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Abstract 

Low‑pass single‑cell DNA sequencing technologies and algorithmic advance‑
ments have enabled haplotype‑specific copy number calling on thousands of cells 
within tumors. However, measurement uncertainty may result in spurious CNAs 
inconsistent with realistic evolutionary constraints. We introduce evolution‑aware copy 
number calling via deep reinforcement learning (CNRein). Our simulations demon‑
strate CNRein infers more accurate copy‑number profiles and better recapitulates 
ground truth clonal structure than existing methods. On sequencing data of breast 
and ovarian cancer, CNRein produces more parsimonious solutions than existing 
methods while maintaining agreement with single‑nucleotide variants. Additionally, 
CNRein shows consistency on a breast cancer patient sequenced with distinct low‑
pass technologies.

Background
Cancer results from an evolutionary process during which somatic mutations accumu-
late in a population of cells, resulting in intra-tumor heterogeneity, i.e., the presence of 
multiple cellular subpopulations, or clones, with distinct mutations  [1]. Copy number 
aberrations (CNAs) are a very common form of mutation in cancer, on average affect-
ing 44% of the genome in solid tumors [2–4]. Unlike single-nucleotide variants (SNVs), 
individual CNAs can simultaneously affect thousands of genes by amplifying or deleting 
large regions of the genome. Consequently, the identification of CNAs is vital for under-
standing cancer evolution. Additionally, identifying CNAs is of great clinical utility, since 
there exist certain drug therapies that target vulnerabilities in the cancer that arise as a 
result of specific CNAs [5–7]. However, the combination of intra-tumor heterogeneity 
and limitations of current sequencing technologies render copy number calling a chal-
lenging task.

Several works have focused on copy number calling from bulk DNA sequencing 
data [8–14]. Two key signals are used for copy number calling in these data. First, the 
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number of reads, or read depth, of a genomic region is proportional to its total number 
of copies. Second, the B-allele frequency (BAF) of heterozygous germline single nucleo-
tide polymorphisms (SNPs) is indicative of allelic imbalance, where a BAF of 0 (1) indi-
cates the absence of B (A) alleles and a BAF of 0.5 indicates the same number of A and 
B alleles. Rather than providing measurement of individual cells, bulk DNA sequenc-
ing provides composite measurements of read depth and BAF of millions of cells in the 
bulk sample. This composite signal obscures intra-tumor heterogeneity and requires 
deconvolution, resulting in an inevitable loss of signal. Unlike bulk sequencing, single-
cell sequencing technologies potentially enable the precise characterization of copy 
number in individual cells. Due to the popularity of single-cell RNA sequencing, a wide 
variety of algorithms exist for determining CNAs on these data such as Numbat  [15], 
CopyKAT [16], HoneyBadger [17], and InferCNV [18]. However, as read depth in these 
data is additionally confounded by expression, it is extremely difficult to quantitatively 
determine integer copy numbers, and, instead, only the qualitative presence of gains, 
deletions and loss of heterozygosity (LOH) is predicted.

By contrast, single-cell DNA sequencing technologies have enabled the sequenc-
ing of hundreds of cells at relatively uniform coverage, suitable for copy number call-
ing [19]. Algorithms such as HMMcopy [20], Ginkgo [21], SCICoNE [22], SCNA [23], 
SCOPE [24], and VICTree [25] have been utilized to determine total copy numbers of 
regions on the genome on this single-cell data. More recent technologies, including 10x 
Genomics CNV solution [26], DLP+ [27, 28], and ACT [29], have improved upon first-
generation technologies to enable high-throughput single-cell DNA sequencing of thou-
sands of cells with lower error rates. Three recent methods, CHISEL [30] SIGNALS [31], 
and Alleloscope [32], have enabled the determination of haplotype-specific copy numbers 
on this newer type of single-cell data, indicating the number of copies of both paren-
tal haplotypes phased within each chromosome. CHISEL works by globally clustering 
bins across cells by read depth and BAF, and then jointly inferring the copy number of 
these clustered bins. SIGNALS first applies HMMcopy to obtain total copy number esti-
mates and then utilizes the BAF measurement to determine the haplotype-specific state. 
Alleloscope first performs segmentation on bulk or pseudobulk data and then performs 
phasing and copy number calling. These algorithms have detected additional patterns on 
single-cell sequencing data not observable from total copy numbers such. Such patterns 
include copy-neutral loss of heterozygosity as well as mirrored-subclonal CNAs in which 
two subsets of cells contain the same number of gains or losses in the same genomic 
regions but on different alleles. However, these algorithms do not take advantage of bio-
logical constraints imposed by the evolutionary nature of cancer to jointly estimate copy 
number profiles across cells. Our key premise is that one should not infer CNAs in the 
absence of clear evidence from data and rather opt for shared clonal structure. In par-
ticular, one should only infer cell-specific CNAs when there is strong evidence in the 
read depth or BAF data. The temporal structure of evolutionary constraints addresses 
this by acting as a regularizer, reducing the number of spurious CNAs predicted due to 
noise in the data, as discussed in [22, 25, 33, 34].

We introduce CNRein, an evolution-aware deep reinforcement learning algorithm 
for haplotype-specific copy number calling. CNRein constrains predicted copy num-
ber profiles to result from a sequence of amplifications and deletions of copies of 
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specific alleles in contiguous regions within chromosomes (Fig. 1). These sequences 
of CNA events form trajectories, starting from the normal cell, with a neural net-
work constraining the likelihood of each CNA occurring. We use a deep reinforce-
ment learning procedure to train the neural net to produce copy number profiles that 
maximize the probability of the observed read depth and BAF data. The predicted 
copy number profile for each cell balances fitting that cell’s read depth and BAF val-
ues with forming coherent evolutionary trajectories across all cells. Thus, the level 
of intra-tumor heterogeneity predicted by CNRein results from training on the data 
rather than the imposition of clonal structure via post hoc clustering of inferred copy-
number profiles. This process is unsupervised in that it does not require any labeled 
data such as cells with known copy number profiles. Our deep reinforcement learning 
procedure has similarities with GFlowNets [35] in that both procedures learn a distri-
bution over trajectories to overall fit the data rather than simply trying to maximize 
the expected reward as is done most typically in reinforcement learning. However, 
GFlowNets do not enable the optimization of our objective, namely maximizing the 
product of all cells’ read count probabilities rather than setting profile probabilities 
proportional to fixed, pre-specified rewards (Additional file 1: Section A.3.8). Addi-
tionally, CNRein does not rely on the presence of normal cells, enabling the analysis 
of data where only tumor cells have been sequenced through FACS sorting.

We compare CNRein with SIGNALS and CHISEL on simulated data generated 
using our own simulator as well as CNAsim [36]. We find that existing methods have 
a tendency to identify spurious CNAs whereas CNRein’s predictions better match 
ground truth due to its evolutionary constraints. On breast and ovarian cancers [27, 
29], CNRein produces larger clones, fewer unique copy number profiles, and ulti-
mately enables the inference of more parsimonious phylogenies than competing 
methods, while maintaining similar fit to read depth and agreement with orthogo-
nal somatic single-nucleotide variant (SNV) data. Additionally, running CNRein on 
a breast cancer patient  [29] sequenced with both 10x and ACT technologies dem-
onstrates the consistency of CNRein’s predictions independent of sequencing tech-
nology. With the increasing availability of low-pass, high-throughput single-cell DNA 
sequencing data of tumors, we expect that CNRein’s more accurate copy number 
analyses will enable more precise analyses of intra-tumor heterogeneity.

