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Abstract 

Background:  Understanding the relationship between protein sequence and func-
tion is crucial for accurate classification of missense variants. Variant effect predic-
tors (VEPs) play a vital role in deciphering this complex relationship, yet evaluating 
their performance remains challenging for several reasons, including data circularity, 
where the same or related data is used for training and assessment. High-throughput 
experimental strategies like deep mutational scanning (DMS) offer a promising 
solution.

Results:  In this study, we extend upon our previous benchmarking approach, 
assessing the performance of 97 VEPs using missense DMS measurements from 36 
different human proteins. In addition, a new pairwise, VEP-centric approach mitigates 
the impact of missing predictions on overall performance comparison. We observe 
a strong correspondence between VEP performance in DMS-based benchmarks 
and clinical variant classification, especially for predictors that have not been directly 
trained on human clinical variants.

Conclusions:  Our results suggest that comparing VEP performance against diverse 
functional assays represents a reliable strategy for assessing their relative performance 
in clinical variant classification. However, major challenges in clinical interpretation 
of VEP scores persist, highlighting the need for further research to fully leverage com-
putational predictors for genetic diagnosis. We also address practical considerations 
for end users in terms of choice of methodology.

Keywords:  Benchmark, MAVE, DMS, VEP, Variant effect predictor, Multiplexed assay of 
variant effect, Circularity, ACMG/AMP

Background
Deciphering the nature of the sequence-function relationship in proteins is a criti-
cal challenge in modern biology. It has profound implications for variant classifica-
tion in a medical context, understanding of disease mechanisms and protein design. 
Computational tools for predicting variant effects, known as variant effect predictors 
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(VEPs), can provide valuable insight into the complex relationship between protein 
sequence and human phenotypes. However, the profusion of new predictors has also 
highlighted the need for reliable, unbiased strategies for evaluating VEP performance.

One of the main obstacles to identifying a fair method for comparing VEPs is the 
prevalence of data circularity in many performance evaluations [1]. This often results 
in an inflated assessment of VEP performance and can be introduced into a bench-
mark in two ways. Variant-level circularity, often referred to as “type 1,” occurs when 
specific variants (or homologous variants) used to train or tune a VEP are subse-
quently used to assess its performance. Gene-level circularity, often referred to as 
“type 2,” occurs in cross-gene analyses when the testing set contains different variants 
from the same (or homologous) genes used for training. It arises because predictors 
learn associations between different genes and pathogenicity. For example, if a VEP 
learns to strongly associate variants from a specific gene as mostly being pathogenic 
or benign, this can lead to excellent apparent performance if the tested variants from 
this gene mostly fall into the same class.

Both variant- and gene-level circularities can be difficult to address, and doing so often 
greatly reduces the pool of available data to compare the performance of predictors 
based upon supervised learning approaches, or reduces the number of VEPs that can 
be compared in order to expand the pool of variants. Even among predictors that have 
not been directly trained on clinical labels, some have been exposed to human popula-
tion variants through direct inclusion of allele frequency as a feature, or through indirect 
tuning. Given that allele frequency is commonly used as evidence to classify variants as 
benign—considered strong evidence when a variant’s frequency is higher than expected 
for a disorder (BS1), and standalone evidence when exceeding 5% in a reference popu-
lation (BA1) [2]—VEPs that incorporate population data may have effectively “seen” a 
large proportion of the benign variants used in benchmarking. These limitations keep 
most independent benchmarks at a small scale, and often limited to comparing less than 
10 different VEPs [3–5].

One way to address this problem came from the development of high-throughput 
experimental strategies, known as multiplexed assays of variant effect (MAVEs) [6]. 
The technology behind MAVEs has been improving at a rapid rate, helped in part by 
the Atlas of Variant Effects Alliance, which aims to promote research and collabora-
tion, and eventually produce variant effect maps across all human protein-coding genes 
and regulatory elements [7]. Datasets derived from deep mutational scanning (DMS) 
experiments, a class of MAVEs focusing on functional assays for measuring the effects 
of protein mutations [8], show tremendous potential for use as a baseline for comparing 
the outputs of VEPs. DMS datasets provide several advantages for benchmarking over 
more traditional sets composed of variants observed in a clinical context. They do not 
rely upon any previously assigned clinical labels (e.g., “pathogenic” and “benign”) that 
are commonly used to train VEPs, thus greatly reducing the potential for variant-level 
(type 1) circularity in any assessment of VEP performance. By comparing the Spearman’s 
correlations between variant effect scores from VEPs and DMS experiments on a per-
protein basis, gene-level (type 2) circularity is also avoided. However, the downside of 
using DMS data for this purpose is that the specific functional assay employed in each 
DMS study may not be relevant to any disease mechanisms for that particular protein.
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Previous work has used DMS datasets to investigate VEP performance [9]. For exam-
ple, the Critical Assessment of Genome Interpretation (CAGI) community experiment 
[10] has used unreleased DMS datasets as challenges, comparing the agreement of cer-
tain missense VEPs with functional assays from individual proteins, including UBE2I 
[11], PTEN [12], and HMBS [13]. ProteinGym contains a collection of DMS datasets 
aimed at comparing the ability of different machine learning models to predict muta-
tional effects [14]. We have also evaluated the performance of VEPs [15, 16] and protein 
stability predictors [17] using data from DMS assays. With the rapid recent growth in the 
field, numerous novel VEPs and DMS datasets have been subsequently released. Here 
we build upon this work by including 43 more VEPs and 13 more human DMS data-
sets, and also by improving our benchmarking methodology. Our work demonstrates an 
extremely high correspondence between VEP performance when benchmarked against 
DMS datasets and when tested for clinical variant classification when we consider those 
predictors that have not been directly trained on human clinical or population variants. 
In contrast, for VEPs trained or tuned on human variants, it is exceedingly difficult to 
perform a fair comparison using traditional clinical benchmarks. Therefore, we suggest 
that our strategy of benchmarking VEPs using numerous diverse DMS datasets repre-
sents a reliable way of assessing their relative performance at scoring the clinical impacts 
of variants within individual proteins. Importantly, however, we acknowledge that con-
siderable challenges remain in fully interpreting VEP outputs for clinical applications.

Results
New DMS datasets and VEPs

The increasing popularity of MAVEs as an experimental strategy for high-throughput 
characterization of variant effects has enabled us to add 13 new DMS datasets assessing 
the impacts of single amino acid substitutions to our benchmark compared to our previ-
ous publications (Table 1). Many of these are present in MaveDB, a valuable community 
resource for the sharing of MAVE datasets [18]. As each DMS dataset can have multiple 
sets of functional scores, potentially representing altered conditions, replicates, filters, 
or even entirely different fitness assays, we chose a single DMS score set per protein to 
represent the overall fitness of that protein. We selected the dataset that had the highest 
median Spearman’s correlation with all VEPs in order to prevent outliers from unduly 
influencing the selection process. For proteins in which multiple DMS studies were per-
formed by different groups (TP53, GDI1, PTEN), we likewise only selected a single score 
set for each protein using the above method. We also require a minimum of 1000 sin-
gle amino acid substitutions to be scored (following the removal of variants in ClinVar 
[19] and gnomAD [20]) in order to prevent low-coverage DMS assays from influenc-
ing the outcome. Furthermore, we excluded DMS assays that assessed antibody bind-
ing (CXCR4, CD19, CCR5) and affinity for other binding targets unrelated to the normal 
biological function of the protein (ACE2 to SARS-CoV-2 receptor binding domain) as 
well as those without any associated methodological details (NCS1, TECR). The full 
summary of all DMS datasets, across 36 proteins and covering 207,460 different single 
amino acid variants, is available in Additional file 2: Table S1.

