing 

Fig. 1  Schematic of Polygraph. Polygraph is a comprehensive package to evaluate and compare DNA 
sequences. A Inputs: Polygraph accepts both native DNA and synthetic sequences for analysis. B Capabilities: 
Five classes of analysis including sequence composition (GC content, k-mer and gapped k-mer abundance, 
and edit distance between synthetic sequences and reference sequences); motif analysis (quantifying 
transcription factor binding sites, analyzing motif combinations, positioning, and orientation, scoring motifs 
with in silico mutagenesis (ISM), and performing non-negative matrix factorization (NMF) to identify common 
transcription factor programs); embedding analysis, where sequences are embedded in a low-dimensional 
space based on k-mer/motif content or deep learning model latent spaces, which are used to visualize 
sequences, compute group diversity, and calculate between-group distances; predictive modeling to 
evaluate designed sequences based on activity, specificity, and chromatin accessibility; and application of 
a human DNA language model to score sequence likelihood. C Applications: Polygraph enables users to 
compare sequences generated by different methods, select diverse and/or realistic synthetic sequences, 
design realistic sequences with guided evolution, and study the regulatory grammar of synthetic sequences
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across groups and predictions using custom models (Fig. 1B). Below, we summarize the 
features available in the package.

Sequence composition analysis

Polygraph includes tools to evaluate sequence composition metrics like GC content, 
k-mer frequencies (abundance of nucleotide subsequences of length k), and edit dis-
tance between synthetic sequences and reference sequences. Human regulatory regions 
exhibit elevated GC content [27], enrichment of functional subsequences like GATA 
[28], CpG islands [28], and short repeats [29]. Evaluating sequence composition with our 
quantitative metrics could therefore provide insight into the novelty and “humanness” of 
computationally designed regulatory elements.

Transcription factor binding motif analysis

Motif content reveals which combinations of transcription factors can bind to a DNA 
sequence. Polygraph scans sequences with TF binding motifs, reports the number of 
motif matches, and computes the enrichment of motifs and pairs of motifs in synthetic 
sequences compared to reference sequences. It also analyzes the start positions, orien-
tations, and spacing of motifs, indicating if placed motifs are centered and if different 
methods pursue different syntactic strategies. Further, Polygraph applies non-negative 
matrix factorization (NMF) to decompose the motif count matrix into common tran-
scription factor programs shared across sequences [15]. Model-driven in silico mutagen-
esis can be used to score the importance of each motif. Altogether, motif analysis may 
uncover higher-order regulatory rules exploited by different design approaches.

Embedding analysis

Polygraph enables users to create an embedding of a set of DNA sequences, in which 
each sequence is represented either by its content of k-mers, gapped k-mers, or motifs, 
or by its latent embedding created by the lower layers of a neural network model. Such 
model-based representations may capture higher-order interactions which are not 
obtained by k-mer or motif representations alone. Regardless of which sequence embed-
ding is chosen, the user can then perform the following analyses:

(1)	 Visualize sequences in the embedding space with PCA or UMAP [30].
(2)	 Compute a sequence diversity metric, defined as the average k-nearest neighbor 

(KNN) distance between a sequence and its neighbors from the same group [15], to 
quantify how similar designed sequences are to each other.

(3)	 Train support vector machine (SVM) classifiers to empirically test whether syn-
thetic sequences can be discriminated from native DNA.

(4)	 Compute Euclidean and k-nearest neighbor distances between sequence groups.
(5)	 Perform a statistical test of distribution shift between sequence groups in the 

embedding space.
(6)	 Geometric sketching [31] to sample a representative subset of sequences based on 

their spacing in the embedding space.
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Predictive modeling

Polygraph integrates trained neural network models to evaluate designed sequences 
on key properties like activity, specificity, and chromatin accessibility. We provide 
three pretrained open-source models for yeast and human prediction, with the option 
of integrating custom PyTorch models. Polygraph enables flexible and fast model pre-
diction on generated sequences, as well as cell-type specificity evaluation.

Language modeling

Autoregressive DNA language models are self-supervised models that aim to implic-
itly capture the rules of gene regulation as well as the rules of coding genes of the 
genome on which they are trained. These models can be queried to infer how likely 
a given sequence is to be sampled from the training set, which, in the case of human 
language models, is the human genome. Here, we use HyenaDNA [32] to quantify 
the log-likelihood of synthetic sequences. These scores represent their “humanness” 
which is used as a proxy metric of how realistic generated sequences are.

