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Abstract 

Computational methods for assessing the likely impacts of mutations, known as variant 
effect predictors (VEPs), are widely used in the assessment and interpretation of human 
genetic variation, as well as in other applications like protein engineering. Many dif‑
ferent VEPs have been released, and there is tremendous variability in their underlying 
algorithms, outputs, and the ways in which the methodologies and predictions are 
shared. This leads to considerable difficulties for users trying to navigate the selection 
and application of VEPs. Here, to address these issues, we provide guidelines and rec‑
ommendations for the release of novel VEPs.

Background
Many different computational methods, known as variant effect predictors (VEPs), 
have been developed to assess the likely impacts of genetic variants [1–3]. These tools 
are often applied in the analysis and interpretation of human genetic variation, but also 
show considerable utility in other applications, such as evolutionary analyses [4, 5] and 
protein engineering [6, 7].

VEPs vary widely in their algorithms, training data, prediction interpretation, output 
format, and accessibility. Despite progress in the field, this diversity complicates end 
users’ ability to select the most suitable VEP and poses challenges for unbiased assess-
ment, as new predictors often claim superiority over others [8]. Recent efforts have 
focused on independent benchmarking [9–12], but the sheer number of methods, their 
inconsistent naming (e.g., predictors of “variant effect,” “variant impact,” “functional 
effect,” “deleteriousness,” “pathogenicity,” or “mutational impact”), and the effort required 
to access predictions hinder identification and evaluation. Fair assessment also demands 
clear knowledge of training data, which is often poorly detailed in publications.
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The Atlas of Variant Effects (AVE) Alliance coordinates researchers from around 
the world seeking to create comprehensive variant effect maps [13]. The AVE “Analy-
sis, Modeling, and Prediction” workstream focuses specifically on computational meth-
ods for variant effect prediction and the analysis of multiplexed assays of variant effect 
(MAVE) data. Drawing on our experience with variant analysis tools, here we provide 
guidelines and recommendations that we believe should be considered when releasing a 
novel VEP, focusing primarily on tools that score pathogenicity or fitness (Fig. 1). How-
ever, most of our recommendations will remain applicable to tools for predicting other 
aspects of variant effects, like splicing [14], or changes in biophysical properties (e.g., 
protein stability [15], binding affinity [16], and aggregation propensity [17]). While some 
of our advice is specific to predictors of protein variant effects, we also discuss issues 
relating to nucleotide-level and non-coding predictors.

We hope that these guidelines will improve the evaluation of novel methods and 
facilitate their seamless incorporation into existing analysis pipelines. Furthermore, 
we believe that this will contribute to the broader adoption and utilization of VEPs 
within the scientific community, thereby accelerating our understanding of genetics and 
improving patient care. Ultimately, our goal is to support the creation of tools that are 
both scientifically rigorous and widely accessible, paving the way for advances in person-
alized medicine and genetic research.

Results
Sharing of methods and code

While many users focus solely on VEP outputs (variant effect scores), making the 
methods themselves available is essential. This allows novel variants to be tested and 

Fig. 1 Overview of variant effect predictors, including common inputs and outputs, and guidelines for 
development and release
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for methods to be more comprehensively evaluated. We strongly suggest that vari-
ant effect prediction methods be made freely available and open source, with a clear 
Open Source Initiative (https:// opens ource. org) approved license. By making VEP 
methods and their corresponding codebases accessible and clearly documented, 
developers empower researchers across the globe to contribute to the evolution of 
these tools, enhancing their accuracy, efficiency, and utility. Importantly, this includes 
not only the final trained models but also the data pre-processing scripts, ensuring 
full transparency in dataset construction and model development. Providing these 
resources enables precise replication of results, facilitates improvements to existing 
methods, and avoids issues where key methodological details remain undisclosed. 
Sharing pre-processing scripts is also critical for detecting and preventing data leak-
age, for example, through unintentional duplication, use of proxy labels, or inclusion 
of information not available at prediction time. Finally, making code available could 
enable the calculation of scores using, for example, different reference genomes or 
trained using variants from different populations, with potential importance in health 
equity [18, 19].