We streamlined the assignment of categories to DMS datasets by defining only two 
different types. Direct assays are those that directly measure the ability of the target 
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protein to carry out one or more functions. Examples of direct functional assays include 
one-hybrid and two-hybrid assays, other assays that measure the interaction strength 
with native partners and VAMP-seq [21]. Indirect assays are most commonly growth 
rate experiments, where the attribute being measured is not directly controlled by the 
target protein. Indirect DMS assays may be more representative of the biological reality 
of a variant’s effect on cellular fitness, as the cell may be able to buffer a small or moder-
ate loss of function. Direct DMS assays are more reflective of a protein’s function in iso-
lation and may be more useful for exploring protein mechanisms or for protein design.

The field of variant effect prediction has also been progressing rapidly, with many 
novel methods being published every year. In total, we added 43 new missense VEPs that 
were not used in our previous benchmarks (Table 2). These were identified by brows-
ing new publications, from the Variant Impact Predictor database (VIPdb) [22], and 
from the ProteinGym resource, which benchmarks numerous VEPs and general protein 
language models against human and non-human DMS datasets [14]. The large major-
ity of VEPs from our previous analysis [16] were retained, although a small number 
were removed because the predictors were no longer available to run (NetDiseaseSNP, 
PonPS, and PAPI), and thus we could not add predictions for the new DMS datasets. 
This emphasizes the importance of making source code and pre-calculated variant effect 
scores freely available, to ensure that tools can continue to be used in the future [23]. In 
total, we included 97 different VEPs in this study, considering only those with predic-
tions available for at least 50% of the DMS datasets in our benchmark (Additional file 2: 
Table S2).

During our research, we also identified some VEPs that were difficult to access 
due to a requirement for paid subscriptions or restrictive licensing agreements. We 

Table 1  A summary of the 13 new DMS datasets included in this benchmark

Gene (UniProt ID) DMS coverage (%) Fitness assay Reference

CARD11 (Q9BXL7) 10.92% Indirect growth assay in a human lymphoma cell 
line

[72]

HMBS (P08397) 86.94% Indirect yeast complementation assay [73]

GCH1 (P30793) 73.31% Indirect yeast complementation assay Not yet published

GCK (P35557) 97.00% Indirect yeast complementation assay [74]

SERPINE1 (P05121) 69.98% Direct binding to urokinase-type plasminogen 
activator, assessed by phage display/antibody 
binding

[75]

PAX6 (P26367) 33.95% Direct yeast one hybrid assay (TF efficiency) [76]

PPARG​ (P37231) 100.00% Direct activation of CD36 (PPARG target) assessed 
by FACS

[77]

PPM1D (O15297) 68.63% Direct suppression of a GFP-fusion gene assessed 
by FACS

[78]

SHOC2 (Q9UQ13) 99.22% Indirect growth assay in a SCHOC2-dependent 
cell line

[79]

SRC (P12931) 33.11% Indirect growth assay in yeast [80]

PRKN (O60260) 99.11% Direct protein abundance assay measured by 
VAMP-seq

[81]

KRAS (P01116) 33.00% Direct protein-fragment binding complementa-
tion assay (binding PCA)

[82]

ASPA (P45381) 98.25% Direct protein abundance assay measured by 
VAMP-seq

[83]
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Table 2  A summary of the 43 new VEPs including in this analysis and links to the data or source 
code used to produce predictions

Predictor Type Source Reference

3Cnet Clinical-trained https://​github.​com/​Kyoun​gYeul​Lee/​3Cnet/ [84]

AlphaMissense Population-tuned https://​zenodo.​org/​recor​ds/​82086​88 [25]

AlphScore Clinical-trained https://​zenodo.​org/​recor​ds/​62881​39 [85]

CADD 1.7 
(updated from 
previous 1.6)

Clinical-trained https://​cadd.​bihea​lth.​org/​downl​oad [86]

CAPICE Clinical-trained https://​zenodo.​org/​recor​ds/​39282​95 [87]

CARP Population-free ProteinGym [88]

CPT-1 Population-free https://​zenodo.​org/​recor​ds/​81403​23 [28]

DeepSAV Clinical-trained http://​proda​ta.​swmed.​edu/​DBSAV/ [89]

DeMaSk Population-free https://​github.​com/​Singh-​Lab/​DeMaSk [29]

ESCOTT Population-free https://​zenodo.​org/​recor​ds/​10577​421 [39]

ESM-1b Population-free https://​huggi​ngface.​co/​spaces/​ntran​oslab/​esm_​varia​nts [90]

ESM2 Population-free https://​github.​com/​faceb​ookre​search/​esm [91]

GEMME Population-free https://​datad​ryad.​org/​stash/​datas​et/​doi:​10.​5061/​dryad.​
vdncj​sz1s

[40]

gMVP Clinical-trained https://​www.​dropb​ox.​com/s/​nce1j​hg3i7​jw1hx/​gMVP.​csv.​
gz?​dl=0

[92]

iGEMME Population-free https://​zenodo.​org/​recor​ds/​10441​521 [39]

InMeRF Clinical-trained https://​www.​med.​nagoya-​u.​ac.​jp/​neuro​genet​ics/​InMeRF/​
downl​oad.​html

[93]

LASSIE Population-tuned http://​compg​en.​cshl.​edu/​LASSIE/ [94]

Maverick Clinical-trained https://​zenodo.​org/​recor​ds/​78386​59 [95]

MISTIC Clinical-trained https://​lbgi.​fr/​mistic/​downl​oad [96]

MOIpred Clinical-trained https://​zenodo.​org/​recor​ds/​56205​19 [97]

MSA Transformer Population-free ProteinGym [47]

Mutformer Clinical-trained https://​github.​com/​WGLab/​mutfo​rmer?​tab=​readme-​ov-​
file

[98]

MutScore Clinical-trained https://​mutsc​oreba​tch-​wgt7h​vakhq-​ew.a.​run.​app/ [99]

mvPPT Clinical-trained http://​www.​mvppt.​club/ [49]

PHACT​ Population-free https://​zenodo.​org/​recor​ds/​11281​312 [100]

PHACTboost Clinical-trained https://​zenodo.​org/​recor​ds/​11281​312 [101]

PhD_SNPg Clinical-trained https://​github.​com/​biofo​ld/​PhD-​SNPg [102]

popEVE Population-tuned https://​pop.​evemo​del.​org/ [38]

ProGen2 Population-free https://​github.​com/​sales​force/​progen [103]

ProtGPT2 Population-free ProteinGym [104]

Rhapsody Clinical-trained https://​github.​com/​prody/​rhaps​ody [105]

RITA Population-free ProteinGym [106]

SaProt Population-free https://​github.​com/​westl​ake-​repl/​SaProt [43]

