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Abstract 

Normalization of spatial transcriptomics data is challenging due to spatial associa-
tion between region-specific library size and biology. We develop SpaNorm, the first 
spatially-aware normalization method that concurrently models library size effects 
and the underlying biology, segregates these effects, and thereby removes library 
size effects without removing biological information. Using 27 tissue samples from 6 
datasets spanning 4 technological platforms, SpaNorm outperforms commonly used 
single-cell normalization approaches while retaining spatial domain information 
and detecting spatially variable genes. SpaNorm is versatile and works equally well 
for multicellular and subcellular spatial transcriptomics data with relatively robust per-
formance under different segmentation methods.

Background
Advances in spatial profiling technology have transformed our comprehension of mul-
ticellular biological systems. The emergence of both spot-based spatial transcriptomics 
technologies (ST) such as 10x Genomics Visium [1] as well as subcellular spatial tran-
scriptomics (SST) technologies, such as 10x Genomics Xenium [2], NanoString CosMx 
[3], BGI Stereo-seq [4], and Vizgen MERSCOPE [5], holds the promise to address pre-
viously inaccessible biological questions and enhance our understanding of intercel-
lular communication by preserving tissue architecture. While these innovative spatial 
transcriptomics technologies offer the potential to uncover new insights into regional 
variations in cell density and composition, the challenge of effectively removing varying 
library sizes across regions (Fig. 1A and B) hinders our ability to detect spatial variation 
signals from the data. This can potentially impact downstream analyses such as cluster-
ing, regional segmentation, and identification of spatially variable genes (SVGs).

Currently, the removal of library size effects from spatial transcriptomics data is 
under debate. Those in favor would argue that total molecule counts represent technical 
unwanted variation from imperfect molecules capture and would typically use methods 

Agus Salim and Dharmesh D. 
Bhuva are joint first authors.

*Correspondence:   
salim.a@unimelb.edu.au; 
d.bhuva@uq.edu.au

1 Melbourne School 
of Population and Global Health, 
The University of Melbourne, 
Melbourne 3010, VIC, Australia
7 Frazer Institute, 
Faculty of Medicine, The 
University of Queensland, 
Woolloongabba 4102, QLD, 
Australia
Full list of author information is 
available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-025-03565-y&domain=pdf


Page 2 of 17Salim et al. Genome Biology          (2025) 26:109 

originally developed for single-cell RNA-seq (scRNA-seq) data [6–8] that ignore the spa-
tial information. Many of these library size normalization approaches use global scaling 
factors and may suffer when the data are confounded by spatial region-specific library 
size biases. In particular, these normalization methods tend to remove signals associated 
with the spatial domain (Fig. 1C) and have led to arguments that library size normaliza-
tion should not be performed prior to downstream analyses [9] or at least prior to spatial 
domain identification unless addressed using methods that take spatial information into 
account [10]. To this end, there is a need for normalization techniques that leverage spa-
tial information to eliminate this region-specific library size bias while retaining biologi-
cal signals for downstream analyses as effective library size normalization can improve 
spatial domain identification and other downstream analyses.

Here, we develop SpaNorm, a normalization method that utilizes spatial informa-
tion and gene expression simultaneously, allowing optimal identification of spatial 
domains (Fig. 1D) and SVGs. We achieve this through three key innovations: (1) opti-
mally decomposing spatially-smooth variation into library size associated and library 
size independent variation via generalized linear model (GLM); (2) computing spatially 
smooth location- and gene-specific scaling factors; and (3) using percentile-invariant 
adjusted counts (PAC) [11] as normalized data for downstream analyses. Figure 1E pro-
vides a detailed overview of the SpaNorm approach.

Results
Library size effects are region‑specific in spatial transcriptomics data

We first establish evidence that library size effects vary across spatial domains. Com-
paring models with global and region-specific library size effects, we estimate the pro-
portion of genes that exhibit spatial variations in their library size effects (see Methods 
section). From Fig. 2A, we can infer that the proportion of genes with region-specific 

