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Background
Foundation models are machine learning models pretrained on huge amounts of data, 
where the aim of the pretraining is to enable models to capture universal patterns in 
data [1–3]. This foundational knowledge can either be used to specialize rapidly towards 
specific tasks with a small amount of additional training, or used zero-shot where the 
model’s internal representation of input data—an “embedding”—is used for downstream 
analysis with no further task-specific training.

Emerging research in single-cell biology has garnered great interest in foundation 
models, which promise to automate tasks such as cell type identification and gene 
expression prediction. Advances in pretraining and scaling foundation models mean that 
researchers are now seeking to understand how large unlabeled datasets can be used 
to initialize models with a general understanding of biology, and initiatives like CELLx-
GENE [4] are rising to this data demand. These developments have spurred a variety of 
proposed foundation models [5–12], all of which pretrain on large cell datasets.

Current proposed foundation models predominantly rely on fine-tuning, with lim-
ited exploration in zero-shot settings. However, evaluation standards for pretrained 
models in other biological domains, including protein sequences and biomedical 

Abstract 

Foundation models such as scGPT and Geneformer have not been rigorously evalu-
ated in a setting where they are used without any further training (i.e., zero-shot). 
Understanding the performance of models in zero-shot settings is critical to applica-
tions that exclude the ability to fine-tune, such as discovery settings where labels are 
unknown. Our evaluation of the zero-shot performance of Geneformer and scGPT 
suggests that, in some cases, these models may face reliability challenges and could be 
outperformed by simpler methods. Our findings underscore the importance of zero-
shot evaluations in development and deployment of foundation models in single-cell 
research.

Keywords: Foundation models, Single-cell, Machine learning

Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

SHORT REPORT

Kedzierska et al. Genome Biology          (2025) 26:101  
https://doi.org/10.1186/s13059‑025‑03574‑x

Genome Biology

*Correspondence:   
lualex@microsoft.com

1 University of Oxford, Oxford, UK
2 Microsoft Research, Cambridge, 
MA, USA

http://orcid.org/0000-0001-9568-3155
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-025-03574-x&domain=pdf


Page 2 of 13Kedzierska et al. Genome Biology          (2025) 26:101 

images, argue that zero-shot evaluation is critical to understanding if pretraining 
develops a transferrable understanding of biology [13–16]. Indeed, recent research in 
protein language models has exposed numerous trivial mechanisms in which transfer 
learning can appear to boost performance on downstream tasks, but does not actually 
rely upon sophisticated learning from pretraining [17].

The significance of zero-shot evaluation is particularly pronounced in single-cell 
biology, where many tasks are exploratory and lack predefined labels that limit the 
feasibility of fine-tuning. This context underscores a growing need to focus on robust 
zero-shot performance in the field. Despite its criticality for potential applications, 
zero-shot evaluation remains infrequent among single-cell foundation models.

In this work, we perform zero-shot evaluations of two popular proposed single-
cell foundation models, Geneformer [6] and scGPT [7] (Fig.  1A). Our evaluations 
are motivated by the authors’ claims that their proposed models not only generate 
robust cell embeddings [6] but also exhibit strong capabilities for generalizing to 
unseen datasets [7]. In our work, we test this claim and show that even with a set of 
benchmarks representing the most favorable setting where datasets consist of tissues 
and are generated using technologies similar to those used to pretrain these models 
(Additional file 2: Figs. S1 and S2), both Geneformer and scGPT underperform sim-
pler methods. We show that zero-shot evaluation of these models exposes vulnerabil-
ities that are not evident if evaluated with fine-tuning alone. Our results highlight the 
importance of zero-shot evaluation as a critical step in the development and deploy-
ment of foundation models for single-cell biology.

