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Abstract 

Background:  Genetic variations linked to changes in gene expression are known 
as expression quantitative loci (eQTLs). The identification of eQTLs helps to understand 
the mechanisms governing gene expression. However, prior studies have primar-
ily utilized short-read sequencing techniques, and the analysis of eQTLs on isoforms 
has been relatively limited.

Results:  In this study, we employ long-read sequencing technology (Oxford Nano-
pore) on B cells from 67 healthy Japanese individuals to explore genetic variations 
associated with isoform expression levels, referred to as isoform eQTLs (ieQTLs). Our 
analysis reveals 17,119 ieQTLs, with 70.6% remaining undetected by a gene-level analy-
sis. Additionally, we identify ieQTLs that have significantly different effects on isoform 
expression levels within a gene. A functional feature analysis demonstrates a significant 
enrichment of ieQTLs at splice sites and specific histone marks, such as H3K36me3, 
H3K4me1, H3K4me3, and H3K79me2. Through an experimental validation using 
genome editing, we observe that a distant genomic region can modulate isoform-
specific expression. Moreover, an ieQTL analysis and minigene splicing assays unveils 
functionally crucial variants in splicing that splicing prediction software did not assign 
a high prediction score. A comparison with GWAS data reveals a higher number 
of colocalizations between ieQTLs and GWAS findings compared to gene eQTLs.

Conclusions:  These findings highlight the substantial contribution of ieQTLs identi-
fied through long-read analysis in our understanding of the functional implications 
of genetic variations and the regulatory mechanisms governing isoforms.

Keywords:  Genetic variation, Long reads, eQTL, Isoform eQTLs, GWAS

*Correspondence:   
afujimoto@m.u-tokyo.ac.jp

1 Department of Human 
Genetics, Graduate School 
of Medicine, The University 
of Tokyo, Tokyo, Japan
2 Department of Genome 
Medicine, National 
Centre for Child Health 
and Development, Tokyo, Japan

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-025-03583-w&domain=pdf
http://orcid.org/0000-0002-0075-0800


Page 2 of 19Nagura et al. Genome Biology          (2025) 26:110 

Background
Genetic variations associated with variations in gene expression are referred to as 
expression quantitative loci (eQTL). Identifying eQTL offers a deeper understanding 
of the mechanisms regulating gene expression [1–3]. Previous studies have unveiled 
that various genetic variations and genomic features, such as short insertions and dele-
tions (indels), variations of microsatellites, transposable elements, chromatin states, 
and histone marks, affect the pattern of gene expression [3–6]. Additionally, eQTL can 
help predict causative genes behind diseases and traits [1, 7]. Genome-wide association 
studies (GWAS) have revealed huge amounts of genotype–phenotype associations [1, 
7]. However, a majority of GWAS hits were found in non-coding regions, posing a sig-
nificant challenge in understanding their functional roles [1]. Moreover, closely linked 
variants within a region often exhibit a significant association due to linkage disequi-
librium (LD), making it difficult to discern causative variants from multiple linked vari-
ants. Colocalizing GWAS variants with eQTL can aid in addressing these issues [1, 7]. 
Previous studies have successfully identified causative variants and genes by comparing 
GWAS peaks with eQTLs [7–9]. Nevertheless, a colocalization analysis explains only a 
fraction of GWAS peaks [10], prompting the need for further eQTL analysis to compre-
hensively understand the biological mechanisms underlying diseases.

The analysis of isoforms has significant potential for expanding eQTL studies. Genes 
produce isoforms of various functions through alternative splicing, and isoforms are 
an important functional unit of genes. The impact of isoforms on diseases has been 
reported. For instance, splicing abnormalities are frequently observed in many Mende-
lian diseases, and changes in isoforms have been linked to the severity of infectious dis-
eases [11, 12]. Furthermore, functional isoforms have been identified in vascular smooth 
muscle cells [13], and oncogenic isoforms have been identified in hepatocellular carci-
noma, breast cancer, and colon cancer [14–16]. These findings strongly indicate that iso-
forms play pivotal roles in the development and progression of diseases.

The recent advent of long-read sequencing technologies enables us to analyze full-
length transcripts. The utilization of long-read sequencing for full-length transcript 
analysis enables a comprehensive observation of different isoforms within genes, sig-
nificantly contributing to the understanding of gene expression [17, 18]. While previ-
ous studies have utilized long reads to detect eQTLs, these efforts typically employed 
an allele-specific expression analysis on a limited number of samples or specific genes. 
Notably, a comprehensive eQTL analysis covering all isoforms across individuals within 
a population has yet to be conducted [17, 18]. We propose that an expression analysis 
using long reads will unveil novel eQTLs, shed light on new regulatory mechanisms of 
gene expression, and facilitate the prediction of functional effects of GWAS variants.

In the present study, we sought genetic variations associated with isoform expression 
levels (referred to as isoform eQTLs, or ieQTLs). To achieve this, we performed an iso-
form analysis using long-read sequencing technology (Oxford Nanopore) on 67 immor-
talized B cell lines from healthy Japanese individuals [19]. Subsequently, we investigated 
the relationship between genetic variations and isoform expression levels. This analy-
sis unveiled isoform-specific QTLs that have largely remained unreported in previous 
studies, underscoring the importance of a full-length transcriptome approach in human 
genetics.
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Results
cDNA sequencing and estimation of expression level

We sequenced cDNA obtained from 67 Japanese B cell lines. The average data yield 
was 15.8 Gbp, and the average number of reads was 13.1 million (Additional file  2: 
Table S1, S2). The average read length was 1222.6 bp. Subsequently, reads were aligned 
to the human reference genome (GRCh38) using minimap2 software [20]. On average, 
99.9% of reads were mapped, and the average mismatch rate was 7.1% (Additional file 2: 
Table S1). Annotation of the reads and detection of the isoform expression levels were 
performed using SPLICE software [14]. Among the genes in autosomes, a total of 43,691 
isoforms (representing 15,400 genes) were expressed (Additional file  1: Fig. S1, Addi-
tional file 2: Table S2). Of these, 6834 were not identified in the Refseq or GENCODE 
databases; hence, they were classified as novel.