Fig. 1  A Spatial regions in STOmics Human Brain Dataset. B Library size distribution differs across regions, 
with the white matter region (pink) having lower library size compared to other regions such as the cortex 
(dark greens) and the hippocampus (bright green). C UMAP of sctransform adjusted data showing clear 
separation of spatial regions. D UMAP of SpaNorm adjusted data showing less distinct separation of spatial 
regions. E SpaNorm workflow: SpaNorm takes the gene expression data and spatial coordinates as inputs. 
Using genewise negative binomial (NB) model, SpaNorm decomposes spatially-smooth variations into those 
unrelated to library size (LS), representing the underlying true biology and those related to libray size. The 
adjusted data is then produced by keeping only the variation unrelated to library size
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library size effects varies from around 25% to almost 100% across datasets. Overall, 
Xenium and STOmics datasets have the highest proportion of genes with region-specific 
effects, followed by CosMx dataset, and finally the Visium dataset. To demonstrate that 
these results are not due to our manual region annotations, we performed a sensitivity 
analysis where each dataset was split into rectangular grids and estimated the propor-
tion of genes that exhibit grid-specific library size effects. For the majority of the data-
sets, the results show an even higher proportion of genes that exhibit variation in their 
library size effects under the grid-based method (Additional file 1: Fig. S1).

SpaNorm preserves spatial domain signals

Next, we examine how the spatially-dependent library size effects (scaling factor) in 
SpaNorm can improve downstream analyses. For this purpose, we first compared 
SpaNorm to other normalization methods in terms of their ability to retain spatial 
domain information. We use the ratio of between-region to within-region variations to 
measure the strength of signals associated with the spatial domain in each gene. Com-
paring these ratios for the raw and differently normalized data (Additional file  1: Fig. 
S2), we found that SpaNorm retains the most signal (higher ratio), followed by scran and 

Fig. 2  A Estimated proportion of genes with region-specific library size effects. On average, CosMx and 
STOmics datasets have the highest proportion of genes exhibiting region-specific effects, followed by 
Xenium. Visium datasets have the lowest proportion. B Adjusted Rand Index of clusters identified using 
differently normalized data vs annotated spatial regions. Boxplots show the summary by platform. The 
colored bars above each group of boxplots indicate the best-performing method for each dataset that makes 
up the group, based on maximum (darker-shade) and median (lighter-shade) statistics
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RUV-III-NB while sctransform and Giotto retain the least. Giotto particularly retains 
less signal for the Xenium datasets (Mouse Brain, ILC, and IDC).

Clustering has been used as one of the main tools to identify distinct spatial regions. 
To examine how better retention of spatial domain signals translates into improved 
identification of spatial regions, we benchmarked SpaNorm against several alternative 
normalization methods using our previously established benchmark [10]. Three clus-
tering methods: graph-based, SpaGCN, and BayesSpace, were applied using a range of 
parameter settings (see Methods). Figure  2B shows that single-cell RNA-seq inspired 
graph-based methods that use expression data alone have lower clustering accuracy 
across all platforms compared to the spatially-aware methods BayesSpace and SpaGCN. 
Furthermore, with graph-based clustering, the choice of normalization method has little 
impact on clustering accuracy, with the exception of sctransform where lower perfor-
mance is observed in the Mouse brain STOmics, Human DLPFC Visium, and Human 
NSCLC CosMx data.

Among the two spatially-aware clustering methods evaluated, BayesSpace produced 
significantly better clustering in 15 samples compared to SpaGCN which produced the 
best clustering in 6 samples. Across the different clustering methods, we observe that 
SpaNorm has the best performance (measured using maximum ARI) for 9 of the 25 
samples, followed by a standard library size (LS) normalization which works best for 7 
samples (Addtional file 1: Table  S1). However, of these 7 samples, 6 were 10x Visium 
samples showing that standard library size normalization (LS) is not effective in normal-
izing sub-cellular resolution datasets. On the other hand, SpaNorm had balanced per-
formance across technologies and clustering algorithms (Fig. 2B, Additional file 1: Fig. 
S3).

As K, which controls the complexity of the splines, is a key parameter of SpaNorm, 
we separately evaluated the performance of SpaNorm upon varying K. As BayesSpace 
outperformed all other methods in clustering, we performed the benchmark using 
BayesSpace alone. The results showed that increasing K is beneficial but only up to a cer-
tain point, beyond which the benefits of smoothness begin to be lost (Additional file 1: 
Fig. S4). This is particularly clear for the CosMx samples where the best clustering is 
achieved when K = 12 and is poorer with smaller or larger values.

Finally, as expected, not normalizing the data (none) never produces the best cluster-
ing (Additional file 1: Table S1) and is rarely the best even in combination with specific 
clustering algorithms. This results highlights the need for appropriate library size nor-
malization for downstream analyses of spatial transcriptomics data.