Fig. 1 Evaluation of the cell embedding space generated by the models. A Overview of the evaluation 
setup. We compare Geneformer and scGPT to scVI, Harmony, and the selection of highly variable genes 
(HVG) on five diverse datasets. B Average BIO score for HVG and embeddings from Harmony, scVI, scGPT, 
and Geneformer. C, D Visualization of the UMAP projections of the Pancreas (16k) dataset using the cell 
embedding space generated by the models. Cells are color-coded by cell type (C) and batch (D). E Average 
batch score for HVG and embeddings from Harmony, scVI, scGPT, and Geneformer. Dashed line in B and E 
signifies the median calculated across the datasets
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Results and discussion
Both scGPT and Geneformer produce cell embeddings intended to project potentially 
noisy gene expression measurements to a more biologically relevant latent space [18–
21], and then these cell embeddings are fine-tuned for cell type classification. However, 
this fine-tuning strategy fails in more exploratory contexts where cell composition in the 
dataset may not be known; in these settings, foundation models must produce robust 
cell embeddings zero-shot. We evaluated the zero-shot performance of scGPT and Gen-
eformer in separating known cell types across multiple datasets (Fig. 1B). Both models 
perform worse than selecting highly variable genes (HVG) and using more established 
methods such as Harmony and scVI in cell type clustering, as measured by average BIO 
(AvgBio) score (Fig. 1B, Additional file 1: Table S1). Taking into account only the aver-
age silhouette width (ASW) metric, the established baselines still outperform scGPT 
and Geneformer (Additional file 2: Fig. S3, Additional file 1: Table S1). scGPT’s perfor-
mance is better on the PBMC (12k) dataset compared to scVI, Harmony, and HVG; but 
it is worse than both scVI and Harmony with respect to AvgBIO score on other datasets 
(Fig. 1B, Additional file 1: Table S1). scGPT is comparable to scVI on the Tabula Sapiens, 
Pancreas, and PBMC (12k) datasets and outperforms Harmony on the Tabula Sapiens 
datasets with respect to ASW score (Additional file 2: Fig. S3, Additional file 1: Table S1). 
Notably, HVG outperforms Geneformer and scGPT across all metrics (Additional file 2: 
Fig. S4, Additional file 1: Tables S1 and S2).

Given variable performance across datasets, we sought to understand whether this 
variability could be explained by potential overlap between the datasets used for evalu-
ation versus for pretraining. We find a partial overlap between the Pancreas dataset and 
the pretraining sets used for Geneformer. Additionally, the Tabula Sapiens and Immune 
datasets were included in the scGPT pretraining dataset (Additional file  1: Table  S3). 
However, scGPT and Geneformer do not consistently outperform baselines on datasets 
already seen during pretraining, and the only dataset not seen during pretraining where 
scGPT outperforms both baselines is the the PBMC 12k study.

Next, to evaluate the impact of the pretraining dataset on zero-shot performance in 
cell type clustering, we tested four different variants of scGPT: randomly initialized 
scGPT, and scGPT pretrained on 814,000 kidney cells (scGPT kidney), on 10.3 million 
blood and bone marrow cells (scGPT blood), and on 33 million non-cancerous human 
cells (scGPT human) (Additional file  2: Fig. S5). We note that the smaller models are 
trained on tissue-specific data, confounding if differences in performance are due to size 
or the composition of dataset. However, at a minimum, scGPT human includes data 
used to pretrain scGPT blood and scGPT kidney. Our analysis indicates that pretrain-
ing provides a clear improvement in cell-type clustering on the PBMC (12k) dataset, and 
that the median score, calculated across datasets, for the three scGPT models is greater 
than that of the random baseline (Additional file 2: Fig. S5, Additional file 1: Table S1). 
We also observe that scGPT human and blood improve over random models for at least 
some datasets where scGPT kidney fails to, including the Immune and Tabula Sapiens 
datasets, suggesting that performance may improve with larger pretraining datasets. 
Surprisingly, scGPT human slightly underperforms scGPT blood, even for datasets 
involving tissue types beyond blood and bone marrow cells (Additional file 2: Fig. S5, 
Additional file 1: Table S4).
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Overall, our findings demonstrate that scGPT and Geneformer in zero-shot configura-
tions perform inconsistently compared to cell embeddings derived from HVG or gen-
erated using scVI or Harmony. Evaluating variants of the scGPT model highlights that 
while pretraining confers some benefit, beyond a certain limit, larger and more diverse 
datasets may no longer confer additional benefits. Additionally, models did not perform 
well on datasets seen during pretraining, indicating an unclear relationship between the 
pretraining objective and cell type clustering.

