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Abstract 

Epigenetic aging signatures provide insights into human aging, but traditional clocks 
rely on linear regression of DNA methylation levels, assuming linear trajectories. 
This study explores a non‑parametric approach using 2D‑kernel density estimation 
to determine epigenetic age. Our weighted model achieves similar predictive accuracy 
as conventional clocks and provides a variation score reflecting the inherent variability 
of age‑related epigenetic changes within samples. This score is significantly increased 
in various diseases and associated with mortality risk in the Lothian Birth Cohort 1921. 
Thus, weighted 2D‑kernel density estimation facilitates accurate epigenetic age predic‑
tions and offers an additional variable for biological age estimation.
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Background
Aging is reflected by gains and losses of DNA methylation (DNAm) at specific sites in our 
genome and this can be used to determine donor age. Epigenetic clocks have become a 
central component of aging research [1]. Since they were first described [2, 3], epigenetic 
age-predictors have become more and more sophisticated and tailored toward specific 
applications [4]. First generation clocks are trained to correlate as highly as possible with 
chronological age, e.g., for applications in forensics [5–7]. Even in these clocks, the devia-
tion of chronological and epigenetic age (delta age) is often indicative for all-cause mor-
tality and affected by various diseases [8]. However, this phenomenon has been proven to 
decrease when the training sample size is large enough or when a correction for the white 
blood cells counts is applied [9]. To better reflect the biological age, multifactorial second-
generation clocks have been described [10, 11]. In addition to age, they also integrate epige-
netic indicators of other clinical parameters, such as blood counts, glucose levels, or blood 
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pressure. Furthermore, third-generation clocks have been trained on large cohort studies 
and implement additional clinical measurements to better quantify the individual pace of 
aging [12].

Despite the wide range of epigenetic clocks that have already been established, most of 
them rely on the same approach: signatures of age-associated CG dinucleotides (CpGs) 
are preselected in a training dataset and then used for multivariable regressions under the 
assumption that there are linear changes of methylation with age. Particularly in childhood, 
age-associated DNAm changes follow a logarithmic pattern [13], which can be effectively 
addressed through non-linear corrections [5]—but the predictors still follow the assump-
tion that there is a continuous trajectory—either linear or logarithmic. Besides, among 
older individuals it has been proven that the linear age predictors proposed by Horvath and 
Hannum regularly misestimate biological age, leading to predictions that are younger than 
the actual age [14]. This might partly be attributed to a survivor bias, wherein a reduced 
biological age in the elderly has facilitated the longevity of these individuals [15, 16]. How-
ever, this phenomenon may be also related to the nonlinear saturation effects observed in 
some aging-related CpG sites, where they converge to a stable value, i.e., 0 or 100% DNAm 
[17]. Recently, alternative non-linear epigenetic clocks have been described that are based 
on deep learning, e.g., by neuronal network frameworks in multidimensional space [18–
20]. Furthermore, machine learning algorithms can be used to derive non-parametric epi-
genetic clocks based on Gaussian process regression models [21]. While these approaches 
theoretically use the full range of DNAm information of the training dataset, they are rela-
tively complex, as they usually need a huge number of samples and computational power to 
work. For instance, Aliferi et al. developed a support vector machine-based clock by select-
ing markers from 51 different studies and more than 4000 patients [22], and the machine 
learning-driven clock created by de Lima Camillo and colleagues was trained and validated 
using 142 datasets and needs the full 20,318 CpGs that are shared among the Illumina 
Infinium HumanMethylation27, HumanMethylation450, and EPIC arrays as input [19]. 
Furthermore, all of these epigenetic clocks only provide one specific age-prediction for a 
given sample as a single output.

In this study, we introduce a novel methodology to build epigenetic clocks based on 2D 
kernel density estimation (KDE). For each individual CpG of the aging signature, the KDE 
creates a matrix that relates age and DNA methylation (DNAm) levels to corresponding 
density values, which are then translated into probabilities. Integration of these probabili-
ties can then be used to determine the most likely age-prediction. Our KDE approach is 
non-parametric and does not require linear or logarithmic assumptions. We demonstrate 
that, particularly with a weighted KDE model, we can facilitate robust epigenetic age-pre-
dictions. Furthermore, the probability distribution provides insight into how consistent the 
age-associated DNAm is for a specific age-prediction in different sites of the genome. This 
variation score is a new complementary measure that may be useful to estimate biological 
age.

Results
Two‑dimensional kernel distribution provides probabilistic epigenetic age estimates

To develop epigenetic clocks based on KDE, we used DNAm datasets of 13 differ-
ent studies on human peripheral blood that were separated into a training and a 
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validation set. We arbitrarily preselected CpGs with the highest Pearson squared cor-
relation with chronological age in the training set  (R2 > 0.7: 27 CpGs, or  R2 > 0.6: 491 
CpGs). For each preselected CpG, the probability distribution of the age for a given 
DNAm level was determined by KDE and then combined into a joined probability 
estimation, where the age corresponding to the maximum probability was considered 
the predicted age of the sample. However, due to the heterogeneous distribution of 
donor ages, the predictions would be enriched at ages that are overrepresented in the 
training set (Fig. 1A–E).

