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Abstract 

In spatial transcriptomics data, spatially correlated genes promise to reveal high-
interest phenomena like cell–cell interactions and latent variables. But in practice, most 
spatial correlations arise from the spatial arrangement of cell types, obscuring the more 
interesting relationships we hope to discover. We introduce InSituCor, a toolkit for dis-
covering modules of spatially correlated genes. InSituCor returns only correlations 
not explainable by already-known factors like the cell type landscape; this spares 
precious analyst effort. InSituCor supports both unbiased discovery of whole-dataset 
correlations and knowledge-driven exploration of genes of interest. As a special case, it 
evaluates ligand-receptor pairs for spatial co-regulation.
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Background
Single-cell spatial transcriptomics data, in which hundreds to thousands of genes are 
measured in situ across potentially millions of cells, poses a daunting version of the cen-
tral challenge of ‘omics: how can an analyst possibly discover all the interesting biology 
contained within a dataset? One class of exploratory analyses looks for spatially corre-
lated sets of genes; that is, genes that tend to be expressed in the same regions. Spatial 
correlation between genes can arise through direct cell–cell communication, or from 
some underlying latent variable; both these mechanisms are of interest.

Recognizing the promise of spatially varying expression patterns to highlight notewor-
thy biology, researchers have proposed diverse methods for identifying single genes with 
spatially auto-correlated expression patterns, and for the related problem of identify-
ing sets of genes that are spatially correlated with each other. Trendseek [1] uses point 
processes, a mainstay from the field of spatial statistics. SpatialDE [2] models spatial 
expression with a Gaussian process. scGCO [3] fits hidden Markov random fields. Max-
SPIN [4] employs machine learning to approximate mutual information between nearby 
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expression measurements. SpatialDM [5], which focuses on ligand-receptor pairs, uses 
a modified Moran’s I statistic. SpaGFT [6] performs a spatial Fourier transformation to 
analyze gene expression in the frequency domain rather than the spatial domain. Similar 
to the method we propose, SPARK-X [7] takes a non-parametric, kernel-based approach. 
Pursuing a slightly different goal, DIALOUGE [8] uses penalized estimation to infer 
“multi-cellular programs.” In addition, legacy methods from the field of spatial statistics, 
in particular Moran’s I [9], Geary’s C [10], and Lee’s L [11], have gained wide use.

Spatial correlation analysis has one severe limitation: most cell types are spatially 
organized, which induces spatial correlation among genes with cell type-specific expres-
sion. Thus spatial correlation often provides little more than an oblique readout of the 
cell type landscape. This pitfall can be avoided by looking one cell type at a time, but 
this solution misses interactions among multiple cell types. Of the above methods, only 
DIALOUGE models the role of cell type, but the highly structured model it fits limits the 
diversity of trends it can discover.

Here we introduce InSituCor, a toolkit for quickly identifying spatial correlations 
deserving scarce analyst attention. InSituCor identifies gene modules with spatial corre-
lations that cannot be explained by known factors like the cell type landscape or techni-
cal effects.

Results
We demonstrate InSituCor in a colon tumor profiled with a 6000-plex CosMx [12] panel 
(Fig.  1a). InSituCor begins by taking the expression profile of a neighborhood around 
each cell (Fig.  1b), building an “environment expression matrix” (Fig.  1c). Neighbor-
hoods can be defined using K-nearest neighbors or radius-based approaches. Sup-
plementary Figs.  1–5 detail the impact of neighborhood definition and other tuning 
parameters on results. Typical methods produce results akin to taking the correlation 
matrix of the environment expression matrix (Fig.  1d). To eliminate the influence of 
unwanted variables like cell type, signal strength, and background intensity, InSituCor 
builds an “environment confounder matrix” (Fig.  1e) summarizing these variables for 
each cell’s neighborhood. InSituCor defines spatial correlation as the correlation matrix 
of the environment expression matrix, conditional on the confounder matrix (Fig. 1f ), or

This conditional correlation matrix is the cornerstone of InSituCor analyses. It meas-
ures genes’ tendency to be expressed in the same neighborhoods, beyond what cell type 
and other confounders can explain. Due to the large numbers of cells analyzed, even 
small correlations attain strong statistical significance; for this reason, InSituCor does 
not compute p-values, as statistical significance here is a low-specificity indicator of 
interesting results. To speed computation, InSituCor estimates conditional correlation 
using a random subset of 5000 cells; larger subsets can be used for greater precision. 
Supplementary Fig. 2 explores the impact of subset size on accuracy.