Guided evolution

We provide a “guided evolution” function to evolve DNA sequences with high pre-
dicted activity while maintaining similarity to reference native sequences, based on 
their Euclidean distance in an embedding space (see Methods).

Polygraph enables multiple downstream applications, including comparing 
sequences generated by different methods, selecting diverse and/or realistic synthetic 
sequences, designing realistic sequences with guided evolution, and studying the 
regulatory grammar of synthetic sequences (Fig.  1 C). In the next two sections, we 
demonstrate the use of this package on two datasets: yeast promoters designed with 
directed evolution [33], first-order optimization method Ledidi [13], and guided evo-
lution, as well as human enhancers designed by Gosai et  al. [15] using FastSeqProp 
[12], simulated annealing [34], and AdaLead [14].

Polygraph identifies divergent regulatory strategies in native and computationally 

designed yeast promoters

One of the most common strategies for regulatory element design [12, 15, 35] is to 
start with natural or random DNA sequences with sub-optimal function and use a 
sequence-to-function model to iteratively edit these until the model predicts that the 
desired function is achieved. However, these methods do not constrain the composi-
tion of the regulatory sequences to be similar to natural DNA, raising the question of 
whether they yield different regulatory strategies from those found in nature.

We selected 50 native yeast promoters with low measured activity in media (“Native 
(Weak)”) [36, 37], as starting points for design. Using a convolutional regression 
model trained to predict the promoter activity of native yeast DNA, we iteratively 
edited each sequence to increase its activity. We used three methods: directed evolu-
tion [33] (“Directed Evolution”), the gradient-based optimization method Ledidi [13] 
(“Gradient”), and Polygraph’s guided evolution function which maximizes predicted 
activity while maintaining similarity to native sequences (“Guided Evolution”; see 
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Methods). Each method produced a set of 50 putative strong promoters, one based 
on each weak promoter in the starting set. Finally, we collected the 50 native yeast 
promoters with the highest measured activity in media (“Native (Strong)”) as a refer-
ence set. All three design methods produced synthetic promoters with similar levels 
of predicted activity, comparable to or higher than the native strong promoters (Addi-
tional file 1: Fig. S1).

We first analyzed promoters based on their sequence composition. Native (Weak) pro-
moters had a mean edit distance of 40.2 from Native (Strong) promoters. This was not 
significantly altered after editing by Directed Evolution or Gradient methods (Directed 
Evolution mean = 41.0, Gradient mean = 40.4, Kruskal–Wallis test p value 4 × 10−5, 
Dunn’s post hoc test p value, Directed Evolution vs. Native (Weak) = 0.5, Gradient vs. 
Native (Weak) = 0.1), suggesting that these sequences may not grow to more closely 
resemble effective native promoters through iterative design (Fig.  2A). On the other 
hand, Guided Evolution produces sequences more similar to Native (Strong) (mean 
= 39.0, Dunn’s post hoc test p value = 0.007).

Further examination shows a dramatic difference between sequences generated by 
Guided Evolution versus other approaches. While both strong and weak native pro-
moters had a mean GC content of approximately 0.39, consistent with the composition 
of the Saccharomyces cerevisiae genome [38], Directed Evolution and Gradient meth-
ods produced significantly more GC-rich sequences (Directed Evolution mean = 0.45, 
Gradient mean = 0.49, Kruskal–Wallis test p value = 5.2 × 10−12, Dunn’s post hoc test 
p value = 1.3 × 10−4 for Directed Evolution vs. Native (Strong), 10−7 for Gradient vs. 
Native (Strong)). In contrast, sequences produced by Guided Evolution had GC content 
similar to native DNA (mean = 0.39, Dunn’s post hoc test p value = 0.93) (Fig. 2B).

Next, we calculated the frequencies of all 4-mers in all promoter sequences and com-
pared them between groups using a two-sided Mann–Whitney U test with Native 
(strong) promoters as the reference group. We defined 4-mers with FDR-adjusted p 
value < 0.01 as differentially abundant. Promoters designed by Directed Evolution and 
Gradient were significantly enriched for numerous 4-mers (Fig.  2C, Additional file  1: 
Table S1) including GC-rich patterns like “CGCG.” They were also enriched in some AT-
rich patterns such as TGAT and GAAT, which were also enriched in Native (Weak) pro-
moters. This demonstrates that these methods both add unrealistic sequence patterns 
and retain some patterns from their initial sequences that are uncharacteristic of strong 
native promoters. In contrast, only 5 4-mers were significantly enriched or depleted in 
the Guided Evolution promoters (Additional file 1: Table S1).

