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Abstract 

MicroRNA‑seq data is produced by aligning small RNA sequencing reads of differ‑
ent microRNA transcript isoforms, called isomiRs, to known microRNAs. Aggregation 
to microRNA‑level counts discards information and violates core assumptions of dif‑
ferential expression methods developed for mRNA‑seq data. We establish miRglmm, 
a differential expression method for microRNA‑seq data, that uses a generalized linear 
mixed model of isomiR‑level counts, facilitating detection of miRNA with differential 
expression or differential isomiR usage. We demonstrate that miRglmm outperforms 
current differential expression methods in estimating differential expression for miRNA, 
whether or not there is differential isomiR usage, and simultaneously provides esti‑
mates of isomiR‑level differential expression.

Keywords: microRNA, isomiR, Differential expression, Mixed model, Aggregation, 
miRNA‑seq

Background
MicroRNA (miRNA) are a class of small, noncoding RNAs that perform a role in tran-
scriptional regulation. They are typically 18–24 nucleotide-long single-stranded RNA 
molecules that bind to mRNA causing translational suppression or mRNA degradation 
[1, 2]. Through this mechanism, miRNA can regulate entire pathways and drive disease 
pathogenesis [3, 4]. The specificity of each miRNA:mRNA interaction leads to discrete 
downstream consequences [5]. Small RNA sequencing (sRNA-seq) can be used to meas-
ure miRNA expression. This process involves enriching samples for small RNA spe-
cies prior to sequencing, followed by aligning the sequence reads to known miRNAs, 
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tRNA fragments, or other RNA species [6]. The miRNA count data, which we refer to 
as miRNA-seq data throughout, is produced when sequence reads are aligned to known 
miRNAs, exclusively.

The specific mature sequence listed in miRNA databases is considered the canonical 
miRNA sequence [7]. Different isoforms of individual miRNAs, called isomiRs, can arise 
from both variation in the nucleotide sequence or from variation in the transcript length 
[8]. Sequence length variants have more or fewer nucleotides at the 5′ and/or the 3′ 
end of the canonical sequence, whereas polymorphic (internal) isomiRs include different 
nucleotides within the mature sequence [7]. A third form of isomiR is the addition of an 
adenosine or uracil tail by a terminal uridylyl transferase (TUT) or similar enzyme [9]. 
We will use the general term isomiR to describe the various sequence isoforms mapped 
to a miRNA, without distinction between biologically or technically derived isomiRs, 
with the assumption that in biological samples most sequences observed at sufficient 
levels to model are biologically relevant isomiRs.

A collection of isomiRs align to a given miRNA [10]. As an example of isomiR diversity 
within a miRNA, Additional File 1: Tables S1 and S2 display isomiR-level miRNA-seq 
read counts for two miRNA: hsa-let-7a-5p and hsa-miR-26a-5p. Typically, read counts 
of each isomiR for a given miRNA are aggregated by summation and summarized as a 
single read count for each miRNA (as shown in the last row of Additional File 1: Tables 
S1 and S2). There are numerous combinations of isomiR counts that produce the same 
miRNA counts; therefore, this aggregation leads to the loss of any information contained 
in individual isomiR expression.

IsomiRs are thought to possess unique biological roles [11]. Like canonical sequences, 
isomiRs are conserved throughout evolution, and biogenesis of isomiRs is tightly regu-
lated. The region of heterogeneity between isomiRs may have unique implications for 
miRNA-mediated translation regulation [8]. 5’ isomiRs have modifications at the 5’ end 
of the miRNA resulting from differential processing of paralogous pre-miRNA and can 
result in regulation of distinct target mRNA [12]. 3’ isomiRs are more common and 
result from post-transcriptional trimming or tailing sequence modifications [13]. These 
modifications can alter miRNA function by impacting target recognition or extent of 
target repression. Additionally, these modifications can impact the stability of the mol-
ecule as adenylation protects miRNAs from degradation, while uridylation is associated 
with increased degradation [7]. Naturally occurring isomiRs have been shown to play 
distinct roles in a variety of biological processes including cytokine expression, virus 
proliferation, apoptosis, and tumor progression [11]. Differential expression (DE) at the 
isomiR-level has identified isomiRs with cancer-specific expression [14]. The biological 
importance of isomiRs highlights the need for a miRNA-seq analysis method that can 
account for distinct isomiR expression patterns in estimating miRNA-level differential 
expression, while also producing more granular estimates of isomiR-level differences.

Similar to differential expression analyses typically performed using bulk mRNA-seq 
data, the goal of most miRNA-seq studies is to study if, and which, miRNA differ in their 
expression between groups of samples. Common DE tools developed for mRNA-seq 
data include DESeq2 [15], edgeR [16], and limma-voom [17]. All of these methods have 
been frequently used to analyze miRNA-seq data; however, there are some key differ-
ences between miRNA-seq data and mRNA-seq data that may make the assumptions 