In addition to code, providing the names and values of the input features used in pre-
dictions would significantly enhance transparency. Where applicable, authors should 
also report feature importance, for example, by assessing the impact of feature randomi-
zation on model performance, as extracting meaningful relative weights from complex 
models such as neural networks is typically not feasible. This approach could also reduce 
the risk of double counting evidence when applying ACMG/AMP guidelines for variant 
classification.

In the past, many VEP methodologies have been made available as web servers, 
through which individual variants can be queried. While this can be convenient for end 
users who are interested in small numbers of variants, making a method available only as 
a web server severely limits the potential for a method to be independently assessed. At 
the very least, web servers should offer an application programming interface (API) for 
bulk queries, if a pre-calculated download is not an option. Concerningly, we have found 
many examples of such online predictors disappearing from the web after only a few 
years, undermining their long-term utility.

Hosting the code for a VEP on a public, open-source platform like GitHub (https:// 
github. com) or Huggingface (https:// huggi ngface. co) provides high levels of visibility, 
version control, and the opportunity to integrate documentation. Repositories such as 
Kipoi [20] are also useful for depositing models, facilitating broader access to the neces-
sary tools for exact replication of model predictions. Releasing models with their trained 
parameters is crucial for reproducibility and utility. This practice addresses the inherent 
stochasticity in training machine learning models, ensuring that the reproducibility of 
a VEP is not compromised. Releases should also be stably archived, ensuring reproduc-
ibility even when the model is updated. A containerized version of the method, utilizing 
platforms such as Docker (https:// www. docker. com) or Apptainer (formerly known as 
Singularity, https:// appta iner. org), can also be very useful, especially for cross-platform 
analysis or where installation poses challenges. These tools encapsulate the method and 
its dependencies in a container, ensuring that it can be run seamlessly across different 
computing environments.

https://opensource.org
https://github.com
https://github.com
https://huggingface.co
https://www.docker.com
https://apptainer.org
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It is also important to clearly document the methodology underlying a novel VEP. This 
should include a list of all the features included in the final model with links to sources 
and code or replicable methodology that can be used to engineer these features if nec-
essary. For methods utilizing macromolecular structures, the source of these should 
be clearly identified. Ideally, whenever licensing permits, providing direct access to 
source files ensures reliability and reproducibility by avoiding dependence on external 
databases.

In addition to making VEP methodologies and resources transparently available, it is 
helpful to communicate the computational cost and runtime associated with these tools. 
This is particularly relevant for GPU-based models, where memory constraints may 
limit scalability. Developers should report memory usage and inference time, and where 
possible, indicate how performance scales with protein length (e.g., using Big O nota-
tion) to help users assess feasibility on their available hardware. A VEP capable of run-
ning genome-wide analyses on a standard laptop offers different possibilities compared 
to one requiring substantial computational resources for only a few protein assessments. 
This distinction not only impacts the practicality of the tool for various research applica-
tions, but also raises important considerations regarding energy consumption and sus-
tainability [21].

Interpretability of variant effect scores

The outputs produced by different VEPs can vary widely. For tools that predict effects on 
specific biophysical properties like stability or interactions, the meaning of the outputs is 
often very clear (e.g., predicted ΔΔG in units of kcal/mol). However, most VEPs provide 
a variant effect score that may be interpreted as being related to the likelihood of a given 
variant being pathogenic, or damaging to function or fitness. Importantly, variant effect 
scores very rarely indicate whether a variant disrupts or enhances a function [22], which 
can have clinical implications in genes where loss-of-function and gain-of-function vari-
ants cause different diseases [23], and because gain-of-function variants tend to be pre-
dicted less well by most VEPs [24]. Therefore, we encourage future methods to focus 
more on predicting mechanisms and inheritance.