We next evaluated the zero-shot capabilities of these proposed single-cell foundation 
models in batch integration (Fig. 1C–E), a common task in single-cell analysis where the 
goal is to eliminate batch effects from multiple data sources without removing mean-
ingful biological differences [22–24]. We first visualized the embeddings from scGPT, 
Geneformer, and the other baselines on the Pancreas benchmark dataset, which includes 
data from five different sources [25] (Fig. 1C–D). While Geneformer and scGPT-human 
can integrate different experiments conducted with the same experimental technique, 
they generally fail to correct for batch effects between techniques. Qualitatively, Gen-
eformer’s cell embedding space fails to retain information about cell type, and any clus-
tering is primarily driven by batch effects. While scGPT’s cell embedding space offers 
some separation between cell types, the primary structure in the dimensionality reduc-
tion is still driven by batch effects (Fig.  1C–D). Harmony and scVI largely succeed in 
integrating the Pancreas dataset.

Quantitative evaluation with batch integration metrics revealed that Geneformer 
underperforms relative to scGPT, Harmony, scVI, and HVG across most datasets 
(Fig.  1E). scVI and Harmony both outperform scGPT in datasets where the batch is 
restricted to technical variation (Pancreas and PBMC), but they each are outperformed 
by scGPT on more complex datasets where both technical and biological (i.e., varia-
tion between donors) batch effects are present (Tabula Sapiens and Immune datasets, 
respectively; Fig.  1E, Additional file  2: Fig. S6). We note that both the Immune and 
Tabula Sapiens datasets were used in pretraining scGPT, underscoring a limitation of 
our evaluation—we cannot disentangle if these improvements are potentially because 
these datasets were seen in pretraining. Although the evaluation scores for batch mix-
ing vary—with Harmony ranking last for batch integration but second for principal 
component regression (PCR) score, which is expected given that Harmony adjusts the 
PC embeddings to correct batch effects—Geneformer consistently ranks at the bottom 
across all metrics (Additional file 1: Table S2).

The Tabula Sapiens dataset poses significant challenges for Harmony, particularly in 
terms of PCR scores, while the Immune datasets present similar difficulties for scVI 
(Additional file 2: Fig. S6B). Geneformer’s embeddings across all datasets show a higher 
proportion of variance explained by batch effects compared to the original data, indi-
cating inadequate batch mixing (Additional file 2: Fig. S6B). Consequently, Geneformer 
consistently ranks last in terms of batch mixing scores (Additional file 1: Table S2), high-
lighting its limitations in effectively handling batch effects compared to other models.

Surprisingly, the best batch integration scores for all datasets were achieved by 
selecting HVG (Additional file 1: Table S2). This observation is slightly different than 
our qualitative observations (Fig. 1C–D) and can be explained by differences in our 
ranking metrics being calculated in full, rather than reduced, dimensions (Additional 
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file 2: Fig. S6A, Additional file 1: Table S5.) However, the proposed foundation models 
underperform compared to both the Harmony and scVI in full and reduced dimen-
sions (Additional file 1: Tables S4 and S6).

We propose two hypotheses as to why Geneformer and scGPT underperform zero-
shot compared to the tested baselines. First, it could be that the masked language 
model pretraining framework used by both scGPT and Geneformer does not produce 
useful cell embeddings. Second, it could be that scGPT and Geneformer have failed 
to learn the pretraining task. To understand this distinction, we evaluated the perfor-
mance of these models on the gene expression reconstruction pretraining task (for 
scGPT, the bin value for each gene; for Geneformer, the gene rankings) (Fig. 2, Addi-
tional file 2: Fig. S7).