Page 3 of 21Baran et al. Genome Biology          (2025) 26:102  

of these methods invalid when applied to miRNA-seq data. Due to the compositional 
nature of RNA sequencing data, the reads can be viewed as a random sample of a fixed 
size from the pool of all RNA in the library, which can be modeled by a multinomial dis-
tribution. In bulk mRNA-seq data, the number of unique mRNA expressed is large and 
the reads are distributed relatively evenly across the mRNA. In this setting, the features 
(often genes) can be assumed to be approximately independent. In fact, a negative bino-
mial model for count data, such as that used by DESeq2 and edgeR, may be regarded as 
a marginalized approximation to an over-dispersed Dirichlet-multinomial model [18]. 
This approximate independence between features is a key assumption of the tools men-
tioned above but is violated in miRNA-seq data in two important ways. First, there are 
generally fewer than 500 miRNA compared to over 10,000 mRNA expressed in a sam-
ple, which makes it more likely that random fluctuation in the expression of one miRNA 
substantially affects the expression of other miRNAs. Second, the distribution of reads 
in miRNA-seq data is often skewed toward a small number of highly expressed miRNA 
compared to the more uniform distribution of reads seen in mRNA-seq data [19]. This 
can induce negative correlation between highly expressed miRNA (due to competition 
of being counted) regardless of their underlying biological correlation. This also results 
in data with a small number of highly expressed features making traditional normaliza-
tion approaches poorly suited for miRNA-seq data. Counts-per-million (CPM) normali-
zation becomes unstable when applied to miRNA-seq data because a small number of 
miRNAs are responsible for the vast majority of reads in sample. As such, fluctuations 
in the expression of these miRNAs can have a substantial effect on the total counts and 
thereby impact the normalized expression of all other miRNAs. Size factor normaliza-
tion methods generally operate under the assumption of an equal number of features 
increasing and decreasing in expression across samples (the median ratio method imple-
mented in DESeq2 is an example of this); however, due to the small overall number of 
miRNAs and the relatively small proportion of overall transcription that they represent, 
this assumption is unlikely to hold for miRNA-seq data. Differences between miRNA 
and mRNA make the analysis of miRNA counts at the isomiR level feasible. First, even 
using Illumina short-read sequencing, miRNAs and all isomiRs are fully sequenced (18–
24 nt), whereas typically only fragments of mRNAs (100s of nt out of ~5000–50,000 nt 
species) are sequenced. Therefore, quantifying the expression of miRNAs based on the 
entire sequence is possible [6]. Second, as previously stated, there are far fewer miRNA 
expressed compared to mRNAs. Maintaining and analyzing sequence level data at the 
scale needed for mRNA analysis would be computationally burdensome. Recent work 
has highlighted the importance of analyzing miRNA-seq data at the isomiR level [10]. 
Through the analysis of 28 public miRNA-seq datasets and a newly generated human 
endothelial cell hypoxia data set, the authors showed substantial differences between 
isomiR expression and their corresponding canonical miRNAs when applying DESeq2 
to miRNA counts versus isomiR counts. As noted above, aggregate miRNA level data 
violates the assumption of independence between features due to the small number of 
unique miRNAs expressed in a sample and the highly skewed distribution of miRNA 
expression. While analyzing isomiR level data greatly increases the feature space and 
reduces the overall skew of the expression distribution, the isomiR level data introduce 
a new source of dependence due to high correlation between isomiRs from the same 



Page 4 of 21Baran et al. Genome Biology          (2025) 26:102 

miRNA, which also violates a core assumption of the DESeq2 model. In summary, 
miRNA are sufficiently different from mRNA, with isomiRs additionally contributing 
important information, that miRNA-seq-specific analysis pipelines that utilize isomiR-
level data are warranted.

Negative binomial mixed models (NBMM) can be used to model overdispersed count 
data when there is a correlation structure among the counts [20]. This is the case when 
working with miRNA-seq data at the isomiR level, as counts that are observed for the 
same isomiR or for the same sample are correlated. Examples of the correlation structure 
observed between isomiRs of 3 miRNAs are shown in Additional File 1: Fig. S1. Mode-
ling the raw (non-normalized) counts directly has advantages over the typical counts per 
million (CPM) normalization. CPM is a dependent normalization strategy, so a change 
in any one miRNA read count will lead to changes in all other miRNA values even in the 
absence of a change in absolute expression [21]. To account for differences in sequencing 
depth between samples, one can incorporate an offset term into the NBMM to adjust for 
the total overall read count within each sample. NBMMs have been proposed for other 
next-generation sequencing analyses, including RNA-seq, metagenomic sequencing, 
and single-cell RNA-seq analyses [22–25]. However, the random effects in these models 
are generally used to model dependence structures arising from longitudinal data where 
the same organism is measured multiple times or from single-cell data in which many 
cells come from the same experimental sample. These dependence structures differ from 
isomiR-level microRNA-seq data in which the dependence arises primarily from the 
analysis of many isoforms of the same miRNA.

In this manuscript, we propose miRglmm, a method to model isomiR-level counts 
using a generalized linear mixed model to estimate miRNA-level DE while also obtain-
ing estimates of isomiR DE and differential isomiR usage. We compare miRglmm to 
several commonly used DE tools on simulated data, an experimental benchmark data 
set, and real biological data sets. In both simulations and experimental benchmark data, 
miRglmm has a lower Mean Squared Error (MSE) than other DE tools and better confi-
dence interval coverage. Additionally, we find significant differential isomiR usage exists 
within most miRNA in real biological data sets, further motivating the use of miRglmm 
to analyze miRNA-seq data.

Results
The methodology developed in this manuscript was motivated by two initial observa-
tions. First, different isomiRs of the same miRNA can behave very differently between 
groups of samples. To illustrate this, we selected a study of bladder and testes samples 
[26], with the goal of minimizing possible technical variation, and therefore capturing 
true biologically relevant isomiR-level differences. We observed isomiRs with uniformly 
zero counts within bladder and large non-zero counts in testes, and other isomiRs with 
uniformly zero counts within testes and large non-zero counts in bladder (Additional 
File 1: Tables S1 and S2). Aggregation to miRNA counts masks these isomiR differ-
ences and results in a loss of information. Additionally, we observed evidence of differ-
ential isomiR usage between bladder and testes (Fig.  1). We considered the canonical 
sequence (which is typically the most highly expressed sequence) and the next two high-
est expressing isomiRs, as these contribute most to the aggregate miRNA count. Even 
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in this small subset of isomiRs, we observed differences in DE between tissues across 
isomiRs, indicating the need for a model that can capture this differential isomiR usage.