We scanned all sequences with yeast transcription factor (TF) binding motifs from 
JASPAR [39]. Once again, Directed Evolution and Gradient promoters differed signifi-
cantly in motif content from Native (Strong) promoters, whereas Guided Evolution did 
not (Fig. 2D, Additional file 1: Table S2). Specifically, Directed Evolution promoters were 
enriched for SWI4, RSC3, MBP1, and MBP1-SWI6 motifs, and Gradient promoters were 
enriched for these as well as RSC30, SUT1, DAL81, CHA4, PUT3, and TEA1 motifs. 
These motifs were rarely seen in Native (Weak) promoters, indicating that they were 
introduced in the design process. In fact, SWI4 and CHA4 motifs were absent from all 
native strong or weak promoters, arising exclusively in the optimization process. Most 
of these TFs (SWI4, MBP1, MBP1-SWI6, DAL81, CHA4, PUT3, and TEA1) are known 
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transcriptional activators [40–45], while RSC3 and RSC30 can indirectly increase pro-
moter activity through chromatin remodeling [46]. Classifiers trained to distinguish syn-
thetic from native promoters based on motif content were least successful with Guided 
Evolution promoters, further highlighting their comparatively realistic composition 
(Additional file 1: Fig. S2).

While many studies evaluate designed sequences on the presence of relevant TF 
motifs, Polygraph enables more complex analyses of regulatory grammar. For exam-
ple, the SFP1 motif is found in native strong promoters and in all groups of synthetic 

Fig. 2  Sequence analysis of native and designed yeast promoters. A Box plots showing the distribution 
of the edit distance from the most similar strong native yeast promoter, for weak native yeast promoters 
(Native (Weak)), and synthetic promoter sequences designed by editing Native (Weak) promoters via 
directed evolution (Directed Evolution), gradient-based optimization (Gradient), or guided evolution (Guided 
Evolution). B Box plots showing the distribution of GC content in each group of sequences. Native (Strong) 
represents strong native yeast promoters. C Bar plot showing the number of differentially abundant 4-mers 
(Mann–Whitney U test FDR-adjusted p value < 0.01) in each group of promoters compared to Native (Strong). 
D Number of differentially abundant transcription factor binding motifs (Mann–Whitney U test FDR-adjusted 
p value < 0.01) in each group of promoters compared to Native (Strong). E Histogram of SFP1 motif start 
locations in each group of promoters. F Non-negative matrix factorization (NMF) of the motif frequency 
matrix into 5 components. Each column represents a sequence and colors show the contribution of each 
factor to the motif composition of the sequence. G Heatmap showing the top motifs and their contributions 
to each NMF component. The top 15 motifs ranked by maximum contribution to any NMF component 
are shown. H Top 4 motifs enriched in factor 0. I PCA visualization of sequence embeddings from the last 
convolutional layer of a sequence-to-expression predictive model, for all groups of promoter sequences. 
Ellipses represent the 95% confidence boundary of multivariate normal distributions fitted to the data. J 
Box plots showing the distance of each sequence to its nearest neighbor in the Native (Strong) group, in 
the embedding space shown in I. K Box plots showing the Euclidean distance of each sequence to its 5 
nearest neighbors in the same group in the embedding space shown in I, a metric of within-group sequence 
diversity. *: p < 0.05, **: p < 0.01, ***: p < 0.001
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promoters and is not significantly different in abundance. However, all design meth-
ods tended to introduce this motif between positions 0–40 of the sequence, in contrast 
to native strong promoters which tend to contain this motif between positions 40–80 
(Fig. 2E). In fact, each group of designed promoters had 6–10 motifs with significant dif-
ferences in positioning relative to native promoters (Additional file 1: Table S3). Specific 
motif pairs like DAL81/RSC30, RSC3/MBP1, and SUT1/MBP1 were also significantly 
more likely to co-occur in designed groups than in native strong promoters (Additional 
file 1: Table S4).

We used Polygraph’s NMF function to decompose the motif frequency matrix into 5 
factors, or patterns of co-occurring motifs that best explain the variation in the data. 
Strikingly, factor 0 is rare in both native and Guided Evolution promoters, but is cre-
ated in Directed Evolution and Gradient promoters (Fig.  2F, Additional file  1: Fig. S3, 
Additional file 1: Table S5; Mann–Whitney U test FDR-adjusted p value Directed Evolu-
tion vs. Native (Strong) = 1.2 × 10−3, Gradient vs. Native (Strong) = 3.4 × 10−12, Guided 
Evolution vs. Native (Strong) = 0.08). This factor is dominated by several of the activat-
ing motifs mentioned above, including RSC30, RSC3, SUT1, and TEA1 (Fig. 2G)—all of 
which are GC-rich (Fig. 2H).