Fig. 1 CNRein uses evolutionarily aware deep reinforcement learning to perform single‑cell copy number 
calling. a Technologies such as 10x Genomics CNV solution [26], DLP+ [27, 28], and ACT [29] enable 
high‑throughput single‑cell DNA sequencing suitable for CNA calling. b Reads are aligned and processed to 
obtain CNRein inputs. c CNRein uses a generative model of CNA evolution parameterized by a convolutional 
neural network and optimized via reinforcement learning. d From the evolutionary model θ , CNRein 
produces haplotype‑specific copy number profiles P for each cell
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Results
CNRein algorithm overview

The objective of CNRein is to estimate the parameters of an evolutionary model of CNAs 
that maximize the data probability of observed read counts. Then, given the model, we 
predict a copy number profile for each individual cell with maximum joint probability 
according to said evolutionary model and observed read counts.

In contrast to existing allele-specific methods, this joint estimation is evolution aware. 
Specifically, our algorithm generates paths to CNA profiles using an evolutionary model 
for copy number profiles that sequentially adds CNAs to clones starting from the nor-
mal clone. The probability of each CNA event in this trajectory is determined by a deep 
convolutional neural network. The reinforcement learning system implements the addi-
tion of CNA events to clones as actions and utilizes a reward that maximizes the prob-
ability of the observed read counts given the model. Intuitively, high rewards are given 
to copy number profiles that fit cells’ read depth and BAF data, especially when existing 
high probability copy number profiles do not yet fit those cells well. After training, infer-
ence is performed by selecting copy number profiles with the highest overall probability 
for each cell given both the observed read counts and evolutionary model probabilities. 
More details about the problem statement are given in the “Problem statement” section.

CNRein’s pipeline follows three stages: (i) data processing, (ii) initial copy number esti-
mation, and (iii) final copy number estimation via deep reinforcement learning (Addi-
tional file  1: Fig. S1). First, in the data processing stage, the input is a BAM file with 
N read groups indicating cell barcodes and the outputs are read depths R̃ , haplotype-
specific read counts A, and variance estimates �R and �B for the read depth and B-allele 
frequency, respectively, of L segments in the genome (Additional file 1: Section A.1). To 
do so, we perform phasing and initially split the genome into K bins of length 100kb in 
order to perform GC bias and mappability correction and segmentation. Our phasing 
step utilizes bcftools  [37] for detecting SNPs and SHAPE-IT 4  [38] together with the 
1000 genomes reference panel  [39] for phasing haplotype blocks. Second, our CNNa-
ive algorithm performs initial copy number estimation separately for each cell, yield-
ing approximate copy number numbers profiles P̃ (Additional file  1: Section  A.2). To 
accomplish this for each cell, CNNaive uses low-noise regions to estimate ploidy or the 
cell-specific scaling factor and then determines the copy number profile that maximizes 
the probability of that cell’s read counts. Third, our evolution-aware deep reinforcement 
learning system inputs R̃,A , �R , �B , and P̃ in order to jointly estimate copy number pro-
files P for all cells in order to maximize the probability of the observed read count data 
(“CNRein algorithm details” section).

Evaluation on simulated scDNA‑seq data

We generated 20 simulation instances with n = 1000 cells and K = 27,283 bins of 
100kb length that had varying levels of intra-tumor heterogeneity and half of which 
included a truncal whole-genome duplication (WGD). The noise levels were based on 
breast cancer patient S0 (Additional file 1: Fig. S2 and the “Evaluation on a breast cancer 
dataset sequenced with 10x Chromium CNV technology” section). Our simulator gen-
erates copy number profiles P in addition to read depths R̃ and haplotype-specific count 
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measurements A by first generating an evolutionary tree starting with either a normal 
clone or a whole genome duplicated clone. Then, the simulator sequentially generates 
CNAs on existing clones, with each CNA potentially increasing the corresponding 
clone’s fitness and thus the number of cells in the sample that originate from that clone 
or its descendants. The probability of fitness increases controls the relative growth rates 
of clones and thus the overall level of intra-tumor heterogeneity including the number of 
cell-specific CNAs. This varying heterogeneity helps us evaluate if methods underesti-
mate heterogeneity by missing legitimate CNAs or overestimate heterogeneity by infer-
ring spurious CNAs. As our simulations generate intermediate data rather than BAM 
or FASTQ files, we were not able to include Alleloscope in our benchmarking and only 
compared CNRein to SIGNALS and CHISEL. Further details are provided in Additional 
file 1: Section A.4.3, and runtimes are provided in Additional file 1: Fig. S3.

Visually inspecting the copy number profiles of a single simulation instance with WGD 
(Fig. 2a), we find that CNRein’s predictions better match the ground truth compared to 
SIGNALS and CHISEL. To better quantify performance, we developed four different 
metrics. First, we defined accuracy as the average proportion of bins across all cells for 
which the ground truth allele-specific copy numbers were inferred (ignoring the order-
ing of alleles; see the “Evaluation details” section). For the simulation instances in Fig. 2a, 
CNRein’s accuracy was 0.948 compared to 0.704 for SIGNALS, and 0.816 for CHISEL 
(Fig.  2a). We see similar trends across all simulation instances, with CNRein achiev-
ing a median accuracy of 0.956, followed by 0.882 for SIGNALS, and 0.857 for CHISEL 
(Fig. 2b). Second, to better assess the magnitude of errors, we defined error as the mean 
absolute difference between predicted and ground truth copy numbers across all bins 
and cells (again allele-specific as mathematically defined in the “Evaluation details” sec-
tion). For the simulation instance in Fig.  2a, CNRein achieved the smallest error of 
0.055 and a median error of 0.064 across all simulation instances (Fig. 2c), followed by 

Fig. 2 Results on simulated data. a Allele‑specific copy number profiles from the ground truth as well 
as predictions by CNRein, SIGNALS, and CHISEL for a single simulation instance with a whole genome 
duplication at the trunk. b Accuracy values of unordered allele‑specific copy numbers. c L1 errors of 
unordered allele‑specific copy numbers. d The number of predicted unique copy number profiles (y‑axis) vs. 
ground truth number of unique profiles (x‑axis), with the y = x line in red and Pearson correlations indicated 
in the key and dashed lines. A small amount of jitter (drawn from Unif(−25, 25) ) was added to predictions 
(y‑axis) with exactly 1000 unique copy number profiles for clarity. e Parsimony scores for phylogenetic trees 
inferred from ground truth (x‑axis) and predicted copy‑number profiles (y‑axis), with the ground truth y = x 
line shown in red, and best‑fit lines shown with dashes as well as Pearson correlations indicated in the key. 
The best‑fit lines can appear slightly curved as a consequence of the plot’s log scale
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CHISEL (0.233 and 0.191, respectively) and then SIGNALS (0.470 and 0.315, respec-
tively). In Additional file  1: Section  B.3 and Fig. S4, we additionally analyzed sensitiv-
ity to focal CNAs (including CNAs smaller than 5 Mb) and error on haplotype-specific 
copy numbers, finding CNRein to have lower errors than SIGNALS or CHISEL in each 
circumstance.

Third, we compared the number of unique copy number profiles inferred by each 
method to that in the ground truth. The 1000 cells of the simulation instance shown 
in Fig. 2a correspond to 490 unique copy number profiles in the ground truth. While 
CNRein slightly overfit the data with 565 inferred unique copy number profiles, both 
SIGNALS and CHISEL inferred a unique copy number profile for each cell (Fig.  2a). 
Looking across all simulation instances (Fig. 2d), we find that CNRein better matched 
the true number of unique profiles with a Pearson correlation of r = 0.98 and a median 
percentage error of 6.92% compared to SIGNALS ( r = −0.28 and 110%) and CHISEL 
( r = −0.59 and 110%). We further confirm CNRein’s accurate reconstruction of intra-
tumor heterogeneity by analyzing the number of cell-specific copy number profiles 
(Additional file 1: Fig. S5) and analyzing sets cells belonging to small clones (Additional 
file 1: Section B.4 and Fig. S6). We found CNRein’s predictions very closely matched the 
ground truth, in contrast to SIGNALS and CHISEL, which typically predicted cell-spe-
cific profiles independent of the ground truth.

