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Abstract 

Background:  Single-cell transcriptomics has transformed our understanding of cel-
lular diversity, yet noise from technical artifacts and low-quality cells can obscure key 
biological signals. A common practice is filtering out cells with a high percentage 
of mitochondrial RNA counts (pctMT), typically indicative of cell death. However, com-
monly used filtering thresholds, primarily derived from studies on healthy tissues, may 
be overly stringent for malignant cells, which often naturally exhibit higher baseline 
mitochondrial gene expression.

Results:  We examine nine public single-cell RNA-seq datasets from various can-
cers, including 441,445 cells from 134 patients, and public spatial transcriptomics 
data, assessing the viability of malignant cells with high pctMT. Our analysis reveals 
that malignant cells exhibit significantly higher pctMT than nonmalignant cells, with-
out a notable increase in dissociation-induced stress scores. Malignant cells with high 
pctMT show metabolic dysregulation, including increased xenobiotic metabolism, 
relevant to therapeutic response. Analysis of pctMT in cancer cell lines further reveals 
links to drug resistance. We also observe associations between pctMT and malignant 
cell transcriptional heterogeneity, as well as patient clinical features.

Conclusions:  This study provides insights into the functional characteristics of malig-
nant cells with elevated pctMT, challenging current quality control practices in tumor 
single-cell RNA-seq analyses and offering potential improvements in data interpreta-
tion for future cancer studies.
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Background
Single-cell transcriptomics studies have led to significant progress in our understanding 
of tumor biology, paving the way for the development of personalized medicine [1–4]. A 
crucial early step in processing single-cell RNA-sequencing (scRNA-seq) is implement-
ing rigorous quality control measures to exclude observations that do not represent via-
ble single cells. Following established guidelines [5–8], cells exhibiting a high percentage 
of mitochondrial RNA content (pctMT) are routinely excluded from the analysis. This 
practice is based on evidence linking high pctMT to dissociation-induced stress and 
necrosis [9–11]. However, recent studies have highlighted the limitations of these stand-
ard quality control (QC) filters, advocating for novel, data-driven QC metrics [12–15].

Moreover, pctMT has been closely linked to cell-specific metabolic activity, leading to 
substantial variability across different cell types and often surpassing the thresholds set 
by traditional filters [8, 14, 16, 17]. For instance, Montserrat-Ayuso and Esteve-Codina 
[12] argued that conventional mitochondrial filters may inadvertently eliminate healthy 
cells with high metabolic activity. Additionally, most studies linking pctMT with cell 
quality have been conducted on healthy rather than diseased tissue, whereas malignant 
tissues often exhibit higher percentages of mitochondrial counts due to generally ele-
vated mitochondrial DNA (mtDNA) copy number [18] or the activation of the mTOR 
pathway [19, 20]. Hence, using a predefined threshold or median absolute deviations 
based on the entire cell population to filter out cells with high pctMT in cancer studies 
might inadvertently eliminate functionally and clinically important malignant cells.

Here, we set out to determine whether malignant cells with high pctMT in cancer 
indeed correspond to cells suffering from the dissociation-induced stress, empty, or 
broken droplets, or if they represent a viable and functional component of malignant 
cells that should be preserved for downstream analysis. By examining publicly availa-
ble scRNA-seq cancer datasets, we demonstrate that elevated pctMT in malignant cells 
is largely independent of dissociation-induced stress and that including cells with high 
pctMT does not significantly compromise dataset quality. We further show that high 
pctMT malignant cells are metabolically dysregulated and associated with drug response 
and patient clinical features. Our findings complement current guidelines for processing 
scRNA-seq datasets and are likely to inform refined quality control strategies in future 
studies of human cancers.

Results
Malignant cells show a significantly higher percentage of mitochondrial RNA than healthy 

counterparts in samples across cancer types

To determine whether malignant cells exhibit a higher baseline pctMT, we analyzed 
pctMT levels in both tumor microenvironment (TME) and malignant cells across 
nine different studies: lung adenocarcinoma (LUAD), small cell lung (SCLC), renal cell 
(RCC), breast (BRCA), prostate, nasopharyngeal carcinoma (NPC), uveal melanoma, 
and primary and metastatic pancreatic cancers [4, 21–28], spanning the total of 441,445 
cells across 134 patients, including 160,225 malignant cells (Fig. 1). PctMT levels were 
calculated based on the expression of mitochondrial genes detected in the dataset. 
These included at least the 13 protein-coding mitochondrial genes, with some datasets 
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additionally incorporating mitochondrial transfer and ribosomal RNA genes (Addi-
tional File 1: Suppl. Table S1). We conducted extensive initial quality control (QC) with-
out applying pctMT-based filtering. We evaluated whether this QC approach excluded 
potential low-quality cells by examining metrics typically associated with cell integrity, 
as outlined by Ilicic et al. [9]. Our analysis confirmed that the cells filtered out by our 
QC procedure consistently exhibited poor-quality metrics despite the QC not explicitly 
relying on pctMT (Additional File 2: Suppl. Fig. S1). Additionally, following recent stud-
ies recommending the use of MALAT1 expression as a QC metric [12, 13], we compared 
the MALAT1 expression between filtered and retained cells. We found that our filter-
ing process effectively removed cells with high MALAT1 expression, often associated 
with nuclear debris, and cells with null MALAT1 expression, linked with cytosolic debris 
(Additional File 2: Suppl. Fig. S2).

We categorized cells as HighMT or LowMT based on their pctMT values, with those 
having pctMT above 15% designated as HighMT and those below 15% as LowMT. 
The value of 15% was chosen as the typical pctMT threshold range used in the non-
cancer and cancer studies is 10–20% [24, 25, 29–33]. We detected significant variabil-
ity in pctMT distribution between tumor microenvironment (TME) and malignant cells 
across patients, with generally higher median pctMT observed in the malignant cells in 
both filtered and unfiltered studies (Fig. 2a,b). Overall, 72% of samples (81 out of 112 
patients used in this analysis, “ Methods”) had significantly higher pctMT in the malig-
nant compartment (two-sided Mann–Whitney U test p-value < 0.05, Fig.  2a,b). More-
over, across studies of all cancer types, 10 to 50% of tumor samples exhibited a twice 
higher proportion of HighMT cells in the malignant compartment than in the TME 
(Methods), indicating a widespread presence of malignant cells that would typically be 

Fig. 1  Study overview. We analyzed nine single-cell cancer datasets [4, 21–28] across 134 patients and 
420,747 cells from various cancer types, categorizing cells by their percentage of mitochondrial-encoded 
gene RNA counts (pctMT), with cells above 15% designated as high mitochondrial content cells (HighMT). 
First, we examined potential links between pctMT and common artifacts, including dissociation-induced 
stress. We then confirmed regions of high-density malignant HighMT cells in Visium HD slides and explored 
metabolic dysregulation, notably an increase in xenobiotic metabolism in malignant HighMT cells. We 
linked cell line pctMT levels to differential drug resistance and sensitivity. Finally, we identified significant 
associations between pctMT and established cancer cell states, along with key clinical characteristics
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filtered out when the standard 15% cut-off on pctMT is used (Fig. 2a,b). The observed 
increase in pctMT in carcinomas could be partially explained by the natural variability in 
pctMT across cell types. Indeed, the basal pctMT of epithelial cells was generally higher 
than that of other TME components in most cancer types (Additional File 2: Suppl. Fig. 
S3-S11). However, in the majority of cases, the pctMT in the malignant compartment 
exceeded that of healthy epithelial cells (Additional File 2: Suppl. Fig. S3-S11).