Second, while miRNA-level data exhibit an artificially induced negative correlation 
between highly expressed miRNAs, isomiR-level data do not always exhibit this bias. 
Data generated by high-throughput RNA sequencing is fundamentally compositional 
in nature. In other words, the resulting reads can be viewed as a random sample of a 
fixed size from the pool of RNA generated during library preparation. This produces 
a competition-to-be-counted [27] in which randomly measuring more of one fea-
ture decreases the chance of measuring other features. Consider the extreme example 
of only two features; with a fixed number of total reads, it is clear that a higher count 
for feature 1 implies a lower count for feature 2, resulting in perfect negative correla-
tion between the two features regardless of their underlying biological correlation. 
Frequently, this induces a negative correlation between the two most highly expressed 
miRNAs; however, this induced correlation is not always observed for the most highly 
expressed isomiRs. To illustrate this, we selected a study of immune cell types [28], with 
the goal of analyzing samples without cellular heterogeneity that can occur in tissue-
level samples. We compared the correlation between the two highest expressed miRNAs 
with the correlation between the two highest expressed isomiRs for each cell type. While 
we observed a negative correlation between the highest expressed miRNAs for all cell 
types, the same was not true at the isomiR level where we observed a mix of positive 
and negative correlations depending on the cell type (Additional File 1: Fig. S2). This 
indicates that utilizing the isomiR-level count data could overcome technical biases seen 
with aggregated miRNA-level count data. To test whether the anti-correlation is primar-
ily a technical artifact, and that highly expressed miRNAs are not generally negatively 

Fig. 1 Tissue‑specific counts are summarized by boxplots for three miRNAs (panel A hsa‑let‑7g‑5p, panel 
B hsa‑miR‑26a‑5p, panel C hsa‑let‑7a‑5p). Aggregated miRNA‑level counts from summing counts across 
isomiRs within a miRNA are compared to the canonical/representative sequence and the two highest 
expressed non‑canonical isomiRs (isomiR 1 and isomiR 2). The canonical sequence counts, and isomiR 1 
are all higher in testes than bladder, but isomiR 2 has the opposite trend, which is masked when counts are 
aggregated to miRNA‑level. CPM: counts per million
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correlated in the cells themselves, we compared miRNA-seq and qPCR data from the 
same experiment [29]. There was general positive correlation between the most abun-
dant miRNAs in the two qPCR data sets (Additional File 1: Fig. S3A-B), while the 5 most 
abundant miRNAs in the miRNA-seq data were frequently negatively correlated with 
each other (Additional File 1: Fig. S3C).

miRglmm: a generalized linear mixed effects model for miRNA‑seq data analysis

We developed a method and corresponding software to analyze isomiR-level counts 
from miRNA-seq data. Our method, miRglmm, accounts for dependencies introduced 
by reads coming from the same sample and from the same isomiR, by using a gener-
alized linear mixed model with random effects for sequence and sample. miRglmm 
directly models the counts without the need for transformation and includes an offset 
term to normalize for sequencing depth (see “Methods” for details). miRglmm utilizes 
a negative binomial mixed model by default, but also provides the option to run a Pois-
son mixed model (hereafter referred to as miRglmm-Poisson). Unlike existing methods, 
miRglmm provides estimates of differential expression at both the miRNA level and the 
isomiR level. miRglmm is implemented in a free and open-source R package available at: 
https:// github. com/ mccall- group/ miRgl mm.

miRglmm outperforms other methods in detecting differentially expressed miRNAs 

in the presence of differential isomiR usage

To assess the performance of miRglmm in comparison to existing methods (DESeq2 
[15], edgeR [16], limma-voom [17] and a Negative Binomial Generalized Linear Model 
(NB GLM) [30]), we used a collection of monocyte samples to simulate differential 
expression at both the miRNA and isomiR level (see “Methods”). Over 100 simulations, 
miRglmm provided the lowest mean MSE and highest coverage proportion among all 
the methods (Table  1). Additionally, miRglmm minimized MSE in 96% of simulations 

Table 1 Performance of DE methods across 100 simulations

MSE mean squared error, DE differentially expressed, TPR true positive rate, TNR true negative rate, AUC  area under ROC 
curve, NA not applicable

More detailed summary statistics for these performance metrics are provided in Additional File 1: Tables S3-S9. Time and 
memory calculated for 1 simulation, with miRglmm using 8 cores

Mean 
MSE 
 (10−3)

Mean 
coverage 
proportion

Mean 
null 
variance 
 (10−3)

Mean DE 
variance 
 (10−3)

Mean 
TPR

Mean 
TNR

Mean 
AUC 

Time 
(min)

Memory 
used 
(MB)

miR‑
glmm

14.85 0.91 8.45 23.00 0.95 0.96 0.99 5.37 365.2

miR‑
glmm‑
Poisson

18.75 0.91 11.91 27.23 0.93 0.96 0.98 1.88 273.5

NB GLM 23.15 0.77 8.13 50.64 0.97 0.95 0.99 0.017 105.2

DESeq2 21.92 0.80 8.04 49.72 0.97 0.98 0.99 0.098 1156.8

edgeR 23.15 NA 8.13 50.63 0.96 0.97 0.99 0.004 29.0

Limma‑
voom

23.10 0.79 8.08 50.45 0.96 0.97 0.99 0.001 8.4

Wil‑
coxon

NA NA NA NA 0.54 0.97 0.90 0.001 14.5

https://github.com/mccall-group/miRglmm
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(96/100) when comparing methods within a given simulation (Additional File 1: 
Table  S3). DESeq2 and miRglmm-Poisson minimized the MSE in 3 simulations and 1 
simulation, respectively. miRglmm provided the most precise logFC estimates for the 
differentially expressed miRNA, as measured by mean variance of the estimates. While 
not the smallest, miRglmm also provided similar precision as other methods in null 
miRNA logFC estimates. All methods (except Wilcoxon testing) exhibited similar power, 
true positive rate (TPR), and ability to control the type-I error rate, 1-true negative rate 
(TNR). Additional File 1: Tables S3-S9 provide additional summary statistics for the 
performance metrics shown in Table 1 across the 100 simulations. Since it operates on 
isomiR-level data, miRglmm takes longer to run than all other methods, while DESeq2 
has the highest memory usage.