We find that both models face challenges in reconstructing gene expression (Fig. 2). 
Without conditioning on its cell embedding, scGPT predicts the mean value of the 
input bin across all binned values (Fig.  2A). Predictions improve when conditioned 
on cell embeddings, particularly for higher input values (Fig. 2B). Under its masked 
language modeling (MLM) objective, Geneformer predicts the most likely gene at a 
given position. Although there is good agreement across many genes, there are cases 
in which Geneformer predicts genes absent from the input (Fig. 2C, Additional file 2: 
Fig. S7).

Notably, scGPT without embeddings underperforms against a naive baseline of pre-
dicting the mean, and only marginally improves with the cell embeddings (Fig. 2D). 
Geneformer’s gene ranking exhibits modest correlations with the actual true rank-
ings, with median and best correlations of 0.56 and 0.95, respectively, across datasets 
(Fig. 2E, Additional file 2: Fig. S7).

Fig. 2 Performance comparison of scGPT and Geneformer in gene expression reconstruction. A–C 
Reconstruction of the expression in the Immune (330k) dataset: A scGPT gene expression prediction (GEP) 
under the masked language modeling (MLM) objective. B scGPT gene expression prediction from cell 
embeddings (GEPC). C Geneformer MLM output of the predicted expression ranking (y-axis) versus the true 
input expression ranking (x-axis). D Mean squared error (MSE) comparison for scGPT objectives. Mean and 
standard deviation range are shown as points and solid lines, respectively, and a median MSE for mean-based 
reconstruction is shown as a dashed line. E Pearson’s correlation of input and predicted expression ranking 
for both Geneformer and for average gene rankings. Mean and standard deviation range are shown as points 
and solid lines, respectively, and a median correlation for average ranking is shown as a dashed line
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Conclusions
This work presents an evaluation of two single-cell foundation models, Geneformer 
and scGPT, in zero-shot settings. Our findings indicate that both models, in their 
current form, do not consistently outperform simpler baselines and face challenges 
in dealing with batch effects. This is in spite of these models reporting strong per-
formance when fine-tuned, as exhibited in their original papers, demonstrating that 
zero-shot evaluation can reveal vulnerabilities that are not evident if models are 
exclusively evaluated with fine-tuning.

Our findings raise questions about the general suitability of MLM for learning sin-
gle-cell embeddings. While scGPT does not outperform averaged bin prediction and 
struggles with accurate gene expression prediction in our evaluation datasets, Gen-
eformer shows relative strength in blood datasets but underperforms in others. Addi-
tionally, we demonstrate that larger pretraining datasets do not always increase the 
performance of scGPT, and that datasets seen in pretraining still have poor cell type 
clustering performance. These observations suggest that improved pretraining tasks 
that enhance the representation of genes and gene expression within these models 
might be a viable path for improvement.

Recognizing the rapid advancement of the field, our study adopts a focused 
approach. We concentrated on specific models and selected a limited array of datasets 
that do not exhaustively represent all applications of single-cell analysis (for example, 
our datasets only include transcriptomic data). While a timely benchmark of all pro-
posed single-cell foundation models and applications is not realistic given the fast-
paced nature of the field, the aim of our work is to inform the development of future 
models by showing the importance of zero-shot evaluation.

In fact, some more recent advances occurring at time of our work have already 
sought to address limitations exposed by our analysis, for example, in improving the 
representation of genes by transferring knowledge from proteins [11]. However, in 
many cases methods do not make their pretraining code publicly available [11, 12]. 
Our results should be viewed as an initial exploration, highlighting specific areas for 
improvement and further research. We hope that our work helps shape evaluation 
practices in the emerging intersection of single-cell biology and foundation models.