Identification of ieQTL and gene eQTL

Based on the expression levels of each isoform and genotype data obtained from the 
1000G database, we detected ieQTLs (Fig. 1A–C). Additionally, we computed the total 
number of reads mapped to each gene to identify gene eQTLs. To account for multi-
ple testing, we first applied the Bonferroni correction based on the number of tested 
variants within each cis-window. Subsequently, we used the Benjamini–Hochberg FDR 
method to correct for the number of isoforms or genes.

Fig. 1  Isoform eQTLs (ieQTLs) and gene eQTLs. A Genes and isoforms. Multiple isoforms can be expressed 
from a single gene. Gray boxes, solid line, and dotted lines indicate exons, introns, and splicing patterns, 
respectively. B Patterns of gene eQTLs (green) and ieQTLs (yellow and blue) by genotype (0, 1, and 2). Gene 
eQTLs are identified through the expression levels of entire genes, while ieQTLs are detected based on 
the expression levels of individual isoforms. The upper panels show a pattern in which one eQTL affects all 
isoforms of the gene and the overall gene expression. The lower panels display a pattern where one eQTL 
affects only one isoform, while the overall gene expression remains unaffected. This pattern is difficult to 
detect using conventional gene-based eQTL analysis. C Differential ieQTLs and opposite ieQTLs. Differential 
ieQTLs are ieQTLs that exhibit significantly different effects on distinct isoforms. Opposite ieQTLs are 
differential ieQTLs with contrary effects on different isoforms. D Venn diagram of the number of gene eQTLs 
and ieQTLs identified in this study
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Our analysis revealed 17,119 ieQTLs affecting 5,502 isoforms (from 3958 genes) and 
6350 gene eQTLs (from 1965 genes) (Fig. 1D, Additional file 2: Table S3). Among the 
isoforms affected by ieQTLs, 23.8% (1310/5502) were novel isoforms (Additional file 2: 
Table  S3). Out of these, 5025 were common to both ieQTLs and gene eQTLs, 12,094 
were ieQTL-specific, and 1325 were specific to gene eQTLs (Fig. 1D). ieQTLs accounted 
for 0.23% of all analyzed variants (7,484,843 non-redundant variants within 1 Mbp of cis-
windows). Specifically, 27.3% (1703/6224) of common eQTLs and 83.3% (11,060/13,276) 
of ieQTL-specific variants affected minor isoforms, respectively. Among the ieQTLs, 
1135 were identified as differential ieQTLs, and 153 exhibited opposite effects (Addi-
tional file 2: Table S4, S5). Differential ieQTLs and ieQTLs with opposite effects affected 
661 isoforms (254 genes) and 75 isoforms (22 genes), respectively. A comparison of our 
eQTL list with previous eQTL and sQTL studies using lymphocyte samples demon-
strated that 25.9% (4439/17,119) of ieQTLs and 26.9% (1709/6350) of gene eQTLs were 
detected, respectively [21].

Features of ieQTLs and gene eQTLs

To explore functional features associated with ieQTLs, we conducted an enrichment 
analysis for 26 functional categories (gene location, regulatory regions and histone mod-
ifications) across three distinct groups: ieQTLs exclusively found in the ieQTL group 
(ieQTL-specific), those exclusively present in the gene eQTL group (gene eQTL-spe-
cific), and those commonly found in both the ieQTL and gene eQTL groups (common) 
(Fig. 2A, B, Additional file 2: Table S6). Following multiple test corrections, 22 categories 
exhibited significance within the ieQTL-specific group. As expected, the ieQTL-specific 
group showed a significant enrichment in acceptor sites, donor sites, 3′ splice sites, and 
5′ splice sites with high odds ratios (OR) (acceptor site: p-value = 1.6 × 10−8, OR = 9.2; 
donor site: p-value = 1.6 × 10−7, OR = 8.4; 3′ splice site: p-value = 8.0 × 10−17, OR = 8.8; 
5′ splice site: p-value = 8.8 × 10−29, OR = 7.5). Additionally, significant enrichments were 
observed in promoters, branchpoints within introns, and super enhancers (promoter: 
p-value = 1.6 × 10−176, OR = 3.1; branchpoint: p-value = 4.1 × 10−14, OR = 2.7; super 
enhancer: p-value = 8.0 × 10−18, OR = 2.4). Within the gene eQTL-specific group, 15 
categories showed significant enrichment. Promoters exhibited the highest OR, followed 
by 3′ UTRs, exons, and 5′ UTRs (promoter: p-value = 1.6 × 10−55, OR = 5.2; 3′ UTR: 
p-value = 6.5 × 10−21, OR = 2.9; exon: p-value = 1.2 × 10−19, OR = 2.5; 5′ UTR: p-value 
= 2.5 × 10−5, OR = 1.9). Subsequently, we compared the number of variants within each 
category between the ieQTL-specific group and the gene eQTL-specific group (Fig. 2A, 
B, Additional file 2: Table S7). The proportion of eQTLs present in promoter flanking 
regions and intron regions was significantly higher within the ieQTL-specific group 
(promoter flanking regions: p-value = 1.2 × 10−4, OR = 1.5; intron regions: p-value = 4.7 
× 10−7, OR = 1.4), while the proportion in promoters was greater in the gene eQTL-
specific group (p-value = 2.9 × 10−7, OR = 0.6).