Malignant cells with high mitochondrial content do not strongly express markers 

of the dissociation‑induced stress

We investigated the common hypothesis that the presence of malignant cells with high 
pctMT in scRNA-seq datasets is due to tissue dissociation protocol inducing cell stress. 
Utilizing dissociation-induced stress signatures derived from studies by O’Flanagan 
et al., Machado et al., and van den Brink et al. [10, 11, 34], we constructed a meta score 
based on genes found across all studies.

To determine whether the HighMT cells in the malignant compartment were asso-
ciated with dissociation-induced stress without inflating the estimates of statistical 
significance, we computed metacell expression vectors for each study and excluded 
studies with only one patient with a twice higher proportion of HighMT cells in the 
malignant compartment [36]. The median number of cells per metacell ranged from 
22 to 30 cells across the seven remaining studies (Additional File 2: Suppl. Fig. S12). 
In these seven studies, we compared the meta dissociation-induced stress scores 
between HighMT and LowMT metacells in both healthy and malignant compart-
ments. The results revealed inconsistent patterns: one study indicated lower dis-
sociation-induced stress in malignant HighMT cells, three showed no significant 
difference, and three showed higher dissociation stress in highMT cells (Fig. 2c). This 
variability persisted when scoring on a patient-specific basis (Additional File 2: Suppl. 

(See figure on next page.)
Fig. 2  The malignant compartment of multiple cancer types contains cells with high mitochondrial-encoded 
RNA content. a,b Comparison of mitochondrial RNA percentage (pctMT) between tumor microenvironment 
(TME) and malignant cells across 112 patients in a unfiltered cohorts and b cohorts with prior pctMT filtering 
in original studies (Methods) [4, 21–26, 28]. Patients with too few TME or malignant cells are discarded for 
this analysis. Patients with more than double the proportion of HighMT malignant cells (pctMT > 15%) 
compared to TME and with over 15% of HighMT malignant cells are highlighted (blue bar above boxplots). c 
Distribution of the dissociation-induced stress scores estimated in HighMT and LowMT malignant metacells 
(pctMT < 15%) across the seven studies selected for the analysis (studies with at least two samples with at 
least 30% of HighMT malignant metacells). A dissociation stress meta-signature is defined using the common 
genes in three different dissociation stress signatures [10, 11, 34]. The point biserial correlation coefficient 
between the score and HighMT/LowMT status is indicated over the boxplots. d,e Mean of the residuals 
between the experimental and predicted expression of the 13 MT-encoded protein-coding genes for the 
paired bulk and single-cell data from the d Wu et al. [25] and e Chung et al. [35] cohorts. The relationship 
between bulk and bulkified gene expression is modeled by a polynomial regression. Residuals are computed 
as the difference between the ground-truth and the predicted bulkified expression. We use an empirical 
sampling scheme where we compare the mean residuals to that of randomly sampled genes (Methods). 
The 95% confidence interval of the mean residuals of randomly sampled genes is represented as the shaded 
gray area, and significance is reported based on Bonferroni-corrected p-values. RCC: renal cell carcinoma; 
SCLC: small cell lung cancer; NPC: nasopharyngeal carcinoma; LUAD: lung adenocarcinoma; BRCA: breast 
cancer; Met. Pancr. cancer: metastatic pancreatic cancer; TME: tumor microenvironment. Significance 
for a–c is computed with a Mann–Whitney U test. ns: p > 0.05; *: 0.01 < p ≤ 0.05; **: 0.001 < p ≤ 0.01 ; 
***: 0.0001 < p ≤ 0.001 ; ****: p ≤ 0.0001
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Fig. S3-S11). Notably, even in the studies where scores of the dissociation-induced 
stress were higher in the HighMT population of malignant cells, the effect size was 
small (maximum point biserial coefficient across studies < 0.3), suggesting dissocia-
tion-induced stress is unlikely to be the main driver of the HighMT cells in the malig-
nant compartment.

To evaluate whether our QC procedure effectively removed cells stressed by tis-
sue dissociation, or whether adding an additional pctMT filter would further reduce 
the presence of cells with high stress signature scores, we compared stress signature 
scores across three groups of malignant cells: cells filtered out by our in-house QC 
procedure, cells that would be excluded by a pctMT filter, and remaining cells (Addi-
tional File 2: Suppl. Fig. S13). Our analysis showed no significant increase in disso-
ciation-induced stress scores among QC-passing HighMT cells, suggesting that the 

Fig. 2  (See legend on previous page.)
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pctMT filter does not affect the proportion of cells with high stress signature scores. 
Therefore, applying a pctMT filter does not further reduce dissociation-related stress 
in retained cells.

To further demonstrate that dissociation-induced stress does not strongly drive ele-
vated pctMT in the cancer cells passing other QC measures, we compared mitochon-
drial gene expression between paired bulk and scRNA-seq datasets from two breast 
cancer studies [25, 35]. Data from the bulk RNA-seq protocol, which does not require 
a tissue dissociation step, served as a control. We modeled the relationship between 
bulk and “bulkified” single-cell data and calculated the residuals reflecting the excess of 
gene expression from mitochondria in the scRNA-seq cells passing QC (Methods). In 
the Wu et al. cohort, only one out of 23 patients showed significantly higher residuals 
for mitochondrial-encoded genes than random nuclear-encoded genes (FDR-corrected 
p-value < 0.05); in the Chung et al. cohort, one out of nine patients showed significantly 
higher residuals (Fig.  2d,e). These results, consistent across models (Additional File 2: 
Suppl. Fig. S14), indicate that mitochondria-encoded genes are generally similarly 
expressed in bulk samples and QC-passing single-cell data, reinforcing the notion that 
HighMT malignant cells do not primarily arise from dissociation-induced stress.

Spatial transcriptomics reveals subregions of breast and lung tissue with viable malignant 

cells expressing high levels of mitochondrial‑encoded genes

Despite the fact that we observed weak to no association between pctMT and dissoci-
ation-induced stress, we wanted to further exclude the hypothesis of the HighMT cells 
being necrotic. To address this, we examined Visium HD spatial transcriptomics data 
from one breast ductal carcinoma in situ (DCIS) patient (Fig. 3a–e) and one lung adeno-
carcinoma (LUAD) patient (Fig. 3f–j; “ Methods”).