We can also assess performance within each “truth” group of miRNA: induced positive 
effect (N = 20), induced negative effect (N = 20), or no effect induced (N = 82). When 
we calculated MSE within each group and summarize across simulations, we saw that 
miRglmm provided markedly lower MSE in the groups with the induced effect com-
pared to all methods operating on the aggregated miRNA-level data, which we will refer 
to as aggregation methods, and slightly outperformed miRglmm-Poisson (Fig.  2A). In 
the group of miRNA with no change induced, DESeq2 provided a lower MSE in most 

Fig. 2 miRglmm and miRglmm‑Poisson outperform the aggregation methods in terms of mean squared 
error (MSE) for miRNA in which an effect is induced (panel A). DESeq2 provides the lowest MSE when there 
is no effect induced. The 95% confidence interval coverage proportion of miRglmm and miRglmm‑Poisson 
are much higher than the coverage proportion of the aggregation methods when an effect is induced (panel 
B). miRglmm and miRglmm‑Poisson provide more precise estimates of differential expression compared 
to aggregation methods (panel C). All methods, except Wilcoxon, perform similarly in terms of identifying 
significant differential expression when it exists (True Fold Change 0.5 or 2) and failing to reject the null 
when there is no difference (True Fold Change = 1) (panel D). edgeR does not provide SE estimates to 
allow calculation of coverage proportion, and Wilcoxon does not provide effect estimates to calculate MSE, 
coverage proportion or variance, so these methods are not present in those respective panels. Results are 
based on 100 independent simulated data sets
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simulations. Similarly, the coverage proportion in the two groups of miRNA with 
induced effects tended to be much closer to the 95% nominal level with miRglmm and 
miRglmm-Poisson than for the aggregation methods (Fig.  2B). The aggregation meth-
ods had very poor confidence interval coverage proportions (0.3–0.4). For the miRNA 
with no induced effect, DESeq2 tended to have the highest coverage proportion, though 
miRglmm still provided coverage near the 95% nominal level. miRglmm and miRglmm-
Poisson provided more precise estimates of differential expression than the aggrega-
tion methods (Fig. 2C). miRglmm-Poisson was less precise in estimating when there is 
no differential expression, while miRglmm was similar in precision to the aggregation 
methods. All methods, except Wilcoxon, provided similar ability to identify differential 
expression when it exists and fail to reject the null hypothesis when there is no differen-
tial expression (Fig. 2D).

An additional advantage of miRglmm is that it provides an estimate of the variabil-
ity in the group effect between isomiRs, facilitating the detection of miRNA with differ-
ential isomiR usage between groups. Aggregation methods cannot estimate or account 
for this variability, and thus do not have the ability to detect miRNAs with differential 
isomiR usage. We observed that the proportion of miRNAs with significant variability 
between isomiRs was very high in the groups with the induced effect (Additional File 
1: Fig. S4), indicating that our simulation procedure correctly implemented differential 
isomiR usage. Taken together, these results support the conclusion that aggregation of 
isomiR counts to miRNA-level counts and the resulting loss of information is detrimen-
tal to performance in cases where differential isomiR usage exists. miRglmm, which can 
account for differential isomiR usage, provides consistently high performance whether 
or not there is significant differential isomiR usage.

miRglmm provides accurate estimates of differential expression for isomiRs

Along with providing miRNA-level estimates of differential expression, miRglmm also 
provides isomiR-level estimates of differential expression. While rarely done, DESeq2 
can also provide isomiR-level estimates if run on the isomiR-level count matrix. Sum-
marizing MSE over 100 simulations, miRglmm provided better estimates of isomiR-level 
differential expression than miRglmm-Poisson or DESeq2 (Additional File 1: Table S10). 
When we assessed performance within each “true effect” group, we saw that the superior 
performance of miRglmm holds across all groups. Additionally, isomiR-level estimates of 
fold change from miRglmm were more precise than estimates from miRglmm-Poisson 
or DESeq2 (Additional File 1: Table S11). These results contrast with what we observed 
at the miRNA level, where miRglmm slightly underperformed DESeq2 with respect to 
MSE and variance when there was no differential expression, but performed much bet-
ter than DESeq2 when there was either positive or negative differential expression.