The interpretation of variant effect scores is often difficult and the scales can vary 
widely. The most common scale ranges from zero, least damaging, to one, most damag-
ing. However, we note that this directionality is opposite to what is commonly used for 
the outputs of MAVE experiments, in which a value of one often represents wild-type 
fitness and zero corresponds to the fitness of a null (e.g., nonsense) variant [25]. While, 
ideally, VEPs and MAVEs would be calibrated to similar scales, we suggest that creators 
of new VEPs consider adopting zero-to-one scales of least-to-most damaging, so long as 
this does not obfuscate the interpretation of the variant effect score. This matches the 
most common convention and aligns with the directionality used by the large majority 
of current methods.

It is important to include an explanation of how scores can be compared. For many 
methods, variant effect scores can be compared across genes (e.g., two different variants 
with the same score from two different genes would be considered equivalent in terms 
of their likelihood of being pathogenic). However, for others, the scales are defined at the 
level of individual genes, and scores for variants from different genes are not necessarily 
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comparable. For example, DeepSequence models are generated on a per-protein basis, 
with the scores representing the likelihood ratio between mutant and wild-type residues 
[26]; thus, scores from different proteins are not directly comparable.

Some methods provide labels along with variant effect scores. These are often desired 
by end users, but also come with a risk of overinterpretation. The rationale and thresh-
olds must be clearly explained and justified, and care should be taken about the choice 
of labels. For example, AlphaMissense classifies many possible human variants as 
“likely pathogenic” and “likely benign” [27]. However, there already exist very clear clini-
cal definitions of these terms that are completely distinct from the definitions used by 
AlphaMissense [28, 29]. This has considerable potential to confuse end users, who may 
include patients or patient families. If labels are to be provided alongside variant effect 
scores, we suggest that terms that are distinct from the clinical classifications be used. 
For example, the widely used PolyPhen- 2 predictor defines thresholds for “possibly 
damaging” and “probably damaging” [30]; these terms should have a much lower chance 
of confusion with the well-established clinical classifications. An alternative could be 
to use the Sequence Ontology terms “functional_normal” and “functionally_abnormal” 
[31], which could be particularly relevant as more mechanism-centric predictive meth-
ods are introduced.

One emerging strategy for facilitating the use of VEP scores as evidence in clinical 
variant interpretation is through calibration to ACMG evidence strength levels [32, 33]. 
Importantly, however, even after using a well-validated calibration, references to path-
ogenicity should only describe scores as evidence towards pathogenicity or benignity, 
rather than defining variants as such.

Accessibility of predictions

The success of a VEP is intricately linked to the availability of its outputs. The free and 
unrestricted availability of these scores is essential for the method to be widely used. 
Ensuring that these data are not only available but Findable, Accessible, Interoper-
able, and Reusable aligns with the FAIR Guiding Principles for scientific data manage-
ment [34]. Adhering to FAIR principles in disseminating variant effect scores facilitates 
broader participation in genomic research, enhances the reproducibility of scientific 
findings, and accelerates the translation of genomic data into actionable clinical insights.

Unfortunately, certain methods impose restrictive licensing terms on their predic-
tions, hindering independent performance assessments and, consequently, limiting 
user confidence and impeding integration into clinical variant assessment frameworks. 
We therefore advocate for freely available data to enable scientific discovery and clini-
cal decision-making. The argument has been made against making variant effect scores 
freely available to avoid their incorporation into other predictors and thus confounding 
performance assessment [35]. While there are potential complications arising from such 
approaches, we believe that the issue of restricted data preventing the very assessments 
needed to address potential confounding effects is far more concerning, and that such 
closed methods can never receive the open, independent assessments needed to be con-
sidered trustworthy by the community.