Fourth, we utilized the copy number profiles inferred by each method to construct a 
phylogenetic tree as described in the “Evaluation details” section, defining the parsimony 
score as the number of CNA events on this tree using the zero-agnostic copy number 
transformation (ZCNT) distance inferred by Lazac [40]. For the simulation instance in 
Fig. 2a, CNRein predicted a far more parsimonious solution (with parsimony score 1346) 
than SIGNALS (769,219) or CHISEL (131,696), despite being less parsimonious than the 
ground truth (798). Note that high parsimony values may be reflective of homoplasy, i.e., 
identical CNAs occurring independently at many locations on the tree, due to a lack of 
evolutionary structure in the predictions. This can lead to high parsimony values even if 
the predictions do not look very visually noisy as is the case for CHISEL’s prediction. We 
find similar trends across all 20 simulation instances (Fig. 2e), with CNRein’s parsimony 
scores both lower and better correlated with the ground truth values (Pearson correla-
tion r = 0.95 and median value 1012) compared to SIGNALS ( r = −0.20 and median 
value 248,891) and CHISEL ( r = 0.26 and median value 52,370). However, the median 
ground truth parsimony of 736 is even lower than CNRein’s parsimony, showing there 
still exists room for improvement.

In summary, CNRein infers more accurate copy-number profiles that better recapitulate 
ground truth clonal structure compared to SIGNALS and CHISEL. These findings are not 
unexpected, as unlike CNRein, neither SIGNALS nor CHISEL uses an evolutionary model 
to constrain inferred copy number profiles. In addition, we also compared against CHIS-
EL’s post hoc clustered outputs and the state-of-the-art total copy number calling method 
VICTree [25], which directly infers clones. We find that CNRein outperforms these meth-
ods (Additional file 1: Section B.1 and Fig. S7). Finally, we performed additional bench-
marking using an alternative simulator, CNAsim [36], finding that our method continues 
to outperform other methods (Additional file 1: Section B.2 and Fig. S8).
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Evaluation on an ovarian cancer dataset sequenced with DLP+ technology

Next, we benchmarked CNRein on 890 direct library preparation (DLP+) sequenced 
cells from three clonally-related cancer cell lines sourced from the same high-grade 
serous ovarian cancer OV2295 [27], with coverages ranging from 0.1× to 0.4× (Fig. S9). 
We compared CNRein to SIGNALS, CHISEL, and Alleloscope. As Alleloscope and SIG-
NALS applied additional filtering criteria, we restricted our analysis to the n = 617 cells 
for which all methods were run and produced predictions.

We find that the difference in predicted copy number profiles between Alleloscope 
and all other methods is very stark (L1 distances at least 1.35 compared to a distance 
of 0.14 between CNRein and SIGNALS shown in Additional file 1: Fig. S10), as a result 
of Alleloscope predicting no WGD while all other methods predicted WGDs on many 
cells (Fig. 3a). For the other methods, the differences are more subtle with the zoomed 
in plots of chromosome 1 showing (i) a lower level of variance in CNRein outputs, (ii) 
that CNRein’s and SIGNAL’s predictions are most similar, (iii) while CHISEL’s predic-
tions have more substantial differences, especially towards telomeres of chromosomes 
(Fig. 3b). Looking at all n = 617 cells and the complete genome, we assessed the fit of 
the predicted total copy number of each method to the input read depth (defined in 
Additional file  1: Section  B.7). We found that CNRein has a statistically significant 
closer fit to the read depth data than CHISEL or Alleloscope, while having no statisti-
cally significant difference in fit relative to SIGNALS (Fig. 3c). Despite fitting the read 
depth data at least as well as the other methods, we find that CNRein predicted more 
shared clonal structure. That is, SIGNALS predicted a unique copy number profile for 

Fig. 3 Results on high‑grade serous ovarian cancer OV2295 [27]. a Allele‑specific copy number profiles 
for CNRein, SIGNALS, CHISEL, and Alleloscope on n = 617 cells. Unlike other methods, Alleloscope did 
not predict WGD for any cell (as indicated by ploidies above 3.0). b Allele‑specific copy number profiles 
of chromosome 1, showing that while CNRein retains the ability to detect small CNAs also detected by 
SIGNALS. c SIGNALS and CNRein have a substantially closer fit to the raw read depth data than alternative 
methods. d The size of the 10 largest clones for each method, showing larger clones for CNRein and CHISEL 
than SIGNALS and Alleloscope. e CNRein’s predictions resulted in a more parsimonious phylogeny than 
SIGNALS or CHISEL, while Alleloscope resulted in the lowest parsimony score. f, g VAF values on the copy 
number 1, 2 for CNRein and Alleloscope. For CNRein but not Alleloscope, VAFs are concentrated around 
1/3 and 2/3 (indicated with black vertical lines) as expected. h Log likelihood ratios (LLR) of truncal SNV 
support on bootstrapped replicates between our method and the alternative methods SIGNALS, CHISEL, 
and Alleloscope. CNRein outperforms CHISEL (LLR 3,418.66 and p < 10−5 ) and especially Alleloscope (LLR 
12,635.36 and p < 10−5 ) while being slightly outperformed by SIGNALS (LLR −1,033.42 and p = 0.0051)
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each cell, while the largest clones for CNRein, CHISEL, and Alleloscope contained 41, 
9, and 2 cells, respectively (Fig. 3d). In total, CNRein, CHISEL, and Alleloscope pre-
dicted 468, 469, and 610 unique profiles, respectively.

To assess the downstream effects of overfitting and potentially inferring spurious 
CNAs, we constructed phylogenies from each method’s copy number profiles and 
evaluated the resulting parsimony scores via a similar procedure described in the 
“Evaluation on simulated scDNA-seq data”  section. We find that CNRein’s tree had 
a parsimony score of 7163 (Fig.  3e), which is far more parsimonious than the trees 
produced from SIGNALS’ and CHISEL’s copy number profiles, achieving parsimony 
scores of 34,529 and 13,769, respectively. This difference in parsimony is visually clear 
in images of the full trees shown in Additional file 1: Fig. S11, showing long branches 
near the leaves indicative of many CNAs occurring on individual cells rather than on 
larger clones. We note that Alleloscope achieved an even lower parsimony score of 
4149; however, we believe this is due to Alleloscope incorrectly predicting a lack of 
WGD.

To test the above hypothesis and orthogonally validate our CNRein’s predictions, we 
evaluated consistency with orthogonal SNV (single nucleotide variant) data reported 
by Laks et al. [27]. By SNVs we refer to somatic mutations, which, in contrast to ger-
mline SNPs, are not used by any method for inference. Specifically, we focused on a 
subset of 2,801 out of 14,068 SNVs that are likely truncal (as indicated by occurring 
in all three samples with precise details provided in the “Evaluation details” section). 
Truncal SNVs that occur on a segment with copy number {XA,XB} must have a variant 
allele frequency (VAF) on those cells equal to some integer multiple of 1/(XA + XB) . 
We find that this is the case for allele-specific copy number {2, 1} for CNRein (Fig. 3f ) 
as well as SIGNALS and CHISEL (Additional file 1: Fig. S12), showing bimodal distri-
butions with peaks around 1/3 and 2/3, but not Alleloscope, showing a unimodal dis-
tribution with a single peak around 1/2 (Fig. 3g). Moreover, allelic mirroring for the 
CNA {2, 1} (demonstrated in Additional file 1: Fig. S13) is predicted by all methods 
and reflected in the VAFs of truncal SNVs for CNRein, SIGNALS, CHISEL but not 
Alleloscope, finding that SNVs with a VAF near 1/3 for (2, 1) have a VAF near 2/3 for 
(1, 2) and vice versa (Additional file 1: Fig. S14). We see similar trends for other CNAs 
(Fig. S15, Fig. S16, and Fig. S17), finding several cases where SNVs show evidence for 
LOH whereas Alleloscope inferred heterozygous CNAs.