Visium HD spots were transformed into segmented cells using the bin2cell tool 
[37], which leverages underlying H&E and immunofluorescence data for segmenta-
tion. These computationally estimated cells were aggregated into metacells, which 
were further used to annotate cell types using canonical marker expression and 
copy number variation analysis in DCIS (Fig. 3b,c) and LUAD (Fig. 3h,i). The uncov-
ered copy number variation profiles reflected the published DCIS [38] and LUAD 
[39] profiles (Additional File 2: Suppl. Fig. S15). We computed pctMT using the 11 
detected protein-coding MT genes (Additional File 1: Suppl. Table  S1). Consistent 

Fig. 3  HighMT cells present varied distribution in spatial transcriptomics analyses of breast carcinoma and 
lung adenocarcinoma. a H&E staining of breast ductal carcinoma in situ (DCIS) analyzed with Visum HD. 
b H&E image overlay showing the annotated cell types. We use the log1p-normalized gene expression 
in cells segmented using bin2cell to perform Leiden clustering to define clusters, each aggregated into 
a “metacell” (Methods). Four primary cell type categories are identified, with copy number variation 
distinguishing malignant from healthy cells. c UMAP representation of the “metacells” in the tissue with cell 
type annotations. d Distribution of the pctMT (% MT counts) across cell types in bin2cell-estimated cells, 
analyzed by a Mann–Whitney U test (****: p < 0.0001). The plot is clipped at the 25% mark on the y-axis to 
better visualize the differences in distributions. e H&E image overlay showing median mitochondrial count 
percentages of malignant spots in the 1000 × 1000px patches. Regions with too few malignant cells are 
excluded. Breast regions of interest are marked as Br.A, Br.B, and Br.C. f Cell type annotations, pctMT values, 
and H&E staining of cells in regions of interest, with cell type annotations derived from metacell data. g–l 
Same analyses as a–f for lung adenocarcinoma (LUAD)

(See figure on next page.)
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with scRNA-seq findings, malignant cells exhibited a significantly higher pctMT than 
cells in the surrounding TME in both DCIS and LUAD, with numerous HighMT cells 
(pctMT > 15%) (Fig. 3d, j). Importantly, pctMT levels were not significantly correlated 
with the total detected counts in either malignant or healthy populations, ruling out 

Fig. 3  (See legend on previous page.)
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a strong confounding effect of total detected counts on the analysis (Additional File 2: 
Suppl. Fig. S15).

To assess the spatial distribution of HighMT malignant cells, we calculated the median 
pctMT across 1000 × 1000px patches of malignant spots in both DCIS and LUAD tis-
sues (Fig. 3e, k). This analysis revealed spatial variability, with localized regions showing 
higher median pctMT among malignant cells. In DCIS, we focused on three regions: 
Br.A and Br.B (high pctMT) and Br.C (low pctMT) (Fig. 3f ). Each region showed con-
sistent malignant cell morphology, but spot-level pctMT varied, with malignant cells 
displaying significantly elevated pctMT compared to adjacent non-malignant cells. Simi-
larly, in LUAD, regions Lu.B and Lu.C showed markedly higher pctMT than region Lu.A 
(Fig. 3l).

The findings from spatial transcriptomics confirm that, independent of dissociation 
stress, malignant cells frequently display elevated pctMT and are variably distributed 
across tumor regions. This supports the conclusion that viable malignant cells with high 
pctMT constitute a prevalent component within tumors, observable even without disso-
ciation-induced artifacts.

Cells with high mitochondrial content express gene signatures associated 

with mitochondrial transfer and fission

To understand potential mechanisms driving higher pctMT observed in malignant cells, 
we explored the link between mitochondrial DNA and RNA content. Previous studies 
using single-cell and bulk tumor data have shown that transcription of MT-encoded 
genes positively correlated with the mitochondrial DNA content across healthy and dis-
eased tissues [18, 40–43]. Moreover, Kim et al. analyzed matched mitochondrial DNA 
copy number and nuclear DNA data and observed that clones with increased MT-DNA 
to nuclear DNA ratio (MNR) were associated with higher transcription of mitochon-
drially encoded oxidative phosphorylation (OXPHOS) genes [40]. To assess whether a 
similar association is observed between MNR and pctMT in matching clones, we used 
available data from three ovarian cancer samples and six engineered hTERT cell lines 
from Kim et al. Overall, we observed a positive association between MNR and pctMT 
(Additional File 2: Suppl. Fig. S16).

Higher MT-DNA can result from several mechanisms, including mitochondrial fission 
[44] or horizontal mitochondrial transfer between TME and malignant cells [45–48]. 
We assessed the mitochondrial fission activity and the activity of mitochondrial transfer 
in malignant cells by scoring metacells with the gene ontology (GO) fission signature 
(GO:0090140), and a recently derived gene signature describing a cancer cell phenotype 
linked with receiving mitochondria from T-cells [49]. We observed significantly higher 
scores of one or both signatures in the HighMT malignant cells compared to LowMT 
ones in five out of seven studies (Fig. 4a,b), with the strongest effect observed in RCC for 
fission (point biserial correlation coefficient = 0.40, p-value < 0.001) and SCLC for mito-
chondria transfer (point biserial correlation coefficient = 0.36, p-value < 0.001). These 
results indicate that higher fission and/or mitochondria transfer from TME might be 
the driver of higher MT-DNA content and, as such, of higher MT-RNA expression in 
HighMT cells.
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Malignant cells with high mitochondrial content present dysregulation of metabolic 

pathways

Given the essential role of mitochondria in cell metabolism, we hypothesized that malig-
nant cells with high mitochondrial content might exhibit metabolic dysregulation. To 
investigate this, we examined mitochondrial-related pathways curated by Mitocarta, 
which includes pathways involving nuclear-encoded proteins or RNAs that translocate 
to mitochondria [50] (Fig. 4c). We found that four consistently upregulated pathways in 
the studied cancer types were the glycerol phosphate shuttle (7/7 studies), biotin-utiliz-
ing proteins (7/7 studies), coenzyme A (CoA) metabolism (5/7 studies), and xenobiotic 
metabolism (5/7 studies), all with established roles in cancer [51–56]. Notably, oxida-
tive phosphorylation — a core mitochondrial function — was significantly upregulated 
only in RCC and metastatic pancreatic cancer (Additional File 1: Suppl. Table S2), with 
other cancer types showing no shift or slight downregulation. These results indicate that 
HighMT cells display notable metabolic dysregulation.