We conducted an enrichment analysis for 126 TFBSs (Additional file 2: Table S8). Fol-
lowing multiple test corrections, 113 TFBSs exhibited a significant enrichment in the 
ieQTL-specific group, while 92 were significantly enriched in the gene eQTL-specific 
group. The proportion of CAMP responsive element binding protein 1 (CREB1) bind-
ing sites showed a significant difference between the ieQTL-specific group and the gene 
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Fig. 2  Functional enrichment analysis of eQTLs. A, B eQTLs were categorized into gene eQTL-specific (green), 
common (brown), and ieQTL-specific (yellow) groups. Functional enrichment was assessed for gene region 
annotations, super enhancers and regulatory regions, as well as transcription factor binding sites (TF binding 
sites) and major active and suppressive histone marks (ENCODE), which could associate with splicing. C, D 
eQTLs were categorized into gene eQTL-specific (orange), differential ieQTL (red), and opposite ieQTL (blue) 
groups. A functional enrichment analysis was conducted for gene region annotations, super enhancers and 
regulatory regions, and TF binding sites and histone marks. The y-axis shows odds ratios and 95% confidence 
intervals
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eQTL-specific group (Additional file 2: Table S9). These findings suggest that the regu-
latory mechanism governing isoform expression differs, at least partially, from that of 
genes (Fig. 2A, B).

Features of differential eQTLs and opposite eQTLs

We then proceeded with an enrichment analysis within the differential ieQTL group 
and the opposite ieQTL group (Fig. 2C, D, Additional file 2: Table S10). After multiple 
test corrections, 17 categories, including 3′ and 5′ splice sites, exhibited significances 
in the differential ieQTL group (3′ splice site: p-value = 2.3 × 10−4, OR = 13.9; and 5′ 
splice site: p-value = 9.8 × 10−12, OR = 17.9). In the opposite ieQTL group, 14 categories 
were significant. Among these, 3′ and 5′ splice sites in the differential ieQTL group dis-
played particularly high OR (3′ splice site: p-value = 9.4 × 10−6, OR = 78.7; and 5′ splice 
site: p-value = 8.4 × 10−12, OR = 80.5). We subsequently compared the variants within 
each category between the differential group and other ieQTLs, as well as between the 
opposite ieQTL group and other ieQTLs (Fig. 2C, D, Additional file 2: Table S11). The 
proportion of variants in exons, introns, and 3′ UTR was significantly higher in the dif-
ferentiated ieQTL group than in other ieQTLs (Fig. 2C, D). Moreover, several histone 
marks, including H3K36me3, H3K4me1, and H3K79me2, were significantly enriched in 
opposite ieQTLs compared to other ieQTLs (Fig. 2C, D). Additionally, we conducted an 
enrichment analysis for 126 TFBSs (Additional file 2: Table S12, S13). Of these, 66 TFBSs 
were significantly enriched in the differential groups.

Effects of ieQTLs

We analyzed the distribution of eQTLs (ieQTL-specific, common, and gene eQTL-spe-
cific groups) relative to the gene body (Fig. 3A). The gene eQTL-specific group displayed 
a singular peak distribution, centered around the TSS. Conversely, the distribution of the 
ieQTL-specific group exhibited an additional peak around the TES. The common group 
showed an intermediate pattern between the gene eQTL-specific group and ieQTL-spe-
cific group. These observed patterns are consistent with findings from a prior study [17].

To examine the factors influencing the effect of eQTLs, we conducted a multiple 
regression on the effect sizes (β values) while considering various annotations of eQTLs 
(regulatory features, distance from TSS, MAF, and average conservation score within 
200 bp) (Additional file 2: Table S14). We specifically examined genes with five or more 
isoforms. Following the selection of independent variables, seven features (distance from 
TSS, conservation, ABC enhancer, CTCF binding site, 5′UTR, exon, and MAF) were 
associated with the effect sizes of the ieQTL-specific group. Conversely, two factors 
(conservation and MAF) were associated with the effect sizes within the gene eQTL-
specific group (Additional file 2: Table S14).

We subsequently examined differences in amino acid sequences and motifs in iso-
forms affected by ieQTLs (Fig. 3B, Additional file 2: Table S15). Specifically, we focused 
on ieQTLs that influenced coding genes. Within this analysis, we categorized isoforms 
based on their expression levels, designating the most abundant isoform as the major 
isoform and others as minor isoforms. We specifically selected minor isoforms influ-
enced by ieQTLs and compared their amino acid sequences with those of the major 
isoforms (Fig. 3B). Among the 17,119 ieQTLs identified, 8651 affected coding isoform, 



Page 7 of 19Nagura et al. Genome Biology          (2025) 26:110 	

and 6286 affected minor isoforms. Among these, 44.2% (3822/8651) displayed a distinct 
amino acid sequence from the major isoforms, while 25.4% (2194/8651) exhibited differ-
ent functional domains. These findings suggest that ieQTLs have the potential to induce 
functional alterations.

Combining eQTL and GWAS data has proven effective at predicting causative variants 
[7]. Hence, we examined whether the identified QTLs corresponded to disease-asso-
ciated variants previously reported in GWAS studies. We found that 0.8% of the gene 
eQTL-specific group (10/1,325), 2.0% of the ieQTL-specific group (242/12,094), and 
2.4% of the common eQTLs (120/5,025) were present among GWAS-associated variants 
(Fig. 3C, Additional file 2: Table S3). These findings suggest that an ieQTL analysis aids 
in identifying novel mechanisms underlying diseases.

Prediction of impact on splicing and validation by minigene splicing assay

Within the ieQTL-specific group, there were 123 variants in 3′ or 5′ splice sites and 32 
variants in donor or acceptor sites (Additional file 2: Table S3). Among these ieQTLs, 
we selected 81 variants present in affected genes and predicted their functional impact 
on splicing using SpliceAI software (Additional file 2: Table S16) [22]. Among these, 16 
eQTLs had a score ≥ 0.8 (“high precision” score by SpliceAI), and 9 had a score between 
0.5 and 0.8 (“recommended” score by SpliceAI).