The conditional correlation approach finds that most of the strongest spatial correla-
tions in the unadjusted analysis do not merit analyst attention: among the top 5000 gene 

(1)cor(environment expression matrix | environment confounding matrix)
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Fig. 1 Demonstration of InSituCor workflow. a Cell type map of a colon cancer. Color legend applies to 
panels a, b, and j. b Example of a cell’s nearest neighbors, used to define its “environment expression” profile. 
c Subset of the environment expression matrix. d Raw correlation matrix of the environment expression 
matrix showing near-ubiquitous correlations (subset of 300 random genes). e Subset of the environment 
confounding matrix, encoding cell type abundance and other confounding variables in each cell’s 
neighborhood. f Correlation matrix of the environment expression matrix (c) conditional on the confounding 
matrix (e), over the same subset of genes as d. Most unconditional correlations (d) are fully explained by the 
confounding variables. g Raw vs. conditional correlation of environment gene expression. Selected pairs of 
marker genes are highlighted. h Network representation of the correlation between all genes in all modules. 
Genes with correlation > 0.2 are connected. The module explored from i to k is highlighted. i Environment 
scores for a “tumor-promoting inflammation” module. Color scale ranges from 0 expression to the 95th 
percentile of the module’s expression j Single-cell scores for the module; point size reflects cells’ module 
score. The window highlighted in (i) is shown. k mRNA molecules of module genes. The window highlighted 
in j is shown. l Estimated involvement of each cell type in each module. m Estimated involvement of each 
cell type in each gene of the highlighted module
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pairs found without adjusting for confounders, with a range of (0.62, 0.97), only 1018 
had correlations > 0.2 in the conditional correlation matrix (Fig.  1g). Pairs of marker 
genes, for example, CD3D/CD3E and CD19/MS4A1, had strong spatial correlations but 
near-zero conditional correlations.

InSituCor aids comprehension by extracting modules of mutually co-expressed genes 
(Fig. 1h). One module discovered in this analysis consisted of 17 genes collectively sug-
gestive of tumor-promoting inflammation (Fig. 1h, i, j, k, l). This module included genes 
involved in microenvironment remodeling (CCL18, MMP2, CSTK), growth factor sign-
aling (SFRP2, GREM1, DCN, SERPINF1), and inflammation (C3, C1R, PTGIS).

Each module is scored with a weighted average of its genes; scores are calculated both 
for cells’ environments and for single-cell expression. A map of scores for the tumor-
promoting inflammation module shows it peaking in the stroma, with smaller hotspots 
in the tumor bed (Fig. 1i). Looking at single-cell scores for the module, we see CAFs and 
macrophages driving module activity, with nearby mast cells, smooth muscle cells, and 
stromal cells also participating (Fig. 1j). Zooming in to resolve individual mRNAs, we 
see more nuanced behavior of the module genes across cell types and space (Fig. 1k).

Dozens of modules will be discovered in a typical study of ≥ 1000 genes. To help ana-
lysts prioritize, InSituCor estimates the role of each cell type in each module. Cell type 
involvement is summarized at the module (Fig. 1l) and at the gene level (Fig. 1m).

In a typical study, the analyst will choose confounding variables, and then derive mod-
ules with a single R command. Summary plots (Fig. 1l, m) will suggest a few modules 
of particular interest. The analyst can then invest real effort, carefully examining spatial 
plots (Fig. 1k) to develop a nuanced understanding of the modules’ behavior.

To speed up computation time, many of InSituCor’s calculations use subsets of 5000 
cells. InSituCor took 2.5  min on a r5.12xlarge EC2 instance to analyze this dataset of 
112,846 cells and 6000 genes.

InSituCor also supports a knowledge-driven workflow: one simply examines the con-
ditional correlation structure around genes of prior interest. To describe this tumor’s 
signaling environment, we re-analyzed just the dataset’s 407 ligands [13]. This produced 
18 modules containing 51 ligands, many arising from multiple cell types (Fig.  2a, b). 
Focusing on modules involved in the anti-tumor immune response, we see a module of 
the chemoattractants CCL19 and CCL21 concentrated in a narrow band at the tumor 
periphery, a module of MHC2 antigen presentation genes diffusing slightly beyond this 
band, and a module of MHC1 antigen presentation genes peaking in the same region 
but extending further yet into the tumor bed (Fig. 2c–e). This suggests an interpretation 
in which a core of chemoattractant expression attracts antigen-presenting cells and an 
adaptive immune response radiates from this core, eliciting MHC1 expression from sur-
rounding cells.