Fig. 4  Transcriptomic and metabolic characterization of malignant cells with high mitochondrial content. 
a Distribution of metacell scores of mitochondrial fission across malignant compartments. b Distribution 
of metacell scores of mitochondrial transfer across malignant compartments. Significance is computed 
using a Kruskall-Wallis test. c Heatmap of the dysregulation of the 72 MitoCarta metabolic pathways. The 
hue represents the difference in median score of the pathway between the HighMT metacells and LowMT 
metacells. Pathways are ordered according to median difference. d Distribution of signature scores of genes 
involved in xenobiotic metabolism in the seven studies. The score of CYP genes (phase I), UGT and GST 
genes (phase II), and ABC transporters (phase III) are compared between HighMT and LowMT metacells 
for each study. Significance is computed using a Mann–Whitney U test. ns: p > 0.05 ; *: 0.01 < p ≤ 0.05 ; **: 
0.001 < p ≤ 0.01 ; ***: 0.0001 < p ≤ 0.001 ; ****: p ≤ 0.0001
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Cells with high mitochondrial content show increased xenobiotic metabolism 

through higher expression of drug‑metabolizing enzymes and ABC transporters

Given our observation of the consistent increase of xenobiotic metabolism gene signa-
ture scores in malignant HighMT cells across cancer types and its implication in cancer 
therapeutic response [57, 58], we further characterized the activity of this pathway by 
evaluating the expression of genes involved in all three phases of xenobiotic metabolism: 
phase I cytochrome P450 (CYP) genes, phase II UDP-glycosyltransferase (UGT), and 
glutathione S-transferase (GST) genes, and phase III ABC transporters (Methods) [59].

We found that HighMT cells showed prominent upregulation of phase II and phase III 
genes (Fig. 4d). ABC transporters were notably significantly upregulated across all seven 
studies. UGT genes were also consistently elevated in all seven datasets, reaching statis-
tical significance in five. In contrast, phase I genes showed no significant upregulation. 
This consistent pattern may reflect the known dependence of ABC transporter-mediated 
chemoresistance on mitochondrially produced ATP [60].

Cell lines with higher mitochondrial content show resistance to metabolic drugs 

and sensitivity to targeting EGFR signaling

Given the high scores of xenobiotic metabolism gene signature in HighMT malignant 
cells, we further explored the link between the level of expression of mitochondrial 
RNA and the resistance of cells to commonly used drugs. We analyzed the association 
between the half-maximal inhibitory concentration (IC50) and mitochondrial content 
in cell lines from the Cancer Cell Line Encyclopedia (CCLE) [61]. Samples from CCLE 
showed diverse levels of expression of mitochondrial RNA, ranging from 4% median 
pctMT in glioblastoma to 14% median pctMT in head and neck squamous cell carci-
noma (Additional File 2: Suppl. Fig. S17).

We observed a consistent and significant association between elevated pctMT and 
increased drug resistance, as indicated by higher IC50 values across cell lines with high 
pctMT (Methods). To confirm the robustness of these associations, we conducted an 
empirical permutation test, which demonstrated that the observed distribution of correla-
tions significantly diverged from random, particularly in the tails (Additional File 2: Suppl. 
Fig. S17). The top 15 drugs with the highest median resistance across cancer types were 
significantly enriched in drugs targeting metabolism (Fig. 5a). These included Daporinad, 
which targets nicotinamide phosphoribosyltransferase (NAMPT) [62], BX-912, which tar-
gets PDK1 [63, 64], and CAP-232, which targets glycolysis. Many of the other drugs to 
which cells showed the highest resistance, although not directly associated with metabo-
lism, targeted proteins involved in mitochondrial dynamics. This included MIM1, which 
targets MCL-1, involved in mitochondrial dynamics [65], MCT4_1422, which targets 
MCT4, a lactate transporter [66], XMD15-27, which targets CAMK2, linked to mitochon-
drial-dependent apoptosis [67], and BMS-345541, which targets IKK1, involved in mito-
chondrial network dynamics [68] (Fig. 5b).

We also found that higher pctMT in cell lines was consistently linked to higher sensi-
tivity to drugs targeting EGFR signaling or mitosis (Fig. 4a). Specifically, higher pctMT 
correlated with increased sensitivity to common chemotherapy agents such as Docetaxel 
and Vinblastine (Fig.  5c). Interestingly, the highMT cells in most cancer types show 
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an increase in expression of EGFR family genes, mostly ERBB3, which might partially 
explain increased sensitivity (Additional File 2: Suppl. Fig. S18). Although reports show 
that EGFR translocates to the mitochondria and is associated with metastasis in lung 
cancer [69–71], the exact mechanistic link between EGFR, increased mitochondrial con-
tent, and its role in carcinogenesis warrants further exploration.

To further validate the association between pctMT and drug response, we analyzed 
publicly available single-cell lineage tracing data from the high-grade serous ovarian car-
cinoma cell line Kuramochi, treated with carboplatin (DNA replication inhibitor) and 

Fig. 5  Cell lines with higher mitochondrial content show differential resistance and sensitivities to drugs. 
a Comparison of the function of the top 15 drugs with the highest association between pctMT and drug 
resistance (resp. drug sensitivity) and the set of tested drugs. All drugs tested on the CCLE are classified into 
categories according to their target. The fraction of drugs falling into each category is plotted. Significance 
is computed using a Fisher exact test. b,c Correlation between the pctMT of cell lines stratified by cancer 
type and IC50 of specific drugs for the top 15 drugs with the highest median correlation across cancer types 
(b) and the top 15 drugs with the lowest median correlation across cancer types (c). For each cancer type, 
Pearson’s correlation between pctMT and IC50 of all cell lines is computed. Significance is computed using 
Student’s t test. d,e Distribution of pctMT across the Kuramochi cell line’s treatment-sensitive and resistant 
clones, treated with Olaparib (d) and Carboplatin (e). Significance is computed using a Mann–Whitney U 
test. Dotted lines correspond to the median pctMT value in treatment-sensitive cells. *: 0.01 ≤ p < 0.05 ; **: 
0.001 ≤ p < 0.01 ; ***: p < 0.001 . CCLE: Cancer Cell Line Encyclopedia
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olaparib (PARP1/2 inhibitor) [72]. Our CCLE analysis showed that pctMT was linked 
with resistance against DNA replication inhibitors, and with both sensitivity and resist-
ance against genome integrity-targeting drugs (Fig.  5a). While carboplatin was not 
tested in CCLE, we observed a positive correlation between pctMT and olaparib IC50 
in ovarian cancer cell lines (Pearson’s R = 0.35, p-value < 0.1), suggesting an association 
with drug resistance. Single-cell lineage tracing confirmed significantly higher pctMT in 
resistant clones compared to sensitive ones for both drugs, with pctMT further increas-
ing in resistant clones post-treatment (Fig. 5d,e). We also analyzed lineage tracing data 
from the triple-negative breast cancer cell line MDAMB468, treated with afatinib [73], 
an EGFR inhibitor. Here, we found that pctMT in treatment-naive cells was significantly 
lower in the two most prevalent afatinib-tolerant clones (“dominant tolerant clones,” 
observed after afatinib treatment) compared to the sensitive ones (Mann–Whitney two-
sided test p-value = 0.04, Additional File 2: Suppl. Fig. S19), agreeing with our results in 
CCLE data (Fig. 5c).