To investigate whether variants with two SpliceAI scores < 0.5 affect splicing, we 
chose two variants in the 3rd position of introns (IFI44L IVS2 + 3 T/A and GAS2 
IVS1 + 3G/A) for minigene splicing assays (Figs. 4 and 5, Additional file 1: Fig. S2, 

Fig. 3  Effects of ieQTLs. A Distribution of gene eQTL-specific (green), common (brown), and ieQTL-specific 
(yellow) variants relative to the gene body. Gene size was adjusted to 25,000 bp, which is the average gene 
size. TSS, transcription start site; TES, transcription end site. eQTL with number of linked variants < 30 were 
used for the graph. B Comparison of amino acid sequences and functional motifs between major isoforms 
and minor isoforms affected by ieQTLs. C Number of GWAS hits found in gene eQTL-specific (green, n = 10), 
common (brown, n = 120), and ieQTL-specific (yellow, n = 242) variants. Red bars indicate hematological or 
blood-related traits in the GWAS hits
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Additional file  2: Table  S16, S17). IFI44L IVS2 + 3 A/T (rs1333973) is in the 3rd 
position of intron2 of the IF144L gene. In the eQTL analysis, IFI44L IVS2 + 3 T/A 
(rs1333973) did not impact the overall expression level of IFI44L gene but exhib-
ited opposing effects on the isoforms (Fig. 4D). NM0068020.3 and XM_011540539.2 
showed the highest expression in A/A individuals, while XM_005270391.3 and 
XM_017000120.1 showed the highest expression in T/T individuals. The minigene 
splicing assay showed that IFI44L IVS2 + 3 T/A affects the splicing pattern. IFI44L 

Fig. 4  Minigene splicing assay for IFI44L. A Structure of IFI44L gene and the surrounding area of rs1333973. 
Exons are depicted by the thick lines. This figure was obtained from the UCSC genome browser. B Isoforms 
of IFI44L. Isoform structures are depicted using GSDS 2.0 [23]. C Motif prediction for NM_006820.3 and 
XM_005270391.3 using HMMER software. MR_HSR1, G-alpha, AIG1, AAA-PrkA, and ATP_bind_1 domains/
motifs were predicted in the CDS of NM_006820, while no domain/motif was predicted in the CDS of 
XM_005270391.3. D Boxplots displaying gene expressions in the 67 Japanese B cell lines. The expression 
levels of the entire IFI44L gene (left) and four isoforms are presented by genotypes (AA (n = 42), AT (n = 23), 
and TT (n = 2)). E Agarose gel electrophoresis of RT-PCR products expressed from IFI44L (exon 2 and exon 
3) minigenes in HEK293 cells. M: 100 bp ladder marker. Lane 1: pSPL3 + IFI44L(IVS2 + 3 A); Lane 2: pSPL3 
+ IFI44L(IVS2 + 3 T); Lane 3: Negative control. Blue boxes: exon of pSPL3 plasmid; green boxes: exon 2 of 
IFI44L; orange boxes: exon 3 of IFI44L 
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IVS2 + 3 T (Fig. 4E lane 2) reduced the amount of longer fragments (exons 2–3) and 
generated short fragments caused by the skipping of exon 2 and splicing aberration.

GAS2 IVS1 + 3G/A is located in the 3rd position of the first intron of GAS2 gene 
and primarily associated with the expression level of one isoform (NM_177553.2) 
(Fig. 5C). In the minigene splicing assay, GAS2 IVS1 + 3 A generated the GAS2 short 
fragment (228 bp) through splicing (Fig. 5D lane 1), whereas GAS2 IVS1 + 3G only 
produced the unspliced fragment (Fig.  5D lane 2). This result suggests that GAS2 
IVS1 + 3G/A strongly affects the splicing.

Fig. 5  Minigene splicing assay for GAS2. A Structure of GAS2 gene and the surrounding area of rs11026723. 
Exons are depicted by the thick lines. This figure was obtained from the UCSC genome browser. B Isoforms 
of GAS2. Isoform structures are depicted using GSDS 2.0 [23]. C Boxplots displaying gene expressions in the 
67 Japanese B cell lines. The expression levels of the entire GAS2 gene (left) and isoforms are presented by 
the genotype (GG (n = 16), GA (n = 36), and AA (n = 15)). D Agarose gel electrophoresis of RT-PCR products 
expressed from GAS2 (exon 1) minigenes in HEK293 cells. In this experiment, a modified pSPL3 plasmid was 
utilized (Additional file 1: Fig. S2). M: marker (DNA ladder One (Nacalai)). Lane 1: pSPL3 + GAS2 (IVS1 + 3 A) (RT 
+); Lane 2: pSPL3 + GAS2 (IVS1 + 3G) (RT +); Lane 3: pSPL3 + GAS2 (IVS1 + 3 A) (RT −); Lane 4: pSPL3 + GAS2 
(IVS1 + 3G) (RT −); Lane 5: pSPL3-GAS2 plasmid. A purified plasmid was used as the PCR template. Lane 6: 
Negative control. RT: Reverse transcription. The size of the upper band in lanes 1 and 2 was the same as the 
amplicon in lane 5, suggesting the presence of an unspliced transcript. Blue box: exon of pSPL3 plasmid; 
green box: exon 1 of GAS2 
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Experimental validation of influence of a SNP on isoform‑specific expression

Our analysis revealed numerous ieQTLs located at a distance from the target gene, 
implying the involvement of regions outside the gene in regulating isoform expression 
(Fig. 3A). To directly establish their functional impact, we induced a deletion in HEK293 
cells (Additional file 1: Fig. S3, Additional file 2: Table S18) and assessed its effect on gene 
expression levels using quantitative real-time RT-PCR. For this experiment, we spe-
cifically targeted regions containing a variant rs11191660 (Fig. 6A). While rs11191660 
showed a significant association with the expression level of an isoform (NM_032747.3) 
of ATP5MK gene (A/A individuals showed the highest expression), its association 
with other isoforms was not statistically significant (ENST00000369825.5) or oppo-
site (NM_001206426.1 and NM_001206427.1) (Fig. 6B, C). We generated a deletion of 
686 bp (chr10:103,342,876–103,343,562) within the region harboring rs11191660 using 
the CRISPR-Cas9 system in HEK293 cells (Additional file  1: Fig. S3, Additional file  2: 
Table S18). Subsequently, qPCR was performed (Additional file 2: Table S17). The results 
demonstrated that cells with the deletion exhibited significantly lower gene expression 