miRglmm maintains high performance under varying simulation scenarios

We assess the effect of varying sample size, effect size, and library size on the perfor-
mance of miRglmm compared to the other methods using the aforementioned simula-
tion procedure. As sample size decreased from the original N = 39, miRglmm minimized 
MSE across all sample sizes (Additional File 1: Table S12). As expected, as sample size 
decreased, TPR decreased for all methods, with NB GLM slightly outperforming the 
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other methods (Additional File 1: Table S13). All methods, expect NB GLM, controlled 
type-I error at or above the nominal level across all sample sizes (Additional File 1: 
Table S14). Comparison of the area under the ROC curve (AUC) for each method dem-
onstrated clear separation of DE and null miRNA in terms of adjusted p-value across 
all sample sizes for all methods except the Wilcoxon test (Additional File 1: Table S15). 
Next, we varied the effect size by simulating a fold change = 1.5 and a fold change = 4 to 
compare to the original simulated effect size of a  fold change = 2. miRglmm provided 
the smallest MSE across all effect sizes, TPR diminished with smaller effect size, TNR 
indicated type-I errors are controlled, and AUC indicated good separation of null and 
differentially expressed miRNA (Additional File 1: Tables S16-S19). Varying library size 
had very little impact on MSE, TPR, TNR, and AUC for all methods (Additional File 1: 
Tables S20-S23). The performance of miRglmm is also robust to variations in the pre-
processing pipeline used (Additional File 1: Tables S24-S26).

miRglmm outperforms other methods in detecting differentially expressed miRNAs even 

when there is no differential isomiR usage

While differential isomiR usage is common in real biological data, we wanted to assess 
how miRglmm would perform in the absence of isomiR variability. To assess the perfor-
mance of miRglmm in this context, we used a multi-protocol, multi-institution synthetic 
benchmark dataset originally designed to compare the performance of four different 
sRNA-seq library preparation methods [31]. This experiment used ratiometric pools 
of synthesized small RNAs with known variable amounts of differential expression (see 
“Methods”), providing a known true fold change value for each miRNA that can be used 
to evaluate the accuracy of DE methods. Because the data came from mixtures of syn-
thesized miRNA pools, there should be no biological variability in isomiR usage.

We used the aforementioned performance metrics to compare DE methods (Table 2). 
miRglmm accurately estimated the known DE magnitudes between synthetic miRNA 
pools while maintaining greater than nominal confidence interval coverage, 95% power, 
and conservative control of the type-I error rate. TPR diminished with effect size for 
all methods, though miRglmm remained second highest behind NB GLM for all effect 
sizes (Additional File 1: Table  S27). miRglmm provided the most precise estimates as 
measured by variance across all fold changes (Additional File 1: Table  S28). Since 

Table 2 Comparing performance of miRglmm to aggregation methods

MSE mean squared error, DE differentially expressed, TPR true positive rate, TNR true negative rate, AUC  area under ROC 
curve, NA not applicable, TPR by abs(FC) is provided in Supplemental Table 27
a variance for all FC levels shown in Additional File 1: Table S28

MSE  (10−3) Coverage 
proportion

Null 
variance 
 (10−3)

abs(FC) = 2 
 variancea  (10−3)

TPR TNR AUC 

miRglmm 7.81 0.98 5.01 6.92 0.95 0.97 0.99

miRglmm‑Poisson 32.12 0.93 12.95 38.16 0.92 0.94 0.99

NB GLM 12.11 0.97 5.66 9.27 0.96 1.00 1.00

DESeq2 10.19 0.99 5.58 8.00 0.92 1.00 1.00

edgeR 12.11 NA 5.66 9.28 0.90 1.00 1.00

limma‑voom 13.78 0.99 6.18 10.66 0.92 1.00 1.00
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miRglmm-Poisson performed far worse than miRglmm, we proceeded with running 
only standard miRglmm in subsequent analyses of this dataset. In terms of MSE, miR-
glmm at any isomiR expression filtering threshold provided smaller MSE than all aggre-
gation methods (Additional File 1: Table S29). However, miRglmm with no filtering of 
lowly expressed isomiRs had the highest MSE, and we observed that the estimates were 
systemically biased toward the null due to the inclusion of very lowly expressed isomiRs 
(Additional File 1: Fig. S5A). The four aggregation methods provided similar estimates 
but underestimated the true effect at all levels. We chose log(median CPM) > -1 as the 
default filter for miRglmm because this retained the most isomiRs while achieving MSE 
similar to more stringent filtering thresholds (Additional File 1: Fig. S6). As filtering gets 
more restrictive, we lose the ability to model some miRNA if fewer than two isomiRs are 
retained.

To determine whether other methods would improve if we filtered lowly expressed 
isomiRs, we compared MSEs based on estimates from running the other methods on 
aggregated counts from all isomiRs versus filtering prior to aggregation of the isomiR 
counts. The gain in performance for miRglmm due to filtering was not seen for the 
aggregation methods (Additional File 1: Fig. S5B). Since aggregating is done via summa-
tion, the low counts do not influence the sum to the same degree that they influence the 
miRglmm estimate.

Due to the synthetic nature of the data, we do not expect any biological isomiRs and 
presume that the sequence isoforms we are modeling arise solely from technical vari-
ation. Accordingly, there was no evidence of differential isomiR usage in the synthetic 
data (Additional File 1: Fig. S5C). When we removed the extraneous parameter for dif-
ferential isomiR usage from the model, the performance was similar in terms of the 
MSE, confidence interval coverage, and bias (Additional File 1: Table S30 and Fig. S7). 
This indicates that allowing for differential isomiR usage, even if not needed, does not 
diminish the ability of miRglmm to estimate the effect of interest.

We additionally assessed the performance of miRglmm compared to other methods in 
the scenario where a significant batch effect exists but is not accounted for in the model. 
We ran the same analysis as above but did not adjust for Lab. We observed that miR-
glmm minimized the MSE and had the  lowest variance in estimates, but the TPR was 
significantly lower (Additional File 1: Table S31). The decrease in TPR, coupled with the 
increase in coverage proportion, suggests that the confidence levels for miRglmm have 
become wider to account for the unexplained variability in the data. Despite the low 
TPR, AUC remained high indicating that miRglmm provided good separation between 
DE and null miRNA, suggesting the selected significance threshold of FDR < 0.05 was 
leading to the poor performance in terms of TPR.