Therefore, we normalized the KDE maps by the frequency of samples at each spe-
cific age. We excluded samples older than 85 years (N = 39), because their low fre-
quency then resulted in high density in the 2D kernel maps. Adjustment of KDE by 
the histogram of donor ages provided more accurate predictions, but there were still 

Fig. 1 Construction of the probabilistic 2D kernel age predictor. A The association of DNA methylation 
(DNAm) with chronological age is exemplarily depicted for the CpG sites cg00329615 for all the samples 
in the training set. B 2D density kernel of the scatter plot depicted in A. The horizontal line exemplarily 
depicts the DNAm level of a given sample. C Density distribution as estimated for the probability of 
age‑predictions for the sample depicted in B. D Joint probability for 27 age‑associated CpGs for the same 
sample. E Performance of the methodology shown A–D for all the samples in the training set (color code 
indicates different studies of the training set). F Histogram of the ages in the training set. G Normalization 
of 2D kernels by age (divided by the corresponding value in the histogram). H Density distribution for the 
exemplary sample (line) in G. I Joint probability for 27 CpGs after normalization by age. J Performance of the 
methodology shown F–I for all the samples in the training set. K Alternatively, the training set was split in 
5‑year bins from 0 to 90 years (plus one bin of samples older than 90 years) and 15 samples from each bin 
were taken. The Scatter plot again depicts this selection for cg00329615. L 2D density kernel of K. M Density 
distribution for the sample in panel L. N Joint probability for 27 CpGs of the same sample. O Performance of 
the methodology shown K–N for all the samples in the training set
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clusters, indicating that the normalization now rather skewed for age-ranges with the 
highest density or with low number of samples (Fig. 1F–J).

To further reduce the effects of age distribution in the training set we subsequently 
divided the samples into 18 bins of 5-year intervals, ranging from 0 to 90 years, plus one 
 19th bin with the samples older than 90 years. From each bin, 15 samples were selected 
to construct the 2D density kernels (Additional file  1: Figure S1). This resulted in 2D 
density kernels with a more even distribution of densities and epigenetic age predictions 
that correlated with chronological age (Fig. 1K–O). Thus, KDE can be used for a proba-
bilistic approach for epigenetic age predictions.

Improvement by weighted 2D kernel age‑predictions

When we initially tested our probabilistic kernel models based on either 27 or 491 CpGs, 
Pearson squared correlation with chronological age in the training set was  R2 = 0.85 
or 0.79, respectively, with a median absolute error (MAE) of 5 or 6 years. However, in 
the independent validation set, the correlations and precisions of age-predictions were 
much lower (27 CpG model:  R2 = 0.37 and MAE = 9 years, Fig.  2A; 491 CpG model: 
 R2 = 0.22 and MAE = 11 years, Additional file 1: Figure S2A), suggesting that there may 
be off-sets between different studies at individual CpGs, e.g., due to batch variation.

For comparison, we used the same set of age associated CpGs to generate multivari-
ate regression models. This approach provided higher correlation with chronological 
age in the training set (27 CpG model:  R2 = 0.94, Fig.  2B; 491 CpG model:  R2 = 0.98, 
Additional file 1: Figure S2B). In fact, when creating multivariate models with the train-
ing set by varying the number of CpG sites, the highest correlation in the validation set 
was achieved with the top 125 CpGs  (R2 = 0.92, Additional file 1: Figure S3A), while the 
highest precision in the validation set would have been achieved with the top 81 CpGs 
(MAE = 2.87 years, Additional file 1: Figure S3B), indicating that larger signatures are 
not always beneficial. In the independent validation set, the multivariable models with 
27 or 491 CpGs revealed high correlation with age, too (27 CpG model  R2 = 0.84, Fig. 2B; 
491 CpG model  R2 = 0.83, Additional file 1: Figure S2B). In contrast, when we just used 
the average of individual CpG predictions, the age-estimates were much less precise (27 
CpG model: training:  R2 = 0.86, validation:  R2 = 0.58, Fig.  2C; 491 CpG model: train-
ing:  R2 = 0.77, validation:  R2 = 0.30, Additional file 1: Figure S2C). Furthermore, the ages 
of very young samples were overestimated due to exponential age-associated epigenetic 
changes in childhood [13]. These findings supported the notion that using conventional 
regression approaches as multivariable weighted approach was clearly advantageous.

Consequently, we have also adjusted our probabilistic kernel models to better weight 
the impact of individual CpGs. To this end, we used genetic algorithm optimization to 
identify the best weights for each CpG according to the cumulative error curves. This 
weighted kernel density estimate model (WKDE) improved predictions; also in the vali-
dation set (Fig. 2D, Additional file 1: Figure S2D)—particularly with the 27 CpG model, 
the predictions  (R2 = 0.94 and MAE = 5 years in the training set;  R2 = 0.81 and MAE = 4 
years in the validation set) were now in a similar range as observed for the multivariable 
model. However, the 491 CpG model showed a very poor correlation in the validation 
set, which might be attributed to over-fitting of the weights and the increased amount 
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features with lower age association. Therefore, we did not consider the 491 CpG WKDE 
model for further analysis.

Benchmarking with other commonly used epigenetic clocks

Subsequently, we compared the performance of the 27 CpG WKDE model with other 
widely used epigenetic clocks in the field. To better test the applicability to independent 
datasets, we have done this analysis for each study of the training and validation sets. 
The WKDE predictor revealed better or similar correlations to many other clocks, while 
particularly the Zhang clock and Horvath Skin & Blood clock showed highest correla-
tions (Fig. 2E). Furthermore, the WKDE model provided small median absolute errors 
for all datasets—apart from Yang clock and both Horvath clocks, other clocks revealed 
high MAEs of more than 15 years for at least one dataset (Fig.  2F). Thus, despite the 
small epigenetic signature of only 27 CpGs the WKDE model facilitated robust estima-
tion of chronological age.