To better quantify differences between methods, we developed a statistical test for 
goodness of fit with the SNV data, exploiting the fact that the vast majority of trun-
cal SNVs seem to precede their coinciding CNAs and WGDs (Additional file 1: Sec-
tion B.6). In such cases, we expect a VAF of either XB/(XA + XB) or XA/(XA + XB) 
depending on which allele the SNV occurred. We defined a log-likelihood ratio 
(LLR), measuring the relative probability of each truncal SNV’s observed reference 
and variant reads given the copy numbers predicted by CNRein when compared to 
each alternative method, with positive values supporting CNRein’s predictions and 
negative values supporting the method being compared against (Additional file  1: 
Section A.4.2). As shown in Fig. 3h, Alleloscope has by far the worst statistical sup-
port of truncal SNVs (LLR: 12,635.36, p < 10−5 ), followed by CHISEL (LLR: 3418.66, 
p < 10−5 ) whereas SIGNALS achieved slightly better SNV support than CNRein 
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(LLR: −1033.42 , p = 0.0051 ). The comparatively small log-likelihood ratio between 
SIGNALS and CNRein is reflective of general agreement with respect to truncal 
SNVs.

In summary, for this ovarian cancer sequenced with DLP+ technology, we find that 
CNRein fits the read depth data and orthogonal SNV data at least as well as all other 
methods while producing more parsimonious solutions with more shared clonal struc-
ture due to its evolution-aware model. In Additional file  1: Section  B.5, and Fig. S18, 
we included additional analyses showing the SNV-based statistical analysis to have some 
sensitivity to cell-specific CNAs. We also show that read depth supports CNRein’s pre-
dicted cell-specific profiles and cell-specific CNAs (Additional file  1: Section  B.7, Fig. 
S19 and Fig. S20). Finally, we performed additional comparisons with modified versions 
of CNRein, finding CNRein is relatively robust to modifying segment sizes or variance 
estimates (Additional file 1: Section B.5, Fig. S21 and Fig. S22).

Evaluation on a breast cancer dataset sequenced with 10x Chromium CNV technology

For further benchmarking, we considered single-cell DNA sequencing data from 
breast cancer patient S0 sequenced with Chromium Single-Cell Copy Number Varia-
tion (CNV) Solution from 10× Genomics. A total of 10,202 cells, distributed across five 
spatial sections, were sequenced with coverage ranging from 0.01× to 0.05× (Additional 
file 1: Fig. S23). While both CHISEL and CNRein produced output for all cells, the SIG-
NALS output consisted of only 3540 cells due to additional filtering criteria, including 
removal of normal cells as well as high noise cells suspected to be actively replicating, 
doublets, or otherwise problematic. Additionally, we utilized publicly available predic-
tions from Alleloscope on cells from one particular section of the tumor, amounting to a 
total of n = 785 cells for which all methods produced predictions.

In contrast to the DLP+ data, we find a general agreement between CNRein, SIG-
NALS, and Alleloscope other than additional small (around 1Mb or smaller) CNAs in 
SIGNALS predictions (Fig.  4a and Additional file  1: Fig. S24) and CHISEL predicting 
a smaller quantity of LOH, as can be seen in chromosome 6 (Fig.  4b). Looking at all 
n = 785 cells and across the entire genome, we find CNRein had a statistically significant 
closer fit to the read depth data than CHISEL or Alleloscope, while having no statisti-
cally significant difference in fit relative to SIGNALS (Additional file 1: Section B.7 and 
Fig. 4c). Despite fitting the read depth data at least as well as other methods, CNRein 
identified large sets of cells with identical copy number profiles (see Additional file  1: 
Section A.4.1 for details). The largest such set identified by CNRein consists of 276 cells 
(Fig.  4d). On the other hand, the largest set of cells with identical profiles identified 
by SIGNALS, CHISEL, and Alleloscope consist of only 1, 17, and 5 cells, respectively. 
Additionally, CNRein determined fewer unique copy number profiles (206) compared 
to SIGNALS (785), CHISEL (737), and Alleloscope (747). This lower number is due to 
CNRein’s use of a shared evolutionary model; indeed, CNNaive, which has the same data 
processing pipeline and statistic model for the data as CNRein but lacks an evolutionary 
model, produced 628 unique copy number profiles (Additional file 1: Fig. S25). Similar 
comparisons on the set of 3540 cells for which CNRein, SIGNALS, and CHISEL were 
run are provided in Additional file 1: Fig. S26 and Fig. S27.
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Additionally, we calculated phylogenies from the copy number profiles and evaluated 
their parsimony scores (Fig.  4e). We find that CNRein’s phylogeny is far more parsi-
monious (score: 397) than SIGNALS (40,222), CHISEL (8506), and Alleloscope (2076). 
This difference in parsimony is visually clear in images of the full trees shown in Addi-
tional file 1: Fig. S28, showing long branches near the leaves indicative of many CNAs 
occurring on individual cells rather than on larger clones. To assess whether CNRein’s 
increased robustness to spurious CNAs came at the expense of substantially decreased 
sensitivity to legitimate CNAs, we validated on a subset of 755 likely truncal SNVs (more 
precisely defined in the “Evaluation details” section). In Fig. 4f, we show CNRein’s VAF 
plot for copy number {2, 1}, showing agreement of truncal SNVs with this copy number 
(complete data for all methods shown in Additional file  1: Fig. S29). Using our previ-
ously defined statistical test for truncal SNVs, we find that CNRein provided a somewhat 
better fit than SIGNALS (LLR 145.26 and p = 0.0062 ), a substantially better fit than 
CHISEL (LLR 1093.83 and p < 10−5 ), and a slightly worse but not significant fit than 
Alleloscope (LLR −35.24 and p = 0.205 ). Additionally in Fig. S30, we show that CNRein, 
SIGNALS, and CHISEL predicted allelic mirroring on copy number {2, 1}, but this pre-
diction is supported by orthogonal SNV data only for CNRein and SIGNALS.

In summary, similarly to the DLP+ ovarian cancer dataset, we find that for this breast 
cancer dataset sequenced with 10× CNV technology, CNRein fits the read depth and 
orthogonal SNV data at least as well as competing methods while outputting copy-num-
ber profiles with more shared clonal structure. This is in line with our central premise 
that one should avoid inferring excessive variation in copy numbers across cells without 
clear evidence in the data. In addition, we analyzed modified versions of CNRein, finding 

Fig. 4 Results on breast cancer patient S0. a Allele‑specific copy number profiles for CNRein, SIGNALS, 
CHISEL, and Alleloscope on n = 785 cells. b Allele‑specific copy number profiles of chromosome 6, showing 
that while CNRein retains the ability to detect small CNAs also detected by SIGNALS. c All methods have a 
similar fit to the read depth data, with SIGNALS and CNRein having a slightly better fit. d The size of the 50 
largest clones for each method, showing much larger clones for CNRein than SIGNALS, CHISEL SIGNALS, and 
Alleloscope. e CNRein’s predictions resulted in a tree with a far lower parsimony score (397) than SIGNALS 
(40,222), CHISEL (8506), or Alleloscope (2076). f VAFs for copy number {2, 1} for CNRein, showing the expected 
peaks around 1/3 and 2/3. g Log likelihood ratios (LLR) of SNVs support on bootstrapped replicates between 
our method and the alternative methods SIGNALS, CHISEL, and Alleloscope. CNRein outperforms CHISEL 
(LLR 1093.83 and p < 10−5 ) and somewhat outperforms SIGNALS (LLR 145.26 and p = 0.0062 ) while being 
slightly outperformed by Alleloscope (LLR −35.24 and p = 0.205)
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CNRein is relatively robust to modifying segment sizes or variance estimates (Additional 
file 1: Section B.5, Fig. S31 and Fig. S32).