Differential miRNA expression and differential isomiR usage in biological samples

We aimed to utilize miRglmm to assess miRNA differential expression, as well as the 
presence and extent of differential isomiR usage, in real-world biological data. First, we 
used the dataset from the motivating example shown in Fig.  1 and Additional File 1: 
Tables S1 and S2. We used miRglmm and other DE methods to compare miRNA expres-
sion between bladder (N = 9) and testes (N = 7). These samples were obtained from one 
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experiment [26], limiting the possibility of technical variation due to library preparation 
or sequencer differences.

miRglmm detected 15 differentially expressed miRNA between bladder and testes 
(Additional File 1: Fig. S8 and Table S32). We also have particular interest in identify-
ing miRNA with differential isomiR usage, which is only feasible using miRglmm (Addi-
tional File 1: Fig. S8). Four of the 15 differentially expressed miRNA had differential 
isomiR usage. Importantly, when we considered the miRNA with the largest differential 
isomiR usage (Additional File 1: Table S33), we found that most of these miRNA were 
not identified as differentially expressed using miRglmm but were found to be differen-
tially expressed using one or more other DE method. Typically, when miRglmm finds 
differential isomiR usage, the miRNA log fold change estimate is closer to zero com-
pared to other methods (Additional File 1: Fig. S9). This suggests that aggregation meth-
ods are conflating DE of a subset of isomiRs with DE of the miRNA.

To assess whether miRglmm provides consistent estimates of differential expression, 
we considered another set of samples of the same tissue types, bladder, and testes. We 
used bladder (N = 32) and testes (N = 79) samples from the Genotype-Tissue Expression 
(GTEx) Project and replicated the above analysis. We found that miRglmm provided a 
higher correlation in miRNA-level differential expression estimates between datasets 
than any other method (Fig. 3A–E). We did not quantitatively assess agreement in sig-
nificant findings between datasets due to the large sample size differences between the 
datasets, but we did identify miRNA that were identified as differentially expressed in 
both datasets. We found that 12 of the 15 miRNA identified in our initial miRglmm anal-
ysis were consistently identified as differentially expressed in the same direction in the 
GTEx data (Fig.  3A). When comparing miRNA consistently identified as differentially 
expressed between datasets across methods, we found that NB GLM and DESeq2 pro-
vided the largest set of consistently identified miRNA (Fig. 3F). Of these 7 miRNA, all 
had significant differential isomiR usage (all FDR < 2 x  10-5) that NB GLM and DESeq2 
cannot account for. Four of these miRNA (hsa-let-7a, hsa-let-7b, hsa-let-7c, and hsa-
miR-146b-5p) were in the list of miRNA with the highest differential isomiR usage 
(Additional File 1: Table S33, 3 of 4 highlighted in Fig. S9). The use of miRglmm accounts 
for and estimates differential isomiR usage while other DE methods cannot and provides 
high correlation in miRNA-level DE estimates between datasets.

We also analyzed a set of immune cell samples from a single study [28]. We used miR-
glmm to perform differential expression analyses comparing miRNA expression between 
five immune cell types: monocytes (N = 39), Natural Killer Cells (N = 38), CD4 + T lym-
phocytes (N = 35), CD8 + T lymphocytes (N = 32) and CD19 + B lymphocytes (N = 26). 
We identified many differentially expressed miRNA for each contrast (Additional File 1: 
Fig. S10), and all miRNA were found to have differential isomiR usage across the 5 cell 
types. Agreement in the miRNA called differentially expressed between methods was 
high (Additional File 1: Fig. S11). miRglmm identified several miRNA as differentially 
expressed that other methods did not (Additional File 1: Table S34). For these miRNA, 
the estimated differential expression estimates appeared to be greater in magnitude 
for miRglmm than other methods, as opposed to being similar in size but with a more 
precise confidence interval. This can occur when a group of lower expressing isomiRs 
exhibit a consistent difference in expression between cell types that is not seen in the 
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highest (or highly) expressed isomiRs (Additional File 1: Fig. S12). Of the 12 miRNA 
uniquely found by miRglmm, 11 differed in the same direction between cell types meas-
ured via qPCR in a murine immune cell atlas [32] (Additional File 1: Table S34).

Discussion
With miRglmm, we addressed the need for a DE tool specifically suited for miRNA-
seq data that can also utilize information from isomiRs in estimating miRNA-level 
DE estimates [10]. Commonly used DE tools, such as DESeq2 [15], edgeR [16], and 
limma-voom [17], were built for analysis of mRNA-seq data, and some key features of 
miRNA-seq violate the independence between features assumption of these methods. 

Fig. 3 miRglmm (panel A) provides a higher Pearson correlation (R) in estimated logFC estimates across 
datasets than other DE methods (panels B–E). miRNA identified as differentially expressed in both datasets 
are noted by red coloring. The extent of agreement in consistently significant miRNA across methods is 
shown via an upset plot (panel F)
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Additionally, these tools run on aggregated miRNA-level counts, resulting in the loss of 
information contained in individual isomiRs. There is evidence of the biological impor-
tance of isomiRs [11], and miRglmm allows for estimation of isomiR-level differential 
expression that can be used for exploration of individual isomiR effects.

We showed that miRglmm can identify miRNA with differential isomiR usage. When 
differential isomiR usage exists, miRglmm far outperforms other DE tools in terms of 
MSE and confidence interval coverage, indicating that miRglmm provides a better esti-
mate of DE at the miRNA level than those produced by other DE tools. Even in settings 
where differential isomiR usage does not exist, performance of miRglmm remains supe-
rior to other DE tools, albeit to a lesser degree. Consistent isomiR expression reduces 
variability and leads to a precise estimate of miRNA-level differential expression.