Sequence UNET Population-free https://​github.​com/​allyd​unham/​seque​nce_​unet [107]

SIGMA Clinical-trained https://​sigma-​pred.​org/ [108]

SNPred Clinical-trained https://​www.​synap​se.​org/#​!Synap​se:​syn52​137034/​files/ [53]

SPRI Clinical-trained http://​sts.​bioe.​uic.​edu/​spri/ [109]

TranceptEVE Population-free ProteinGym [41]

Tranception Population-free https://​github.​com/​OATML-​Marks​lab/​Tranc​eption [42]

UNEECON Population-tuned https://​github.​com/​yifei-​lab/​UNEEC​ON [110]

Unirep (evotuned) Population-free ProteinGym [111]

VESPA Clinical-trained https://​github.​com/​Rostl​ab/​VESPA [48]

Wavenet Population-free ProteinGym [45]

https://github.com/KyoungYeulLee/3Cnet/
https://zenodo.org/records/8208688
https://zenodo.org/records/6288139
https://cadd.bihealth.org/download
https://zenodo.org/records/3928295
https://zenodo.org/records/8140323
http://prodata.swmed.edu/DBSAV/
https://github.com/Singh-Lab/DeMaSk
https://zenodo.org/records/10577421
https://huggingface.co/spaces/ntranoslab/esm_variants
https://github.com/facebookresearch/esm
https://datadryad.org/stash/dataset/doi:10.5061/dryad.vdncjsz1s
https://datadryad.org/stash/dataset/doi:10.5061/dryad.vdncjsz1s
https://www.dropbox.com/s/nce1jhg3i7jw1hx/gMVP.csv.gz?dl=0
https://www.dropbox.com/s/nce1jhg3i7jw1hx/gMVP.csv.gz?dl=0
https://zenodo.org/records/10441521
https://www.med.nagoya-u.ac.jp/neurogenetics/InMeRF/download.html
https://www.med.nagoya-u.ac.jp/neurogenetics/InMeRF/download.html
http://compgen.cshl.edu/LASSIE/
https://zenodo.org/records/7838659
https://lbgi.fr/mistic/download
https://zenodo.org/records/5620519
https://github.com/WGLab/mutformer?tab=readme-ov-file
https://github.com/WGLab/mutformer?tab=readme-ov-file
https://mutscorebatch-wgt7hvakhq-ew.a.run.app/
http://www.mvppt.club/
https://zenodo.org/records/11281312
https://zenodo.org/records/11281312
https://github.com/biofold/PhD-SNPg
https://pop.evemodel.org/
https://github.com/salesforce/progen
https://github.com/prody/rhapsody
https://github.com/westlake-repl/SaProt
https://github.com/allydunham/sequence_unet
https://sigma-pred.org/
https://www.synapse.org/#!Synapse:syn52137034/files/
http://sts.bioe.uic.edu/spri/
https://github.com/OATML-Markslab/Tranception
https://github.com/yifei-lab/UNEECON
https://github.com/Rostlab/VESPA
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have not included these in our benchmark, as we strongly believe that, if VEPs are 
going to be used as stronger evidence when making clinical diagnoses, their method-
ologies and predictions need to be made freely available to enable fair, independent, 
replicable assessment by the community [23].

Our previous benchmark classified VEPs into two groups: “supervised” and “unsu-
pervised.” However, we found these categories imperfect for our primary concern, 
which is the risk of data circularity. For example, Envision [24] is trained by super-
vised machine learning using DMS data, but has not seen any labeled human vari-
ants. Likewise, AlphaMissense is primarily an unsupervised method, but undergoes 
training with human allele frequencies as “weak labels” [25], which could potentially 
provide an advantage for classification of benign variants. To address this issue, we 
have now classified VEPs into three groups that better reflect the risk of data circu-
larity when being assessed using human variants:

•	 Clinical-trained predictors have been trained using human variants with clinical 
labels (i.e., pathogenic or benign), typically derived from databases like ClinVar 
or HGMD [26]. Most supervised machine learning methods fall into this cate-
gory. This group also includes methods that, while not directly trained on patho-
genic or benign variants, include another predictor that does as a feature (e.g., we 
classify CADD as clinical-trained because it uses PolyPhen-2, which was directly 
trained on clinical labels). This category is most at-risk of data circularity or bias 
when assessed using clinical or population data [27], and includes 53 of the VEPs 
tested in this study.

•	 Population-tuned predictors are not directly trained on clinical variants, but they 
have been exposed to human population data via tuning, optimization, or scal-
ing processes. This group has a much smaller risk of data circularity, but it still 
exists, especially if the methods use allele frequency. This is a small group, com-
prising only six of the VEPs tested here, including AlphaMissense.

•	 Population-free predictors are not trained using any human population data, and 
thus should be at no risk of data circularity if assessed on clinical or population 
variants. This category mostly overlaps with what we have previously referred to 
as “unsupervised,” and includes protein language models and models based on 
sequence alignments. This group includes 38 of the VEPs used in this study.

Related to this, a recent strategy that has the potential to confound our bench-
marking methodology is the increasing availability of predictors that are directly 
trained using DMS data. There are currently five such VEPs included in our bench-
mark: Envision, CPT-1 [28], DeMaSk [29], VARITY_R, and VARITY_ER [30]. Using 
DMS datasets to benchmark these VEPs carries similar caveats to benchmarking 
clinical-trained VEPs using population databases. Fortunately, these methods have 
all been trained using only a small number of DMS datasets. Therefore, by exclud-
ing the results of these VEPs for the proteins used to train them (Additional file 2: 
Table S2), we have been able to include these predictors in our benchmark.
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Comparison of VEP performance using DMS data

Although there is great diversity in DMS assays, what they measure may not always be 
reflective of clinical outcomes, the premise of our analysis is that VEPs that show the 
most consistency across a large set of DMS experiments are likely to be the most useful 
for predicting variant effects. We use absolute Spearman’s rank correlation to assess the 
correspondence between VEPs and DMS, as only a monotonic relationship between the 
two variables is required. Thus, no transformation needs to be applied to the VEP output 
or DMS datasets, which can vary greatly in scale and directionality. The ability of DMS 
to score large numbers of variants also allowed us to exclude all variants present in Clin-
Var and gnomAD from calculations of Spearman’s correlation in order to help offset any 
advantage gained by certain VEPs against the data we use to assess their performance. 
While these data do not exhaustively cover all VEP training data sources, they are by far 
the most common databases trained against and certainly have high degrees of overlap 
with the remaining training data.