Finally, we embedded all the promoter sequences in a low-dimensional space using 
an independent model trained to predict yeast expression from sequence (Fig. 2I, Addi-
tional file  1: Fig. S4). Model-based embeddings implicitly capture many relevant fea-
tures, including motif composition, spacing, positioning, and co-occurrence. In this 
embedding space, Guided Evolution promoters are the closest to native strong promot-
ers (Fig. 2J; mean distance to the closest Native (Strong) sequence, Native (Weak) = 2.99, 
Directed Evolution = 1.33, Gradient = 1.51, Guided Evolution = 1.04; Kruskal–Wallis 
test p value = 6.4 × 10−34; Dunn’s post hoc test p values, Directed Evolution vs. Guided 
Evolution = 6.4 × 10−3, Gradient vs. Guided Evolution = 3.2 × 10−4). This is true irre-
spective of the model layer used to embed the sequences (Additional file 1: Fig. S5). Also, 
all groups of synthetic promoters were significantly less diverse than native strong pro-
moters as measured by the inter-group KNN distance in embedding space, with Guided 
Evolution being the least diverse (Fig.  2K; Kruskal–Wallis test p value = 2.5 × 10−27, 
Dunn’s post hoc test p value: Gradient vs. Native (Strong) = 3.4 × 10−4; Directed Evolu-
tion vs. Native (Strong) = 6.1 × 10−4; Guided Evolution vs. Native (Strong) = 9.3 × 10−9).

We repeated these analyses on promoters designed by editing random DNA sequences 
instead of weak native promoters and found similar results (Additional file 1: Fig. S6). 
In sum, regardless of the initial sequences used, Directed Evolution and Gradient meth-
ods adopted a regulatory grammar based on GC-rich activating motifs, which is rare in 
native sequences, potentially due to other genomic constraints. For example, high GC 
content drives higher rates of mutation and recombination in yeast genomes [47]. In 
contrast, guided evolution produced sequences more similar to native strong promoters, 
while still achieving high predicted activity. Therefore, incorporating Polygraph metrics 
into existing design methods can produce effective sequences that also mimic natural 
regulatory grammar. However, this method still has limitations, notably low diversity 
of the generated sequences, and differences in positioning and co-occurrence of some 
motifs. This example illustrates how Polygraph’s in silico metrics can be used to evaluate 
and compare design methods as well as improve the design process.
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Polygraph identifies functionally diverse subsets of computationally designed HepG2 

enhancers

We next applied Polygraph to evaluate ~ 16,000 synthetic human enhancer sequences 
designed for the HepG2 cell line using three different methods: AdaLead, FastSeqProp, 
and simulated annealing. These generative approaches were guided by an expression 
prediction model trained on a massively parallel reporter assay (MPRA) of 776,474 
genomic sequences in three cell lines. In addition, the authors analyzed ~ 8000 native 
human regulatory elements with HepG2-specific regulatory activity [15].

We first compared the computationally designed enhancers to the native human 
sequences. While all groups of sequences had a mean GC content close to 50%, designed 
sequences had lower GC variance (Additional file 1: Table S6). All groups of synthetic 
sequences were clearly distinguished from native sequences based on k-mer and motif 
content (Additional file  1: Table  S7). In addition, we computed sequence likelihoods 
using an autoregressive DNA language model [32]. All groups of synthetic sequences 
showed significantly lower log-likelihood than native sequences which were in the test 
set of the language model (Fig. 3A; Mann–Whitney U test FDR-adjusted p value < 10−250 
for all methods), showing once again their difference from the human genome.

We used NMF to identify 5 regulatory programs representing co-occurring combina-
tions of TF binding motifs. For simplicity, we restricted the motif count matrix to motifs 
for TFs that are expressed in the human liver as per GTEx (Fig. 3B–C). The top motifs 
contributing to each factor are TFAP4, ASCL1, and TCF4 in factor 0; AP-1 (FOS/JUN) 
and CEBPG motifs in factor 1; TFAP2 A/2 C motifs in factor 2; HNF4 A, RXRG, and 
NR2 F1 motifs in factor 3; and HNF1 A/B motifs in factor 4 (Fig. 3 C). Of these, HNF4 A, 
HNF1 A, HNF1B, and proteins of the C/EBP family are known activators of gene expres-
sion in hepatocytes [48], and AP-1 is also involved in hepatocyte proliferation [49]. All 
groups of synthetic sequences were significantly enriched for factors 0 and 3 in compari-
son to native sequences, and depleted for factors 1 and 2, demonstrating the differential 
use of liver-specific regulatory syntax (Fig. 3B, Additional file 1: Fig. S7, Additional file 1: 
Table S8).