Ligand-receptor pairs motivate another use case, as spatial correlation suggests co-
regulation, presumably by the ligand increasing the receptor’s expression or via some 
latent variable inducing regional expression in both genes [5]. Of the 555 ligand-receptor 
pairs in this panel [13], only 11 had conditional correlation > 0.1 (Fig.  2f ). One corre-
lated pair was FCER2 and CR2, both primarily expressed by B-cells. Visual examina-
tion showed their spatial variability to be driven by lymphoid structures (Fig. 2g), where 
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B-cells had 2.57-fold (95% confidence interval 1.63–3.51) higher FCER2 and 3.43-fold 
(2.12–4.75) higher CR2 than B-cells elsewhere.

InSituCor can also be used to explore individual genes of high prior interest. Moti-
vated by the above results, we examined the correlation network around FCER2 and 
CR2 (Fig. 2h). FCER2 had no further connections, but CR2 belonged to a densely con-
nected network of 10 additional genes involved in B-cell development, activation, and 

Fig. 2 Biology-first use of InSituCor. a Correlation structure of 51 ligands assigned to modules. Edges show 
conditional correlations > 0.1, and color shows module membership. b. Involvement of each cell type in 
each module. c, d, e Environment expression of a modules holding chemoattractants (c), MHC2 antigen 
presentation genes (d), and MHC1 antigen presentation genes (e). Color scale ranges from 0 expression 
to the 95th percentile of the module’s expression. f Conditional correlations of 555 ligand-receptor pairs. g 
Spatial map of single-cell expression of the ligand-receptor pair FCER2 and CR2. h Conditional correlation 
network around the FCER2-CR2 ligand-receptor pair. i Expression of “B-cell migration and maturation” module 
in tertiary lymph nodes. j Expression of “MHC Class II antigen presentation and antibody production” module 
in tertiary lymph nodes
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trafficking [14–16]. This suggests the hypothesis that the genes connected to CR2 are 
activated downstream of FCER2–CR2 signaling.

Above, InSituCor was adapted to target genes of interest; it can also focus on spatial 
regions. To demonstrate this approach, we re-ran InSituCor on only the 3889 cells fall-
ing in tertiary lymphoid structures (TLS) (Supplementary Fig. 6). The results included a 
module capturing B-cell migration and maturation (ADAM8, ATP2A3, CEBPD, IGLC1, 
IGLC2, IGLL1, IGLL5, VASP) (Fig. 2i) and a module capturing MHC Class II antigen 
presentation and antibody production (CD74, CTSH, CTSZ, CYBA, FCRLA, HLA-
DRA, HLA-DRB, IGHM, OS9, VSIR) (Fig. 2j). The TLS-only analysis returned 52 gene 
pairs with strong (> 0.5) conditional correlations that had been near-zero (< 0.1) in the 
whole-tissue analysis, suggesting that a spatially-targeted approach can discover rela-
tionships obscured in tissue-wide analyses.

To demonstrate the use of InSituCor in multi-sample studies, we analyzed tissue 
microarray cores from 19 pancreatic ductal adenocarcinoma (PDAC) tumors [17]. 
InSituCor was run separately for each tissue, producing 19 conditional correlation matri-
ces. We first sought conditional correlations found consistently across the tissues. 3212 
gene pairs had high conditional correlations (> 0.3) in at least 17 of the 19 tissues. We 
used these pairs to form a consensus network of spatial correlations (Fig. 3a). This exer-
cise returned well-known relationships, for example, a module consisting of B2M and a 
probe for the MHC Class I genes HLA-A, HLA-B, and HLA-C, and a module consist-
ing of immunoglobulin lambda genes. More novel findings included a module centered 
around S100A6 and included genes involved in cell adhesion (CLDN4), epithelial-mes-
enchymal transition (S100A6, CEACAM6, TACSTD2), metabolism (PKM), and protea-
some activity (TMSB10, TMBS4X). This module’s expression is driven by cancer cells 
and varies between tumors and spatially within tumors (Supplementary Fig. 7). In one 
tumor, cancer cells with high module expression form glandular structures, while cancer 
cells with low module expression have lost their gland structure (Fig. 3b). We hypothe-
size that this module captures key activities of the classical PDAC pathology that are lost 
in basal pathology. However, the consistent discovery of this module across the study’s 
tissues suggests it is variably regulated within single tumors rather than a static indicator 
of the cancer subtype.