Figure 1 shows the Spearman’s correlation between DMS results and VEP predictions 
for each of the 36 DMS datasets. The strongest correlations approached ρ = 0.8 for some 
DMS datasets (GCH1, PPARG​, GDI1), while several others demonstrated relatively poor 
correlations even for the best-performing VEPs around ρ = 0.3 (LDLRAP1, TPK1). The 
average correlation of the top-performing predictors for each protein was 0.58. The 
population-free predictors achieve top correlations with 20 of the 36 DMS datasets, 

Fig. 1  Correlation between variant effect scores from VEPs and DMS experiments. The Spearman’s correlation 
between all VEPs and every selected DMS dataset. VEPs are split into “population-based” and “clinical-trained” 
and “population-tuned” methods based on the usage of human clinical and population variants during 
training. DMS datasets are classified as “direct” if they directly measure the ability of the target protein to carry 
out one or more functions, with all others being classified as “indirect.” The VEP with the highest correlation is 
noted for every DMS dataset
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while population-tuned methods come top on a further 9 datasets (a trend driven 
almost exclusively by AlphaMissense). The VEP category with the least number of top-
correlations with DMS is the clinical-trained category, coming top on only 7 datasets. 
While VEP performance is protein dependent to some extent, specific VEPs clearly have 
a higher level of consistency against DMS data, specifically AlphaMissense and CPT-1. 
The level of heterogeneity in VEP performance is illustrated in Additional file 1: Fig. S1, 
where the distribution of Spearman’s correlations for each VEP across all DMS datasets 
where it has predictions is shown. There was also little difference between the direct and 
indirect DMS categories: the average correlation of the top-performing VEPs was ρ = 
0.61 for the direct assays compared to ρ = 0.56 for the indirect assays.

Comparing VEPs using correlation to DMS datasets is now commonly used both in 
papers presenting new prediction methods [31] and in independent benchmarks of 
predictor performance [14]. There are, however, two major limitations associated with 
using raw DMS data in the context of large-scale benchmarking of VEPs. First, not all 
VEPs have predictions available across all proteins. In our case, we were sometimes lim-
ited by the specific proteins for which the authors have provided pre-calculated results, 
or the proteins for which predictions are available for in ProteinGym. In other cases, as 
mentioned above, we have excluded specific proteins from the assessment of predictors 
that were trained using DMS data, to avoid potential data circularity.

Second, not all VEPs output scores for all possible variants in the proteins for which 
they are run. Some only provide predictions for those missense changes possible via 
single nucleotide changes, while others do not provide predictions for specific protein 
regions, for example, where the sequence alignment depth is low [32], or when the 
method can only be applied to sequences shorter than a specific size [31]. This could 
lead to inflated results for predictors that exclude a generally poorly predicted region 
of a protein. To illustrate the potential impact of this, we can observe in Fig.  1, a few 
examples where a single outlier VEP demonstrated far higher correlations with the DMS 
data than other methods, such as PANTHER [33] for HMGCR​ and mutationTCN [34] 
for PTEN. Closer inspection reveals that, in both of these cases, the phenomenon arises 
because these VEPs provide scores for a much smaller set of variants for these specific 
proteins than other VEPs.

The varying coverage levels of VEPs for the DMS scores in our dataset are shown 
in Additional file  1: Fig. S2. In general, VEPs can be approximately divided into three 
groups in terms of the proportion of total variants they can provide predictions for. 
Predictors that provide full or near-full coverage are largely population-free methods, 
as these are more likely to have been applied to all possible single amino acid substitu-
tions. Another group comprising roughly half of the VEPs includes those with coverage 
for ~ 30% of possible amino acid variants. These are mostly clinical-trained VEPs and 
the reason for their lower coverage is that they have been applied only to actual mis-
sense variants, i.e., single amino acid substitutions possible via single nucleotide variants 
(SNVs). It should also be noted that these predictors are not necessarily restricted to 
SNVs (such as PolyPhen-2 [35]), but the predictions available for mass download were 
mapped to SNVs. Finally, several VEPs show varying degrees of intermediate coverage, 
which can be due to a number of reasons, including data availability, mapping issues, 
and low MSA coverage.
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One solution to the problem of varying coverage would be to only use DMS measure-
ments for variants with scores available across all predictors, although this would require 
us to include either far fewer VEPs (particularly excluding those that fail to provide pre-
dictions for one or more proteins) or far fewer DMS sets to retain enough data. Moreo-
ver, it is not clear that Spearman’s correlations between VEP and DMS scores should be 
comparable between proteins, or that they represent a good measure of the relative per-
formance of VEPs across different proteins. For example, a protein with two functionally 
distinct regions, where one is highly constrained (e.g., a globular domain) and the other 
is not (e.g., a disordered region) might show a high correlation between VEPs and DMS, 
driven by this difference. In contrast, a small, highly conserved protein where mutations 
at most positions will have damaging effects might show a much lower Spearman’s cor-
relation, even though VEPs are not necessarily performing worse.

Therefore, to ensure that the relative ranking of VEP performance remains as fair as 
possible, for each DMS dataset we perform a series of pairwise comparisons in which 
the correlation between every possible pair of VEPs with the DMS data is calculated 
using only predictions for variants shared between the two VEPs and the DMS set. The 
percentage of the time that a VEP “won” each of its pairwise comparisons against every 
other VEP is then calculated across all proteins. This strategy is illustrated in Additional 
file 1: Fig. S3, which shows a heatmap colored by the win rate of each VEP compared to 
all others. To obtain our overall ranking, we simply average the win rate of each VEP 
against all other VEPs. This method of ranking is more VEP-centric than DMS-centric 
as in our previous benchmarks, meaning it should act as a more useful basis for relative 
ranking, particularly when accounting for cases where certain VEPs do not have predic-
tions for all proteins.

Figure 2 shows the average win rate of the top 30 predictors. The full results, includ-
ing the win percentage of each VEP against every other, are available in Additional file 2: 
Table S3. The order of predictors in Additional file 1: Fig. S3 is also sorted according to 
this same ranking, allowing for visualization of performance across all predictors. The 
ranking of predictors is also relatively robust to data permutations. The error bars of 
Fig.  2 represent the standard deviation in the rank score over 1000 bootstraps of the 
analysis with 36 randomly selected protein datasets (with replacement).

The top-ranking VEP using this methodology is CPT-1 with a 92.8% overall average 
win rate and 66.2% average win rate against the other top 5 ranking methods. CPT-1 
ranked significantly higher than every method in the bootstrap except AlphaMissense 
(p = 0.169) (Additional file  2: Table  S4). CPT-1 combines both EVE [32] and ESM-1v 
[31] along with structural features from AlphaFold [36] and ProteinMPNN [37], and fur-
ther conservation features. Importantly, although training of the model was carried out 
against five DMS datasets, they have all been excluded from the benchmarking of CPT-
1, thus avoiding circularity concerns.

AlphaMissense performs only marginally worse overall than CPT-1 in this bench-
mark with a 90.7% overall average win rate and 65.3% average win rate against the other 
top 5 ranking methods. While coming second, it did not perform significantly better 
than either popEVE [38] (p = 0.108) or ESCOTT [39] (p = 0.094). AlphaMissense is a 
recently developed large language model with additional structural context based on the 
AlphaFold methodology, and fine-tuned on allele frequencies from humans and other 



Page 10 of 27Livesey and Marsh ﻿Genome Biology          (2025) 26:104 

primates. While the core of the model is unsupervised and population-free, the fine-
tuning process using human variants necessitates its inclusion as a population-tuned 
predictor.

ESCOTT, iGEMME [39], and GEMME [40] are three closely related population-free 
predictors that rank 3rd, 5th, and 6th, respectively. GEMME is a relatively simple model, 
compared to the other top performers, based on epistasis between positions through 
evolution. GEMME also has lower computational requirements than comparably per-
forming VEPs, and similar computational time to running a language model like ESM-
1v. iGEMME is an optimized version of GEMME using deeper alignments and capable 
of efficiently handling larger proteins. ESCOTT is based on iGEMME and takes into 
account the likely structural context of mutated residues.