Fig. 6  Effects of a deletion in HEK293 on gene expression. A Location of rs11191660 within ATP5MK gene. 
B Four isoforms, ENST00000369825.5, NM_001206426.1, NM_001206427.1, and NM_032747.3, of ATP5MK. 
Isoform structures are depicted using GSDS 2.0 [23]. C Boxplots displaying gene expressions in the 67 
Japanese B cell lines. The expression levels of the entire ATP5MK gene (left) and isoforms are presented by 
the genotype (GG (n = 28), GA (n = 27), and AA (n = 12)). D Comparison of gene expression levels between 
HEK293 cells with and without the chr10:103,342,876–103,343,562 deletion. ACTB was used an internal 
control. The y-axis shows the relative expression of the target variants in cells with the deletion compared to 
cells with no deletion. A significant difference was observed in the gene expression levels of NM_032747.3 
between cells with and without the deletion. Bar graphs show the mean value ± standard error (s.e.). P-values 
were obtained using the Student’s t-test
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levels for NM_032747.3 (t-test p-value = 1.5 × 10−6) (Fig. 6D). In contrast, the influence 
on the expression levels of other isoforms (NM_001206426.1 and NM_001206427.1) was 
either weaker or insignificant (Fig. 6D). These findings strongly suggest that the region 
containing rs11191660 plays a functional role in regulating isoform expression.

Discussion
The expression patterns of isoforms vary among tissues and between cancerous and non-
cancerous tissues [14–18]. These variations likely lead to functional changes in genes 
and regulate diverse biological processes [14–17, 24]. Despite the intriguing nature of 
the regulatory mechanisms governing isoform expression, this scientific area remains 
understudied. To uncover ieQTLs, we conducted an eQTL analysis using long-read 
sequencing technology, revealing 17,119 ieQTLs, of which 70.6% (12,094/17,119) were 
undetected by a gene-level analysis (Fig. 1D). Upon examining the expression changes, 
we identified 1135 differential ieQTLs that were difficult to detect via the gene-level 
analysis. Additionally, we identified 153 opposite ieQTLs, representing an extremely dis-
tinctive pattern. These findings strongly indicate that an ieQTL analysis unveils a larger 
number of eQTLs compared to a gene-based eQTL analysis.

To explore the regulatory mechanisms of isoforms, we conducted an enrichment 
analysis (Fig. 2). While the majority of the results were similar between gene eQTLs and 
ieQTLs, promoters were significantly overrepresented in the gene eQTL-specific group, 
whereas acceptor sites, 5′ splice sites, 3′ splice sites, and H3 K36 me3 were notably over-
represented in the ieQTL-specific group (Fig. 2A, B). This finding suggests that promot-
ers play a more substantial role in overall gene expression, while variants in splicing 
motifs and H3 K36 me3, which is a marker generally accumulated on the gene-body of 
active genes, influence isoform expression. The enrichment analysis of opposite ieQTLs 
showed very strong enrichment in 5′ and 3′ splice sites (Fig.  2D), suggesting that the 
most opposite QTLs can be caused by variants in splicing sites. Additionally, several 
histone marks, including  H3K36me3, H3K4me1, H3K4me3, and  H3K79me2, showed 
a significant enrichment in opposite ieQTLs (Fig. 2C). These histone marks are known 
as splicing-associated chromatin signatures [25]. Although a previous large-scale eQTL 
study using short reads showed a higher enrichment of H3K36me3 in splicing QTL 
(sQTL) than in eQTL, other histone marks were not reported [2]. Thus, our long-read 
eQTL study will contribute to a deeper understanding of the mechanisms regulating iso-
form expression.

In addition to variants within genes, our analysis showed that 74.4% of ieQTLs 
(4382/17,119) were outside genes (Fig. 3A, Additional file 2: Table S3). A multiple regres-
sion analysis revealed that variations in ABC enhancers could account for differences in 
the effect size of ieQTLs (Additional file 2: Table S14). Furthermore, our genome-edit-
ing experiment indicated that a region approximately 60 kbp from ATP5MK gene can 
influence isoform expression (Fig.  6). Although the functional mechanism behind this 
expression regulation remains unclear, the HaploReg website predicts that rs11191660 
G/A can alter the activator protein 1 (AP-1) binding motif (Additional file  1: Fig. S4) 
[26]. AP-1 has been associated with long-range enhancer interactions, which control 
transcription [27]. Consequently, this SNP might influence isoform expression through 
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modulation of the 3D chromatin structure. This result suggests that intergenic regions, 
including enhancers, can regulate isoform expression.

Our analysis revealed isoform-specific expression changes caused by variants in splice 
sites (Figs. 4 and 5). We selected two variants at the 3rd position of introns for experi-
mental validation (IFI44L IVS2 + 3 T/A and GAS2 IVS1 + 3G/A). A prior study pro-
vided strong evidence that IFI44L IVS2 + 3 T/A induces splicing alterations based on 
informatic analyses and qRT-PCR [28]. However, a mini-gene assay of the variant had 
not been conducted. Furthermore, SpliceAI did not assign a high prediction score to the 
SNP (Δscores = 0.34) (Additional file  2: Table  S16). Therefore, conducting functional 
experiments to determine the causality of this SNP is needed. In the minigene assay, 
IFI44L IVS2 + 3 T/A caused a change in the splicing pattern, resulting in the generation 
of shorter isoforms, consistent with the data analysis (Fig. 4D). Another variant (GAS2 
IVS1 + 3G/A), which SpliceAI did not assign a high prediction score (Δscores = 0.35), 
significantly influenced the splicing pattern (Fig. 5C, Additional file 2: Table S16). In the 
minigene assay, splicing did not occur in the transcript from GAS2 IVS1 + 3G vector, 
indicating a crucial role for the 3rd position in splicing. Considering its high evolution-
ary conservation (Additional file 1: Fig. S4), this site likely holds significant functional 
importance.