These findings support the association between pctMT and drug resistance, highlight-
ing the importance of including cells with high pctMT in future analyses. However, to 
fully explore the mechanistic link between pctMT and treatment response, more sys-
tematic and extensive studies are required.

Malignant cells with higher mitochondrial content are associated with previously reported 

transcriptional states and patient clinical features

Recent studies across various cancer types revealed the presence of diverse transcrip-
tional profiles of malignant cells within individual tumors, and their association with 
patient treatment outcomes [74–76]. Hence, we investigated whether HighMT cells 
were associated with varied expression of previously reported transcriptional programs 
and states [77, 78].

We analyzed gene signature scores characterizing previously reported cancer type-
specific transcriptional states in single-cell datasets of SCLC [79], breast [25], uveal 
melanoma [28], RCC [4], lung adenocarcinoma [80], and pancreatic cancer [81] single-
cell studies. Malignant HighMT cells showed significant associations with scores of 
several reported transcriptional states (Fig. 6a, Additional File 2: Suppl. Fig. S20). Spe-
cifically, HighMT cells had significantly higher scores for tumor-program 1 (TP1) in 
RCC, neuroendocrine-like (NE) state in SCLC, mucin-related (TFF1 +) and immune-
rich (MALAT1 +) states in primary and metastatic pancreatic cancer, and TNF-α and 
hypoxia-related state (GM7) in breast cancer.

Further, we investigated the link between the proportion of HighMT cells in the 
malignant compartment and patient clinical features in analyzed single-cell datasets 
(Fig.  6b). We observed a significant association between the proportion of HighMT 
malignant cells and stage in SCLC and metastatic pancreatic cancer, with a significantly 
higher proportion of HighMT malignant cells in more advanced stages (p-value < 0.1). 
In breast cancer, HighMT malignant cells were significantly enriched in the estrogen 
receptor-positive (ER +) subtype compared to triple-negative (TNBC) (p-value < 0.05). 
Taken together, these results show that retaining malignant HighMT cells in scRNA-
seq analyses is crucial for accurately capturing tumor heterogeneity and relevant clinical 
correlations.
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Impact of filtering strategies on the retention of biological signals

Finally, to assess the impact of different filtering strategies on preserving biological sig-
nals, particularly those present in highMT cell populations, we applied three filtering 
approaches to the pancreatic cancer dataset from Steele et al. [23]. Specifically, we evalu-
ated (1) traditional filtering with pctMT thresholds, (2) our proposed filtering approach 
that excludes pctMT thresholds, and (3) a data-driven quality control (DDQC) strategy 
described in [14].

For each approach, we analyzed the effects on downstream data, focusing on shifts 
in the distributions of xenobiotic metabolism and transcriptional state scores. Tra-
ditional pctMT thresholding introduced significant shifts in the expression of xenobi-
otic metabolism genes, which were highly expressed in HighMT cells identified in our 
study, compared to both our filtering strategy or DDQC filtering (Additional File 2: 
Suppl. Fig. S21). Additionally, traditional filtering led to a notably lower expression of the 
MALAT1 + transcriptional state, quantified by its score, relative to the other approaches.

These findings demonstrate that traditional filtering strategies can introduce artifacts, 
altering biologically meaningful signals in downstream analyses. Consequently, we rec-
ommend adopting our filtering strategy or modern DDQC approaches for single-cell 
cancer data analysis to ensure an accurate interpretation of biological phenomena.

Discussion
Our findings provide evidence that malignant cells with high mitochondrial content, 
typically excluded from scRNA-seq analyses, constitute a metabolically dysregulated 
and functional subset. High percentages of mitochondrial-encoded gene counts have 
previously been linked to poor-quality cells, such as damaged droplets or cells affected 
by dissociation-induced stress [9, 10], leading many researchers to filter out cells exceed-
ing a certain pctMT threshold using either static or dynamic criteria. However, recent 
advancements in data-driven quality control pipelines suggest that setting cell-type-
specific data-driven QC thresholds can preserve biologically relevant cell populations, 
such as cardiomyocytes with high pctMT [14]. Our study corroborates these findings by 
showing that relaxing the pctMT filter reveals a group of cancer cells exhibiting dysregu-
lated metabolic functions, notably upregulation of xenobiotic metabolism.

Of note, samples with equally high pctMT across all cell types, including healthy pop-
ulations, should be carefully evaluated, as this pattern likely reflects technical artifacts 
or poor sample quality rather than true biological variation. In such cases, these samples 
should be excluded from the analysis to avoid misleading conclusions.

Importantly, our comparison of quality-filtered datasets, with and without pctMT 
thresholds, shows that including high-quality cells with high pctMT does not affect the 
overall distribution of dissociation-induced stress scores.

Consistent with previous literature [40], we found that HighMT populations could 
at least partially be explained by higher MT-DNA content. Higher MT-DNA might be 
caused by increased mitochondrial fission or horizontal mitochondrial transfer, as previ-
ously described [49], and linked to high pctMT in our analysis across several datasets. 
Hence, the presence of HighMT populations, rather than being caused by poor-quality 
cell capture in the single-cell protocol, can be due to a biologically driven increase in 
MT-DNA content.
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We observed general metabolic dysregulation and upregulated activity of several pro-
cesses, including xenobiotic metabolism, in HighMT malignant cells. This was mirrored 
by increased resistance to metabolic drugs in cell lines with high pctMT, suggesting clin-
ical relevance in patient stratification and potential new avenues for combined thera-
pies. These results, together with the association between HighMT cells and previously 
described transcriptional states, the overrepresentation of HighMT cells in patients of 
specific molecular subtypes, and the correlation between the proportion of HighMT 
cells and tumor stage, suggest the significant role of high pctMT malignant populations 
in cancer and the importance of including them in analyses.

When further investigating the potential function of malignant HighMT cells, we 
found that these cells exhibited upregulation of phase II and III genes involved in xeno-
biotic metabolism, with ABC transporters consistently upregulated across multiple 
studies. The interdependence between ABC transporter-mediated chemoresistance and 
mitochondrial ATP production, as highlighted in recent studies [60], may explain this 
consistent association. Given the limited effectiveness of ABC transporter inhibitors in 
reversing drug resistance in clinical settings [55], combining these inhibitors with mito-
chondrial inhibitors could be essential for overcoming resistance. Moreover, our findings 
using CCLE and lineage-tracing data reinforce the association between pctMT content 
and drug response, highlighting the importance of including malignant cells with high 
pctMT in analyses, as they could be clinically relevant for optimizing treatment strate-
gies and improving patient stratification.