Two variants of EVE are also among the top predictors. popEVE ranks 4th and is a 
hybrid of ESM-1v and EVE that also performs gene-level calibration on variants from 

Fig. 2  The top 30 out of 97 tested VEPs ranked based on performance against the DMS benchmark. VEPs 
are ranked according to their average win rate against all other VEPs in pairwise Spearman’s correlation 
comparisons across all DMS datasets. The number of proteins for which each VEP had scores included is 
indicated in the right column of the plot. Those indicated with * had some DMS datasets excluded to avoid 
circularity concerns. Error bars represent the standard deviation in the rank score across 1000 bootstrap 
permutations of the benchmarking DMS datasets. The full ranking of all VEPs and all pairwise win rates are 
available in Additional file 2: Table S3
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UK Biobank, with the goal of making scores from different genes directly comparable. 
The usage of Biobank data by popEVE means that it is not necessarily subject to the 
same circularity concerns as clinical-trained VEPs, so we have classified it as population-
tuned. TranceptEVE [41] ranks 8th overall and is a hybrid of Tranception [42] and EVE 
[32].

SaProt [43] is a unique protein language model, which leverages the foldseek tool 
[44] in order to encode structural context into the tokens provided to the model. This 
approach has allowed SaProt to out-perform all the “pure” language models, ranking 
7th. However, the hybrid language models—AlphaMissense, CPT-1, and popEVE—all 
rank higher.

VARITY_R ranked 9th overall and was the top-ranking clinical-trained predictor 
that was also included in our previous study. Interestingly, while VARITY_R previously 
ranked behind ESM-1v, EVE, and DeepSequence, it has slightly outperformed them 
here. However, we also note that VARITY_R and VARITY_ER are compared to fewer 
DMS datasets than most other VEPs in this benchmark, necessitated by exclusion of 
DMS data on which it was directly trained.

The heatmap in Additional file 1: Fig. S3 highlights two small anomalies in the ranking. 
First, AlphaMissense out-performs CPT-1 on the DMS data, but CPT-1 ranks top over-
all as a result of it more consistently out-performing the other top predictors in pairwise 
analyses. Second, Wavenet [45] stands out in the heatmap with an unusual pattern due 
to its extreme heterogeneity in performance when tested against different proteins. For 
example, while it is the top performer in terms of Spearman’s correlation with the HRAS 
assay, it ranks 65 th overall due to its inconsistency.

It is likely that the methodology underlying the DMS assays this benchmark is based 
on can have a substantial impact on the results. To investigate this, we repeated the 
analysis, limiting the DMS studies to direct assays only, and repeated again with indirect 
assays. The CPT-1 model ranked top in both repeats, followed by AlphaMissense (Addi-
tional file  2: Table  S5). The VARITY predictors performed better when benchmarked 
on the indirect assays but the analysis is, in general, resistant to permutations and sub-
setting of the DMS assays used to benchmark against.

Despite our efforts in producing a VEP-focused benchmark, it is possible that the dif-
ferential variant coverage of the different predictors could still lead to pairwise compari-
sons where the lower coverage VEP is favored. A similar phenomenon was noted in the 
analysis of the CAGI6 Annotate-All-Missense challenge [46]. This might arise where the 
lower-coverage VEP provides no predictions for a region of a protein where it would 
otherwise perform poorly. To address this issue, we performed two additional analyses. 
First, the main reason for missing data among VEPs is the inability of some predictors 
to score multinucleotide variants, so we repeated the benchmark, restricting variants 
to only those possible through a single nucleotide change (Additional file 2: Table S6). 
The rank scores only changed minimally, with the largest changes resulting in less than a 
4-point difference in score (MSA Transformer [47]). Second, to address all missing pre-
dictions not due to SNV limitations, we repeated the analysis, filling-in all remaining 
missing predictions with the most benign score produced by each predictor. This is done 
on the assumption that most large prediction gaps should be due to poorly conserved 
protein regions and thus enriched in benign variation. The results of this analysis, shown 
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in Additional file 2: Table S7, were a drop in the performance of SPRI by 6 points, and 
a relative increase in performance for VESPA [48], PANTHER, mvPPT [49], and Tran-
ceptEVE by about the same amount. Other than popEVE and TranceptEVE increasing in 
rank by 1 place each, the order of the top-ranking predictors is largely unaffected. These 
results help confirm the robustness of our benchmarking methodology.

Performance of VEPs on clinical variant classification

The above DMS-based benchmarking of VEP performance might not be reflective of 
performance in pathogenicity prediction, which is the main practical application for 
which these methods are used. DMS assays are heterogeneous in their methodolo-
gies and in the meaning of their functional scores. This has been a common criticism 
of assessing VEP performance using functional assays [30, 50] and it is very under-
standable. To what extent do our DMS-based rankings reflect utility for clinical variant 
classification?

Traditional assessment and comparison of VEPs has typically involved testing their 
discrimination between known pathogenic and known benign or putatively benign var-
iants, often using datasets such as ClinVar [19] and gnomAD [20]. However, this can 
be extremely difficult to do in a fair manner for clinical-trained predictors. First, most 
supervised VEPs have been directly trained on pathogenic variants, so to compare per-
formance, one needs to know the identities of all the variants used to train each predic-
tor, and then find a set of variants not used by any of the tested VEPs. One also needs to 
ensure that no variants from the same positions as variants used in training, or even at 
homologous positions [51], are included in the test set.

An even stricter requirement for assessment of VEP performance for variants across 
different genes is that, in most instances, one should exclude any variants from the test 
set from any gene for which any variants were used in training, or from any homologs of 
these genes. That is, supervised VEPs should only be tested on different and non-homol-
ogous genes to any used in training, not just different variants. This is necessary to avoid 
gene-level circularity; otherwise, predictor performance will be inflated because models 
will learn to associate certain genes with pathogenicity, regardless of their ability to dis-
criminate between variant effects within those genes [1, 23]. Importantly, however, as 
long as performance assessment is carried out on a per-gene basis (e.g., the performance 
metric is calculated for each gene/protein separately), then it should generally be accept-
able to test VEPs on genes on which they have been trained, as this avoids any risk of 
gene-level circularity. Alternately, variant labels can be balanced on a per-gene basis (i.e., 
the ratio of pathogenic to benign variants is equal in every gene) [46].

There are further concerns related to the identities of variants used as the negative 
class. The same requirement to not use variants used in training is equally true for these. 
However, a critical complication arises from the fact that many VEPs now incorporate 
human allele frequency information as a feature. This is severely problematic for the 
use of known benign variants (e.g., those classified as benign or likely benign in Clin-
Var) as the negative class. As allele frequency is routinely used in the classification of 
variants as benign [2], VEPs that includes allele frequency as a feature will likely suffer 
from circularity in these analyses. Even if allele frequency was not directly used in the 
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clinical classification, common variants are simply more likely to be studied and receive 
a classification.