Through our analysis, we identified genes affected by eQTLs. Among these, ACTB, 
which has been commonly utilized as an internal control in expression analyses, exhib-
ited the highest β values (Additional file 2: Table S3). Although the normalized β value 
(normalized contribution of the eQTL to the total expression of ACTB) for this ieQTL 
is not high, this ieQTL may contribute to differences in the expression levels of ACTB 
among individuals. Therefore, caution may be necessary when using ACTB as a control 
in certain contexts (Additional file 2: Table S3).

Integrating eQTL and GWAS contributes significantly to understanding the biologi-
cal mechanisms behind diseases and traits. Our investigation revealed 372 eQTLs are 
present in the GWAS results (Fig. 3C). Among these, 65.9% (n = 242) were exclusively 
identified within ieQTLs, which is difficult to detect by a gene-level analysis. This result 
strongly suggests that a colocalization analysis of ieQTLs could uncover novel causa-
tive genes in GWAS. A recent study reported that only a small fraction of GWAS peaks 
coincide with eQTLs, which has raised concerns about a “missing regulation” issue [29]. 
The consideration of ieQTLs helps to identify a larger number of regulatory variants and 
could contribute to addressing a part of this concern.

Moreover, the ieQTL analysis suggested a contribution of isoforms to disease. For 
example, an ieQTL against an isoform (XM_005270391.3) of IFI44L gene, which was 
affected by ieQTL is in the 5′ splice site (Fig.  4), was reported to be associated with 
immune responses to the measles vaccine [30]. This splicing affects the expression level 
of two isoforms, of which one isoform (XM_005270391.3) lacks functional domains 
(Fig. 4C) and whose changes should strongly affect the function of this gene. ATP5MK 
has associations with various phenotypes, such as height, smoking status, and risk of 
systemic lupus erythematosus, indicating that this isoform-specific regulation may have 
clinical importance [31–33] (Fig.  5). Another ieQTL (chr12:112,919,404) against an 
isoform (NM_016816.3) of the 2′−5′-oligoadenylate synthetase 1 (OAS1) gene, which 
is related to innate immunity, was reported to be associated with SLE (Systemic lupus 
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erythematosus). NM_016816.3 encode different amino acid sequences from major iso-
forms (ENST00000452357), and the differences may have a functional effect (Additional 
file 2: Table S15). Moreover, our ieQTL analysis identified different genes from GWAS-
predicted causative genes. For example, one variant (chr14:35,292,469) was reported to 
associate with allergy diseases (asthma, hay fever, and eczema) in the GWAS database, 
and proteasome 20S subunit alpha 6 (PSMA6) was predicted to be a causative gene. 
However, that variant was an ieQTL (XM_005267782.3) in protein phosphatase 2 regula-
tory subunit B gamma (PPP2R3C) gene. Because PPP2R3 C encodes a subunit of protein 
phosphatase 2 (PP2A), which is related to inflammatory responses (PP2A) [34], it may be 
another plausible causative gene of this association.

Conclusions
To conclude, in this study, we examined ieQTLs using long-read sequencing. Conse-
quently, our eQTL analysis uncovered numerous ieQTLs, pinpointing isoform-specific 
expression changes related to splice sites, histone marks, and enhancers. While the exact 
role of enhancers requires further clarification, our functional analysis revealed that 
regions distant from genes can regulate isoform expression. By combining our eQTLs 
with GWAS variants, we propose novel candidates for disease causation and mecha-
nisms. We believe that delving into ieQTLs through long-read analyses will contribute 
significantly to our comprehension of the functional implications of genetic variations 
and the regulatory mechanisms governing isoforms.

Methods
Samples and cDNA sequencing

Sixty-seven Japanese B cell samples from the 1000 Genomes Project were obtained 
from the Coriell Institute [19] and cultured in RPMI1640 medium (Nacalai) supple-
mented with 10% fetal bovine serum (FBS) and penicillin/streptomycin at 37 °C and 5% 
CO2 (Additional file  2: Table  S1). Human embryonic kidney 293 (HEK293) cells were 
obtained from American Type Culture Collection and maintained in Dulbecco’s Modi-
fied Eagle Medium (DMEM) supplemented with 10% FBS and penicillin/streptomycin at 
37 °C and 5% CO2.

RNA extraction was carried out using the RNeasy Mini Kit (QIAGEN). Full-length 
cDNA was synthesized from 1 μg of total RNA using the SMARTer PCR cDNA Syn-
thesis Kit (Takara) following the manufacturer’s instructions. Subsequently, primers for 
cDNA synthesis were digested with exonuclease I (NEB) at 37 °C for 30 min. After puri-
fication with Agencourt AMPure XP magnetic beads (Beckman Coulter), libraries were 
constructed using the Ligation Sequencing Kit (SQK-LSK109) (Oxford Nanopore) as per 
the manufacturer’s protocol. Sequencing was performed on a Flow Cell (R9.4) (Oxford 
Nanopore) using the MinION sequencer (Oxford Nanopore). Basecalling from FAST5 
files was conducted using Guppy software (version 3.0.3) (Oxford Nanopore).