Several limitations should be acknowledged. First, since we used publicly available 
data, it was difficult to collect comprehensive datasets with no filters applied on pctMT 
during data preprocessing. Consequently, some of our datasets do not contain cells 
with very high pctMT, as these cells were prefiltered. This limitation makes it difficult 
to capture the full range of HighMT malignant cells, as some functionally or clinically 
relevant cells could have been excluded, potentially restricting the biological interpreta-
tion of HighMT malignant cells. However, we identified recurrent features of HighMT 
malignant cells across both unfiltered and filtered datasets, suggesting that the observed 
properties are a consistent and widespread aspect of these cells. Second, while we uti-
lized previously identified dissociation-induced stress signatures to estimate the stress 
levels in cells with high pctMT, we lacked definitive ground truths (e.g., FACS-sorted 
stressed cells). Thus, our conclusions regarding the dissociation stress-pctMT relation-
ship require further experimental validation. Third, our spatial analysis of co-existing 
HighMT and LowMT regions was limited to two samples, restricting the generalizabil-
ity of our findings. Fourth, the number of probes used to detect mitochondrial-encoded 
genes in the Visium HD platform was one per gene, lower than the median of three 
probes per gene in the probe set, potentially affecting the detection of mitochondrial 
gene expression. Fifth, the signature we used for horizontal mitochondrial transfer was 
limited to transfer from T-cells and thus did not take into consideration potential hor-
izontal transfer from other TME compartments. Finally, the link between pctMT and 
drug resistance and sensitivity was mostly conducted on cell lines, warranting further 
validation. While we also incorporated lineage-tracing data from two cell lines, to fully 
dissect the mechanistic link, extensive additional experimental and computational anal-
yses are necessary.
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Conclusions
This study is the first to establish that in cancer scRNA-seq datasets, malignant cells with 
high pctMT, usually filtered out by standard QC procedures, are not solely associated 
with dissociation-induced stress or poor-quality droplets, but represent distinct, func-
tional malignant cell subsets with altered metabolic functions and potentially differential 
drug responses. The inclusion of HighMT cells in cancer studies is crucial for improv-
ing the accuracy of patient stratification and identifying novel therapeutic targets. Mov-
ing forward, we recommend adopting more lenient or data-driven pctMT thresholds for 
scRNA-seq [14, 15] or spatial transcriptomics [82] to prevent the loss of valuable bio-
logical insights that may contribute to advancements in cancer research and treatment.

Methods
scRNA‑seq preprocessing

We performed stringent quality control on a patient level across the nine included stud-
ies: uveal melanoma [28], small cell lung cancer (SCLC) [24], lung adenocarcinoma 
(LUAD) [27], renal clear cell cancer (RCC) [4], breast cancer (BRCA) [25], prostate 
cancer [21], nasopharyngeal carcinoma [26], pancreatic [23], and metastatic pancreatic 
cancer [22]. We followed the standard processing guidelines described at https://​www.​
sc-​best-​pract​ices.​org/​prepr​ocess​ing_​visua​lizat​ion/​quali​ty_​contr​ol.​html, excluding steps 
that involved using the percentage of mitochondrial counts as a quality measure. Nota-
bly, some studies had already filtered out cells with less than 20% [21, 24–26] or 25% 
mitochondrial counts [4]. Notably, the lung adenocarcinoma, renal cell carcinoma, and 
prostate cancer datasets contained cell type annotations only for cells kept in their study 
but provided raw counts for unfiltered cells; we thus assigned cell types using Leiden 
overclustering and majority voting of the cell types present in the cluster. For the breast 
cancer dataset, we retrieved raw FASTQ files from the European Genome Archive 
(EGAD00001007495), and ran gene expression quantification using CellRanger (v.9) to 
obtain raw counts for unfiltered cells. Cell type annotations kept in the original study 
were used to assign cell types, as described above. In all studies, if cells could not be 
assigned cell types using this procedure, they were removed from the analysis.

First, we removed all cells per patient that were more than 5 median absolute devia-
tions from the median of either the log1p total number of counts in the cell, log1p genes 
expressed in the cell, or the percentage of counts falling in the top 50 genes. We also 
excluded cells with fewer than 1500 total counts, more than 50,000 total counts, and 
fewer than 500 genes expressed. Then, we identified and removed putative doublets 
using Scrublet [83].

Next, using the annotated cell types, we inferred copy number variation (CNV) with 
inferCNV (https://​github.​com/​icbi-​lab/​infer​cnvpy). We clustered the cells in CNV space 
using the Leiden algorithm, assigning clusters a malignant CNV status if more than 
half of the cells mapping to the cluster were originally annotated as malignant; other-
wise, we assigned a non-malignant CNV status. We removed cells with discordant CNV 
and transcriptomic identity from downstream analyses. For further analysis, we used 
the counts per 10 k transcripts (CP10K) transformation followed by log(1 + x) (log1p) 
transformation.

https://www.sc-best-practices.org/preprocessing_visualization/quality_control.html
https://www.sc-best-practices.org/preprocessing_visualization/quality_control.html
https://github.com/icbi-lab/infercnvpy
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To compare different filtering strategies, we implemented the following approaches:

–	 Threshold-Based Filtering: This approach follows standard quality control (QC) pro-
cedures in Scanpy. Cells with fewer than 100 expressed genes, genes expressed in 
fewer than 3 cells, cells with > 15% mitochondrial gene content, and predicted dou-
blets identified using Scrublet.

–	 Data-driven quality control (DDQC): We applied the method proposed by [14], fol-
lowing the provided tutorial and using default parameters for filtering.

Annotating patients with more than double the proportion of HighMT malignant cells 

compared to TME HighMT cells

For each study, we compared the distribution of the percentage of transcripts mapping to 
mitochondrial-encoded gene (pctMT) between cells from the tumor microenvironment 
(TME) and the malignant cell compartment. We assigned cells to a high mitochondrial 
content status (HighMT) if they presented > 15% pctMT; otherwise, we considered them 
low mitochondrial content (LowMT). We compared the odds ratio of HighMT cells in 
the malignant and TME compartments in the rest of the samples using the formula:

We classified patients as cases if they (i) had an OR > 2 and (ii) had at least 15% of 
HighMT cells in the malignant cell compartment; other patients were assigned to con-
trols. For the patient-specific analysis, we removed patients that contained less than 30 
malignant or TME cells, and patients that had less than 20 HighMT cells, thus resulting 
in 111/151 patients. We included only studies comprising more than one case for further 
analysis.

Quality metrics and dissociation‑induced score computation

The study by Ilicic et al. [9] identified seven metrics capable of discriminating between 
good quality cells and empty/broken cells in a cell-type and technology-agnostic man-
ner, including the Gene Ontology terms Cytoplasm (GO:0005737) and Mitochondrially 
localized proteins (GO:0005739), and mtDNA encoded genes (equivalent to pctMT) and 
Transcriptome variance. To assess the expression of a gene signature representing GO 
terms, we applied standard Scanpy scoring [84]. To evaluate transcriptome variance, 
we calculated the variance per cell using log1p-CP10K-transformed data. We compared 
these scores between cells filtered out using our quality control (QC) procedure and 
those retained for downstream analysis.