An alternative to using known benign mutations as the negative class is to use vari-
ants observed in the human population (e.g., taking all of those from gnomAD), which 
will mostly be very rare. We strongly advocate this approach for several reasons. First, it 
minimizes the aforementioned circularity issue regarding the use of allele frequency to 
classify benign variants, although it does not completely eliminate it. Second, it is much 
more reflective of the actual clinical utility of variant effect predictions. The major chal-
lenge for clinicians is not in discriminating between common benign and rare patho-
genic variants. Instead, it is in the much more difficult problem of distinguishing rare 
benign from rare pathogenic variants. Previous predictors, notably REVEL [52] and 
VARITY, have acknowledged this issue and tailored their models to the problem of rare 
variant identification. Finally, using rare population variants allows for much larger neg-
ative classes. In many disease genes, there are no or few variants classified as benign, 
severely limiting the number of genes for which reliable analyses can be performed.

Here, we have assessed the performance of VEPs in distinguishing between patho-
genic and likely pathogenic ClinVar missense variants, and “putatively benign” gnomAD 
v4 missense variants, taking all of those not classified as pathogenic. We recognize the 
limitation of this, in that there is likely to be a small proportion of as-of-yet unclassi-
fied pathogenic variants in our negative class, particularly in recessive genes and those 
with incomplete penetrance. Nevertheless, we believe that the advantages stated above 
far outweigh this issue. We generated predictions for 819 proteins that had at least 10 
(likely) pathogenic and 10 putatively benign missense variants using 46 clinical-trained, 
31 population-free, and 6 population-tuned VEPs. It was necessary to exclude a few 
VEPs from this analysis because predictions were not available for enough proteins, par-
ticularly those where we obtained scores from ProteinGym. For each protein, we tested 
the discrimination between pathogenic and putatively benign variants for each VEP by 
calculating the area under the receiver operating characteristic curve (AUROC), which 
is a common measure of classifier performance that summarizes the trade-off between 
true positive rate and false positive rate across different thresholds.

The full distribution of AUROC values for each predictor, sorted by median, is shown 
in Additional file 1: Fig. S4. However, for the same reasons discussed earlier in relation 
to the DMS ranking, this analysis has the potential to be confounded by the fact that not 
all VEPs provide scores for all possible variants. Therefore, we applied the same pairwise 
ranking strategy as above, using AUROC as our comparison metric instead of Spear-
man’s correlation. Figure 3 shows the top 30 ranking predictors in terms of their perfor-
mance in clinical variant classification according to this methodology. The full ranking of 
all available predictors is provided in Additional file 2: Table S8.

At first glance, the rankings are strikingly different from the DMS-based analysis, with 
none of the top 10 ranking VEPs being population-free. SNPred [53] and MetaRNN [54] 
rank 1st and 2nd, respectively, in contrast to the DMS benchmark, where they ranked 
13th and 18th overall. It is likely that their performance here, as well as the performance 
of most clinical-trained VEPs, is highly inflated by circularity issues, as we made no 
effort to exclude variants used in training. Therefore, it is interesting to note that the top-
ranking population-free VEP was CPT-1, the same as observed with DMS. The closely 
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related GEMME, iGEMME, and ESCOTT models show very similar performance, with 
ESCOTT ranking slightly higher in the DMS benchmark and GEMME/iGEMME rank-
ing slightly higher in the clinical benchmark.

Area under the precision-recall curve (AUPRC) is an alternative performance metric 
to AUROC. Precision-recall is considered more reflective of many real-life classification 
scenarios where correct identification of a minority class is more important than that of 
a majority class. The disadvantage of precision-recall is that relative class sizes need to 
remain consistent across all models in order for the AUPRC scores to be comparable. 
Our use of pairwise comparisons essentially cancels out this disadvantage, allowing us to 
use AUPRC as an alternative to AUROC. Additional file 1: Fig. S5 ranks the predictors 
by pairwise analysis using AUPRC as the comparison metric. The overall rankings are 

Fig. 3  The top 30 out of 83 tested VEPs in terms of clinical variant classification performance. VEPs are ranked 
according to their average win rate against all other VEPs in pairwise AUROC comparisons across all human 
proteins with at least 10 pathogenic and 10 putatively benign missense variants. The number of proteins 
that met this condition for each predictor is indicated on the right of the plot. Some VEPs from the DMS 
benchmark could not be included here because predictions were not available for enough genes. Error 
bars represent the standard error across all comparisons with other VEPs. The full ranking of all VEPs and all 
pairwise win rates are available in Additional file 2: Table S8
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very similar to the ROC-based ranking in Fig. 3, but with 12 clinical-trained and popu-
lation-tuned predictors exceeding the performance of the top population-free predictor.

To compare the two benchmarks, in Fig. 4, we plot the win rate from the DMS analysis 
vs the win rate from the clinical variant analysis. The Pearson correlations are striking if 
we consider only the population-free (r = 0.978) or population-tuned (r = 0.994) models. 
Relative performance on the DMS benchmark appears to be highly predictive of rela-
tive performance in clinical variant classification across the entire performance range. 
In contrast, for the clinical-trained models, the correlation is much lower (r = 0.839). 
Interestingly, the clinical-trained VEPs tend to show relatively increased performance 
on the clinical benchmark compared to the population-free VEPs. This almost certainly 
reflects varying levels of circularity contributing to performance in the clinical bench-
mark. It is likely that the extent to which clinical win rates are shifted to the right relative 
to the population-free VEPs can be considered as measure of how overfit the models 
are on our pathogenic and putatively benign variants. This interpretation is reinforced 

Fig. 4  Strong correspondence in relative performance of VEPs on the DMS vs clinical benchmarks. Average 
pairwise win rates in the DMS vs clinical benchmarks are plotted. Population-free and population-tuned VEPs 
show extremely strong correlations. In contrast, the clinical-trained VEPs show a much weaker correlation 
overall. The tendency for some clinical-trained VEPs to show large rightward shifts, reflecting relatively 
increased performance on the clinical benchmark, is likely to be due to circularity due to training on variants 
and genes present in the pathogenic and putatively benign datasets
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by the population-tuned VEPs, which show a rightward shift compared to population-
free methods, though not as pronounced as the clinical-trained VEPs. This intermediate 
position suggests these VEPs fall between the other two groups in terms of circularity 
concerns.

While most of the clinical-trained VEPs show strong signs of circularity in their clini-
cal variant classification performance, demonstrated by their right-shift in Fig. 4 com-
pared to the population-free methods, some appear to have much less or no bias. The 
two VARITY models fit perfectly with the population-free VEPs, possibly reflecting its 
innovative strategy to minimize training bias. mvPPT, SuSPect [55], and MPC [56], while 
ranking lower overall in both categories, also appear to show little bias.

The population-tuned predictors demonstrate some level of right-shift in Fig. 4, rela-
tive to the population-free methods, although less than the majority of clinical-trained 
predictors. This indicates that there is likely some level of data circularity influencing 
their predictions on the clinical dataset, although it is not as severe as for the clinical-
trained predictors. Both AlphaMissense and popEVE in particular are very close to the 
population-free trend. Our use of mostly rare variants as the putatively benign dataset 
should minimize any advantage to AlphaMissense from its population tuning. On the 
other hand, popEVE only uses population variants for scaling scores on a protein-level, 
to aid with cross-protein comparison of scores. In principle, this approach should not 
make the method vulnerable to variant-level circularity (although it could potentially be 
conflated by gene-level circularity in other cross-gene analyses). The remaining popula-
tion-tuned methods are all closer to the clinical-trained trend.