Estimation of the isoform expression level

We estimated the expression levels of isoforms using our previously developed analysis 
pipeline, SPLICE [14]. SPLICE software classified mapped reads to each isoform, con-
sidering sequencing errors. In our previous comparison, SPLICE showed high sensitivity 
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for detecting novel isoforms [14]. Initially, SPLICE filtered out reads of low quality (aver-
age quality score < 15) and then aligned the remaining reads to the human reference 
genome (GRCh38) using minimap2 [20]. Subsequently, the mapped reads were anno-
tated based on data from the GENCODE (version 28) and RefSeq (release 88) databases. 
The analysis provided the number of mapped reads corresponding to each isoform. 
These read counts were standardized to (RPM: (number of reads)/(1 M reads)) for each 
isoform within each sample and were utilized as the expression level for each isoform. 
We selected isoforms that had ≥ 0.5 RPM in ≥ 5% of the samples. Subsequent analyses 
focused on genes located on autosomes.

Polymorphism of the 67 Japanese individuals and annotation of variants

The genotype data for single nucleotide variants (SNVs) and short indels were sourced 
from the 1000 Genomes (1000G) database [19]. Single nucleotide polymorphisms 
(SNPs) and polymorphic indels were selected based on the following criteria using 
PLINK software [35]: call rate > 90%, p-value indicating departure from Hardy–Wein-
berg equilibrium > 0.001, and minor allele frequency (MAF) > 1%.

To assess the functional impact of SNPs and indels, we classified them into 9 catego-
ries: exon, intron, 5′ untranslated region (5′ UTR), 3′ UTR, 5′ splice sites (− 2 bp ~ + 5 
bp from the 5′ end of intron), splice donor sites, 3′ splice sites (− 2 bp ~ + 5 bp from the 
3′ end of intron), splice acceptor sites, and branch point regions [36].

The annotation of known regulatory regions was obtained from the Ensemble data-
base, specifically from B cell line (GM12878) data [37]. The locations of super enhanc-
ers in GM12878 were retrieved from the dbSUPER database [38]. Positions in GRCh37 
were converted to GRCh38 using the “liftover” command in PLINK software. Informa-
tion regarding histone modifications and transcription factor binding sites (TF binding 
sites) in the B cell line was sourced from the Encyclopedia of DNA Elements (ENCODE) 
database [39]. We filtered data from the “Experiment Matrix” under the following con-
ditions: Status—released, Perturbation—not perturbed, Organism—Homo sapiens, 
Genome assembly—GRCh38, and Available file types—bed narrowPeak. After filtering 
based on “Audit category” (Red icon and orange icon), data from 280 files were utilized 
for this study [39].

Identification of isoform eQTL (ieQTL)

We generated expression data for each isoform (Fig.  1A, B). Our primary goal in this 
study was to identify cis-eQTLs for each gene, focusing on genetic variations within the 
cis-window defined as 1 Mb from the transcription start site (TSS) and transcription end 
site (TES) of each gene. To analyze the association between isoform expression levels 
and genetic variations, we selected variants with MAF ≥ 3% and employed the matrix-
eQTL package in R [40].

To correct multiple tests, we applied Bonferroni correction on the total number of 
variants for each cis-window and then performed the Benjamini–Hochberg FDR correc-
tion based on the number of isoforms or genes [41]. Variants with Bonferroni-corrected 
p-values < 0.05 and FDR < 0.1 were deemed significant.

Due to the potential influence of LD, variants that are not causative may dis-
play low p-values. For genes or isoforms with more than 3 variants demonstrating 
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Bonferroni-corrected p-values < 0.05 and FDR < 0.1, we employed the Finemap program 
[42] to identify potential causative variant candidates. Finemap computes the posterior 
probability that a set of variants is causal among all candidate variants. In this study, we 
considered sets with the highest posterior probability as causal variants, defining them 
as ieQTLs. Genes or isoforms with ≤ 2 variants showing Bonferroni-corrected p-values 
< 0.05 and FDR < 0.1 were not subjected to the Finemap analysis, and all variants within 
these cases were considered ieQTLs.

Identification of gene eQTL

We also examined the expression levels of genes (Fig. 1A, B). This involved calculating 
the sum of read numbers for isoforms within each gene. The read counts for each gene 
were then standardized to RPM within each sample and utilized as the expression level 
for each gene. The process for identifying gene eQTLs was conducted similarly to the 
approach used for identifying ieQTLs.

Comparison with previous studies

We conducted a comparison between our eQTL list and a previously conducted eQTL 
study, utilizing eQTL and sQTL data retrieved from the MAGE project [21]. Variants 
linked to those from the MAGE project with r2 ≥ 0.8 were identified and compared with 
our eQTL list. Additionally, we also assessed the colocalization of our eQTLs with vari-
ants that showed significant associations in previous GWAS. We collected variants with 
associations from prior GWAS through the GWAS catalog database [43] and verified the 
presence of these SNPs in our eQTL list.

Classification of ieQTL based on the effects on expression

Many genes express multiple isoforms, and each ieQTL can exert distinct effects on 
different isoforms within a gene (Fig.  1A, B). For instance, a variant might positively 
regulate the expression of one isoform while negatively impacting another isoform 
(Fig.  1C). To identify such ieQTL variations, we compared the β values derived from 
regression analyses of ieQTLs. Since the difference in β values conforms to a t-distri-
bution, we employed a t-test to evaluate these differences. Two types of ieQTLs were 
categorized based on the analysis of β values. ieQTLs exhibiting significantly different 
effects (p-value < 0.01) on distinct isoforms within a single gene were termed “differential 
ieQTLs” (Fig. 1C). Among these, ieQTLs with β values displaying opposite signs were 
termed “opposite ieQTLs” (Fig. 1C).

We conducted a multiple regression analysis on normalized β values of eQTLs using 
the lm() function in R software. The independent variables considered were distance 
from TSS, conservation score (the average phyloP100way score within 200 bp), annota-
tions (such as Activity-by-Contact (ABC) enhancer, CCTC-binding factor (CTCF) bind-
ing site, histone H3 trimethylation at lysine 36 (H3 K36 me3), SS3 (3′ splice site), SS5 (5′ 
splice site), TFBS, 3′ UTR, 5′ UTR, acceptor, branch, donor, enhancer, exon, intron, open 
chromatin region, promoter, promoter flanking region, super enhancer), and MAF. The 
step() function was utilized for the parameter selection.