The methodology behind a VEP dictates the most appropriate format for sharing 
its predictions. For many currently available VEPs, predictions are performed at the 
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protein level. Thus, scores should be provided with respect to the appropriate reference 
sequence against which the prediction was performed. In our experience, most protein-
level VEPs output predictions using canonical UniProt protein sequences. Going for-
ward, we recommend that developers utilize transcripts recommended by the Matched 
Annotation from NCBI and EMBL-EBI (MANE) collaboration [36]. The MANE Select 
transcript set includes a default recommended transcript for nearly all protein coding 
genes and matches the UniProt canonical isoform in the vast majority of cases. In addi-
tion, the MANE Plus Clinical transcripts are defined for the relatively small number of 
genes where a single transcript is not sufficient to report all clinically relevant variants. 
Therefore, we suggest that, for protein-centric methods, variant effect scores ideally be 
provided for all possible single amino acid substitutions across all protein sequences 
corresponding to MANE Select and MANE Plus Clinical transcripts. However, we rec-
ognize that this is not always computationally feasible. In these cases, we suggest that 
predictions be provided for as many human proteins as possible, focusing on those of 
greatest clinical relevance (e.g., genes included in the Gene Curation Coalition database 
[37] or the ACMG secondary findings list [38, 39]), and those for which MAVE datasets 
have been published, enabling MAVE-based benchmarking.

Other VEPs make predictions at the nucleotide level. The further advancement of 
such methods is critical to interpreting the vast majority of human genetic variation that 
occurs in non-coding regions [40]. For methods that make predictions outside of exonic 
regions, variant effect scores should be shared using genomic coordinates based on a 
specific, versioned reference genome assembly.

In some cases, protein-based methods have their predictions shared in terms of 
genomic coordinates. While this has some advantages in terms of incorporation into 
genomic analysis pipelines, we suggest that, if predictions are made at the protein level, 
then predictions should also be provided at the level of the same protein sequences. In 
addition, most single amino acid substitutions cannot be achieved by single nucleotide 
changes, thus losing some information if only nucleotide-level predictions are provided. 
While this has no impact on analyses of single nucleotide variants, there are many exam-
ples of pathogenic single amino acid substitutions caused by multi-nucleotide changes. 
These substitutions may also be of interest for other reasons, such as comparison to 
MAVEs or for protein engineering applications. Separate tools, such as the Ensembl 
Variant Effect Predictor [41], or the Ensembl REST API [42] and EMBL-EBI Proteins 
API [43], can be used to map protein-level variants to genomic coordinates, if necessary. 
Additionally, tools like ProtVar provide dedicated functionality for mapping genomic 
variants in coding regions directly to their corresponding changes in the UniProt pri-
mary isoform [44]. When predictions are performed or provided at the nucleotide level, 
but analyses are at the protein level, there may be ambiguity when different variant effect 
scores are provided for different single nucleotide variants that translate into the same 
amino acid change. We suggest reporting the most deleterious score, in addition to also 
sharing the nucleotide-level predictions.

Some VEPs are able to make predictions for variants other than single amino acid or 
single nucleotide substitutions. At the protein level, it may be possible to provide com-
prehensive predictions across the human proteome for truncations and for single amino 
acid insertions and deletions. However, it would be unrealistic to provide predictions 
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for all possible variants when considering larger sequence changes involving indels and 
multi-amino acid substitutions. Similarly, for nucleotide-level predictors, it may be 
infeasible to provide complete predictions for anything other than single nucleotide vari-
ants for a limited subset of the genome. In these cases, the availability of the method for 
users to run specific predictions of interest is absolutely essential. In addition, predic-
tions could be specifically provided for larger sequence variants known to be pathogenic 
[45] or present in the human population [46].

When sharing variant effect scores for single amino acid substitutions mapped to a 
clearly defined reference sequence (e.g., a MANE transcript or UniProt ID), a simple for-
mat like “P316D” may suffice for convenience in computational contexts. However, we 
strongly recommend using the Human Genome Variation Society (HGVS) notation [47] 
(e.g., p.Pro316 Asp) as the standard, as it minimizes ambiguity—particularly in multi-
gene or clinical settings where isoforms, numbering discrepancies, or nucleotide-level 
confusion could arise—and better supports complex variants like indels. For larger and 
more complex variants, we recommend considering the Global Alliance for Genom-
ics and Health (GA4GH) Variation Representation Specification (VRS) [48]. Addition-
ally, providing ClinGen Allele Registry IDs [49] alongside these notations can further 
enhance variant identification and interoperability with clinical and research databases.