Polygraph includes a binary sequence-to-chromatin accessibility model trained on 203 
cell types from 30 adult and 15 fetal human tissues (Additional file 1: Fig. S8). Based on 
this model, the cell types with the highest predicted accessibility for the native elements 
are fetal hepatoblasts and adult hepatocytes, which are most similar to the HepG2 cell 
line. All groups of designed sequences were predicted to be highly accessible in these 
cell types, even more so than native sequences (mean prediction in fetal hepatoblasts: 
AdaLead = 0.67, simulated annealing = 0.77, FastSeqProp = 0.79, native = 0.42, Fig. 3D; 
Mann–Whitney U test p value, native vs. synthetic predictions in fetal hepatoblasts 
< 10−250). However, synthetic sequences also had similarly high predicted accessibility 
in other cell types such as enterocytes, colon epithelial cells, and pancreatic acinar cells, 
which were not considered in the design process (Fig. 3D, Additional file 1: Fig. S9). Both 
native and synthetic sequences had low predicted accessibility in unrelated cell types 
such as immune and neuronal cell types. This shows how Polygraph provides orthogo-
nal validation of synthetic sequences and can identify potential side effects in diverse 
cell types. We also embedded the sequences using the intermediate layers of this model 
(Fig. 3E). Consistent with the k-mer and motif embeddings, the model embedding shows 
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a clear difference in the distribution of synthetic and native sequences (Hotelling’s T2 
test p value < 10−250). An SVM classifier based on embedding values could distinguish 
between native and synthetic sequences with an AUROC of 0.99.

A major reason for concern about the realism of synthetic elements is that extremely 
unnatural sequences may be incorrectly predicted due to being out-of-distribution for 
predictive models, and hence may fail in experimental validation. Since Gosai et  al. 

Fig. 3  Sequence analysis of designed and native human enhancers in HepG2 cells. A Box plots showing the 
distribution of log-likelihoods of native and synthetic HepG2 enhancers designed by three different methods. 
Log-likelihood was calculated using an autoregressive language model trained on human genomic DNA. 
Native sequences were restricted to those in the test set of the language model. ***: p < 0.001. B NMF of the 
motif frequency matrix. Each column represents a sequence and colors show the contribution of each factor 
to the motif composition of the sequence. C Heatmap showing the top motifs contributing to each NMF 
component. D Heatmap showing the average predicted probability of accessibility in selected cell types, 
for native enhancers as well as synthetic enhancers designed by three different methods. Predictions were 
made with a binary classification model trained to predict chromatin accessibility in 203 human cell types. 
A subset of cell types with the highest and lowest predicted accessibility is shown. E UMAP visualization of 
sequence embeddings from the sequence-to-accessibility predictive model used in A. Ellipses represent 
the 95% confidence boundary of multivariate normal distributions fitted to the data. F Density plot showing 
the experimentally measured activity in HepG2 cells, for native enhancers (gray) and synthetic enhancers. 
Synthetic enhancers are separated into experimental successes (green) and failures (red). The dashed line 
represents the threshold to separate successes and failures. G Bar plots showing the fraction of sequences 
that failed in experimental validation, grouped by their Euclidean distance to the most similar native 
enhancer in the embedding space shown in E. H UMAP visualization of sequence embeddings as shown in E. 
Dark blue dots represent sets of 20 synthetic enhancers, selected using different criteria. I Partitioning of the 
motif frequencies of the sets of 20 synthetic enhancers shown in G into the 5 regulatory programs shown in 
B, C 
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experimentally validated their synthetic enhancers [15], we tested this hypothesis by 
dividing the synthetic enhancers into successes and failures based on their experimen-
tally measured activity in HepG2 cells (Fig. 3 F). While most synthetic designs were suc-
cessful, the proportion of failures increased with the distance from native sequences in 
embedding space (Fig.  3G), indicating that sequences with very different composition 
from natural regulatory elements are more likely to fail. This highlights the importance 
of Polygraph’s metrics of sequence realism.