Consistency of CNRein on matched 10× and ACT sequencing samples

In our final analysis, we assessed whether CNRein is able to produce consistent predic-
tions across multiple sequencing technologies applied to the same tumors. To that end, 
we analyzed breast cancer patient TN3, which was sequenced using both ACT [29] and 
10× sequencing technologies. The coverage for the n = 1101 cells sequenced with ACT 
technology ranged from 0.005× to 0.015× , whereas the coverage for the n = 1070 cells 
sequenced with 10x technology ranged from 0.01× to 0.07× (Additional file 1: Fig. S33). 
CNRein inferred 119 unique copy number profiles for the ACT cells and 90 profiles for 
the 10× cells. Strikingly, when projecting the profiles to two dimensions using UMAP 
and clustering using DBSCAN, we find that the cells cluster into four common groups 
(Fig. 5a). Moreover, each cluster has a similar proportion of cells for the two technolo-
gies (Fig. 5b), with 448 (41%), 451 (41%), 67 (6%), and 135 (12%) cells respectively for the 
four clusters for ACT sequenced cells and 434 (40%), 404 (38%), 85 (8%), and 147 (14%) 
cells respectively for 10× sequenced cells. Phylogenies for both sequencing technologies 
with cells colored by cluster are shown in Additional file 1: Fig. S34, demonstrating gen-
eral agreement. Copy number profiles for each cluster for the two sequenced technolo-
gies are shown in Fig. 5c, showing the similarity between the two technologies for each 
cluster. Thus, we find that CNRein successfully uncovers similar copy number profiles 
with similar proportions despite the use of two different sequencing technologies.

Discussion
We introduced the method CNRein, a deep reinforcement learning based method for 
haplotype-specific copy number calling. Our central premise is that in the absence of 
clear signal from input data one should opt to infer shared CNAs to form an evolution-
ary coherent solution. To that end, CNRein utilizes a generative model of CNA evolu-
tion to model the probability of different copy number profiles jointly across cells. We 

Fig. 5 Analysis of breast cancer patient TN3 [29] for both ACT and 10× Chromium technologies. a A UMAP 
of copy number profiles shows 4 clear clusters on pooled copy number profiles for both technologies. b 
Similar proportions for each cluster exist for both technologies. For ACT sequenced cells there are 448, 451, 
67, and 135 cells, respectively, in the four clusters, meanwhile for 10× sequenced cells there are 434, 404, 85, 
and 147 cells, respectively. c Copy number profiles in all four clusters are shown for both technologies (with 
cells in each cluster sorted by average ploidy)



Page 12 of 23Ivanovic and El‑Kebir  Genome Biology           (2025) 26:87 

note that our use of reinforcement learning for modeling a generative evolutionary pro-
cess is conceptually similar to our previous work CloMu [41], an algorithm for modeling 
SNV evolutionary trees. While CloMu directly models evolutionary tree probabilities, 
CNRein models the probabilities of trajectories starting on the normal cell and ending 
on some copy number profile, allowing for a more flexible search while avoiding local 
minima. We also note that our deep reinforcement learning procedure bears some simi-
larities with GFlowNets [35] such as finding a distribution over trajectories to fit the data 
rather than maximizing expected rewards.

On simulated data with varying levels of intra-tumor heterogeneity, we found CNRein 
predicted copy number profiles and numbers of unique copy number profiles that bet-
ter fit ground truth values than SIGNALS, CHISEL and VICTree. As we do not have 
access to ground truth copy number profiles in real data and there exists no single per-
fect evaluation metric, we attempted to assess sensitivity and specificity using several 
criteria. We evaluated sensitivity to legitimate CNAs with an SNV-based orthogonal 
validation and fit to read depth. We evaluated specificity, i.e., the ability to avoid spu-
rious CNAs, with parsimony-based scoring of inferred phylogenies. In our evaluation 
on real data of breast and ovarian cancer, CNRein produced copy number profiles that 
retained a close fit with read depth but yielded more parsimonious trees and had more 
realistic numbers of cells with shared profiles (clones) than existing methods. Specifi-
cally, CNRein’s findings of extensive heterogeneity in CNA profiles of ovarian cancer 
OV2295 are in line with previous analyses of high-grade serous ovarian cancer [42–45]. 
On the other hand, CNRein’s detection of more shared clonal structural in breast cancer 
S0 is in line with commonly observed punctuated evolution in breast cancer [46]. Addi-
tionally, the orthogonal SNV analysis showed CNRein achieved a better fit than CHISEL 
on both datasets, a much better fit than Alleloscope on ovarian cancer, and similar fits 
as SIGNALS overall. Finally, we found that CNRein inferred identical clonal structure of 
a breast cancer patient when run separately on the cells sequenced with 10× and ACT 
technologies.

Currently, CNRein’s optimization is guided by copy number profiles predicted by 
CNNaive. Consequently, another useful addition to CNRein would be allowing any copy 
number profiles to be provided for guiding CNRein, such as the copy number profiles 
predicted by SIGNALS. Although CNRein’s predictions yield more parsimonious trees 
than competitor methods, simulations show these parsimony values are still meaning-
fully higher than the ground truth. Consequently, further improving CNRein in order 
to produce a maximally parsimonious tree is an important direction for future work. 
One approach for this could be a post-processing local search to modify CNRein’s CNA 
tree and obtain improved copy number profiles. For instance, an MCMC optimization 
approach on CNA trees as performed in SCICoNE [22] could be applied. Another possi-
ble modification to our method’s optimization procedure could be adapting GFlowNets 
towards our problem statement rather than our current procedure of adapting policy 
gradients. One other natural extension of CNRein would be including the sex chromo-
somes currently excluded from our analysis.

Future work could also include the ability to detect doublets and S-phase cells. Cur-
rently, CNRein produces copy number profiles for such cells, but they are not specifically 
identified as doublets or S-phase. We also plan on updating our visualization tool [47] to 
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support the interpretation of CNRein results. Utilizing ideas used in the orthogonal vali-
dation of CNAs using SNVs [48], we plan on performing integrative inference of SNVs 
and CNAs, improving upon previous work [49]. Finally, a broader more complex future 
direction would be allowing CNRein to share a subset of parameters across patients 
and analyzing a large cohort of patients. One essential advantage of deep learning is its 
ability to learn complex subtle patterns across large datasets. Consequently, we believe 
the advantages of CNRein’s deep reinforcement learning could be greatly extended if 
training parameters across a large cohort of patients were enabled. Such a system could 
potentially learn general patterns of CNA evolution while also learning the particular 
evolutionary trajectories of individual patients, akin to methods for identifying evolu-
tionary trajectories of SNVs [41, 50–54].