Performance of the 27 CpG clock in purified cell types

To gain better insight into how the cellular composition affects age-predictions with 
our 27 CpG WKDE clock, we used a dataset with 6 purified cell types and provided 

Fig. 2 A weighted approach improves 2D kernel age predictions. A 2D kernel age prediction model was 
generated for 27 CpGs  (R2 > 0.7 in the training set). The model was trained on a subset of samples from 
the training set with uniform age distribution. When we applied the model to the validation dataset, 
the predictions were not reliable. Pearson squared correlation  R2 and median absolute error (MAE) are 
indicated. B The same CpGs were used to generate multivariate models based on the entire training set. 
C Alternatively, for each of the age‑associated CpGs, a linear regression model was established to facilitate 
single CpG predictions. When we averaged these predictions, the performance was much lower than for the 
multivariable model. D The 2D kernel age‑prediction model was further optimized by optimized weights for 
individual CpGs, which were determined by genetic algorithm optimization. E Heatmap of Pearson squared 
correlation  (R2) between chronological and predicted age for WKDE and a set of widely used clocks, split in all 
datasets used for training and validation. F Heatmap of MAE for WKDE and the same set of clocks as in E, split 
in all datasets used for training and validation
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chronological ages (GSE110554). Particularly for purified CD4 T cells, monocytes, neu-
trophils, and NK cells, the delta age was overall very low, whereas B cells were overes-
timated and CD8 T cells underestimated in age (Additional file  1: Figure S4A). These 
results were further validated with another dataset where the cell types were isolated 
form the same donors, but donor age was not provided (GSE224807). Again monocytes, 
granulocytes, and NK cells revealed similar age-predictions as for whole blood, whereas 
B cells were over-estimated, and T cells were predicted younger (Additional file 1: Figure 
S4B). These results demonstrate that while the 27 CpG WKDE clock can generally also 
be applied to purified cell types, the predictions may be influenced particularly by the 
composition of lymphocytes.

Applicability of the WKDE method with targeted assays

To test if our new WKDE method was applicable to targeted epigenetic clocks, we used 
our previous published pyrosequencing data for nine age-associated CpGs in FHL2, 
IGSF11, CCDC102B, MEIS1-AS3, ELOVL2, COL1 A1, PDE4 C, ASPA, and ITGA2B [23]. 
After the 2-dimentional kernel calculation step and the genetic algorithm to assign the 
weight for each kernel, the 9 CpG model notably achieved a good correlation between 
chronological and predicted age and low prediction error in the validation set  (R2 = 0.82, 
MAE = 5.33 weeks, Additional file 1: Figure S5), indicating that the approach is also suit-
able for targeted DNAm analysis, e.g. by pyrosequencing. 

Heterogeneity of age‑associated DNAm within a given sample

Our probabilistic approach allows to calculate the probability of the age of a given sam-
ple for every year from 0 to 100 (Fig. 3A). To estimate the disparity among the selected 
methylation sites, we calculate a variation score. This measure reflects the heterogene-
ity in age-associated DNAm within our 27 CpG signature, rather than the probability 
that the estimates of chronological age are correct. However, for most of the samples in 
training set (99.22% of total samples; Fig. 3B) and validation set (99.07% of total samples; 
Fig. 3C), the chronological age falls into this range (predicted age ± variation score). The 
variation score shows small correlations with chronological age (training:  R2 = 0.36, vali-
dation:  R2 = 0.33), epigenetic age (training:  R2 = 0.37, validation:  R2 = 0.24), and delta 
age (training:  R2 = 0.07, validation:  R2 = 0.02) and was highest at an age-range from 25 to 
75 years (Figs. 3D–F). When we compared male and female samples, we did not observe 
any significant sex bias with regard to delta age (P = 0.27, Fig. 3G), or variation scores 
(P = 0.89; Fig. 3H).

The variation score is significantly increased in several diseases

Epigenetic age-predictions can be impacted by diseases, particularly by hematopoi-
etic malignancies [24]. Hence, we anticipated that the heterogeneity in age-associated 
DNAm changes, reflected by the variation score, may be affected in such diseases. To 
test this hypothesis, we used six publicly available DNAm datasets of healthy and dis-
eased individuals for acute myeloid leukemia (AML). In fact, we observed pronounced 
differences in the distribution of variation score with age in all datasets, and when we 
compared diseased with available healthy individuals the difference was significant 
(GSE124413 P = 2e − 16, GSE58477, P = 2.93e − 5; GSE152710, P = 0.0126; Fig.  4A). 
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Furthermore, the variation score declined upon therapy with azacytidine (GSE152710, 
P = 2.15e − 7) [25]. We have then exemplarily tested datasets of myelofibrosis, Down 
syndrome, HIV, progeroid syndromes, Parkinson’s disease, and schizophrenia (Addi-
tional file 1: Table S1), and calculated the corresponding variation score with our 27 CpG 
WKDE model. When we compared healthy and diseased individuals in these datasets, 
the variation score was significantly higher in myelofibrosis (P = 0.0131, Fig. 4B), Down 

Fig. 3 WKDE allows to measure heterogeneity in age‑associated DNAm. A Possible age (y‑axis) vs. probability 
(x‑axis) for eight random samples from the training set. The thickness of the plot represents how probable is 
that a sample belongs to that age. B Chronological vs. predicted age in the training set measured with WKDE. 
Vertical lines depict predicted age ± variation score. C Same as in panel B for validation set. D Chronological 
age vs. variation score. E Predicted age vs. variation score. F Delta age vs. variation score. Variation score 
reflects almost no correlation with delta age measured with WKDE. G Boxplot of delta age vs. sex. Delta age 
distributes evenly across males and females (Wilcoxon rank sum test P = 0.27). H Boxplot of variation score vs. 
sex. Variation score distributes evenly across males and females (Wilcoxon rank sum test P = 0.89)