Practical considerations

An often-overlooked but extremely important aspect of VEPs is how easy they are for an 
end-user to obtain predictions. VEPs are typically made available through a combination 
of three different channels.

1.	 A web interface that allows access either to the VEP itself (e.g., SIFT [57], Poly-
Phen-2) or to a database of pre-calculated results (e.g., popEVE, VARITY).

2.	 A large compilation of pre-calculated results that usually cover either all canonical 
human protein positions in UniProt [58] or all human coding region non-synony-
mous single nucleotide variants in genome space.

3.	 The method itself is made available for installation by the end user.

Of these three channels, a web interface is the most convenient for looking up single 
variants of interest, although most such interfaces also offer the option to view all pos-
sible variants within a given protein as well. Downloadable databases of pre-calculated 
results are very useful for large-scale analyses (such as this one), but may be less use-
ful for end users than a simple web interface for searching individual variants. If such 
a database is formatted in genome space, then specialized software such as Tabix [59] 
may be required to identify scores for variants of interest. Finally, installing and running 
the predictor offers the greatest degree of control over generation of the results such 
as the alignments and features used. However, many modern VEPs have high computa-
tional and time requirements or require significant technical knowledge to operate. We 
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are unable to recommend such VEPs for typical day-to-day usage unless the data is also 
obtainable through a web interface or database.

As these are all important considerations for end users, in Table 3 we provide a sum-
mary of the top 15 VEPs from the Spearman’s correlation-based analysis in terms of how 
easy it is to obtain predictions, as well as links to any online interfaces, pre-calculated 
results, or installable packages/repositories.

Discussion
Our benchmarking strategy very much relies on comparing performance across a large 
number of diverse DMS datasets compared to previous benchmarks. We have tried to 
avoid making judgments about the quality of individual DMS datasets or selecting them 
based on what we deem to be desirable phenotypes or experimental properties, other 
than excluding a small number based on irrelevance to disease mechanisms. Although 
it is likely that certain types of DMS experiments will be better for VEP benchmarking 
than others, we feel that our approach of taking as many datasets as possible minimizes 
the potential for bias. Although different DMS datasets differ greatly in the extent to 
which they reflect clinical phenotypes, they generally should show at least some rela-
tionship to fitness and thus, in general, algorithms that are better at predicting variants 
effects on fitness or pathogenicity should tend to show a stronger correlation with exper-
imental measurements. The fact that we see such a strong correspondence between the 
relative ranking of VEPs across these diverse DMS datasets, and in the clinical classifi-
cation of variants, strongly supports the utility of this approach. Importantly, however, 
our strategy requires comparing performance across numerous datasets, as we observe 
large variability in the “winner” from dataset to dataset. Thus, any attempts to judge per-
formance with datasets from one or a small number of functional assays are unlikely to 
yield very informative results.

This analysis improves upon our previous benchmark in three important ways. First, 
the additions of new VEPs and DMS datasets allowed considerable expansion of the 
benchmark and allow us to assess how the state-of-the-art methods perform when com-
pared to established ones in common use. Second, our switch from a DMS-focused 
ranking method to a pairwise, VEP-focused ranking method allows a much fairer com-
parison between predictors that fail to make predictions in certain protein regions. The 
robustness of this ranking method is demonstrated in Additional file 2: Table S7 where 
the exclusion of non-SNV variants and filling-in of prediction gaps resulted in very 
minor changes in predictor ranking. Finally, our findings that VEP rankings on DMS 
datasets are strongly correlated with their performance on clinical datasets and the dif-
ferences between the three classes of VEPs gives additional validity to our methodology 
and demonstrates the impact of data circularity.

From the differences between the VEP categories in Fig.  4, it appears that much of 
the tendency for clinical-trained VEPs to perform relatively better on the clinical bench-
mark is due to data circularity. However, there may be some element of these VEPs hav-
ing learned aspects of clinical pathogenicity not present in the population-free models. 
We suspect this is unlikely. For example, the strategy used by the clinical-based VAR-
ITY went to great lengths to minimize circularity issues in its training process, and it is 
highly consistent with the population-free VEPs in its relative performance on DMS vs 
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clinical benchmarks. AlphaMissense was not trained for pathogenicity, but even with its 
exposure to allele frequency information, it is also fairly similar to the population-free 
methods. Finally, CPT-1, without any training on human pathogenic or population vari-
ants, outperforms 38/48 tested clinical-trained VEPs on the clinical benchmark, demon-
strating how effective population-free methods can be on their own.

One related concern that is very difficult to address is optimization against DMS 
datasets present in our benchmark. While we have excluded datasets directly used in 
training for the evaluation of certain predictors, it is possible that methods may have 
been optimized against DMS data without direct training. For example, ESM- 1v was 
not trained on DMS data, but it was selected out of multiple possible models based on 
its correlation with DMS data [31]. Possibly this is reflected in the fact that it is slightly 
“left-shifted” in Fig.  4, showing modestly better performance on the DMS benchmark 
relative to the clinical benchmark. As DMS and other functional assays are increasingly 
used to assess performance, VEP developers will inevitably target these benchmarks and 
optimize for performance against them. However, currently there is little indication that 
DMS inclusion in VEP training or optimization has had an impact on this benchmark, 
and the few methods trained directly with DMS data have proven to be relatively resist-
ant to bias. We hope that this methodology can continue to be used to benchmark future 
predictors in a bias-free manner.

Other recent studies have also attempted to assess the performance of state-of-the-art 
VEPs using alternate strategies. Tabet et al. tested the ability of 24 different VEPs to infer 
human traits from the UK Biobank and All of Us cohorts [60]. While this task is distinct 
from predicting pathogenicity, it should be largely free of any circularity concerns. Inter-
estingly, their overall rankings are broadly similar to what we observe here. While many 
of our top-ranking VEPs were not included in their study, the three top methods they 
identified based on UK Biobank data, AlphaMissense, ESM-1v, and VARITY, all ranked 
higher in our DMS benchmark than any other methods they included, and overall, there 
is a strong correlation (r = 0.93) between our DMS win rate and their number of traits 
identified (Additional file 1: Fig. S6).