SpaNorm improves SVG detection and concordance

Beyond spatial domain identification, we show the benefits of SpaNorm normaliza-
tion in consistently detecting SVGs. We demonstrate performance using simulated 
datasets where the true SVGs are known, and using serial replicates from real world 
datasets where SVGs identified should be consistent. For the former experiment, we 
generated realistic simulated CosMx, Visium, and Xenium datasets using scDesign3 
[12] where 100 genes were designated as true SVGs. Additional file 1: Fig. S5 shows 
that among the top 100 SVGs identified, SpaNorm consistently calls the highest or 
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joint highest proportion of true SVGs correctly, which also means that SpaNorm con-
trols false discoveries among top 100 SVGs better than other methods.

SpaNorm is also better at detecting true SVGs in real datasets. Figure 3B and Addi-
tional file 1: Figs. S6–S7 show the expression of six true SVGs from Xenium Mouse 
Brain datasets [13]. While Giotto and no Normalization produce stronger signals for 
general neuronal subtype markers that distinguish granule neurons in the dentate 
gyrus (Prox1) from pyramidal neurons in CA1–3 (Neurod6) [14], SpaNorm produces 
stronger signals for detecting specific markers of pyramidalneurons in different CA 
regions, namely Wfs1 in CA1 region, Necab2 in CA2 region, and Slit2 in CA3 region 
(Fig. 3C).

Compared to raw data, normalization also produces a more meaningful SVG rank-
ing. Figure 4 shows that for multicellular data, normalization does not result in higher 
concordance (Fig.  4A) and higher average relative ranking (Fig.  4B) for these genes 
compared to other genes, indicating the strong influence of library size effects on SVG 
signals of unnormalized data. Under the other methods, the concordance and average 
relative ranking of the stably expressed genes are lower than the other genes, which 
is expected given that these genes are unlikely to exhibit spatially variable expression. 
Overall, for multicellular data, RUV-III-NB and sctransform have lower concordance 
for both sets of genes. For subcellular data, the difference between no Normaliza-
tion and the other methods is less striking. However, we still we observed the stably 
expressed genes exhibiting higher concordance under no Normalization (CosMx rep-
licate) and higher average relative ranking (Human BRCA Xenium replicate). A closer 
look at the SVG statistic also shows that the signals for these stably expressed genes 
are much stronger in the raw data (see Additional file 1: Fig. S8), suggesting that the 
top SVGs from the unnormalized data reflect stronger library size effects.

Fig. 3  A Sub-structures of the mouse hippocampus. B Expression of 5 spatially variable genes (SVGs) in 
Xenium Mouse Brain dataset (replicate 1) under differently normalized data. Prox1 differentiates the dentate 
gyrus (DG-sg) from pyramidal layers in CA1–3 (Neurod6). Wfs1, Necab2, and Slit2 are enriched in CA1-sp, 
CA2-sp, and CA3-sp regions, respectively. C t-statistic from three replicates for comparing expression inside vs 
outside the regions. Higher statistic means stronger spatial signals
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SpaNorm enhances biological signals from lowly expressed genes

Lower library sizes due to technical effects can make it difficult to detect marker genes 
that are essential for identifying spatial domains. Though library size normalization can 
adjust these effects, lowly expressed genes are still difficult to detect. MOBP is one such 
marker gene that marks oligodendrocytes that are enriched in the white matter of the 
human brain (Fig.  5A) [15]. When analyzing the 10x Visium human DLPFC datasets, 
we saw that MOBP was lowly expressed in two of the twelve samples. In these datasets, 
we saw that the library size of spots from the white matter (WM) had particularly low 
library sizes (Fig.  5B). Not normalizing library size effects would lead to the conflict-
ing conclusion that MOBP was excluded from the white matter (Fig. 5C). Giotto, scran, 
and sctransform were able to detect signals at the boundary of the white matter but not 
within. Only SpaNorm was able to detect signals both within and at the boundary of the 
white matter region; however, MOBP detection was relatively weaker at the core of the 
region. As SpaNorm models the expression of each gene spatially, it enables borrowing 
of information from surrounding regions, and this can be used to obtain a better region-
specific estimate of each gene’s expression. Inspecting the mean estimate of MOBP, we 
saw that it was significantly higher in the white matter compared to other regions of the 
tissue (Mean Bio in Fig. 5C). This observation was also consistent across other samples 
from this dataset (Additional file 1: Fig. S9).