Although most of the current interest in VEPs is focused on human genetic variation, 
and many VEPs have been developed that only provide predictions for human variants, 
some VEPs, particularly those based on unsupervised learning approaches, are applica-
ble to variants from any species. While it is clearly not realistic to provide predictions 
for all variants across all species, we suggest that, in addition to predictions across the 
human proteome, variant effect scores be provided for any variants present in MaveDB 
[50] and/or ProteinGym [51] to facilitate independent benchmarking and analysis.

For sharing variant effect scores and other essential data, we strongly recommend dep-
osition in a well-established public repository that provides a DOI for reference, such 
as Zenodo (https:// zenodo. org), Dryad (https:// datad ryad. org), or the Open Science 
Framework (https:// osf. io), rather than hosting them on the authors’ website. This prac-
tice not only ensures the long-term availability and utility of the data but also helps its 
distribution, since many of these repositories have an API that allows fast programmatic 
access to data.

Availability of training data

Most VEPs that have been developed to date are based on supervised learning strategies 
based on training against labeled datasets of variants, usually split into pathogenic and 
benign, sourced from databases like ClinVar [45] and gnomAD [46]. A critical issue in 
the field of variant effect prediction is that of data circularity, whereby the performance 
of VEPs is evaluated using either variants that were directly or indirectly used in train-
ing, thus inflating apparent performance [52]. Therefore, the performance of different 
VEPs is heavily influenced by the test datasets, and many tools perform markedly worse 
when applied to novel missense variants [10]. This includes biases in databases like Clin-
Var, where labels may be influenced by predictions from existing VEPs, further compli-
cating fair evaluation [52].

https://zenodo.org
https://datadryad.org
https://osf.io
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To address this problem, recent studies have used correlations with independent 
MAVE datasets to compare VEP performance [9, 11, 51]. While this can be useful to 
compare different VEPs, it is worth noting that MAVEs do not always probe func-
tions that are central to the development of disease or use a disease-relevant tissue 
context. If a more traditional assessment of discrimination between pathogenic and 
benign variants is desired, it is essential to ensure that none of the variants used in 
VEP training, or other variants at the same positions, is present in the evaluation set, 
to avoid confounding from type 1 (variant-level) circularity [52, 53]. Moreover, given 
the issues associated with type 2 (gene-level) circularity, where a model trained on 
variants from specific genes may exhibit inflated performance by leveraging learned 
associations between those genes and pathogenicity when tested on different variants 
from the same or homologous genes, it would be safest to exclude from evaluation 
any variants from genes used in training of the VEP, or even genes homologous to any 
genes used in training. Alternatively, type 2 circularity can be avoided by assessing 
performance only at the level of individual genes [53], or by using the same balance 
between pathogenic and benign variants across all genes in the test set [54].

Given these issues, it is crucial for the integrity and transparency of a VEP that all 
variants employed in its training are disclosed upon release. Ideally, these should be 
shared in the same format as the variant effect scores themselves, rather than merely 
referencing the databases, due to the dynamic nature of these resources and the 
potential variability in mapping methods to different sequence identifiers. In  situa-
tions where controlled access datasets are used and a comprehensive list of train-
ing variants cannot be openly shared, it becomes imperative to explicitly detail the 
version of the dataset, along with the processing and filtering methods applied. This 
ensures that, despite the restrictions, the original training set can be accurately recon-
structed by others. For this reason, we strongly advise against using any private or 
commercial datasets for training if the variants cannot be fully disclosed.

Difficulties associated with circularity can become particularly acute with ensemble 
or meta-predictors, which use the outputs of other VEPs as features in their training. 
If other supervised models are used as features, then the identities of the variants 
used to train those models are required for fair assessment.

Some VEPs have been released that do not train on pathogenic variants, but do 
contain information on the allele frequencies of variants present in the human popu-
lation, or their frequencies in primate species [27, 55]. It is essential that the identi-
ties of these variants or their mapped human variants be provided. We emphasize 
that such VEPs face the same issues of circularity in performance evaluation as other 
supervised VEPs. In particular, allele frequency is very commonly used as evidence 
in the classification of variants as benign [29]. Thus, when assessing discrimination 
between pathogenic and benign variants, a VEP that is trained or tuned using allele 
frequencies will have effectively been exposed to much of the benign dataset, which 
can inflate apparent performance [56].