The CAGI Annotate-All-Missense challenge presents an extremely valuable study, 
testing the performance of 60 VEPs in discriminating between 10,456 pathogenic and 
benign missense variants [46]. They avoid the issue of variant-level (type 1) circularity by 
only used variants deposited in ClinVar or HGMD after a specific cutoff date, and only 
considering predictions submitted before this date, or from methods that are not trained 
on clinical variants. They also explore the fact that methods that directly use allele fre-
quency essentially have an unfair advantage when classifying benign variants, showing 
that the performance of these VEPs is much worse when considering rarer variants. 
While their main analysis does not account for gene-level circularity, they also present 
a gene-label balanced analysis, where they only consider equal numbers of pathogenic 
and benign variants from each gene. While this greatly reduces the size of their dataset, 
to 2140 variants from 504 genes, it should entirely overcome the issue of gene-level cir-
cularity. If we exclude those VEPs that directly use allele frequency, we see some similar 
results in their gene-balanced analysis compared to our DMS-based ranking. Specifi-
cally, their top three methods are AlphaMissense, ESM-1v, and EVE, which also perform 
better in our DMS benchmark than any of the other VEPs included in their study.
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An interesting observation from our latest DMS benchmark is that the three top-
ranking methods, CPT-1, AlphaMissense, and ESCOTT, all use some level of pro-
tein structural information. Previously we had noted that there was no tendency for 
structure-aware models to perform better than those that use sequences only [15], so 
this represents a potentially notable advance in VEP development. One possibility is 
that most performance gains in the past were obtained through improved elucidation 
of the evolutionary signal, and so the much smaller impact of structure was negli-
gible. This is compounded by the fact that most structure-based VEPs assume that 
pathogenic variants will be structurally damaging and ignore non-loss-of-function 
effects [61], and that, previously, structure models were only available for a minor-
ity of human proteins. Thus, given the recent availability of computational structural 
models for all human proteins [36, 62], the inclusion of structural information may 
now becoming more important for variant effect prediction.

Given the remarkable performance of population-free VEPs, we think that not 
directly including human clinical or population variants in models is the safest 
strategy for variant effect prediction. Given the desire to increase the role of com-
putational predictions in making clinical diagnoses, it is important to minimize the 
potential for “double counting,” e.g., according to ACMG/AMP guidelines [2]. If allele 
frequency, or knowledge of other classified variants at the same position, has been 
used by the model, then the computational prediction cannot be considered as inde-
pendent evidence. In contrast, population-free VEPs should be truly independent 
from the other pathogenic or benign classification criteria.

Although we believe that our relative rankings of VEP performance are reliable, a 
major remaining problem is still in the interpretation of their outputs. For example, 
how should a clinician interpret a high VEP score for making a genetic diagnosis? 
Recent work has attempted to establish thresholds for using variant effect scores as 
stronger diagnostic evidence [63]. This is a potentially powerful approach, but it does 
have limitation. Given the radically different performance of VEPs across different 
genes, it is not clear that the same thresholds for evidence levels will be appropri-
ate for different genes [64–66]. Furthermore, this work focused primarily on clini-
cal-trained methods, and calibrating these VEPs using known pathogenic and benign 
variants is likely to overstate the confidence with which pathogenic or benign evi-
dence can be assigned due to the same circularity-related issues discussed here, espe-
cially for methods that directly use allele frequency.

Overall, it is clear the variant effect prediction field is moving very fast. Along with 
other members of the Atlas of Variant Effects Alliance, we recently released a set of 
guidelines and recommendations for developers of novel VEPs, many of which related 
to improving the sharing and independent assessment of methods [23]. In addition, 
we strongly encourage researchers to deposit new DMS datasets in MaveDB [67]. 
Making methods, predictions, and DMS data freely and easily available will improve 
future DMS-based benchmarking. Finally, we note that, while missense variant 
effect prediction is reaching a level of maturity, far more work remains to be done on 
non-missense coding variants and on non-coding variants, both in terms of meth-
ods development and benchmarking. We hope the lessons we have learned here will 
prove valuable for this.
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Conclusions
In this study, we have used functional data from 36 diverse DMS experiments to 
benchmark the relative performance of 97 VEPs while greatly reducing the potential 
for bias compared to traditional benchmarks. Our pairwise comparison methodol-
ogy is robust to both the datasets employed and missing predictions. We demonstrate 
the data circularity issue with benchmarks based on clinical data and provide recom-
mendations for general-use VEPs. We expect the scale of this type of benchmark to 
expand in scope over time, although training and optimization of VEPs against DMS 
data may hinder such efforts in the future.

Methods
ClinVar and gnomAD data

We obtained ClinVar data on 06/08/2024. We then filtered the data by retaining only 
missense variants labeled as “pathogenic,” “likely pathogenic,” and “pathogenic/likely 
pathogenic.” We then removed all entries with a 0* review status (no assertion crite-
ria) and all entries with conflicting interpretations of pathogenicity.

Our gnomAD dataset was obtained from gnomAD version 4.1. We retained all mis-
sense variants that passed either the gnomes or exomes FILTER criteria. We refer to 
this dataset as “putatively benign” and while it certainly contains some recessive or 
low-penetrance variants at low frequency, represents the distribution of variants in a 
healthy population.

DMS datasets

Starting with the 26 DMS datasets from our previous benchmark, we excluded all var-
iants present within our ClinVar and gnomAD datasets, then retained only datasets 
that scored at least 1000 amino acid variants. We also excluded datasets that meas-
ured antibody binding. This resulted in the exclusion of BRCA1 (insufficient variants 
remaining), CCR5, and CXCR4 (antibody binding). We identified a further 13 datasets 
that also met our inclusion criteria. These new datasets were primarily obtained from 
MaveDB [67], but also by searching published works. One dataset (GCH1) came from 
an unpublished study with permission of the authors.

VEPs

The dbNSFP database, version 4.2 [68], served as a source for 27 VEPs. The remain-
ing 70 VEPs were either run locally on the University of Edinburgh high performance 
computing cluster (EDDIE), downloaded as pre-calculated results, obtained via a web 
interface, or obtained for a limited subset of mutations/proteins from the ProteinGym 
website. A full list of the source used to obtain predictions from each VEP is provided 
in Additional file 2: Table S2.

Spearman’s correlation and rank score

Spearman’s correlation was calculated between datasets using the stats.spearmanr() 
function of the scipy python package version 1.5.4 on Python version 3.6.8.
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To calculate the correlation-based rank score displayed in Fig.  2 and Additional 
file  2: Table  S3, for each protein the absolute Spearman’s correlations between the 
selected DMS dataset and every pair of VEPs was calculated using only variants where 
the DMS and two VEPs all have available scores. The VEP that obtained the highest 
correlation in each pairwise comparison earned one point, while the VEP with the 
lower correlation earned none. The win rate of every VEP over every other VEP was 
then calculated across all proteins by dividing the number of wins by the number of 
times that particular pair of VEPs were tested. The final rank score was calculated by 
averaging the win rate of each VEP against all other VEPs.

AUROC and AUPRC

The area under the receiver operator characteristic curve (AUROC) was calculated 
using the metrics.roc_auc_score() function of the sklearn python package, while the 
area under the precision-recall curve (AUPRC) was calculated using the metrics.
average_precision_score() function of the sklearn python package version 0.18.1. To 
maintain consistency between class labels, predictors that assigned low scores as 
pathogenic and high as benign needed to be inverted. This was done by deducting the 
scores from 1.

The rankings in Fig. 3 were calculated by comparing the AUROC between every pair 
of predictors using only variants shared between them. The predictor with the highest 
AUC was awarded one point. The win rate of every VEP against every other VEP was 
then calculated across all proteins by dividing the number of wins by the total number 
of times that particular pair of VEPs were tested. The final rank score was calculated by 
averaging the win rate of each VEP against all other VEPs. The same procedure was used 
to generate the AUPRC-based ranking in Additional file 1: Fig. S4, but with precision-
recall instead of ROC.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​025-​03575-w.
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