Fig. 4  A Spearman’s correlations and B average relative ranking, of SVG statistics for pairs of datasets 
belonging to the same replicate set. (left) Visium Human DLPFC sets, (right) CosMx Human Lung, Xenium 
Human Breast Cancer, and Xenium Mouse Brain sets. Higher Spearman’s correlation indicates more consistent 
SVG rankings among replicates of the same set. Higher average relative ranking indicates stronger SVG 
signals. (*Breast cancer dataset with replicates of the same section)
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SpaNorm is robust to gene sampling, cell segmentation, and volume‑based normalization

A common practice in spatial transcriptomics analysis is to filter out lowly expressed 
genes, and subsequently normalize data using cell volume rather than library sizes. As 
the cell volume is dependent on cell segmentation, volume-based normalization and dif-
ferences in cell segmentation could alter downstream biological insights. To assess the 
robustness of SpaNorm to gene sampling, we ran a simulation experiment using the 10x 
Visium samples where we created sampled datasets and assessed the ranking of the top 
SVGs. Each simulated dataset was composed of 100 of the top SVGs identified using 
the whole dataset and 400 randomly sampled genes. Simulated datasets were then nor-
malized using SpaNorm, and SVG calling was performed using MERINGUE. Across 10 
repeats for each sample, we found that on average 83 of the 100 strongest SVGs ranked 

Fig. 5  A Expert annotated regions in the Human DLPFC dataset. B log library size for each spot shows a 
significant drop in library sizes in the white matter region (WM). C Normalization using different approaches 
is unable to recover the expression of a marker gene, MOBP, of oligodendrocytes that are enriched in the 
white matter region. Not normalizing results in the contradictory inference of exclusion of this gene from 
the white matter. SpaNorm detects this signal as indicated by the mean estimate of this gene, and the effect 
is more evident when the percentile-invariant adjusted count (PAC) are scaled up by a factor of 4 (sf = 4) 
during adjustment
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within the top 100 (Additional file 1: Fig. S10). These results showed that the gene sam-
pling strategy did not strongly affect SpaNorm when studying true biological effects. 
This was expected as the only step where the gene composition matters is in the already 
robust empirical-Bayes approach used to estimate over-dispersion [16].

Next, we assessed the impact of cell segmentation and the difference in normalizing 
data using cell volume/area as opposed to library sizes. As cell segmentation differences 
are less likely to affect macroscopic effects such as spatial domains and SVGs, we focused 
our assessments on finer features such as cell types. We assessed the reproducibility of 
cell type proportions across the Xenium breast cancer samples processed using two seg-
mentation approaches and using either library size normalization or cell volume/area 
normalization. Our results showed that cell type proportions were consistent when nor-
malizing gene expression data using library size or cell volume/area (Additional file 1: 
Fig. S11). We noticed minor differences in proportion across the different segmentation 
choices. However, these trends were also seen across the two normalization approaches 
suggesting that the difference was not resulting from normalization but from the inclu-
sion or exclusion of cell type markers through the adjustment of cellular boundaries.

Discussion
Here we present SpaNorm, a normalization method that recognizes the region-spe-
cific nature of library size effects and distributions. Using 27 realworld datasets, we 
benchmarked SpaNorm against other normalization methods and demonstrated that 
SpaNorm is better at retaining spatial domain signals for clustering and detecting true 
SVGs. SpaNorm’s running time increases only linearly as a function of the number of 
cells. For the datasets we used in our benchmarking study, the longest running time was 
around 9 min for Xenium Breast Cancer datasets with around 60,000 cells (Additional 
file 1: Fig. S12).

To maximize the potential of SpaNorm’s normalized data, we recommend using spa-
tially-aware clustering algorithms such as BayesSpace and SpaGCN, for which the com-
parative advantage of SpaNorm is more pronounced. While SpaNorm can be used for 
both spot-based and subcellular spatial transcriptomics (SST) data, we observed that 
the relative benefit of using SpaNorm is more for SST data such as those from Xenium, 
STOmics, and CosMx platforms for which the proportion of genes exhibiting region-
specific library size effect is higher.

For data generated using SST technologies, in order to extract cell-level data, segmen-
tation to detect cell boundaries can be carried out prior to downstream analysis. An 
alternative is to use grid-based methods [10] whereby no segmentation is performed and 
instead molecule counts that fall into each grid are simply summed up. Our benchmark-
ing consists of 25 grid-based and 2 segmentation-based datasets. Our empirical evidence 
shows that SpaNorm’s performance is not sensitive to this decision and the algorithms 
work equally well for segmentation-based data or grid-based data that consist of counts 
from multiple cells.