Fig. 4 Variation score is significantly different in certain diseases. A The variation score was analyzed in 
six different datasets of acute myeloid leukemia (AML) and plotted in relation to donor age if provided or 
otherwise in relation to predicted age (with the 27 CpG WKDE model). Untreated AML samples (green), 
treated AML samples with azacitidine (purple), healthy controls from the same datasets if provided (red), and 
for comparison the training set of healthy controls are depicted. B–G The same analysis was performed for 
datasets of B myelofibrosis, C Down syndrome, D HIV, E progeroid syndromes, F Parkinson’s disease, and G 
schizophrenia. The indicated P values are related to the comparisons indicated by the corresponding color 
code



Page 8 of 21Perez‑Correa et al. Genome Biology          (2025) 26:103 

syndrome (P = 2.13e − 10, Fig. 4C), and HIV (P = 1.33e − 12, Fig. 4D), whereas no sig-
nificant difference was found in progeroid syndrome (P = 0.6943, Fig. 4E), Parkinson’s 
disease (P = 0.265, Fig. 4F), and schizophrenia (P = 0.105, Fig. 4G). Thus, high variation 
scores may be indicative for underlying diseases.

Association of sample‑intrinsic heterogeneity in epigenetic aging with all‑cause mortality

It has been reported that all-cause mortality increases with accelerated epigenetic age in 
various clocks [8, 26]. To estimate if this also applies for our WKDE model, we analyzed 
methylation from the first waves of the LBC1921 and LBC1936 with subsequent mortal-
ity risk. Cox proportional hazards regression models for delta age vs. survival, adjusting 
for age and sex, revealed no significant association between delta age and mortality in 
the LBC1921 (P = 0.978, Fig. 5A) and in the LBC1936 (P = 0.415, Additional file 1: Fig-
ure S6A).

Subsequently, we tested if any of the individual CpG sites in the 27 CpG or 491 CpG 
models were associated with all-cause mortality, after adjustment for age and sex. Within 
the 491 CpGs, we found 25 mortality associated sites that overlap between LBC1921 
and LBC1936 (Additional file  1: Figure S6B and Tables S2 and S3), with almost all of 
them being hypomethylated with aging. Out of the 27 CpG sites, four were significantly 
associated with mortality in the LBC1921 and one in the LBC1936 (Fig. 5B). Particularly 
cg11436113, which is located in an intergenic region, was highly associated with mortal-
ity in both cohorts (LBC1921: P < 0.008, Fig. 5C; LBC1936: P < 0.00003, Additional file 1: 
Figure S6C).

When testing for associations between variation score and mortality in the LBC1921, 
we observed that an increase of 1 unit in the variation score is associated with a 9.2% 
decrease in mortality risk (95% CI (0.8387, 0.9872), P = 0.0160, Figure 5D), after adjust-
ing for sex and chronological age. The results remained significant when we adjusted 
for sex, chronological age, and delta age (P = 0.0159), indicating that the variation score 

Fig. 5 Variation score shows significant association with mortality. A The association of epigenetic 
age‑predictions with all‑cause mortality was analyzed in the Lothian Birth Cohort of 1921 (LBC1921). 
Kaplan‑Meier survival curves are depicted for highest and lowest 10% delta ages. Cox regression model for all 
donors, adjusted for chronological age and sex, showed no significant effect of delta age in mortality risk (HR 
= 0.9998, 95% CI (0.988, 1.012), P = 0.978). B Individual Cox regressions for all the 27 CpGs in WKDE (adjusting 
for age and sex) revealed 4 significantly mortality‑associated CpGs in the LBC1921. The cg11436113 was also 
significantly associated with mortality in the Lothian Birth Cohort of 1936 (LBC1936). C Kaplan‑Meier survival 
curves for donors with highest and lowest 10% DNAm at cg11436113 in the LBC1921. Cox regression model, 
adjusted for chronological age and sex, shows that increase of 1% in the DNAm of cg11436113 is associated 
with a 1.94% decrease in mortality risk (95% CI (0.9665, 0.9949), P = 0.0080). D Kaplan‑Meier survival curves for 
highest and lowest 10% variation score in the LBC1921. Cox regression model, adjusted for chronological age 
and sex, shows that increase of 1 unit in the variation score is associated with a 9.2% decrease in mortality risk 
(95% CI (0.8387, 0.9872), P = 0.0160)
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might be an independent measure for biological aging. However, a significant associa-
tion of the variation score with all-cause mortality was not observed in the LBC1936 
(HR = 0.9894, 95% CI (0.8870, 1.1037), P = 0.849, Additional file 1: Figure S6D), which 
might partly be attributed to a lower number of deaths in this cohort.

Subsequently, we analyzed the association between variation score and mortality in a 
further adjusted model controlling for age, sex, delta age, and 22 additional parameters 
(Additional file 1: Table S4). Even this adjusted model indicated that a one-unit increase 
in the variation score is significantly associated with a 13.65% reduction in mortality risk 
within the LBC1921 (HR = 0.8635, 95% CI (0.7754,0.9617), P = 0.00754), which is still 
not reflected in the LBC1936 (HR = 1.0052, 95% CI (0.8765,1.1529), P = 0.9407).