Next, we sought conditional correlations with highly variable behavior across tumors. 
We identified 307 gene pairs that had strong conditional correlations (> 0.4) in at least 3 
tumors and low conditional correlations (< 0.05) in at least 3 tumors (Fig. 3c). A mod-
ule of genes for inflammation (COX1, COX2) and invasion (SPINT2, S100A4, S100A6, 
S100A14) shared high (> 0.4) conditional correlations in 6 tumors and attenuated or no 
correlation in the remaining 13 tumors (Fig.  3d). In the tumors where this gene pro-
gram is active, it displayed marked spatial heterogeneity, sometimes at the level of tumor 
glands, and sometimes just a few cells at a time (Fig. 3e, Supplementary Fig. 8).

PDAC tumor glands form in widely varying sizes; smaller glands become more com-
mon after therapy and are dominated by basal-like cells [17]. We classified the tumors 
in our study by whether they were characterized by small or larger tumors or fell some-
where in between (Methods). Examining the gene pairs with high between-tumor 
variability, we find a module of genes displaying high conditional correlations only in 
tumors characterized by small-to-intermediate glands. These genes include cellular 
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structure and adhesion (KRT7, KRT16, KRT17, KRT19, ITGA2, LAMC2, S100A10) and 
other functions (YWHAZ, HMGA1, MUC4). This module is largely absent from large 
glands and shows higher and varying expression in small glands (Supplementary Fig. 9). 
Another module of genes was found exclusively in tumors characterized by intermedi-
ate-to-large tumor glands. It contained genes involved in mucosal maintenance (TFF1, 
TFF2, AGR2), inflammation (S100P, LYZ) and others (IER3, CEACAM6). This module 

Fig. 3 Application of InSituCor to a tissue microarray of PDAC tumors. a Consensus correlation structure: 
gene pairs with correlations > 0.3 in ≥ 17/19 tumors. b Expression of “S100A6” module genes (S100A6, JUP, 
ANXA2, EZR, CEACAM6, KRT19, KRT8, TSMB10, TSMB4X, LMNA, PKM, TACSTD2, CLDN4, CRIP1, SPRINT2) in 
cancer cells of tumor 10B-7. c Conditional correlations of 307 gene pairs showing inter-tumor heterogeneity. 
Each element shows a gene pair’s conditional correlation estimate from a single tumor. Top bar color denotes 
the gland size characterizing each tumor. d Tumor-specific conditional correlations from a cluster of the gene 
pairs from c. e Expression of a module constructed from the selected cluster of gene pairs (COX1, COX2, 
SPINT2, S100A4, S100A6, S100A14). Cancer cells are colored by average expression of module genes; other 
cells are grey
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showed strong within-tumor variability, sometimes varying across the span of a single 
gland (tumor 10B-9, Supplemental Fig. 10).

Discussion
InSituCor seeks variability conditional on the cell type landscape. If cell types are 
omitted from the input, for example, if a cell type is underclustered or if a rare cell 
type is overlooked, then the omitted cell types will give rise to modules of spatially 
correlated genes. A side benefit of InSituCor then is to reveal cell types missed by ini-
tial cell typing; anecdotally, we have discovered rare cell types in this way. The appro-
priate granularity of cell typing should be considered a design decision by the analyst. 
For example, if cancer cells fall in clear subclusters, a reasonable analyst might ignore 
this subclassification when running InSituCor, thereby obtaining a description of can-
cer cells based on their spatial variability rather than based on subclusters.

InSituCor names modules with their two most influential genes. Alternative 
approaches such as large language models or gene set enrichment analysis could also 
be useful. We find it practical to accept the default names for initial analysis and then 
carefully assign more interpretable names for modules of interest.

Most InSituCor operations are performed on data from cellular neighborhoods, 
with each cell’s neighborhood defined to capture the set of cells proximal enough to 
influence it. We prefer the K-nearest neighbors approach to radius-based neighbor-
hoods for the theoretical reason that tissue regions packed densely with cells could be 
less permeable to cell–cell communications, and for the practical reason that radius-
based neighborhoods in sparse tissue regions can contain so few cells that their neigh-
borhood expression becomes statistically unstable. Undoubtedly, tissue biology is far 
more complex than the simple K-nearest and radius-based neighborhood concepts 
implemented within InSituCor: genes and cell types vary in their functional reach, 
and tissue structures like epithelial walls impede cell and molecule trafficking. Thus 
the cellular neighborhoods we measure are noisy proxies for true neighborhoods, and 
this noise likely attenuates InSituCor’s conditional correlation estimates. The problem 
of optimally defining cellular neighborhoods has not been well-studied. Should better 
frameworks emerge, InSituCor accepts user-defined cellular neighborhoods.