The impact of genetic variations on splicing was estimated using the SpliceAI website 
[22].
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Enrichment analysis

To assess the potential enrichment of biological features among ieQTLs, we tallied 
counts for each regulatory feature observed in ieQTLs and compared them to counts 
found in non-causal variants. We categorized eQTLs into several groups and com-
pared them as follows: (i) ieQTLs vs. no eQTLs; (ii) gene eQTLs vs. no eQTLs; (iii) 
common, which were common to both ieQTLs and gene eQTLs, vs. no eQTLs; (iv) 
differential ieQTLs vs. other ieQTLs; and (v) opposite eQTLs vs. other ieQTLs. We 
compared the regulatory features between these categorized groups using Fisher’s 
exact test. The analysis incorporated biological features outlined in “Polymorphism of 
the 67 Japanese individuals and annotation of variants.”

Identification of motifs in isoforms affected by ieQTLs

We compared the major and minor isoforms influenced by ieQTLs. We defined the 
most abundant isoform as the major isoform and others as minor isoforms. The cod-
ing sequences of isoforms were translated into amino acids. Motifs were estimated 
for each isoform using HMMER software with default settings [44]. Amino acid 
sequences and predicted domains were then compared among the isoforms.

Minigene splicing assay

To assess the impact of two SNPs (interferon induced protein 44 like (IFI44L) IVS2 
+ 3 T/A (rs1333973) and growth arrest specific 2 (GAS2) IVS1 + 3G/A (rs11026723)) 
on splicing, we conducted minigene splicing assays. For the analysis of rs1333973, 
a genomic segment 1753 bp in length encompassing the intron, 2nd exon, and 3rd 
exon of IFI44L gene was amplified and cloned into the pSPL3 plasmid vector (Novo-
Pro Bioscience Inc.) (Additional file  1: Fig. S2). The alternative allele was generated 
using the PrimeSTAR Mutagenesis Basal Kit (Takara Bio). Regarding the analysis of 
rs11026723, a genomic segment 589 bp in length and inclusive of the upstream flank-
ing region, 1 st exon, and intron of GAS2 gene (NM_177553.2) was amplified and 
cloned into the pSPL3 vector. Subsequently, we deleted the 1 st exon of the pSPL3 vec-
tor and the upstream flanking region of GAS2 gene using the PrimeSTAR Mutagen-
esis Basal Kit. The alternative allele was generated using the same mutagenesis kit 
(Additional file 1: Fig. S2).

One of four vectors (pSPL3 with IFI44L IVS2 + 3 T, IFI44L IVS2 + 3 A, GAS2 
IVS1 + 3G, and GAS2 IVS1 + 3 A) were transfected into HEK293 cells utilizing 
FuGENE HD Transfection Reagent (Promega). Forty-eight hours post-transfection, 
RNA extraction from the cells was carried out using the RNeasy Mini Kit. Total 
RNA underwent reverse transcription (RT) using the PrimeScript RT Reagent Kit 
with gDNA Eraser (Perfect Real Time) (Takara Bio). Subsequently, RT-PCR was per-
formed (Additional file 2: Table S17), and the resulting amplicons were assessed via 
electrophoresis using a 2% agarose gel. Amplicons obtained through IFI44L IVS2 + 3 
T and GAS2 IVS1 + 3G were purified using the QIAquick Gel Extraction Kit (QIA-
GEN) and subsequently sequenced using the Sanger sequencing method. A purified 
product derived from pSPL3 with IFI44L IVS2 + 3 T contained multiple amplicons 
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and underwent TA cloning with T-Vector pMD20 (Takara Bio). Eight colonies were 
selected for colony-PCR and subsequently sequenced using the Sanger sequencing 
method.

Deletion with CRISPR‑Cas9 system and examination of gene expression level

Our analysis identified numerous ieQTLs located outside of genes. To validate the 
impact of ieQTLs on gene expression, we induced a deletion in HEK293 cell lines using 
the Alt-R CRISPR-Cas9 System (Integrated DNA Technologies). We deleted the flanking 
region of rs11191660 (chr10:103,343,208 A/G), which was significantly associated with 
the expression level of an isoform (NM_032747.3) of the ATP synthase membrane subu-
nit K (ATP5MK) gene. Two guide RNAs (gRNAs) were specifically designed for gener-
ating a deletion (Additional file 2: Table S18). Ribonucleoprotein complexes containing 
these gRNAs were formed and transfected into HEK293 cells using the Neon Transfec-
tion System (Thermo Fisher Scientific) with voltage = 1150 V, width settings = 20, and 
pulse number = 2. The presence of the deletion in transfected cells was confirmed by 
PCR. The transfected cells were then separated into three wells and cultured. After 8–23 
days post-transfection, DNA and RNA were extracted from the cells using the QIAamp 
DNA Mini Kit (QIAGEN) and RNeasy Mini Kit, respectively.

The expression levels of the ATP5MK gene isoforms were assessed through RT-PCR 
quantification. Total RNA underwent reverse transcription using the PrimeScript RT 
Reagent Kit with gDNA Eraser. PCR primers were designed to amplify each isoform 
(Additional file 2: Table S17). The resulting cDNA was employed for quantitative PCR 
(qPCR) using the KAPA SYBR Fast qPCR KIT (KAPA Biosystems) and CFX-Connect 
Real-Time System (Bio-Rad), utilizing Actin beta (ACTB) as an internal control (Addi-
tional file  2: Table  S17). Biological triplicate samples with and without deletions were 
used for real-time PCR in technical triplicate, and the relative quantification (RQ) values 
were calculated. Statistical significance of the RQ values between cells with and without 
the deletion was determined using the Student’s t-test.
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