Discussion
In this study, we demonstrate that 2D kernel density estimation can be used for robust 
epigenetic age-predictions. Even with a very simplistic selection of 27 age-associated 
CpGs based on Pearson correlation with chronological age, we could demonstrate that 
WKDE models can provide similar precision as conventional epigenetic clocks. How-
ever, there are several ways how feature selections might be optimized in the future. 
Age-associated DNAm does not necessarily follow a strictly linear pattern [27]. This is 
also reflected by the 2D kernel density plots of the 27 CpGs, where almost all of them 
followed a logarithmic pattern. Thus, it might be advantageous to select the age-associ-
ated CpGs by Spearman correlation, albeit there is a very high overlap in age-associated 
CpGs selected with Pearson correlation [23]. Another approach might be to select CpGs 
based on the slope in single-CpG linear regressions to exclude CpGs that may reveal high 
correlation but only small absolute changes with age [28]. The selection of CpGs would 
be further improved by a larger collection of datasets, including newborns and centenar-
ians. Our training set had a predominant emphasis on individuals of European ancestry 
and should better reflect ethnic diversity [29, 30]. To this end, we included datasets from 
USA (both European and Hispanic-Mexican ethnicity), the Netherlands, Denmark, Ger-
many, the UK, and China in the training and/or validation sets. CpGs that show higher 
variation between cell types might be excluded from the predictors to reduce the impact 
of the cellular composition [23]. This might reduce the variation in age-predictions that 
we observed in B cells and T cells. Theoretically, automatic CpG selection approaches, 
such as ElasticNet [31], could be used to further optimize the selection of CpGs for 
WKDE—in analogy to the ElasticNet based conventional epigenetic clocks [5, 7]—but 
it would require an innovative automatic feature selection algorithm for matrices (taking 
also different possible weights into account) and this would require very high computa-
tional resources. Thus, in this study we introduce a new and very promising concept for 
constructing epigenetic clocks, rather than a fully optimized clock.

Nonetheless, WKDE method has some limitations. Predictions are only possible 
within the age-range that is covered by the training set and the estimated kernels—in our 
case, we can therefore not reliably predict ages above 100 years. The imbalance of differ-
ent donor-ages in the training set was a major problem, which we could neither entirely 
corrected by normalization with the age-distribution, nor by a conditional density-based 
approach for the creation of the 2D density kernels [32]. We have therefore randomly 
reduced the training set for a uniform age-distribution—with the downside that not 
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the entire training set was considered. In the future, alternative approaches based on 
resampling or machine learning might be further exploited to solve this limitation [33, 
34]. Furthermore, our WKDE model was optimized with a genetic algorithm, which has 
shown several advantages over other non-linear optimization techniques, such as high 
efficiency, parallelization, and no need of derivative information [35]. However, other 
tuning parameters for the genetic algorithm or even non-linear optimization algorithms 
can be tested in subsequent studies.

Larger epigenetic signatures do not always increase the precision. When we only con-
sidered the top 27 CpGs in our training set to build the WKDE model, we observed a 
higher correlation with chronological age and lower median absolute error than using a 
less stringent pre-selection of 491 CpGs. This might be due to the more stringent selec-
tion of highly correlating CpGs and the greater number of CpGs increases the risk of 
overfitting of the genetic optimization algorithm to find optimal weighs [36]. In fact, the 
491 WKDE model performed very poorly on the validation set, indicating that there was 
some overfitting.

Our model was specifically trained for human blood samples, while similar mod-
els might also be trained for other cell types or tissues in the future. There is a grow-
ing perception that even the heterogeneity of cells in blood can have major impact on 
epigenetic age-predictions with many conventional epigenetic aging clocks, and this 
may contribute to associations between clock-derived measures and age-related health 
outcomes [37]. For example, the association of epigenetic age acceleration and mortal-
ity found with Horvath and Hannum clocks seems to disappear when a correction for 
the white blood cell counts is performed [9]. Since we observed that purified B cells are 
predicted older whereas T cells are predicted younger, we anticipated that our signature 
will be impacted by cellular composition. Depending on the specific purpose of a study, 
it might be crucial to exclude CpGs with high variation between leukocyte subsets [23]. 
On the other hand, the 2D kernel density approach might also be applied for other epi-
genetic biomarkers, such as deconvolution of leukocytes in blood [38], or of cell types 
within a tissue [39, 40].

A big advantage of smaller signatures is that they can also be addressed by other 
methods for targeted DNAm analysis, such as pyrosequencing, digital PCR, or bar-
coded  bisulfite amplicon sequencing [23]. In comparison to Illumina BeadChip tech-
nology, these approaches may facilitate faster and more cost-effective measurement. 
Furthermore, the measurements are independent of continuously changing microarray 
versions, which may anyway not be approved for clinical diagnostics [41]. In our previ-
ous work, we have measured 9 age-associated CpGs by pyrosequencing to derive an epi-
genetic aging clock with high accuracy based on pyrosequencing [23]. Notably, the same 
data can also be used to derive and validate a 9 CpG WKDE model for pyrosequencing 
data. This exemplifies that our approach is also applicable for targeted methods, particu-
larly if the available training data is large enough.

Probabilistic approaches for epigenetic clocks have been described before. For exam-
ple, we have previously described probabilistic epigenetic age predictions for individual 
sequencing reads, using the binary sequel of methylated and non-methylated CpGs 
in barcoded bisulfite amplicon sequencing data [23]. This method has been further 
developed for genome wide single-cell DNAm datasets [42]. In contrast, WKDE is not 
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applicable to shallow sequencing data, but it provides density estimates for each CpG, a 
joint probability range for the sample and a variability score associated to it.

An important advantage of our approach is that the variation score provides a new 
measure for the intrinsic heterogeneity of age-associated DNAm changes. It is concep-
tionally somewhat related to a recently described “noise barometer” that is based on 
sums of standard deviations of DNAm at individual CpGs [43]. Notably, our variation 
score was clearly increased in malignancies, such as AML and myelofibrosis. Thus, even 
without knowing the chronological age, the combination of epigenetic age prediction 
and variation score can provide a “red flag” to initiate further diagnostic procedures. It 
was also striking that HIV, which has been shown to be associated with accelerated epi-
genetic clocks [44], might rather reflect increase heterogeneity of DNAm at age-associ-
ated CpGs.