One limitation of our analyses was that some of our evaluation datasets were used 
in pretraining, confounding our ability to say if performance trends are general or due 
to prior exposure to specific datasets. While this issue can be mitigated for individual 
models with strategies like identifying datasets released after a model was pretrained, 
this strategy may not permit a comparative analysis of older models with newer ones, 
as newer models may also subsume newer data for pretraining. To tackle this, we 
propose the creation of benchmark tasks and datasets reserved exclusively for model 
evaluation that should never be used to pretrain any future model, as has been done 
for large language models (LLMs) [26–29]. These datasets should be a representative 
yet separate subset of the broader available data, ensuring an unbiased and effective 
assessment of model performance. The curation of biologically grounded, standalone 
benchmark datasets would provide a substantial advancement towards more reliable 
and robust evaluation methods.
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Building on the analyses presented in this manuscript, it would be beneficial to further 
explore the specific outputs provided by models like Geneformer and scGPT. Unlike 
traditional methods that output batch-corrected counts, Geneformer outputs rankings, 
and scGPT generates binned counts. Determining how effectively these models adjust 
for batch variations is a challenging yet an important investigation—particularly since 
correlating their batch correction efficacy with performance in downstream applica-
tions, such as perturbation predictions, could provide deeper insights into the practical 
utility of the proposed foundation models.

Another promising avenue for future research on improving these models, closely 
aligned with current trends in the field, is a more in-depth exploration of how they dis-
cern gene-gene interactions. Careful evaluation of this aspect is essential but requires 
thoughtful consideration and ideally should be paired with targeted in vitro lab exper-
iments. These experiments are crucial for establishing a ground truth, which, in turn, 
enables an accurate assessment of the models’ true capabilities in unraveling complex 
biological interactions. A collaborative approach that combines computational evalua-
tion with experimental validation can significantly strengthen and enhance the quality of 
work in designing these models.

Overall, foundation models hold significant promise for automating cell type annota-
tion and gene expression prediction, presenting an opportunity to transform how bio-
logical data is analyzed and interpreted. Beyond technical advancements, these models 
have the potential to democratize scientific research by enabling groups with limited 
computational resources to access advanced analytical tools. The challenges identified 
in this study underscore the necessity of a meticulous evaluation of proposed models in 
zero-shot settings, ensuring that models are not only technically sound but also prac-
tically applicable. We believe that more focused evaluations, particularly in zero-shot 
contexts, will be instrumental to the methodological development and deployment of 
foundation models in single-cell research.

Methods
Models and baselines

We evaluated two proposed foundation models for single-cell transcriptomics: Gene-
former [6] and scGPT [7]. We chose these models because they offer pretrained weights 
and have been trained using unsupervised objectives on extensive datasets (ca. 30M 
single-cell transcriptomes). Several other possible models did not have publicly avail-
able weights at the time of evaluation. Here, we provide an overview of Geneformer and 
scGPT, including their practices for extracting cell embeddings (i.e., latent representa-
tions of single-cells) which we follow for our analyses.

Both models accept single-cell gene expression vectors as input but represent data dif-
ferently. The input to the Geneformer model is a ranked list where a gene’s position rep-
resents its expression relative to the remaining genes in the cell. The model leverages 
a BERT-inspired architecture with 6 Transformer layers, each with 4 attention heads. 
Geneformer is trained using a modification of the masked language modeling (MLM) 
task, where the model is trained to recover randomly selected genes that are masked 
or corrupted. Since genes are ordered by their expression, this effectively predicts gene 
expression relative to other genes. The model outputs gene embeddings, which are 
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subsequently decoded into gene predictions. A cell embedding is calculated by averaging 
over all gene embeddings extracted for that cell. Genefomer was pretrained on 27.4M 
human single-cell transcriptomes (excluding malignant and immortalized cells).

scGPT preprocesses each gene expression vector by independently binning values into 
50 equidistant bins where the lowest bin is the lowest expression and the highest bin 
corresponds to the highest expression. Next, the binned values and the gene tokens (i.e., 
a unique index for each gene) are separately embedded and summed in the embedding 
space—jointly representing the gene and its binned expression. Like Geneformer, scGPT 
uses an MLM task. However, scGPT directly learns a cell embedding, which is integrated 
into its pretraining loss of predicting masked genes: scGPT first predicts a masked gene 
expression bin and a cell embedding from unmasked genes; then, in a second step, it 
further iteratively refines masked gene expression using the cell embedding predicted in 
the first step. This means that scGPT outputs two sets of binned gene predictions in its 
pretraining task, first from unmasked genes alone and second from conditioning on the 
cell embedding. In our effort to understand the generalization of the pretraining objec-
tives, we analyzed both. Finally, compared to Geneformer, scGPT has 3 × the number 
of parameters, using 12 Transformer layers with 8 attention heads. scGPT is available 
in several variants, each pretrained on multiple different datasets. In our analyses, we 
focused on three variants of scGPT pretrained on 814,000 kidney cells (scGPT kidney), 
on 10.3 million blood and bone marrow cells (scGPT blood), and on 33 million non-
cancerous human cells (scGPT human).