To construct a dissociation-induced stress score, we aggregated signatures from 
three external studies. O’Flanagan et  al. [10] derived a dissociation stress signa-
ture from patient-derived breast cancer xenografts, cell lines, and patient cancer cells 
using 37-degree collagenase dissociation. Machado et  al. [34] developed a dissocia-
tion stress signature based on liver and muscle tissue samples, while Van den Brink 
et  al. [11] derived a dissociation stress signature using muscle stem cells. To create a 

OR =

n(HighMT ,mal)
n(LowMT ,mal)

n(HighMT ,TME)
n(LowMT ,TME)
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meta-dissociation stress signature, we compiled genes that were consistently found 
across all three dissociation stress signatures. Cells in our dataset were scored for this 
meta-dissociation stress signature using standard Scanpy scoring methods.

Metacell computation

We aggregated single cells of the same type from all 151 patients sequenced through 
scRNA-seq into metacells to reduce sampling noise and capture underlying transcrip-
tomic distributions, as introduced by Baran et al. [36]. Indeed, using metacells instead of 
single cells helps mitigate statistical inflation in single-cell RNA-seq data by aggregating 
highly similar cells into robust groups, thereby reducing noise from technical variability 
and sparsity in lowly expressed genes. This approach preserves the biological heteroge-
neity of the dataset while providing more reliable and stable measurements for down-
stream analyses. For all remaining seven studies, we implemented metacell aggregation 
using the Python metacells package (https://​github.​com/​tanay​lab/​metac​ells). Metacells 
were defined as disjoint and homogenous groups of transcriptomic profiles that could 
potentially arise from the same underlying distribution.

Metacells containing more than 30% of cells with high mitochondrial content were 
categorized as HighMT metacells, while metacells containing more than 50% malig-
nant cells were classified as malignant. These metacells underwent similar processing as 
the original scRNA-seq data, including scoring for dissociation stress using the meta-
dissociation stress signature applied to log1p-CP10K transformed data. This approach 
allowed us to analyze and compare transcriptomic profiles at a more aggregated level, 
focusing on groups that potentially share similar biological characteristics.

Bulk versus bulkified analysis

DNA library preparation for bulk RNA-seq does not include a tissue dissociation step. 
Therefore, we compared the expression of mitochondrially encoded (MT-encoded) 
genes between paired bulk RNA-seq and single-cell RNA-seq datasets to assess the 
potential effects of dissociation-induced stress on MT-encoded gene expression. Spe-
cifically, we utilized two datasets with paired single-cell and bulk data: the breast cancer 
datasets from Wu et  al. [25], sequenced using 10X technology, and Chung et  al. [35], 
sequenced using Smart-seq2.

The Wu et  al. dataset underwent processing using our standard pipeline, while the 
Chung et  al. dataset, due to its low cell count per patient, was analyzed collectively 
rather than on a per-patient basis. We used the Fragments Per Kilobase of transcript 
per Million mapped reads (FPKM) measure of gene-length corrected gene expression 
for bulk data from Wu et al. dataset; for Chung et al. we used the provided transcript per 
million (TPM) estimates.

We performed bulkification, i.e., aggregating single-cell measurements into one vec-
tor of gene expression per patient to mimic bulk data. Given Smart-seq2 is not natu-
rally gene-length corrected as 10X measurements are, we used the TPM transformation 
for Smart-seq2 data while we used raw counts for 10X. For Wu et al., we summed raw 
counts across cells per patient followed by log1p normalization, while for Chung et al., 
we computed the mean TPM expression across cells per patient.

https://github.com/tanaylab/metacells
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Due to inherent differences in noise and dropout rates between single-cell and bulk 
data, direct comparison of bulk and bulkified data is challenging. To model their rela-
tionship, we employed polynomial regression, varying degrees from 1 to 6 and evalu-
ating the coefficient of determination (R2) for each. We selected the optimal model 
complexity based on the elbow of the R2 curve, where further increases in degree yielded 
minimal R2 improvement.

To assess similarity in MT-encoded gene expression between bulk and bulkified data, 
we trained a model excluding MT-encoded genes and computed residuals of predicted 
vs. observed bulkified expression for MT-encoded genes. Given their consistent high 
expression, MT-encoded genes often resulted in higher residuals, potentially affecting 
model fit. To statistically evaluate these residuals, we performed an empirical test. We 
randomly sampled genes from the top 500 most expressed genes in each dataset 500 
times, trained models on the remaining genes, and computed residuals for these random 
genes. We calculated one-sided p-values based on how frequently residuals for these 
random genes exceeded those for MT-encoded genes, setting significance at 0.05.

This methodology allowed us to robustly compare MT-encoded gene expression pro-
files between bulk and bulkified data, providing insights into potential impacts of disso-
ciation stress on transcriptomic measurements in single-cell RNA-seq studies.

Spatial transcriptomics Visium HD processing and analysis

For data acquisition, we downloaded two Visium HD samples from the 10X Genom-
ics website: a fresh frozen sample from a patient with breast ductal carcinoma in  situ 
(DCIS) and a formalin-fixed paraffin-embedded (FFPE) sample from a lung adenocarci-
noma (LUAD) patient.

To approximate single-cell expression, we utilized the bin2cell tool [37], following its 
tutorial (https://​nbvie​wer.​org/​github/​Teich​lab/​bin2c​ell/​blob/​main/​noteb​ooks/​demo.​
ipynb). The data were first destriped, and segmentation was performed using both H&E 
and immunofluorescence data with Stardist, applying recommended parameters to esti-
mate cell boundaries. Counts were normalized using counts per 10 k (CP10k) normali-
zation, followed by log1p normalization.

Given the sparse and highly correlated nature of Visium HD measurements at the sin-
gle-cell level, we conducted the analysis in terms of “metacells,” or clusters of spatially 
redundant spots representing aggregated cellular measurements. To construct meta-
cells, we applied Leiden clustering to the 15-nearest neighbor graph, leading to 8884 and 
8682 metacells in DCIS and LUAD, respectively. These metacells underwent the same 
CP10k log1p normalization and Leiden clustering as individual spots.