Although association between accelerated age and mortality has been shown before 
[8, 26], we did not observe this with WKDE in the LBC1921, which might be due to the 
sample selection and the nature of the clock itself. We have intentionally only chosen 
samples from the initial waves of the LBC1921 and LBC1936 to isolate the effects of the 
variables under examination on mortality from the confounding factor of aging (which 
differs from the previously mentioned studies). It has to be noted, that our WKDE model 
was trained to correlate as closely as possible with chronological age and it is therefore 
conceivable that mortality-associated CpGs sites—such as cg11436113—were consid-
ered with a negative weight for age-predictions. Furthermore, WKDE employs a method 
of prediction that focuses on determining the age that maximizes the probability of a 
joint probability function for the age, rather than relying on a singular value. Hence, the 
biological age might still fall into the probability range of the age.

We have previously identified individual CpG sites from our 99-CpG clock and other 
epigenetic clocks that showed correlations with survival in both the LBC1921 and 
LBC1936 [45]—and most of these were hypomethylated with age [46]. Here, we showed 
an overlap of 25 methylation sites that are significantly associated with mortality in both 
cohorts, and again most of these CpGs become hypomethylated with age. Notably, these 
CpGs included cg06285727, cg06647068, cg08301612, and cg20813374, which were pre-
viously reported as all-cause mortality associated in a large-scale meta-EWAS study of 
six large cohorts [47]. Furthermore, 7 of them are located in genes BST2, FKBP5, PRDX5, 
NWD1, FAM38 A, and NOD2, which have previously shown high association between 
DNAm and aging [48–51], and we have already identified cg16363586 (located in gene 
BST2) as life expectancy associated site [45]. In addition, the CpG site that was identi-
fied as mortality-associated in both cohorts with the 27 CpG signature, cg11436113, has 
been reported as smoking and cancer related [52, 53].

While previous studies have discussed the link between age-related DNA methylation 
(DNAm) and mortality [54, 55], the connection between age-related DNAm heterogene-
ity and all-cause mortality was so far not addressed. Our results suggest that heterogene-
ity among age-associated methylation sites in the genome, measured as variability score, 
can provide additional insight into biological age. It may appear counterintuitive that 
here a lower variation score was associated with higher mortality, albeit very high vari-
ation scores can be indicative for other diseases, as mentioned above. This might be due 
to different pathophysiological mechanisms in aging and disease, or with the observation 
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that particularly in the elderly the variation score declines again. Nevertheless, further 
validation is necessary to examine the potential application of the variability score to 
estimate life-expectancy and to explore possible association with specific diseases.

Conclusions
Our study introduces weighted 2D-kernel density estimation (WKDE) to perform accu-
rate epigenetic age predictions. Furthermore, we describe a variation score that may act 
as an additional parameter for evaluating biological age.

Methods
DNA methylation data

We compiled DNAm datasets of human peripheral blood samples of 13 different stud-
ies from Gene Expression Omnibus (GEO; Additional file 1: Table S5). We considered 
only samples that were classified as healthy or controls. Datasets were separated into a 
training set (7 Illumina HumanMethylation450 K array studies, 1029 samples, age range 
1–101 years, 50.1% female) and an independent validation set (6 Illumina HumanMeth-
ylation450 K array studies, 980 samples, age range 2–79 years, 53.5% female). The data 
was processed in R 4.3.0. with the geoGEO function of the GEOquery package. To sim-
plify the analysis and make it easily applicable to other groups, the preprocessed and 
normalized beta value matrices for each study were downloaded directly from the Gene 
Expression Omnibus (no additional background correction, normalization or quality 
control steps were performed, as they were already performed by the corresponding 
studies). CpGs in sex chromosomes and 6749 single-nucleotide polymorphism (SNP) 
probes (according to the HumanMethylation450 K v1.2 annotation) were filtered out.

Epigenetic clock based on kernel density estimation

As a proof of concept that employing two-dimensional (2D) kernel estimations is fea-
sible for accurate age predictions, we opted for one of the simplest feature selection 
approaches for age predictions: we have focused on the CpGs with highest linear corre-
lation with chronological age in the training set, either 27 CpGs with  R2 > 0.7 (Additional 
file 1: Table S6), or 491 CpGs with  R2 > 0.6 (Additional file 1: Table S7). To generate KDE 
clocks based on these CpGs, we tested various alternative approaches. Initially, we used 
all 1029 samples of the training set to generate 2D kernel density plots of chronologi-
cal age versus DNAm. Since this approach resulted in offsets of epigenetic age-predic-
tions due to the heterogeneous age-distribution in the training set, we subsequently 
adjusted densities of the original kernel by the frequency of donor ages. To this end, we 
only considered samples ≤ 85 years to avoid a distortion for age-categories with very 
few samples. Alternatively, we tested conditional density resampled estimate of mutual 
information (DREMI) [32], which computes a two-dimensional kernel density estimate 
in cases where one variable, e.g., age, stochastically influences the other variable, e.g., 
DNAm. Even though this approach was meant to adjust the densities for the variations 
in DNA methylation linked to aging, it did not yield any enhancements in age predic-
tion (data not shown). Finally, we randomly selected 15 samples of the training set for 
each 5-year bin from 0 to 90 years, and for one additional bin with samples older than 90 
years. This resulted in a subset of 285 samples with uniform age distribution.
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For each CpG, the kernels were generated with the function kde2d of the MASS R 
package, with 101 grid points, resulting in kernels with age on the x-axis (0–100 years), 
beta values on the y-axis (0 to 100% DNAm), and the density on the z-axis. Thus, each 
CpG kernel corresponds to a 3D matrix K, where Ki,j,k represents the density value of 
the CpG k for a sample with age i and DNAm percentage j . An R object containing the 
27 kernels, one for each of the 27 CpGs, can be found in Additional file 2 (.Rds). At this 
point, a preliminary probabilistic kernel age prediction for a sample can be done by:

where k iterates through the selected CpGs and DNAm(k) is the DNAm percentage 
of the CpG k in the considered sample. For each CpG k, the row corresponding to the 
DNAm(k) is a vector of 101 densities, each of them corresponding to the years 0 to 100, 
respectively. After performing the summation of all these density vectors, the algorithm 
returns the age i , the one with the maximum cumulative density of the summation, as 
the final age.

To improve the performance of the predictor, a genetic algorithm was implemented to 
include a weight coefficient wk for each CpG k , with possible values in the range [− 10, 
10]. For this, the function minimize from the R package EmiR was used, with a number 
of 150 initial conditions (parameter population_size = 150, meaning that 150 different 
vectors of 27 or 491 randomly assigned weights between − 10 and 10 were set as initial 
conditions at the start of the algorithm), 100 iterations (parameter iterations = 100, indi-
cating that the algorithm will stop only after 100 iterations have been completed, and 
will return the best vector of 27 or 491 weights among the  100th generation of descend-
ants), a keep fraction of 0.4 (parameter keep_fraction = 0.4, so that 40% of the vectors 
survive for the next mating step), and a mutation rate of 0.1 (parameter mutation_rate = 
0.1, implying a 10% probability of random modifications in the vectors of the offspring). 
The minimization function was set as:

where l iterates for all the samples in the training set, agel is the real age of the sample l 
and DNAml(k) is the DNAm percentage at site k of the sample l . The genetic algorithm 
adjusts the weights of each CpG to minimize the sum of absolute differences between 
the predictions and the real ages, therefore finding the coefficients that minimize the 
total absolute error in the training set (Additional file 1: Tables S6 and S7). An R object 
containing the 27 weights for each CpG can be found in the Additional file 3 (.Rds). After 
finding the optimal weights, the final predictions can be calculated as:

In a similar way, a probability vector can be calculated. Every vector has one entry 
for each year (0 to 100), which quantifies how probable it is to observe the measured 
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methylation value assuming that a person is of the respective age. Since each CpG is 
associated with a weight coefficient, we have to add the individual weighed vectors for 
all the CpGs, which ends up in a single merged vector. The vectors can be subsequently 
normalized to interpret the weighted sum as a probability, i.e., to ensure that the sum 
of probabilities is equal to 1. This results in the following formula for weighted 2D KDE 
(WKDE model):

where n is the number of the CpGs that the clock uses, wk is the weight of the CpG k , 
DNAm(k) is the measured DNAm percentage of the CpG k in the considered sample 
and Kage,DNA(k),k is the value in the row DNAm(k) and column age of the density map of 
the CpG k.

Epigenetic age predictions based on linear regression

To benchmark epigenetic age-predictions of our WKDE model with conventional 
approaches using the same subsets of CpGs  (R2 > 0.6 or 0.7 in the training set, as indi-
cated above), we established two alternative epigenetic clocks: (1) by multivariable linear 
regression using the lm function from stats package in R and the predict function to cal-
culate age predictions for both training and validation sets (Additional file 1: Tables S6 
and S7) and (2) by calculating the average of individual CpG age-predictions, whereby 
for each selected age-associated CpGs the slopes and intercepts between DNAm (beta 
values) and age were calculated with the lm and apply functions in R and the mean of 
the CpG-specific predictions was then used to estimate donor age (Additional file  1: 
Tables S6 and S7). Pearson squared correlation  (R2) and median absolute error (MAE) 
between chronological and predicted age was calculated. Furthermore, we used the R 
package methylCIPHER [56] to compare the performance across the individual datasets 
used in training and validation sets with other commonly used epigenetic clocks: the 
Horvath clock [5], the Hannum clock [7], PhenoAge [10], retrained principal component 
PhenoAge [57], Horvath Skin & Blood epigenetic clock [58], Lin clock [45], Vidal-Bralo 
clock [59], Han clock [23], and Zhang clock [9].

Age predictions in purified cell types

To estimate epigenetic age in purified leukocyte subsets, we used normalized matrices 
of beta values from two datasets: GSE110554 (30 samples after removing smokers and 
samples with missing information on chronological age) [60] and GSE224807 (415 sam-
ples after removing smokers, age-information is not provided) [61]. The data was down-
loaded from the GEO repository and processed in R 4.3.0. with the getGEO function of 
the GEOquery package, and no additional preprocessing or quality control steps were 
performed.

Pyrosequencing‑based WKDE clock

Pyrosequencing data of 80 healthy human whole blood samples (age range 19–73 years) 
was retrieved from a previous study [23]. The methylation values of 9 age-associated 
CpGs were used, and the samples were redistributed into training and validation sets so 

probability
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that the training set had a uniform age distribution (Additional file 1: Table S8). WKDE 
method was applied to build a clock with the 9 CpGs (both KDE calculation and genetic 
algorithm were performed as described before).