In general, we saw a large degree of overlap in miRNA called differentially expressed 
by miRglmm and other commonly used DE tools (Additional File 1: Fig. S11). MiR-378, 
miR-150, and miR-223 have been established as monocyte specific via microarray [33] 
and were also found to be differentially expressed in monocytes vs B cells using miR-
glmm and all aggregation methods. miRglmm identified 12 miRNA as differentially 
expressed between immune cell subsets that no other method found (Additional File 1: 
Table S34). Of these 12 miRNA, 11 show similar DE patterns via qPCR [32], supporting 
the validity of the unique miRglmm discoveries. Additionally, several of these 12 miRNA 
(Additional File 1: Table  S34) have been previously identified as differential markers. 
miR-181a is a well-known differential miRNA marker between B lymphocytes and T 
lymphocytes, exhibiting higher levels in B lymphocytes than T lymphocytes by Northern 
blot in mice [34], and by Taqman array in humans [35]. miR-191 has been shown to be 
differentially expressed between B-cell progenitors and T-cell progenitors by microarray 
and qPCR in mice [36]. By Northern blots, miR-191 is higher in splenic B lymphocytes 
relative to splenic T lymphocytes [37]. In mice, by Northern blots, miR-26a is modestly 
higher in splenic B lymphocytes relative to splenic T lymphocytes [37]. By microarray, 
miR-26a is higher in splenic B lymphocytes [37]. The remainder of miRNA identified as 
DE only by miRglmm may represent novel discoveries in human immune cells worthy of 
future investigation.

A limitation of miRglmm is that it does not aim to distinguish a true biological isomiR 
from a technically arising isomiR and treats all isomiRs of a given miRNA equally. It 
has been shown that differences in library preparation can induce bias in quantification 
of isomiRs [38, 39]. By filtering lowly expressed isomiRs, we eliminate some technical 
variability due to background count alignment. Our study designs in the DE analysis 
of immune cell types as well as bladder vs testes tissue were implemented to minimize 
technical variation by selecting samples processed by a single laboratory using consist-
ent library preparation techniques and sequencing equipment. Importantly, we observed 
the majority of miRNA did have significant differential isomiR usage between cell types 
/ tissues in both data sets where we assume we are capturing primarily biological vari-
ability. If we were to analyze larger datasets that encompass multiple studies, we would 
expect even higher rates of miRNA with significant differential isomiR usage, though 
some of this would be technical. In this case, miRglmm is flexible and can adjust for 
technical design variables, such as laboratory, library preparation method, or sequencer, 
as we did in analyzing the ERCC benchmark data set [31].
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Conclusions
We provide a new method and analysis tool, miRglmm, that uses isomiR variability to 
improve differential expression analysis of miRNAs from miRNA-seq datasets. miR-
glmm provides superior performance to alternative DE tools, whether or not significant 
differential isomiR usage exists, and estimates both miRNA-level and isomiR-level dif-
ferential expression.

Methods
miRglmm: a generalized linear mixed model (GLMM)‑based DE tool for miRNA‑seq data

The statistical model implemented in miRglmm is as follows. Let Cij denote the count for 
sample i = 1, ..., n and isomiR j = 1, ..., J  . Let Ti =

J
j=1

Cij be the total counts for sam-
ple i . This is used as an offset term in the model to adjust for variable sequencing depth 
across samples. For each sample i , let Xi be a p-vector of covariates. For each miRNA, 
miRglmm fits the following negative binomial mixed model (NBMM):

β is the fixed effect of primary interest. τi is the random intercept term for sample i , 
τ0j is the random intercept for isomiR j , and τ1j is the random slope term for isomiR 
j . The random effects for sample and isomiR are independent, while the intercept and 
slope random effects for isomiR have a dependence structure specified by � . The vari-
ance of the random slope σ 2

1j can be used to assess variable DE between isomiRs. We 
built miRglmm using the function glmer.nb in the lme4 package, which fits an NBMM 
via a Laplace approximation to the maximum likelihood with a variety of optimizer 
choices [40]. All mentions of log() refer to natural logarithms, which is the default of the 
log function in R. miRglmm also provides the option of fitting a Poisson mixed model, 
instead of the NBMM fit by default.

Software, data structures, outputs, and reproducibility

miRglmm is an R library that consists of one core function that can be easily integrated 
into DE analysis pipelines by replacing DE methods designed for mRNA-seq (such as 
DESeq2, edgeR, limma-voom). miRglmm is implemented in a free and open-source 
R package available at: https:// github. com/ mccall- group/ miRgl mm. IsomiR-level 
count matrices in the form of core Bioconductor structures, SummarizedExperiment 
objects, are taken as input, and a list of model fit summaries for each miRNA analyzed 
is returned. The function can be run in parallel across miRNA and can handle flexible 
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(

µij ,�
)

log
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µij
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https://github.com/mccall-group/miRglmm
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design matrices. The miRglmm package vignette includes examples of how to import 
isomiR-level count data from either miRge [41] or sRNAbench [42]. The analyses pre-
sented in this paper are reproducible using code in the GitHub repository found at 
https:// github. com/ mccall- group/ miRgl mm_ paper. This repository includes functions 
to extract and summarize values of interest from the model fit summaries, includ-
ing miRNA-level estimates of DE with confidence intervals, isomiR-level estimates of 
expression within miRNA, and estimates of differential isomiR usage within miRNA 
with the associated likelihood ratio test.