A related, common problem is how to select a limited number of synthetic sequences 
for experimental validation. For instance, we might need to select only 20 out of the 
~ 16,000 synthetic enhancers in this study for validation. An obvious approach would 
be to select the 20 sequences with the highest predicted activity. However, this subset 
(“Activity”) converges on a single regulatory strategy dominated by factor 1 (Fig. 3H–I). 
Polygraph’s metrics can help select sets of sequences based on different criteria depend-
ing on the user’s goals. For example, we selected 20 sequences based on “Naturalness” 
(sequences with the least distance from any native enhancer). This approach is safe, 
choosing a set of sequences that resulted in no experimental failures (Additional file 1: 
Fig. S10) and followed a regulatory strategy dominated by factor 4, similar to a subset 
of native elements (Fig. 3I). On the other hand, users may be interested specifically in 
validating novel regulatory syntax, so we also selected 20 sequences based on “Novelty” 
(i.e., sequences furthest from native elements in embedding space). These are dominated 
by factors 0 and 3, which are significantly less abundant in native sequences (Fig. 3 B, I); 
however, this strategy risks experimental failure (Additional file 1: Fig. S10).

Polygraph implements geometric sketching [31] to select a set of sequences that 
compactly represents the regulatory landscape. We used this to select 20 representa-
tive sequences (“Representation”; Fig. 3H) which spanned diverse regulatory strategies 
(Fig.  3I). This can also be combined with other measures; for example, we used geo-
metric sketching to select 20 sequences among the 5% sequences with highest activity 
(“Activity + Representation”), the 5% sequences with highest Naturalness (“Naturalness 
+ Representation”), and the 5% sequences with highest Novelty (“Novelty + Representa-
tion”). In each case, we observed that geometric sketching diversifies the selected regula-
tory strategies while preserving the property of interest (Fig. 3H–I, Additional file 1: Fig. 
S11).

Discussion
The rational design of regulatory DNA elements holds great promise for both improving 
our understanding of gene regulatory mechanisms and driving cell-type specific expres-
sion in therapeutic contexts. Recent studies have provided a wealth of new methods and 
designed elements with cell type- and tissue-specific activity. However, in most cases the 
evaluation of these sequences is limited to examining the presence of known regulatory 
elements. Few studies have used systematic quantitative metrics to evaluate synthetic 
sequences, and those that do have used widely different metrics making systematic com-
parison difficult (Additional file 1: Table S9).

Polygraph provides an integrated toolkit for evaluating designed regulatory elements. 
As demonstrated in yeast and human case studies, Polygraph provides insights into the 
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properties of computationally designed regulatory elements. Sequence analysis revealed 
how different generative algorithms converge on common grammar, often distinct 
from native DNA. Motif scanning uncovered shared transcription factor binding sites 
exploited for specialized activity like cell-type specific expression across methods. Pre-
dictive neural networks allow in silico validation of synthetic elements in diverse bio-
logical contexts and provide an informative latent representation of sequences based on 
high-level regulatory sequence features. DNA language modeling provides a “human-
ness” score describing similarity to genomic sequences. Incorporating these similarity 
metrics into “guided evolution” yielded synthetic regulatory elements predicted to have 
high activity while reducing extreme divergence from natural sequences. These metrics 
together with geometric sketching enable selection of diverse synthetic sequences with 
desired properties for experimental validation.

Together, Polygraph enables comprehensive assessment and comparison of regulatory 
elements and design approaches. This was recently demonstrated by the use of Poly-
graph to evaluate synthetic cis-regulatory elements designed using an autoregressive 
language modeling approach, demonstrating that the language model-generated ele-
ments were more realistic than those produced by predictive model-guided approaches 
based on a wide variety of metrics [23].

Several exciting directions remain to improve analysis and application. Integrating a 
wider array of predictive models, including those predicting protein binding, histone 
modifications, and chromatin states, will add more regulatory perspectives to sequence 
evaluation. Experimentally validating a small number of synthetic sequences and itera-
tively feeding the results back to the generative design processes in an active learning 
framework is a promising future direction.

Methods
Polygraph package details

Sequence composition analysis: Polygraph calculates the following metrics of sequence 
composition for each provided sequence: sequence length, GC content, edit distance 
with respect to reference sequences, k-mer frequency, gapped k-mer frequency, unique 
k-mers, and k-mer positions. Embedding metrics (described below) can be computed 
for each group of sequences based on their k-mer frequency. It uses statistical tests 
(described below) to compare the distribution of any of these metrics across groups.