Optimal normalization of spatial transcriptomics (ST) data has been difficult to 
achieve because library size effects and distribution are potentially region-specific. These 
two unique features of ST data do not exist in single-cell RNA-seq (scRNA-seq) data. It 
is thus not surprising that direct applications of normalization methods developed for 
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scRNA-seq data often results in the removal of spatial domain signals in addition to 
removing the library size effects. SpaNorm decomposes the spatially smooth variation 
into those related and unrelated to log library size and subsequently retains only varia-
tion unrelated to log library size. SpaNorm may become less effective in separating these 
two types of variation when the spatial autocorrelation in log library size is very high. 
However, for most datasets, we expect the spatial autocorrelation to be only moderate. 
For example, in our benchmarking datasets, the Moran’s I statistics for log library size 
are less than 0.2, with 10x Visium datasets exhibiting the highest spatial autocorrelation 
(Additional file 1: Fig. S13).

SpaNorm currently only deals with library size effect but can be extended to han-
dle other unwanted variation such as “batch” effect introduced when data are acquired 
through multiple fields of views [17]. Fields of view (FOV) effect introduces discontinu-
ity in the spatial patterns. Since SpaNorm relies on decomposing spatially smooth vari-
ation, the discontinuity could affect SpaNorm’s ability to separate real biology from the 
underlying unwanted variation. We are currently extending SpaNorm’s model to deal 
with and subsequently remove FOV effect. More generally, our approach for decom-
posing smooth spatial variation can be extended to accommodate other types of spatial 
omics data such as imaging mass cytometry data [18], although it would likely require 
adaptation of the underlying models beyond the negative binomial distribution.

Conclusions
In conclusion, the development of both spot-based and subcellular spatial transcriptom-
ics technologies is revolutionizing molecular biology. We identified strong spatial vari-
ation of library size across many ST datasets, which challenges standard normalization 
methods developed for scRNA-seq data. To address this, we introduced the first spa-
tially-aware normalization approach that performs local regional library size adjustment, 
providing a level of flexibility that is a common limitation of many global adjustment 
approaches. We illustrate that our novel method outperforms the current state-of-the-
art normalization methods, allowing a more accurate identification of spatially variable 
genes as well as regional detection. Furthermore, SpaNorm works equally well with seg-
mented cell-level data and spot-based data, where each spot contains multiple cells.

Methods
SpaNorm model

To develop SpaNorm, a normalization method that utilize spatial information while 
allowing optimal identification of spatial domains and spatially variable genes (SVGs), 
we model the count data using generalized linear model. Specifically, we assume that the 
count for gene g and spot (cell) c can be modeled as zgc ∼ Negative Binomial(NB)(µgc,ψg ) 
where ψg is the gene-specific dispersion parameter. The library size (LS) and biology 
affect the mean parameter through a log-linear model

where (xc, yc) are the spatial coordinates and LSc is the library size for spot c. The two 
functions fg (xc, yc) and hg (xc, yc) are two-dimensional, gene-specific spatially-smooth 

logµc,g = ζg + fg (xc, yc;βg)+ {α + hg (xc, yc; γg )} log LSc,
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functions constructed using 2D splines with K (default = 6) degree of freedom in each 
dimension, expressed as

and

where Bi(.) and Bj(.) are B-splines basis functions.
Using this model, we decompose the smooth spatial variation in each gene into two 

components: fg (x, y;βg) which represents biologically-relevant smooth spatial variation 
and (α + hg (x, y; γg )) log LS which represents smooth spatial variation related to (log) 
library size. Here, α represents the global effect of library size shared by all genes while γg 
is the parameter that determines the gene-specific library size effect. When γg = 0 , there 
is no gene-specific library size effect. To improve the fit, we also found that it is ben-
eficial to “regularize” βg ,ij and γg ,ij parameters using L2 penalty using � = 10−4N ,N = 
number of cells as the default penalty. More details about the algorithm and parameter 
estimation can be found in Additional file 2.

Adjusted data—SpaNorm outputs a matrix of percentile-invariant adjusted count 
(PAC) that can be used for downstream analyses. For gene g and spot (cell) c, the PAC 
is calculated as quantile of a negative binomial distribution where the mean parameter 
does not contain library size effects,

where

are the cumulative density functions of the negative binomial distribution which includes 
the library size effects. After obtaining the PAC, the log PAC was simply obtained as 
log(PAC + 1).