For baselines in evaluating cell embeddings, we compared Geneformer and scGPT 
against selecting highly variable genes (HVG). We standardize to 2000 HVG across all 
experiments. In addition, we compared all methods to scVI, a scalable generative model 
[20], and Harmony, a method for adjusting shared embedding space [21], which we 
trained on each individual dataset. While this means that we deploy scGPT and Gen-
eformer zero-shot but train scVI and Harmony on target data, we reason this set-up 
reflects practical settings where resources are often more readily available to train light-
weight models than to fine-tune larger ones. Importantly, both Harmony’s and scVI’s 
design inherently incorporates batch labels in its training process. This aspect of the 
baselines leverages its capability to handle batch effects directly. In contrast, Geneformer 
and scGPT are not explicitly pretrained with batch labels. Instead, they aim to learn to 
mitigate batch effects indirectly through exposure to a vast diversity of cells during their 
pretraining phase. For the evaluation of the pretraining objective, we used the mean esti-
mates or average ranking as a reference.

Datasets

To assess the quality of cell embeddings and performance on batch integration tasks, 
we used five distinct human tissue datasets (Additional file 1: Table S7). These datasets 
include samples from the pancreas [25], two sets of peripheral blood mononuclear cells 
(PBMCs) [30, 31], a cross-tissue immune cell atlas [32], and a multi-organ human cell 
atlas [33]. Each dataset poses unique challenges relevant to single-cell analysis, such as 
the distinction between well-defined and less well-defined cell type clusters, the integra-
tion of different technical batches within the same tissue (Additional file 2: Fig. S2), and 
the unification of data across multiple tissues (Additional file 2: Fig. S1). The overview of 
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the datasets used for pretraining of the models and the datasets used in this manuscript 
are discussed below in Data availability.

Among the selected datasets, the Pancreas dataset partially overlapped with the data 
used to pretrain Geneformer (version with GEO ID: GSE84133 was included in the 
pretraining). We conducted evaluations using both the complete Pancreas dataset and 
its non-overlapping subset. The results were consistent between the two, leading us to 
include the entire Pancreas dataset for simplicity in this evaluation (Additional file  1: 
Tables S1 and S5). The Tabula Sapiens and Immune were included in the CellxGene col-
lection [4] (May 2023 census) used for scGPT pretraining.

Evaluation metrics

In this work, we evaluated the cell embedding space for its ability to separate known 
cell types correctly and to integrate different batches. For our evaluations, we largely fol-
lowed the approach described in Luecken et al. [25] which included selecting the specific 
scores best fitting to the evaluated task (see the description below). We also evaluated 
the performance of the models at the pretraining task by evaluating their reconstruction 
accuracy.

Biological preservation scores

One key aspect of evaluating cell embeddings is the degree to which cell types are dis-
tinct within the embedding space. To assess this, we employ metrics based on Average 
Silhouette Width (ASW) [25] and Average Bio (AvgBIO) scores [7]. Briefly, ASW is com-
puted by taking the difference of the between-cluster and within-cluster distances and 
dividing this by the larger of the two values. ASW is normalized to a range between 0 
and 1, where 0 signifies strong within-cluster cohesion, 0.5 indicates overlapping clus-
ters, and 1 denotes well-separated clusters. Higher ASW indicates better performance in 
separating clusters. AvgBIO is the arithmetic mean of three individual metrics [7]: ASW, 
Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI). NMI and ARI 
are calculated based on Louvain clusters generated directly from the embedding space as 
described in Luecken et al. Briefly, the clustering is calculated across 20 resolutions, the 
resolution for which the clustering reported highest NMI metric is chosen. The cluster-
ing is then generated with the selected resolution and NMI and ARI metrics are then 
reported. AvgBIO is normalized to a unit scale, with higher values indicating better 
alignment between clusters and ground truth labels.