Conclusions
Recent low-pass, high-throughput single-cell DNA sequencing technologies enable 
researchers to characterize intra-tumor heterogeneity across thousands of cells per 
tumor. In particular these technologies allow one to detect copy-number aberrations 
(CNAs), a very common and clinically relevant type of somatic mutation in cancer [2–7], 
using haplotype-specific CNA callers [30–32]. Importantly, current methods to analyze 
these data may result in spurious CNAs inconsistent with realistic evolutionary con-
straints. To address this gap, we introduce evolution-aware copy number calling via deep 
reinforcement learning (CNRein), showing better performance than existing methods 
on simulated and real data. With the increasing availability of single-cell DNA sequenc-
ing data of tumors, we expect that CNRein’s more accurate copy number analyses will 
enable more precise analyses of intra-tumor heterogeneity.

Methods
Problem statement

Given a set of aligned sequencing reads from single-cell DNA sequencing data, we 
wish to identify a copy number profile P = [P(1),P(2)]⊤ for each cell. These copy num-
ber profiles should fit each cells’ read count data well in addition to forming a coher-
ent solution across all cells. The copy numbers that we seek are both allele specific and 
haplotype specific. That is, each copy number (P(1)

i ,P
(2)
i ) indicates the number of copies 

of genetic region i of each of the two parental alleles. Additionally, the copy numbers 
are phased across each chromosome such that copy numbers (P(1)

i ,P
(2)
i ) = (2, 1) and 

(P
(1)
j ,P

(2)
j ) = (1, 2) for two different positions i and j on the same chromosome indicate 

two distinct copy numbers. Although the raw input is a set of aligned sequencing reads 
for each cell, this needs to be further processed to produce the appropriate inputs for 
copy-number calling. Specifically, we must split the genome into L genomic regions, or 
segments such that the copy number is constant in each segment. Then, we determine 
read counts for each cell and segment, which are corrected for several biases, to pro-
duce read depths R = [R1, . . . ,RN ]

⊤ ∈ R
N×L such that the read depth of a segment of 

a cell is proportional to the total copy number, i.e., Rs,i ∝ P
(1)
s,i + P

(2)
s,i  Additionally, het-

erozyous, germline single-nucleotide polymorphisms (SNPs) must be detected, counted, 
phased into haplotype blocks, and phased across haplotype blocks in order to produce 
the number of reads matched to each haplotype for each segment. This then produces 
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the B-allele frequencies (BAFs) B = [B1, . . . ,BN ]
⊤ ∈ [0, 1]N×L , which measure the pro-

portion of reads coming from the second haplotype (typically set to be the haplotype 
with a lower average copy number in that chromosome), i.e., Bs,i ≈ P

(1)
s,i /(P

(1)
s,i + P

(2)
s,i ) . 

We provide more details on determining the L segments and inputs R and B in Addi-
tional file 1: Section A.1.3.

Our measurements R and B not only depend on the copy number but include addi-
tional uncertainty specific to the cell and segment being considered. For instance, GC 
bias as well the number of germline SNPs in a segment can affect the variance in read 
depth and BAF, respectively, across segments (Additional file  1: Fig. S2). Additionally, 
differing coverage across cells can affect the variance across cells. Consequently, we 
define �R = [�R

1 , . . . ,�
R
N ]

⊤ ∈ R
N×L as the cell and segment-specific variances for the 

read depths R = [R1, . . . ,Rn]
⊤ , and �B = [�B

1 , . . . ,�
B
N ]

⊤ as the cell and segment-spe-
cific variances for the BAFs B = [B1, . . . ,BN ]

⊤ . In Additional file  1: Section  A.1.3, we 
describe how we estimate these values. Given these mean and variance values, we define 
Pr(Rs | �

R
s ,P) as the probability of the observed read depths Rs given variances �R

s  and 
copy number profile P of a cell s. Similarly, we define Pr(Bs | �

B
s ,P) as the probability of 

the observed BAFs Bs given the variances �B
s  and the copy number profile P. Precise def-

initions of the Gaussian probability distributions are given below and explanatory details 
are provided in Additional file 1: Section A.2.1.

This gives the below equation for the observed data given a copy number profile P.

While previous works infer a copy number profile Ps of each cell s in isolation, here we 
specifically account for the joint evolution of all copy number profiles P = [P1, . . . ,PN ] . 
As such, we define Pr(P | θ) as the probability of the copy number profile P according to 
a model with tumor-specific parameters θ . For our method CNRein, the parameters θ 
are the weights and biases of our deep neural network which we use in combination with 
an evolutionary model to calculate Pr(P | θ) . We define P as the set of all possible hap-
lotype-specific copy number profiles with L segments. In practice, P will be bounded by 
setting a maximum per-haplotype copy number of Cmax (set to a default value of 19). As 
shown on the plate diagram in Fig. 6a, the probability of read depths Rs and BAFs Bs are 
derivable from �R , �B , and θ . The probability of observed read depths Rs and BAFs Bs is

(1)Pr(Rs | �
R
s ,P) =

L

i=1

1

�R
s,i2π

exp
−(Rs,i − c · (P

(1)
i + P

(2)
i ))2

2�R
s,i

,

(2)Pr(Bs | �
B
s,i,P) =

L
�

i=1

1
�

�B
s,i2π

exp









−(Bs,i −
P
(2)
i

P
(1)
i +P

(2)
i

)2

2�B
s,i









.

(3)Pr(Rs,Bs | �
R
s ,�

B
s ,P) = Pr(Rs | �

R
s ,P)Pr(Bs | �

B
s ,P).

(4)Pr(Rs,Bs | �
R,�B, θ) =

∑

P∈P

Pr(P | θ)Pr(Rs,Bs | �
R
s ,�

B
s ,P).
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The probability of the read depths R = [R1, . . . ,RN ]
⊤ and the BAFs B = [B1, . . . ,BN ]

⊤ 
for N cells is then

This leads to the following problem.

Problem  1 (Copy Number Profile Distribution). Given read depths 
R = [R1, . . . ,RN ]

⊤ and B-allele frequencies B = [B1, . . . ,BN ]
⊤ and their variances 

�
R and �B for N cells and L segments find the model parameters θ that maximize 

Pr(R,B | �R,�B, θ).

Once we identify the parameters θ that maximize the probability of the observed 
measurement data, it is relatively straightforward to find a predicted profile Ps for each 
cell s such that

provided one can sample copy number profiles P from Pr(· | θ).

CNRein algorithm details

Evolutionary model for computing profile probabilities

To solve the Copy Number Profile Distribution problem (Problem 1), we define an 
evolutionary model for probabilistically generating copy number profiles. The model is 
trained on each patient independently, and so trained model parameters θ describe the 
evolution of a single cancer and capture the probability of different copy number profiles 

(5)Pr(R,B | �R,�B, θ) =

N
∏

s=1

Pr(Rs,Bs | �
R
s ,�

B
s , θ).