Variation score

The variation score provides an estimate for how homogeneous the age-predictions for 
individual CpGs are. Thus, we focus on the probability vectors themselves, without con-
sidering the weights. For this, we used the R function approxfun with the non-weighted 
probability function to obtain probability values for all ages from 0 to 100 in steps of 
0.1 years. The function approxfun performs a linear interpolation between given data 
points:

The call returns a vector with 1000 components, where the component x (which is 
between 0 and 1000) corresponds to the probability that the sample comes from an indi-
vidual of age x/10. Subsequently, we were able to calculate mean, variance, and standard 
deviation of the probability function:

The R script with the functions to calculate predicted age, probability age function, 
and variation score with WKDE can be found in the additional file 4 (.R).

Finally, the Mann–Whitney-Wilcoxon test was used in R with the function wilcox.test 
to verify if there were differences in delta age (predicted − chronological age) by sex.

Association between variation score and several diseases

The already preprocessed and normalized matrixes of beta values for the different stud-
ies (Additional file 1: Table S1) were directly downloaded from the GEO repositories. The 
data was processed in R 4.3.0. with the getGEO function of the GEOquery package, and 
no additional preprocessing or quality control steps were performed. When available, 
plots and statistics were performed with the chronological age of the samples; otherwise, 
the predicted age calculated with the 27 CpG WKDE model was used. The following 
repositories were used: GSE124413 [62], GSE133986 [63, 64], GSE153347 [65, 66], 
GSE62298 [67, 68], GSE58477 [69, 70], and GSE152710 [25, 71] for AML; GSE118241 
[72, 73] for myelofibrosis, GSE52588 [74, 75] for Down syndrome, GSE67751 [76, 77] for 
HIV, GSE131752 [78, 79] for progeroid syndromes, GSE165081 [80, 81] for Parkinson’s 
disease, and GSE41169 [82, 83] for schizophrenia.
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(

∑n
k=1Kage,DNAm(k),k

∑100
i=0

(
∑n

k=1Ki,DNAm(k),k

)

)

(x),where x ∈ {0,1, . . . , 999,1000}

mean = 0.1 ·
1000
∑

x=0

f (x) · x

variance = 0.1 ·
1000
∑

x=0

f (x) · (0.1x −mean)2

variation score =
√
variance



Page 16 of 21Perez‑Correa et al. Genome Biology          (2025) 26:103 

To assess whether there were significant differences in variation scores between 
healthy and diseased samples, ANOVA was utilized for each study individually. The 
variation score was designated as the response variable, with age (chronological or 
predicted), disease state, and the interaction of age and disease state included as fac-
tors. This methodology aimed to control for age, as the average age of the diseased and 
healthy samples differed in the majority of studies. The reported p-values for all the dis-
eases correspond to the p-value of the factor “disease state” in the ANOVA.

Mortality association in LBC1921 and LBC1936

The Lothian Birth Cohorts of 1921 (LBC1921) and 1936 (LBC1936) are follow-up stud-
ies of the Scottish Mental Surveys of participants born in 1921 and 1936, respectively. 
The study was initially set up to study determinants of non-pathological cognitive aging 
[84, 85] and peripheral blood samples were analyzed by 450 k Illumina BeadChips. Only 
samples from the first waves of the LBC1921 and LBC1936 were considered, to keep 
all the samples around the same chronological age (79.11 ± 0.59 years for LBC1921 
and 69.56 ± 0.84 years for LBC1936)—thus, in these cohorts chronological age has lit-
tle impact on the association with mortality analyses. All the raw data in the form of 
IDAT files were processed in R with the ENmix package. Quality control was performed, 
probes with detection p-values greater than 0.01 were filtered out, and probes and sam-
ples with more than 10% of missing values were excluded. ENmix_oob background 
correction [86], RELIC dye-bias correction [87], and RCP probe-type bias adjustment 
[88] were performed. To minimize the potential influence of fatal acute illnesses on the 
methylation measurements, deaths that occurred during the first 2  years of follow-up 
were excluded from the analysis. After the preprocessing filter for the first wave, a total 
of 374 samples from the LBC1921 and 721 from the LBC1936 remained.

Mortality status was ascertained from data linkage using dates of death (which were 
converted to age in days at death by the LBC research team) from the National Health 
Service Central Resister, provided by National Records of Scotland. Time of the events 
for the Cox models was defined as the interval between [age in days at census wave1; 
age in days at death]/365.25 in case of a death or [age in days at census wave1; age in 
days at last census]/365.25 in case of census. At time of last census, 367/374 (98.13%) 
and 285/721 (39.53%) had died. Delta age was calculated as predicted age (with the 
WKDE model) − chronological age. Cox proportional hazards regression models were 
performed (adjusted for age and sex), to assess the association between delta age and 
mortality and between variation score and mortality. Additional regression models were 
tested for delta age and variation score that also considered the following parameters 
as covariates: smoking status (never, former or current), alcohol consumption (units 
per week), counts in blood for basophils, eosinophils, neutrophils, leukocytes, mono-
cytes, white cells and platelets, triglycerides, total serum cholesterol and vitamin B12 
levels in blood, heart rate (information only available for LBC1921), sitting diastolic 
pressure, body mass index, grip strength, forced expiratory volume, telomere length, 
activity lifestyle score (LBC1921), physical activity level (LBC1936), self-perceived life 
quality, self-perceived health status, and self-perceived life enjoyment. Additional details 
regarding the cohorts and the different variables that were measured can be found in the 
Cohort Profile Update [85]. The statistical software R was used to conduct all analyses, 
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employing the  ’survival  package for the Cox models. For fitting the Cox proportional 
hazards regression models, the function coxph was used. Significance of the relation-
ship between Schoenfeld residuals and time for the basic adjusted (age and sex) and fully 
adjusted (all additional covariates mentioned above) models was calculated with the 
function cox.zph.
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