Motif analysis: Polygraph uses FIMO [50] to perform motif scanning on all provided 
sequences with either the JASPAR databases [39] or a set of user-provided motifs. Based 
on the FIMO results, it computes the frequency of each motif, frequency of pairs of 
motifs, and the relative orientation and spacing between pairs of motifs. Embedding 
metrics (described below) can be computed for each group of sequences based on their 
motif frequency. Statistical tests (described below) are used to compare the distributions 
of these metrics across groups, resulting in statistics for differential motif abundance, 
differential positioning, differential orientation, and differential spacing. Polygraph uses 
NMF to perform factor analysis on the motif frequency matrix.
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One issue with motif analysis using the full JASPAR database is that this may include 
motifs for TFs that are not relevant to the tissue or cell type being analyzed. Polygraph 
allows users to filter motifs based on tissue-specific expression of the corresponding TF 
in GTEx [51]. Also, given a predictive model, Polygraph can perform in silico mutagen-
esis (ISM) scoring for each base in each input sequence, and rank motifs by their average 
importance score (change in prediction upon mutating a base in the motif ) across all 
sequences, indicating their potential relevance to the system under study. The user can 
then select the top motifs based on this ranking and restrict subsequent analyses to this 
set. This can allow the user to identify the motifs most relevant to biological activity in 
the experimental context, which may enable more meaningful and interpretable results 
in downstream analyses. However, this will necessarily focus only on motifs relevant to 
whatever targets were included in the training set of the provided model. Users may use 
the trained models provided with the package, or any custom PyTorch model, for this 
purpose.

Predictive modeling analysis: Polygraph facilitates predictive modeling analysis 
through trained deep learning models, such as Enformer [10], our pre-trained yeast 
and human models, or custom user-provided PyTorch models. The package allows for 
generating model predictions and calculating cell-type specificity. Cell-type specificity 
is estimated by the MinGap metric [15], i.e., the difference between the minimum pre-
dicted activity in on-target cell types and the maximum predicted activity in off-target 
cell types.

Language models: Polygraph supports computing sequence likelihood via the Hye-
naDNA family of autoregressive models [32].

Embedding analysis: Polygraph embeds sequences based on their k-mer content, 
motif content, or using the intermediate layers of a deep learning model. Enformer [10], 
Nucleotide Transformer [52], our pre-trained yeast and human models, or any custom 
user-provided PyTorch models can be used for this purpose, and the user can choose the 
model layer from which to output embeddings. The following embedding metrics can be 
computed for each group of sequences based on any of these embeddings.

1.	 Sequence diversity: Calculated as the within-group KNN distance, representing the 
mean Euclidean distance of each sequence to its k-nearest neighbors within the same 
group.

2.	 Distance to reference: Measures the Euclidean distance of each sequence to its near-
est neighbor in the reference group, within the embedding space.

3.	 1-NN statistic: Computes the fraction of synthetic sequences in each group that 
have a reference sequence as their nearest neighbor based on Euclidean distance in 
the sequence embeddings. It can also be applied to calculate the fraction of nearest 
neighbors in any group.

4.	 Differential analysis: Conducts a Wilcoxon rank-sum test on sequence embeddings 
to identify features enriched or depleted relative to the reference group.
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5.	 Classifier performance: Polygraph trains a support vector machine (SVM) classi-
fier with k-fold cross-validation and assesses its ability to differentiate between each 
group of synthetic sequences and the reference group based on their embedding 
vectors. Classifier performance is measured by the area under the receiver operator 
curve (AUROC) metric.

Polygraph supports statistical analyses to compare any of these metrics across groups:

1.	 Groupwise Fisher’s exact test: for comparing proportions between each non-refer-
ence group and the reference group.

2.	 Groupwise Mann–Whitney U test: for comparing mean values between each non-
reference group and the reference group.

3.	 Kruskal–Wallis test followed by Dunn’s post hoc test: for comparing mean values 
across all groups.

Guided evolution: The Polygraph evolve module enables custom sequence design. 
The evolve function performs iterative directed evolution on DNA sequences, in which 
all possible single-base mutations to the input sequence are explored in each iteration 
and the one with the best model prediction is selected for the next iteration. However, 
Polygraph offers users the option to simultaneously optimize for both predicted activity 
based on a provided model and similarity to a set of reference native DNA sequences by 
embedding the sequences and calculating Euclidean distances in the embedding space. 
The function allows the user to control the relative importance of activity versus similar-
ity through a weighting parameter. The user can choose model-based, k-mer, or motif 
embeddings for the purpose of this calculation. The resulting sequences have high pre-
dicted activity while maintaining similarity to a native sequence population. However, 
since this approach balances activity and similarity, it will require more iterations to 
match the level of activity of sequences designed by ordinary directed evolution.