(6)Ps = argmaxP∈P Pr(P | θ)Pr(Rs, Bs | �
R
s ,�

B
s , P),

Fig. 6 Overview of the CNRein algorithm. a The probability of read depths R and BAF values B is determined 
by the variance levels �R and �R as well as the copy number profile P. The probability of copy number 
profiles P then comes from the model parameters θ . b A potential copy number profile g([c1, c2, c3]) 
generated by applying mutations c1 , c2 , and c3 to a normal cell is shown. Specifically, the copy numbers for 
haplotype 1 and haplotype 2 are plotted and for each CNA tuple, the haplotype number, the start position, 
the end position, and the value are shown in the copy number profile. c In CNRein’s evolutionary model, a 
copy number profile is generated by the application of a series of CNAs such that the probability of each new 
CNA depends on the previous copy number profile. In this example, CNRein generates the copy number 
profile in panel b by sequentially applying the mutations c1 , c2 , and c3 to a normal cell. d The probability of 
CNA events are determined by a neural network. g([c1, c2]) is the copy number profile generated by applying 
the two CNA tuples c1 and c2 to the normal cell. Then, the probability of the components of CNA tuple c3 is 
generated. Ultimately, Pr(c3 | g([c1, c2]), θ) is the probability of the next CNA c3 given that CNAs c1 and c2 
have already been applied
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within that tumor. The copy number profile of a normal cell is P(1)
i

= P
(2)
i

= 1 for all seg-
ments i ∈ [L] = {1, . . . , L} . In our model, a tumor first starts with a single clone with the 
copy number profile of a normal cell. Then, a CNA occurs producing a new clone. The 
new clone has a copy number profile in which the values in either P(1) or P(2) are modi-
fied to new values for some interval of segments within a chromosome. This interval 
is allowed to overlap with other existing CNAs. Alternatively, a whole genome duplica-
tion can occur in which all copy numbers are doubled. In either case, this produces a 
new copy number profile which can then be modified by additional CNAs. This process 
repeats until terminating on some final CNA. As an example, if segments 30 through 60 
are within some chromosome, a CNA could be amplifying P(1) in segments 35 to 50 to 
the value 2, i.e., P(1)

i = 2 for segments 35 ≤ i ≤ 50.
To model the evolution of CNAs, we define a CNA tuple c = (cWGD, chap, cstart, cend, cvalue) . 

The value of cWGD is 1 if the mutation is a whole genome duplication and 0 otherwise. 
Assuming cWGD = 0 , then chap ∈ {1, 2} is the haplotype number of the CNA, cstart ∈ [L] is 
the starting segment, cend ∈ [L] is the ending segment, which must be on the same chromo-
some as the starting segment, and cvalue ∈ Z indicates the change in the copy number. Let C 
be the set of all such possible CNA tuples (with the restriction −5 ≤ cvalue ≤ 5 ). We define 
a generating sequence G as any list of CNA tuples [c1, . . . , ck ] ⊆ C . We define g(G) as the 
copy number profile generated by applying the CNAs in G to the copy number profile of a 
normal clone. An example of a copy number profile being generated by a sequence of CNA 
tuples is shown in Fig. 6b, c.

To precisely define g(G), we first define a function fg (P, [c]) , which takes as input a 
copy number profile P and a single CNA tuple c = (cWGD, chap, cstart, cend, cvalue) and out-
puts a new copy number profile fg (P, [c]) = [Q(1),Q(2)]⊤ such that

and

With this definition, we now inductively define

Finally, we define g(G) = fg (P∅,G) , where P∅ = [P
(1)
∅ ,P

(2)
∅ ]⊤ is the normal clone with 

P
(1)
∅,i = P

(2)
∅,i = 1 for each segment i.

Given an existing copy number profile P, model parameters θ can assign a probabil-
ity to each new CNA tuple c ∈ C as well as a probability that no new CNAs will occur. 
We define this probability as Pr(c | P, θ) . Additionally, we define Pr(stop | P, θ) as the 

(7)Q
(1)
i =



















2P
(1)
i , if cWGD = 1,

P
(1)
i , if cWGD = 0 and chap = 2,

P
(1)
i , if cWGD = 0, chap = 1 and i �∈ {cstart, . . . , cend},

P
(1)
i + cvalue, if cWGD = 0, chap = 1 and i ∈ {cstart, . . . , cend},

(8)Q
(2)
i =



















2P
(2)
i , if cWGD = 1,

P
(2)
i , if cWGD = 0 and chap = 1,

P
(2)
i , if cWGD = 0, chap = 2 and i �∈ {cstart, . . . , cend},

P
(2)
i + cvalue, if cWGD = 0, chap = 2 and i ∈ {cstart, . . . , cend},

(9)fg (P, [c
1, . . . , ck ]) =

{

P, if k = 0,

fg (fg (P, [c
1, . . . , ck−1]), [ck ]), if k ≥ 1.
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probability that no new CNAs will occur in the cell. In practice, since C can be extremely 
large, we first assign a probability to each starting position cstart given the existing profile 
P, then assign a probability to each ending position cend given the starting position cstart 
and P, and finally assign a probability to the copy number value cvalue given the start 
position cstart , ending position cend , and P. This is done using a deep convolutional neural 
network with an architecture shown in Fig. 6d, and described in the “Neural network 
architecture”  section. Using this, we assign a probability to any generating sequence 
G = [c1, . . . , ck ] of CNA tuples as

In the above equation g applied to the empty sequence, i.e., g([]), results in the normal 
copy number profile. The process of forming a generating sequence by repeatedly apply-
ing CNAs is shown in Fig. 6c. Putting together our definitions, we define the probability 
for any copy number profile P as

Note that any G ⊆ C is a generating sequence. An example generated copy number 
profile is shown in Fig. 6b. Putting this probability into equation  (4) then allows us to 
solve Problem 1 by optimizing CNA tuple probabilities.

Neural network architecture

We use a neural network as a generative model for copy number profiles. Each input 
copy number profile P = [P(1),P(2)]⊤ first has its values capped at a maximum value of 
19. In other words, if P(h)

i > 19 , then we set P(h)
i = 19 . Consequently, each element in 

P
(h)
i  can take 20 values ( {0, 1, . . . 19} ). This value is one-hot encoded so that P becomes 

an L× 2× 20 tensor. This tensor is then reshaped into an L× 40 tensor by concatenat-
ing the one-hot encoded copy numbers for both haplotypes for each of the L segments. 
An embedding network then converts this to a 500 dimensional vector. Specifically, the 
embedding network applies convolutions of size 5 across the bins. There are a total of 
400 such convolutions, changing the second dimension of the copy number profile rep-
resentation from 40 to 10 (going from 40 channels to 10 channels). The copy number 
profile representation tensor is then flattened, and a hyperbolic tangent non-linearity is 
applied. Finally, a fully connected layer converts this tensor to a 500 dimensional embed-
ding of the copy number profile. The starting and ending position of each CNA are 
encoded as one-hot L dimensional vector. A fully connected layer also converts these 
to 500 dimensional representations. When determining the end position, the embed-
ding of the start position is added to the embedding of the copy number profile. When 
determining the copy number, the embeddings of both the start and end positions are 
added to the embedding of the copy number profile. For predicting the start position, 
the end position, or copy number, a hyperbolic tangent non-linearity is applied fol-
lowed by a fully connected layer. Additionally, the softmax function is applied to convert 

(10)

Pr(G = [c1, . . . , ck ] | θ) = Pr(stop | g([c1, . . . , ck]), θ)

k
∏

ℓ=1

Pr(cℓ | g([c1, . . . , cℓ−1]), θ).

(11)Pr(P | θ) =
∑

G⊆C,g(G)=P

Pr(G | θ).
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the outputs into probabilities. Predicting whether or not to terminate the generating 
sequence is done in the same manner as predicting the start position.