InSituCor is highly sensitive to spatially-dependent technical artifacts inducing 
spatial correlations, for example, field of view (FOV) effects or regions of autofluo-
rescence or tissue peeling. Fortunately, such artifactual results are unmistakable, pro-
ducing for example a gene module with outlier expression across a single FOV. Thus 
InSituCor serves as a secondary QC, detecting technical effects missed earlier in 
analysis.

Our application of InSituCor to only the tertiary lymphoid structures in the colon 
tumor showed that networks focused on the biology of interest can be more inform-
ative than tissue-wide networks. A straightforward extension would be to compare 
networks found in contrasting spatial domains, for example, tumor interior vs. tumor 
border. The approach for multi-sample analysis in Fig.  3 could apply directly to the 
domain-specific problem: InSituCor could be run separately across multiple spatial 
domains, and conditional correlations can be compared directly.



Page 9 of 12Danaher et al. Genome Biology  (2025) 26:105 

Conclusions
Cell-type landscapes induce strong spatial correlation between genes, even when 
those genes do not vary within a cell type. In our example dataset, most of the strong-
est spatial correlations in the unadjusted analysis proved to be uninteresting after 
adjusting for cell type abundance. By conditioning on cell type and other confound-
ers, InSituCor ignores these trends and instead reports only correlations indicating 
more interesting biology. It quickly—in both computational time and analyst time—
isolates and summarizes spatial correlations deserving further investigation.

The InSituCor R package is available on GitHub [18].

Methods
InSituCor algorithm

Use i to index cells, j to index genes, and l to index confounder variables. Call C(i) the 
cell type of cell i. Call Y = {Yij} the matrix of single-cell gene expression, and call X = {Xil} 
the matrix of single-cell confounder values. For example, for l corresponding to “T-cell”, 
Xil would equal 1 for all cells with C(i) = “T-cell” and 0 for other cells.

InSituCor begins by defining each cell’s neighboring cells. Call N(i) the neighbors of 
cell i. Neighbors can be defined either with a fixed radius of as the K-nearest cells. Rec-
ognizing that both these concepts of “neighborhoods” are limited, InSituCor also accepts 
custom-defined cell neighborhoods, making it forward-compatible as more advanced 
neighborhood definitions enter the literature.

Given cells’ neighbor relationships, we then calculate each cell’s neighborhood 
gene expression values and neighborhood confounder values. Call these respectively 
Y
(N )
i,j = i′∈N (i) Yi′,j and X (N )

i,j =
∑

i′∈N (i) Xi′,j . We then calculate InSituCor’s primary 
output, the correlation of the neighborhood expression matrix Y (N )

i,j  conditional on 
the neighborhood confounding matrix X (N )

i,j  . To do this we first take their conditional 
covariance:

This is equivalent to regressing the environment expression matrix on the confounders 
matrix and taking the covariance of the residuals. Conditional correlation is calculated 
by rescaling this covariance matrix to have a unit diagonal. The above formula holds 
for multivariate normal variables; because our environment expression matrix is pro-
duced by averaging each cell’s 50 nearest neighbors, the central limit theorem provides 
some assurance that multivariate normality approximately holds. Supplementary Fig. 11 
explores the impact of the normality assumption.

To define modules, InSituCor creates a weighted adjacency matrix by replacing all ele-
ments of the conditional correlation matrix below a threshold (default = 0.2) with 0. It 
then clusters this graph using the Leiden algorithm [19]. Modules larger than a user-
specified threshold are sent through Leiden clustering a second time with double the 
initial resolution parameter. Modules smaller than a user-specified threshold are thrown 
out, as are modules whose average conditional correlation falls below a user-specified 
threshold.