We use iterative reweighted least squares (IRLS) algorithm to estimate SpaNorm’s 
model parameters. More detailed information about the algorithm is provided in Addi-
tional file 2

Datasets

We use 6 datasets (see Additional file 1: Table S2 for details) encompassing 27 samples 
(25 grid-based and 2 segmentation-based), four different platforms (Visium, Xenium, 
STOmics, and CosMx), three tissues (brain, breast, and lung), and two species (human 
and mouse) to compare the performance of SpaNorm against no Normalization and four 
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,

lgc =FNB(ygc;µgc = exp{ζ̂g + fg (xc, yc; β̂g)+ {α + hg (xc, yc; γ̂g )} log LSc},ψ = ψ̂g ), and

ugc =FNB(ygc + 1;µgc exp{ζ̂g + fg (xc, yc; β̂g)+ {α + hg (xc, yc; γ̂g )} log LSc},ψ = ψ̂g )
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other state-of-the-art normalization approaches namely, Giotto, scran, RUV-III-NB, and 
sctransform normalizations.

For the grid-based datasets, transcript detection tables for the 10x Xenium breast can-
cer dataset (IDC and ILC), 10x Xenium mouse brain, the NanoString CosMx non-small 
cell lung cancer, and the BGI STOmics mouse brain were obtained from [10]. Indepen-
dently acquired region annotations were available from this dataset. These were obtained 
through image registration of DAPI images to reference tissue atlases, or through anno-
tation of immunoflourescence or histology images. The 10x Visium human DLPFC data-
set [15] was obtained through the SpatialLIBD R/Bioconductor package [19].

The two segmentation-based datasets (Xenium Human Breast Cancer Xenium data-
sets 1 and 2) were downloaded from https://​www.​10xge​nomics.​com/​produ​cts/​xenium-​
in-​situ/​previ​ew-​datas​et-​human-​breast and subjected to further quality control (QC) 
steps that can be found in [13].

Data preprocessing

Measurements from all datasets, except the 10x Xenium breast cancer dataset with rep-
licates, were allocated to regular hexagonal bins using the SubcellularSpatialData R/Bio-
conductor package. The bins parameter was set to 200 for the 10x Xenium breast cancer 
and mouse brain datasets and 100 for the BGI STOmics and NanoString CosMx data-
sets. Bins where measurements spanned multiple regions were annotated based on the 
most frequent region annotation.

For the Xenium Human Breast Cancer Xenium datasets, segmentation was performed 
using BIDCell [13]. Default parameter values from the exemplar file for Xenium and 
the provided single-cell reference file were used (both files were downloaded from the 
official BIDCell repository). The model was trained end-to-end from scratch for 4000 
iterations (i.e., using 4000 training patches). This amounted to a maximum of 22% of the 
entire image, thereby leaving the rest of the image unseen by the model during inference. 
Weights of the convolutional layers were initialized using He and colleagues’ approach 
[20]. We employed standard on-the-fly image data augmentation by randomly applying 
a flip (horizontal or vertical) and rotation (of 90, 180, or 270 degrees) in the (x,y) plane. 
The order of training samples was randomized prior to training. We employed the Adam 
optimizer [21] to minimize the sum of all losses at a fixed learning rate of 0.00001, with 
a first moment estimate of 0.9, second moment estimate of 0.999, and weight decay of 
0.0001.

Normalization methods

Each dataset was normalized using the following methods:

•	 No Normalization: Raw counts were log transformed. A pseudo count of 1 was 
added to all observations to avoid taking a logarithm of zero count.

•	 scran normalization: A minimum size factor of 10−8 was imposed to avoid negative 
and zero size factor estimates [6].

•	 sctransform normalization [7].
•	 RUV-III-NB normalization [11] with K = 1 . Details of negative control features used 

and selection of pseudo-replicates can be found in [10].

https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
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•	 Giotto normalization [8]: performs library size normalization, followed by z-scor-
ing of the normalized data across genes and/or cells.

•	 SpaNorm normalization (see above for details).

All normalization methods were applied using their default parameters. More details 
description about scran, sctransform, and RUV-III-NB can be found in [10].