Training: Copy number calling via reinforcement learning

To exactly solve Problem  1, we must maximize Pr(R,B | �R,�B, θ) , which requires 
calculating a sum over all P ∈ P . The set P of all possible copy number profiles is too 
large for this to be feasible, so instead we must use sampling. Intuitively, we gener-
ate copy number profiles and highly reward profiles that nicely fit the observed data, 
yielding parameter updates that increase the probability of the observed data given 
the model. We maximize log Pr(R,B | �R,�B, θ) , which is equivalent to maximizing 
Pr(R,B | �R,�B, θ) while allowing for useful mathematical manipulations. To achieve 
this maximization, we calculate the gradient of log Pr(R,B | �R,�B, θ) with respect to θ . 
As derived in Additional file 1: Section A.3.1, we have the equation

In the above equation and in the following text, we use the shorthands 
Pr(Rs,Bs | G) = Pr(Rs,Bs | �

R
s ,�

B
s , g(G)) and Pr(Rs,Bs | θ) = Pr(Rs,Bs | �

R
s ,�

B
s , θ) . We 

define the reward function as

Intuitively, this function rewards trajectories that result in profiles that closely fit 
cells’ read count data as indicated by Pr(Rs,Bs | G) . Additionally, more reward is given 
if those cells do not yet have high probability profiles that fit them well as indicated by 
Pr(Rs,Bs | θ)

−1 . Without the term Pr(Rs,Bs | θ)
−1 , reinforcement learning would result 

in 100% probability given to the single best copy number profile rather than finding a set 
of copy number profiles that fit all cells. Estimating Pr(Rs,Bs | θ) for the reward function 
is accomplished via sampling as described in Additional file  1: Section  A.3.2. A theo-
retical alternative to avoid calculating this normalization factor via sampling would be 
to use GFlowNets  [35]. However, GFlowNets optimize for terminal state probabilities 
being proportional to rewards which would not allow for our problem statement of max-
imizing the overall probability of the observed dataset (additional details in Additional 
file 1: Section A.3.8).

With this reward function, we have a standard policy learning gradient [55] (assuming 
a reward is only given at the last time step)

Although this all could work in theory, solving this problem from scratch requires sig-
nificant computational resources and may require substantial tuning of hyperparameters 
on each new dataset in order to ensure successful optimization. This would be accept-
able if the goal of this paper was to successfully estimate a copy number profile for a sin-
gle cancer. However, the goal is instead to provide a robust and fast tool for estimating 

(12)

d

dθ
log Pr(R,B | �R,�B, θ) = EG∼Pr(·|θ)

[

N
∑

s=1

Pr(Rs,Bs | θ)
−1 Pr(Rs,Bs | G)

d

dθ
log(Pr(G | θ))

]

.

(13)r(G) =

N
∑

s=1

Pr(Rs,Bs | θ)
−1 Pr(Rs,Bs | G).

(14)EG∼Pr(·|θ)[r(G)
d

dθ
log(Pr(G | θ))].



Page 19 of 23Ivanovic and El‑Kebir  Genome Biology           (2025) 26:87  

copy number profiles in general. To do so, we guide the optimization with an initial set 
of copy number profiles P̃ provided by CNNaive and utilize importance sampling [56]. 
A simplified version of guiding the optimization with CNNaive’s predicted copy num-
ber profiles is described in Additional file 1: Section A.3.3 and modifications to improve 
CNRein’s accuracy are described in Additional file 1: Section A.3.4 and Section A.3.5. 
Additional mathematical details are provided in Additional file  1: Section  A.3.6 and 
Section A.3.7.

Evaluation details

Evaluation metrics for simulations

CNRein’s reinforcement learning optimization was run on a laptop with 96GB of 
RAM and a 3.6 GHz processor (with 12 cores), without the use of a GPU for all experi-
ments. On 20 simulation instances we compared predicted copy number profiles with 
the ground truth copy number profiles. To do so, we compare the predictions of each 
method with the ground truth on 100kb bins. Since each method may yield different seg-
mentations, we compare the predictions of each method with the ground truth on the 
fixed-size 100kb bins. Since we do not simulate the complexities of linkage disequilib-
rium and haplotype blocks and instead generate already-phased inputs, we define accu-
racy using unordered allele-specific copy numbers rather than distinguishing between 
maternal and paternal haplotypes. Specifically, we defined the accuracy as the average 
percentage of bins across cells with the unordered allele-specific copy number predicted 
exactly correctly. To be more precise, let

Let P1, . . .PN be the predicted copy number profiles and P1, . . . ,PN be the true copy 
number profiles for N cells across K fixed-size bins in some simulation. Then the accu-
racy is as below

An alternative error metric is the L1 error. Let

Then, the L1 error metric is defined as

Inferring copy number phylogenies via maximum parsimony

On both simulated and real data, we generated phylogenies for each method and 
evaluated their parsimony values. Specifically, we used the Lazac algorithm  [40] for 

(15)δacc(a, b, a
′, b′) =

{

1, if max(a, b) = max(a′, b′) and min(a, b) = min(a′b′),
0, otherwise.

(16)
1

NK

N
∑

s=1

K
∑

i=1

δacc(P
(1)
s,i ,P

(2)
s,i ,P

(1)
s,i ,P

(2)
s,i ).

(17)δL1(a, b, a
′, b′) = |max(a, b)−max(a′, b′)| + |min(a, b)−min(a′, b′)|.

(18)
1

NK

N
∑

s=1

K
∑

i=1

δL1(P
(1)
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(2)
s,i ,P

(1)
s,i ,P

(2)
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computing trees and phylogenies, which utilizes the zero-agnostic copy number trans-
formation (ZCNT) distance [40] .

Orthogonal SNV validation on real data

On real data, we performed validation by utilizing orthogonal SNV data. For ovarian 
cancer patient OV2295, we used the set of SNV reported in the paper [27]. For breast 
cancer patient S0, we ran Mutect2 [57] on two pseudobulk samples generated from the 
single-cell data, one composed of normal cells (4239 cells) and one composed of tumor 
cells (5963 cells), identifying 3044 SNVs using standard filtering criteria. We restricted to 
likely truncal SNVs for all analyses. Specifically, for ovarian cancer patient OV2295, we 
restricted to SNVs that were present in at least 5 cells for all three cell lines. For breast 
cancer patient S0, we restricted to SNVs present in at least 5 cells for at least 4 out of the 
5 sections (noting that one section consists primarily of non-tumor cells).

We then generated VAF plots which showed consistency with truncal SNVs typically 
occurring prior to CNAs (Additional file 1: Section B.6). Specifically for any copy num-
ber {XA,XB} we saw peaks in the VAF around XB/(XA + XB) and XA/(XA + XB) rather 
than other integer multiples of 1/(XA + XB) , indicating that the SNV occurs on all cop-
ies of one of the two haplotypes. We utilized this tendency to produce a log-likelihood 
ratio test that measures the relative probability of an SNV’s observed (reference and var-
iant) reads given the copy numbers predicted by CNRein when compared to each alter-
native method on all cells.

We provide a brief description of the test here with full mathematical details in Additional 
file 1: Section A.4.2. The probability of a single read being a variant read (as opposed to a 
reference read) for an SNV on haplotype A for copy number (XA,XB) is XA/(XA + XB) . A 
similar calculation gives these values for reference reads as well as for SNVs that occur on 
haplotype B. Utilizing these, we calculate the probability of all of the reads for a given SNV 
assuming it occurred on haplotype A, and the probability of all reads for that SNV assuming 
it occurred on haplotype B. Since we do not know which haplotype each SNV occurred on, 
we take the maximum of these two values to estimate the probability of the observed (vari-
ant and reference) reads of a given SNV (given the copy numbers of each cell in the position 
of the SNV). Taking the log of the probability of an SNV given the predictions of CNRein 
and subtracting the log of the probability of that SNV given the predictions of an alterna-
tive method gives a log-likelihood ratio for a single SNV. Summing across all truncal SNVs 
gives a cumulative measurement for truncal SNV support, with positive values supporting 
CNRein’s predictions and negative values supporting the method being compared against. 
Finally, we performed bootstrapping on the set of truncal SNVs to obtain statistical bounds. 
It is worth noting that there are certain copy numbers that this SNV-based test can not dif-
ferentiate. Namely, the copy numbers (X1,X2) and (Y1,Y2) can not be differentiated if they 
differ by a constant factor c such that X2 = cX1 and Y2 = cY1.
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