Batch mixing scores

To evaluate the extent of the mixing of the batches, we used a variation of the average 
silhouette score that we call batch integration score (average silhouette width score with 
respect to batch averaged across cell types) and the PCR score (as described in [25]). 
Briefly, silhouette scores are calculated for each cell type with respect to the batch 
label by taking only its absolute value, where a score of 0 is equivalent to absolute mix-
ing and any deviation from 0 indicates the presence of a batch effect. To keep with the 
used convention, the score is then subtracted from 1, resulting in final scores on a scale 
between 0 and 1, where a final score of 0 suggests complete separation of the batches 
and strong batch effect while 1 signifies a perfect batch mixing and integration. The 
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principal component regression (PCR) score compares the proportion of the variance 
that is explained by the batch variable between the original dataset and the embeddings 
of the model. We additionally defined a counterpart to AverageBIO score—the Average 
Batch Score—which is computed as the arithmetic mean between the PCR and batch 
integration scores.

Reconstructing gene expression

In pretraining, both models select a percentage of genes to mask; thus, this evaluation 
required selection of how many genes were masked in an input. To eliminate stochastic-
ity in sampling and to recapitulate the maximally informative setting, we used all genes 
unmasked as input. We evaluated the models on the same datasets as in the cell embed-
ding tasks. To evaluate the performance of scGPT in its pretraining objective, we used 
the mean squared error (MSE), as used by the original authors for the model’s loss [7]. 
To evaluate Geneformer’s performance in its pretraining objective, we measured Pear-
son’s correlation between the true and predicted rankings. For that, we transformed 
ordered outputs into scaled (from 0 to 1) rankings, where the highest expressed genes 
were assigned a rank of 1. Geneformer can output a sequence of up to 2048 genes and, 
when input is passed in batches, the model outputs the sequence of the length equal to 
that of the longest input. In our evaluations, we limit the output sequence to the length 
of the input sequence.
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from HVG or generated using the scVI model. Average BIO score calculated on the highly variable genesof the log 
normalized input data and on the embeddings extracted from scVI, scGPT, and Geneformer models. Median value 
annotated with a dashed line. A higher score indicates better performance in separating clusters. Fig. S4: UMAP pro-
jection of the embeddings improves cell type separation for scVI. Scores used for assessing cell types separation in 
cell embedding space across raw and UMAP projected embeddings. A Average silhouette widthscore, B Normalized 
mutual informationscore, C Adjusted randscore and D Average BIOscore - an average of the other scores. The higher 
the score – the better the performance of the model. Fig. S5: Size of the pretraining dataset correlates with the 
performance at separating the cell types in cell embedding space. Average BIO score calculated on the embeddings 
extracted from selected variations of the scGPT models. The dashed line marks the median score across datasets. Fig. 
S6: UMAP projection of the embeddings results in lower batch integration scores. Scores used for assessing batch 
integration in cell embedding space across raw and UMAP projected embeddings. A Batch integrations score based 
on Average silhouette widthfor batch and label, and B Principal component regressionscore. The higher the score – 
the better the performance of the model. Fig. S7: Performance of the proposed foundation models with respect to 
reconstructed expression binor ranking. The predicted bins as a function of input bins for scGPT GEP, scGPT GEPCand 

https://doi.org/10.1186/s13059-025-03574-x
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the agreement between input and output rankings for Geneformerfor A Pancreas, B PBMC, C PBMCD ImmuneE 
Tabula Sapiensdatasets shown. Fig. S8: Pearson’s correlation of input and Geneformer’s predicted expression rankings 
with respect to fraction of masked input tokens. Shown here are results for Pancreasand PBMCdatasets. Fig. S9: Pear-
son’s correlation of input and Geneformer’s predicted expression rankings with respect to fraction of masked input 
tokens. Shown here are results for PBMC, Immuneand Tabula Sapiensdatasets.

Additional file 3: Review history.
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