Evaluation methods

Evaluating region‑specific library size effects: annotation‑based

For each dataset, we selected the top 1000 most abundant genes. For each gene g, we 
fitted the following two negative binomial (NB) regression models to the observed 
count:

•	 Model 1 (M1): logµgc = ζg +
∑R

i=1 βg ,iI[c∈Si] + αg log LSc and
•	 Model 2 (M2): logµgc = ζg +

∑R
i=1 βg ,iI[c∈Si] + αg log LSc + hg (xc, yc; γg) log LSc

where hg (xc, yc; γg) is a smooth spatial function constructed using 2D B-splines in the 
same way as in the SpaNorm model, βg ,i is the coefficient representing the relative 
biology of annotated region i in gene g, and I[c∈Si] is the indicator function that cell 
c belongs to region i. We can see that M2 is very similar to SpaNorm model, except 
that in M2 the biology is assumed to be constant within each region, while SpaNorm 
allows the biology to vary within as well as between regions.

The only additional parameters in M2 relative to M1 is γg that controls the spot-
specific library size effect. If γg = 0 , the two models are equivalent. Therefore, to test 
for evidence of spot-specific library size effect, we compare the two models using 
the likelihood ratio test (LRT). We performed this test gene-by-gene and the asso-
ciated p  values were recorded. Using the p  values from all genes as input, we esti-
mate proportion of null genes (genes in which the spot-specific library size effect is 
not needed) using the qvalue function from qvalue Bioconductor package [22]. 
Finally, the proportion of non-null genes (genes in which the spot-specific library 
size effect is needed) is simply calculated as one minus the estimated proportion of 
null genes. This procedure for estimating the proportion of non-null genes does not 
directly place a threshold on the q value, which can be arbitrary. Instead, it considers 
the empirical distribution of the p values and compare this distribution to the theo-
retical distribution of p values when all genes are null genes, namely the uniform dis-
tribution. More details on the procedure can be found in [23].

Evaluating region‑specific library size effects: grid‑based

Each dataset was split into rectangular grids with the size of the grids being dataset-
specific because we require a minimum of 300 spots (cells) per grid. This split was 
only performed to designate each cell to a grid as a proxy for a region. Cells retain 
their individual observed counts and spatial coordinates and the grid information was 
only used during the model fitting process (see below).
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For each gene g, we fitted the following NB model to the observed counts,

where βg ,j is the coefficient representing the relative biology of grid i in gene g and I[c∈Gj] 
is the indicator function that cell c belongs to grid j. We test for heterogeneity of library 
size effect among the grids ( H0 : γg ,j = 0∀j ) using Cochran’s Q test [24]. The resulting 
p  values were recorded and the proportion of genes with heterogeneous library size 
effects were estimated in the same manner as in the region-based models above.

Analysis of variance

One-way analysis of variance (ANOVA) was fitted to each gene with normalized data as 
a dependent variable and the manually annotated regions as a factor (treatment) vari-
able. The between-treatment and within-treatment variance estimates without and with 
a particular normalization were compared in log-scale.

Simulation studies

We used scDesign3 pipeline [12] for simulating SVGs (https://​songd​ongyu​an1994.​
github.​io/​scDes​ign3/​docs/​artic​les/​scDes​ign3-​DEana​lysis-​vigne​tte.​html) using Visium 
Human DLPFC dataset 1, Xenium Mouse Brain replicate 1, and CosMx Human NSCLC 
replicate 1 as the input datasets. For each dataset, we used scDesign3 to empirically esti-
mate the SVG signals in the following manner:

•	 We fitted two models for each gene using scDesign3::fit_marginal function: 
the first model contains both smooth spatial effects presenting the underlying biol-
ogy and smoothly-varying library size effects (M1), while the second model only 
contains the smoothly-varying library size effects (M2). The deviance statistics of the 
two models were calculated and genes were sorted based on the difference of their 
deviance statistics (M2 deviance −  M1 deviance) and the top 100 genes with the 
largest deviance difference were designated as the true SVGs.

•	 We then simulated the ST data using the empirical M1 model for the designated true 
SVGs above the empirical M2 model for the others, non-spatially variable genes.

Stably expressed genes

For datasets without negative control (all Visium and the Human BRCA Xenium data-
sets), we used the list of stably expressed genes for humans and mice from the data-
base of housekeeping genes and reference transcripts (https://​house​keepi​ng.​unica​mp.​
br/) [25]. For the other datasets, we used the negative control probes as stably expressed 
genes.