(2)cov
(

Y
(N)
i,j |X

(N)
i,j

)

= cov
(

Y
(N)
i,j

)

− cov
(

Y
(N)
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(N)
i.j
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X
(N)
i,j

)−1
cov
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X
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i,j , Y

(N)
i,j
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Module scores are calculated as weighted averages of their genes: for module m with 
weights wj, the module’s score for cell i is calculated Mi,m =

∑

jwjYij , and the score for 
cell i’s neighborhood is M(N )

i,m =
∑

jwjY
(N )
i,j  . To mitigate the heteroscedasticity found in 

genes of varying expression levels, InSituCor’s default uses inverse square root weight-
ing to account for the Poisson-like mean–variance relation seen in count data, defining 
wj = mean( Y (N )

•,j )−0.5.
Cell type attribution scores are computed in two steps. First, we compute the contri-

bution of each of the module’s genes in each cell type to the module. We summarize this 
with the correlation between two quantities: cells’ environment scores for the module, 
and cells’ neighborhood expression of the gene in question by the cell type in question. 
That is, for module k, we report A(j,c) = cor(M(N)

.k,  Y(N,c)
.∙,j), where Y(N,c)

.i,j is the total 
expression of gene j in cells of cell type c in the neighborhood of cell i. Second, we sum-
marize the role of a cell type in a module, considering all genes, as A(c) = maxj{A(j,c)}. 
This produces high attribution scores for cell types that contribute heavily to any of a 
module’s genes.

Analysis of CosMx colon cancer dataset

A 13 mm × 12 mm × 5 μm section of colorectal adenocarcinoma was profiled using the 
standard CosMx RNA protocol and a 6000-plex, pre-commercial version of the CosMx 
6 K Discovery RNA panel. Seventy-three fields of view were placed according to markup 
of a serial hematoxylin and eosin (H&E) stain, focusing on normal intestinal mucosa, 
lymphoid aggregates, and cancer. The slide was imaged with a 5-channel morphol-
ogy panel (PanCK, CD68, CD298/B2M, CD45, DAPI). Analysis began with the counts 
matrix and cell metadata flat files exported by AtoMx. Single-cell expression profiles 
were normalized by dividing each cell’s expression profile by its total counts. Cell types 
were defined using the InSituType [20] R package’s semi-supervised mode to fit de novo 
clusters while also finding known cell types based on reference profiles of immune cells 
[21] and of mesenchymal cells [22].

InSituCor was run on the normalized count data with a subset size (“max_cells” argu-
ment) of 10,000. It conditioned on neighborhood cell type proportions, mean neighbor-
hood total counts per cell, and mean neighborhood negative control probe counts per 
cell. Modules with > 20 genes were subclustered, and modules with < 3 genes were dis-
carded. The “raw” spatial correlation matrix was calculated with cor(Y(N)).

Ligands and ligand-receptor pairs were taken from CellChatDB [5]. Tertiary lym-
phoid structures were defined by clustering B-cell locations with dbscan [23], with a 
radius = 0.02 mm. The 3 largest clusters (130, 501, and 905 B-cells) were called tertiary 
lymphoid structures; the next-largest cluster had just 28 B-cells. Differential expression 
analysis of B-cells in vs. out of TLS’s used a t-test on linear-scale normalized counts; the 
delta method was used to derive confidence intervals for the ratios of gene expression 
between these groups.

Analysis of CosMx PDAC dataset

Three TMA cores with < 3000 cells were removed as having insufficient sample size 
to power InSituCor. Cells with < 20 counts were removed. Cell typing was performed 
as in (18), classifying cells as malignant based on PanCK immunofluorescence stain, 
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then using InSituType’s supervised mode to assign the remaining cells to reference 
pancreatic, immune, and stroma cell types. Single-cell expression profiles were nor-
malized by total counts. InSituCor was run using normalized count data, a radius of 
0.05 mm, conditioning on cell type, FOV ID, cells’ total RNA counts, and total nega-
tive control probe counts. “Consensus” conditional correlations were defined as all 
gene pairs with conditional correlation > 0.3 in at least 17/19 tumors. Gene pairs 
with high inter-tumor heterogeneity were defined as those with conditional corre-
lation > 0.3 in at least 3/19 tumors and conditional correlation < 0.05 in at least 3/19 
tumors. Module scores were calculated as cells’ average normalized expression of 
module genes. To classify tumors as dominated by large vs. small glands, we clus-
tered the spatial positions of malignant cells into glands using DBSCAN, then split 
individual glands into either small or large classes based on the number of cells they 
contain. Cells not assigned to any cluster are left as NA and filtered out for the down-
stream analysis. To define the boundary between small and large glands, we fit a two-
component Gaussian mixture model to gland sizes and found the intersection of the 
small and large gland peaks, resulting in a cutoff of 46 cells per gland. Tumor cores 
were then split into three equally sized categories based on their proportion of malig-
nant cells in each gland type.
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