We used canonical marker scoring via Scanpy to assign cell types to each metacell. 
For LUAD, marker genes were based on major lung compartments from a recent lung 
cell atlas [29]: epithelial markers (FXYD3, EPCAM, ELF3), endothelial (CLDN5, ECSCR, 
CLEC14A), immune (CD53, PTPRC, CORO1A), stromal (COL1A2, DCN, MFAP4), and 
neuroendocrine (CELF3, SLC6A17, CDK5R2). For DCIS, we used markers from a recent 
single-cell study [85] identifying epithelial (EPCAM, KRT7, KRT8), immune (CD3D, 
CD3E, CD79A, CD79B, CD19, MS4A1, CD3G, JCHAIN, MZB1, LYZ, CD68, FCGR3A), 
endothelial (PECAM1, VWF, CLDN5, CDH5, FLT1, RAMP2), and stromal (COL1A1, 

https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/demo.ipynb
https://nbviewer.org/github/Teichlab/bin2cell/blob/main/notebooks/demo.ipynb
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DCN, COL1A2, C1R, ACTA2) compartments. Cell type assignment within clusters was 
based on maximum average scoring.

To profile copy number variation (CNV), we applied inferCNV (https://​infer​cnvpy.​
readt​hedocs.​io/​en/​latest/​index.​html), using presumed non-malignant metacells as the 
reference. Metacells were clustered by CNV profile, and each cluster was categorized as 
malignant or healthy based on average CNV scores. Final annotations were refined such 
that healthy CNV epithelial cells were labeled as “healthy” in LUAD and “uncertain” in 
DCIS, while TME cells with malignant CNV profiles were marked as “uncertain.”

Cell types were assigned based on the corresponding metacell annotation. We com-
pared pctMT medians between malignant and TME cell types using a Mann–Whitney 
U test. The spatial distribution of pctMT in malignant cells was assessed by computing 
median pctMT in 1000 × 1000px regions; regions containing fewer than 10 malignant 
cells were excluded from further analysis.

Association of pctMT with mitochondrial DNA content

To investigate whether the pctMT was linked to the mitochondrial DNA (mtDNA) con-
tent in single-cell data, we used matched single-cell RNA and WES data from Kim et al. 
[40]. The mtDNA content was evaluated using mtDNA to nuclear DNA ratio (MNR), 
i.e., the number of mtDNA copies per average haploid nuclear genome. Using the clone 
annotations called by authors, we compared the distribution of pctMT in clones with 
their distribution of MNR.

Mitochondrial transfer and fission

We investigated the hypothesis that higher mitochondrial content in cancer cells may 
be attributed to horizontal mitochondrial transfer from cells within the tumor microen-
vironment (TME), as suggested by several studies [49, 86, 87]. To quantify the extent of 
mitochondrial transfer, we employed a signature derived from Zhang et al. [49], which 
characterizes mitochondrial transfer events. Similarly, to evaluate mitochondrial fission, 
we used the Gene Ontology GO:0090140 gene signature (https://​geneo​ntolo​gy.​org/). 
Metacells from the analyzed datasets were scored using standard Scanpy scoring based 
on the above signatures.

Metabolic dysregulation

To evaluate the extent of metabolic dysregulation in cells, we employed mitochondrial-
localized metabolic pathways curated in MitoCarta [50], focusing on genes that reside 
within mitochondria. We calculated pathway scores for metacells using standard Scanpy 
scoring using the genes involved in the respective MitoCarta pathways and compared 
median scores between HighMT and LowMT metacells. Each pathway was character-
ized by the vector representing the difference between the median scores of HighMT 
and LowMT metacells. Hierarchical clustering was performed on these pathway vectors 
across different cancer types using Ward linkage based on Euclidean distances.

Furthermore, to assess the activation of xenobiotic metabolism, we examined genes 
involved in three phases of this process: phase I enzymes, predominantly cytochrome 
P450 enzymes involved in oxidation; phase II enzymes, which conjugate phase I metabo-
lites with molecules like glutathione and sulfate to produce hydrophilic compounds; and 

https://infercnvpy.readthedocs.io/en/latest/index.html
https://infercnvpy.readthedocs.io/en/latest/index.html
https://geneontology.org/
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phase III proteins, primarily ABC transporters facilitating the transport of drugs across 
cellular membranes [59]. We compared the expression levels of these genes between 
HighMT and LowMT metacells across all included studies.

Link between pctMT and drug resistance in cell lines

To investigate the association between higher pctMT and drug resistance or sensitivity, 
we used paired RNA-seq and drug sensitivity data from the Cancer Cell Line Encyclo-
pedia (CCLE) [61]. First, we extracted raw RNA-seq counts to calculate pctMT for each 
cell line. Then, we evaluated the correlation between pctMT and the half-maximal inhib-
itory concentration (IC50) values of all drugs across the dataset for each cancer type. 
The median correlation across cell lines within each cancer type was computed, identify-
ing the top 15 drugs with the highest and lowest median correlations as the most resist-
ant and most sensitive drugs, respectively.

Drugs were categorized based on their target disruptions; we compared the distribu-
tion of these categories between the full set of drugs tested in CCLE and the most resist-
ant or sensitive drugs using the Fisher exact test. This analysis allowed us to evaluate 
whether specific categories of drug targets were disproportionately represented among 
the identified resistant or sensitive drugs across cancer types.

Link between pctMT and drug resistance in single‑cell lineage tracing data

UMI count data for the Kuramochi [72] treatment-naive, carboplatin-treated (1.2 μM, 
for 3  days), and olaparib-treated (1.2  μM, for 7  days) cells were downloaded from 
GSE223003, along with associated metadata assigning cells to treatment-sensitive and 
resistant groups. Data from two replicates for each treatment was merged into a single 
dataset, and the distribution of pctMT in treatment-naive and post-treatment cells was 
compared using Mann–Whitney U test.

Similarly, UMI count data for the MDAMB468 treatment-naive (control) cells was 
downloaded from GSE228382. Annotation of treatment-sensitive and treatment-
resistant clones was obtained from Table S3 in [73]. Data from replicates of treatment-
naive cells was merged into a single dataset, and the distribution of pctMT across 
treatment-sensitive and resistant clones was compared using Mann–Whitney U test. 
Afatinib-resistant and sensitive clones were identified in the original study by track-
ing the barcodes of clones present in culture after 40  days of treatment with increas-
ing doses of afatinib (from 250 to 2000 nM by day 40) back to treatment-naive cells. In 
our comparison, we distinguished between less frequent clones and the two dominant 
clones (bc14-013:bc30-092942 and bc14-013:bc30-092942), which comprised 81% of all 
afatinib-tolerant persistent cells identified at day 40 [73].

Link between pctMT and previously reported transcriptional cell states

We assess the association between pctMT in malignant cells and expression of cancer 
type-specific transcriptional states by scoring the expression of respective gene signa-
tures. The signatures were scored using standard Scanpy scoring in metacells, and the 
difference in score distributions between LowMT and HighMT malignant cells was cal-
culated using the Mann–Whitney U test.
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Link between pctMT and clinical information in analyzed single‑cell studies

To assess the association between the prevalence of HighMT malignant cells and patient 
clinical features, we calculated a proportion of HighMT cells within the malignant com-
partment for each patient and associated it with available clinical features reported in the 
original studies. The difference between the distributions of the proportion of HighMT 
cells in each clinical category was evaluated using the Mann–Whitney U test.
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