Spatial domain identification

The spatial domain identification benchmark outlined in [10] was performed to study 
the impact of SpaNorm normalization on spatial domain identification. Feature 

logµgc = ζg +

K
∑

j=1

βg ,jI[c∈Gj] + αg log LSc +

K
∑

j=1

γg ,jI[c∈Gj] log LSc

https://songdongyuan1994.github.io/scDesign3/docs/articles/scDesign3-DEanalysis-vignette.html
https://songdongyuan1994.github.io/scDesign3/docs/articles/scDesign3-DEanalysis-vignette.html
https://housekeeping.unicamp.br/
https://housekeeping.unicamp.br/
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selection was performed on normalized datasets by identifying highly variable genes 
(HVGs). The top 1000, 2000, and 3000 genes were identified for datasets with 
genome-wide measurements. Where datasets were obtained using targeted panels, 
either genes with positive variance estimates from a fitted mean-variance trend, or 
all genes were selected. Dimensional reduction was performed using principal com-
ponents analysis. Next, we used three clustering algorithms: the graph-based (Leiden, 
Louvain, or Walktrap) algorithm from the igraph R package [26], BayesSpace [27], 
and SpaGCN [28] to perform clustering using the normalized data as input.

For graph-based algorithm, the graph was built using buildSNN function from the 
scran package [6] by setting the number of nearest neighbors to 10, 20, 30, or 50. 
For the Louvain and Leiden algorithms, 8 evenly spaced resolution parameters in the 
interval [0.1, 1] were assessed. BayesSpace and SpaGCN require the number of clus-
ters to be pre-specified. As this is often unknown, we tested performance with the 
correct number of clusters, and over-/under-clustering by perturbing this number by 
25%. SpaGCN was deployed from R using the reticulate and zellkonverter 
packages.

The defined parameter space was assessed exhaustively by running all possible combi-
nations (27, 971, except a few failed runs). The CellBench framework was used to deploy 
the benchmark. The performance of the clustering algorithms to recover spatial domains 
under different normalization strategies was compared by computing the Adjusted Rand 
Index (ARI) using the independently annotated spatial regions as ground truth.

SVG identification

MERINGUE [29] with default parameters was used to detect spatially variable genes. 
We select MERINGUE because it is currently the only method that uses normalized 
data as input and does not perform any additional normalization, allowing objective 
comparison of the impact of different normalization strategies on SVG identification. 
Additionally, it is based on nonparametric methods, which would not favor a particu-
lar normalization method based on their parametric assumptions.

The strength of SVG signals was calculated using a statistic defined as 
|observed−expected|

SD  . Finally, the concordance of these statistics between a pair of datasets 
belonging to the same experiment was calculated using Spearman’s correlation coef-
ficient and the gene-specific average relative ranking was calculated as the average 
ranking for the gene across the pair of datasets divided by the number of genes.

Replicates used to calculate concordance

•	 Human DLPFC Visium set 1: Human DLPFC datasets 1–4
•	 Human DLPFC Visium set 2: Human DLPFC datasets 7–8
•	 Human DLPFC Visium set 3: Human DLPFC datasets 9–12
•	 Mouse Brain Xenium: Mouse Brain Xenium datasets 1–3
•	 Human NSCLC (Lung) CosMx: Human NSCLC (Lung) CosMx datasets 1–3
•	 Human BRCA Xenium: Human BRCA Xenium datasets 1–2
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Evaluating the impact of segmentation and volume‑based normalization

The four Xenium breast cancer samples (from two datasets) were used to assess the 
impact of cell segmentation on SpaNorm normalization and to evaluate the differ-
ence between library size normalization and area/volume normalization. Data were 
preprocessed by removing empty cells and cells with library sizes or the number of 
genes detected in the 10th percentile of the data. The vendor-provided cell segmenta-
tion was compared against the probabilistic segmentation algorithm PROSEG [30]. 
Default parameters were used for PROSEG with the number of components set to 23. 
In both cases, the cell area was available and was used as a proxy for volume to assess 
volume-based normalization.

The two segmentation approaches were then normalized using SpaNorm, with the 
parameters 18 degrees of freedom (the K parameter) except for the IDC sample where 
K = 17 (the maximum possible for the data). The model was estimated using 5% of 
the cells in each sample. Standard scran-based size factors were used to adjust for 
library size effects using SpaNorm, while the volume-based size factor for each cell 
was computed as the area divided by the average area of all cells.

An ensemble cell type annotation workflow which implements a majority consensus 
voting strategy was used. This approach used 3 annotations methods, namely Azi-
muth (v0.5.0 [31]), CelliD (v1.12.0 [32]), and CHETAH (v1.20.0 [33]). We used CIB-
ERSORTx [34] to generate a single cell reference for the three methods based on a 
breast cancer scRNAseq dataset [35]. Cell typing was performed on the differently 
segmented and normalized datasets and consistency in proportions evaluated.
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