Yeast promoter dataset

Yeast gigantically parallel reporter assay (GPRA) data as well as expression measure-
ments for native promoters were obtained from Vaishnav et al. [37]. The 50 native pro-
moters with strongest measured activity in this dataset were denoted as Native (Strong), 
while the 50 with weakest measured activity were denoted as Native (Weak).

Yeast promoter design

A sequence-to-expression model was trained using a convolutional architecture on 3922 
80-bp sequences of native yeast promoters whose expression was measured in complex 
medium. The model consisted of 4 convolutional layers each with 64 channels and ReLU 
activation. The first convolutional layer had kernel size = 15 and subsequent layers had 
kernel size = 3. The convolutional layers were followed by average pooling across the 
sequence length. Finally, a 1 × 1 convolutional layer was used to combine the output 
of the 64 channels into the predicted expression value. Three thousand five hundred 
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randomly selected promoters were used for training while 422 were held out each for 
validation and testing. The model was trained for 10 epochs with Poisson loss using the 
Adam optimizer with learning rate = 10−4 and batch size 16. This model was used as an 
oracle for sequence design.

To generate sequences using directed evolution, we took the 50 Native (Weak) 
sequences and iterated each one through 10 rounds of evolution using the yeast model 
as an oracle to increase expression. Fifty Ledidi [13] optimized sequences were gener-
ated similarly with the following parameters: max_iter = 500, l = 100, lr = 10−2. Fifty 
sequences were generated each through 25 iterations of the custom guided evolution 
function, with the Native (Weak) sequences serving as the reference population, using 
the pre-final layers of the oracle model as an embedding space, and alpha (weighting 
parameter) set to 9.

Yeast embedding model

We considered approximately 7.5 million 80-bp long randomly generated yeast promot-
ers whose expression was measured in both complex and defined media from Vaishnav 
et al. [37]. One million randomly selected sequences were held out for training and vali-
dation. We trained a sequence-to-expression model to predict expression in both media. 
The model consisted of 4 convolutional layers with 512 channels each and ReLU activa-
tion. All convolutional layers after the first were followed by max pooling with width 2. 
The output of the final convolutional layer was flattened and passed through a dense 
layer with 32 nodes and ReLU activation to produce two outputs.

The output from the final convolutional layer of this model was used to embed native 
and synthetic sequences. The trained model can be downloaded and used as part of the 
Polygraph package.

Human enhancer dataset

Gosai et  al. [15] generated a dataset of 776,474 200-nucleotide sequences paired with 
gene expression, as measured by a massively parallel reporter assay (MPRA) in three cell 
lines (HepG2, K562, and SK-N-SH). Using this model, they engineered cell-type specific 
candidate regulatory elements with three design approaches: simulated annealing, Fast-
SeqProp [12], and AdaLead [14].

Here, we focused on the HepG2 cell type, for which they designed and experimen-
tally validated a total of 16,907 synthetic regulatory elements. In addition, the authors 
examined a total of 8000 native regulatory elements selected on the basis of measured 
HepG2-specific chromatin accessibility or HepG2-specific regulatory activity predicted 
by their model.

We selected 16,031 synthetic regulatory elements for HepG2 which were predicted by 
the authors to have higher activity than the 75 th percentile native element in HepG2 
cells (3.9). Sequences whose experimentally measured activity in HepG2 cells turned out 
to be less than the 25 th percentile native element (1.14) were denoted as having failed, 
while the remaining synthetic sequences were deemed successful at achieving HepG2 
enhancer activity.
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Human chromatin accessibility model

We finetuned a pretrained Enformer model [10] using the Enformer PyTorch imple-
mentation at https://​github.​com/​lucid​rains/​enfor​mer-​pytor​ch to predict binarized cell 
type-specific pseudobulk accessibility based on the single-cell atlas of chromatin acces-
sibility in the human genome [53]. Sequences from chromosomes 7 and 13 were held 
out for validation and testing, respectively. We retained only the first transformer block 
of the model and dropped the remaining blocks, used “target_length = −1” argument to 
disable cropping, and added a 1D average pooling to collapse the sequence dimension-
ality. The input sequence length was 200 bp. Binary chromatin accessibility signal and 
cell type annotations were obtained from publicly available files provided by the authors 
(http://​catlas.​org/​catlas_​downl​oads/​human​tissu​es/​cCRE_​by_​cell_​type/). Cell types with 
less than 3% positive labels were discarded which reduced the number of cell types from 
222 to 203.
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