An important application of VEPs is in the interpretation of extremely rare vari-
ants. As it has been shown that common benign variants are not representative of 
rare benign variants [57, 58], users may wish to choose VEPs that perform well on 
test sets of exclusively rare variants. Hence, those training VEPs may wish to consider 
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excluding common benign variants from their training sets or downweighting their 
influence.

Some VEPs now use MAVE data in their training [58–60]. This introduces new cir-
cularity issues and can confound MAVE-based benchmarking if the datasets used for 
training are not excluded. As long as the MAVE datasets are present in MaveDB or a 
benchmark such as ProteinGym, it should be sufficient to cite their accession if used in 
training. In the event that MAVE data are hosted at a location that may become unavail-
able (e.g., on a group’s website), then all variants used for training should be provided, 
similarly to database-sourced training variants.

There are unique issues associated with VEPs that work on the nucleotide level and are 
focused on predicting non-coding variant effects. It is crucial for these models to spec-
ify the resolution used in training, the genomic regions used (e.g., whole genome, pro-
moters, or UTRs), and the molecular/evolutionary modalities considered. These details 
directly influence how the effects of variants are interpreted and delineate the scope of 
sequences for which the model can accurately provide predictions.

Increasingly, many VEPs are based upon unsupervised approaches, often taking mul-
tiple sequence alignments as input [61, 62]. Although it has not been common practice 
in the past, we suggest that it is important to make the sequence alignments underlying 
these models available, along with careful documentation of how the alignments were 
generated. This would allow assessment of the extent to which the alignment depth and 
quality influence prediction performance. Furthermore, non-human variants, especially 
from primates, have occasionally been used as “benign” variants for VEP evaluation. This 
could lead to another level of circularity, if these non-human species have been included 
in the sequence alignment. Thus, the availability of sequence alignments and knowledge 
of the species on which the model is based can be crucial.

The other increasingly popular unsupervised approach, protein language models, are 
trained directly on protein sequence information and do not require alignment genera-
tion for prediction [63]. While the identity of the databases used to train such models 
is often provided, model-specific clustering and filtering procedures can obfuscate the 
exact sequences that were used during training. We suggest that authors of language 
models and similar methods provide both the database version and all sequence identi-
fiers that went into training the final version of the model.

A list of currently available variant effect predictors

To increase the visibility and discoverability of new VEPs, we have compiled an extensive 
list of tools at https:// www. varia nteff ect. org/ veps. This includes classifications in terms 
of their underlying methodologies and features. We also include details on the author-
recommended pathogenicity prediction thresholds and links to their web servers, vari-
ant effect scores, training data, and code downloads. A current snapshot of our VEP list 
is provided as Table  S1. While this list is not yet fully comprehensive, given the huge 
number of tools that have been published, we are actively adding new methods as we 
identify them, and we strongly encourage submissions of new methods to be included, 
or updates of old methods, using the web form available at that site. We also recommend 
the Variant Impact Predictors Database (VIPdb) as a resource for discovering VEPs and 
related tools [64].

https://www.varianteffect.org/veps
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Conclusions
The guidelines presented here aim to streamline VEP development, sharing, and evalu-
ation by tackling data availability, interpretability, transparency, and circularity. Advo-
cating for freely shared variant effect scores, open-source methods and code, and strict 
training data standards, we seek to boost VEP reliability, usability, and integrity. Promot-
ing best practices in sharing predictions and methodologies aids independent assess-
ment, clinical integration, collaboration, and innovation. As VEPs advance, they will 
likely gain greater weight in clinical variant interpretation, either alone [33] or in com-
bination with increasingly available MAVE data [65]. Adhering to these guidelines will 
enhance personalized medicine and genetic disease understanding, aligning with calls 
for standardized, rigorous VEP practices in genomic medicine [22].
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