The microRNAome data resource

The miRNAome dataset was assembled to more fully understand miRNA expression 
patterns across primary cell types [43, 44]. The dataset was built upon 2077 samples 
from 175 public datasets across 196 primary cell types. miRNA annotation and quantifi-
cation was performed using the miRge3.0 pipeline [41]. Briefly, miRge3.0 is a multi-step 
miRNA alignment program. From a FASTQ file, miRge3.0 collapses identical sequences 
and processes them through repeated Bowtie alignment steps to identify canonical miR-
NAs, isomiRs, and other RNA species. In addition to a final read count per miRNA, it 
outputs an alignment file containing counts of all aligned isomiRs, which was used here.

Filtering of lowly expressed miRNAs and isomiRs

Counts per million (CPM) normalization of aggregated counts were used to assess over-
all miRNA expression, with the goal of retaining miRNA with sufficient expression to 
model. A threshold of log(median CPM) > 5 was used to retain miRNA for modeling. 
Even after filtering at the miRNA level, the resulting count matrix contains very sparse 
isomiR-level counts so miRglmm also filters lowly expressed isomiRs that contrib-
ute low/no amount of information to the model. Specifically, CPM normalization of 
isomiR-level counts was used to assess isomiR expression, and an isomiR filter based on 
log(median CPM) is implemented as an input argument of miRglmm (default = -1).

Inducing known effects in real biological data to simulate differential expression

We created ground truth data by inducing a known artificial effect into real biological 
data, allowing us to assess the performance of miRglmm under conditions seen in real 
data. We searched the miRNAome data [43] for one cell type with large sample counts 
coming from the same study to have a relatively homogenous starting dataset. We used 
39 monocyte samples from one study [28] and retained 122 miRNA with sufficient 
expression to model using a log(median CPM) cutoff of 5, as described above.

To induce an artificial “group” effect, we randomly split the samples into 2 groups, 
with 19 samples labelled as Group A and 20 samples labelled as Group B (Additional 
File 1: Fig. S13). Of 122 total miRNA, we used stratified sampling to select 20 miRNA to 
be overexpressed in Group A, and another 20 miRNA to be underexpressed in Group 
A. The sampling was stratified by total miRNA expression to manipulate miRNA across 
the full range of expression values. We used the default log(median CPM) cutoff of -1 to 
retain isomiRs for analysis. For the 20 miRNA overexpressed in Group A, we multiplied 
the counts of all retained isomiRs by a random truncated normal variable with mean 
value of 2, variance of 1, lower bound of 1, and upper bound of 3 in Group A samples 

https://github.com/mccall-group/miRglmm_paper
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only. These 20 miRNAs now have a known miRNA-level fold change (B vs A) = 0.5, with 
differential isomiR usage. For the 20 miRNA underexpressed in Group A, we multiplied 
the counts of all retained isomiRs by a random truncated normal variable with the same 
parameters as above but this time in Group B samples only. These 20 miRNAs now have 
a known miRNA-level fold change (B vs A) = 2, with differential isomiR usage. Impor-
tantly, we recalculated the total counts used in the offset term after the artificial signal 
is induced. The stratification used in sampling miRNA ensures the effect of the signal 
being added is consistent across groups, even though the total counts increase for all 
samples. The entire procedure, including randomly splitting samples into two groups, 
was repeated 100 times.

This simulation procedure was also used to assess the effect of varying sample size, 
effect size, and library size on performance. To vary sample size, we took subsets of the 
39 samples to achieve desired sample sizes per group. To vary effect size, we multiply 
counts by a random truncated normal variable with mean value of 1.5, variance of 1, 
lower bound of 1, and upper bound of 2 for the fold change = 1.5 analysis, and multiply 
the counts by a random truncated normal variable with mean value of 4, variance of 1, 
lower bound of 3, and upper bound of 5 for the fold change = 4 analysis. To vary library 
size, we subsample 50 and 75% of the original counts (100% library size).

For each miRNA, we estimated a miRNA-level differential group effect, measured 
via log fold-change (logFC) estimates, using miRglmm and miRglmm-Poisson. We 
also produced differential group effects using commonly used differential expression 
tools: DESeq2 [15], edgeR [16], and limma-voom [17]. We included a Negative Bino-
mial Generalized Linear Models (NB GLM), fit using glm.nb from the MASS R pack-
age [30], which is similar to the miRglmm model but without random effects that can 
model differential isomiR usage. We also performed differential expression testing using 
the Wilcoxon rank-sum test, though the Wilcoxon method does not produce estimates 
of group effects. Data was aggregated to the miRNA-level prior to running NB GLM, 
DESeq2, edgeR, limma-voom, and Wilcoxon, and hence we collectively call these meth-
ods “aggregation methods.” Aggregated count values were produced by summing counts 
from all isomiRs of a given miRNA.

We used mean squared error (MSE) and 95% confidence interval coverage propor-
tions to assess accuracy. The MSE compared the estimated logFC to the induced effect 
for each miRNA, and the coverage proportion assessed the proportion that the true 
logFC fell in the 95% confidence interval estimated by the model. We cannot estimate 
a confidence interval coverage proportion for edgeR as that algorithm does not provide 
standard error (SE) estimates. We used the  variance of the estimates to assess preci-
sion. We calculated the variance of all differentially expressed miRNA logFC estimates 
(which we refer to as DE variance), and separately, calculated the variance of all null 
(no effect added) miRNA logFC estimates (which we refer to as null variance). We used 
true positive rate (TPR) to assess the ability to detect differential expression where it 
exists (i.e., statistical power). We used true negative rate (TNR) to assess the ability to 
control type-1 error. To calculate TPR and TNR, we first adjusted the p-values of the 
group effect using Bejamini Hochberg False Discovery Rate and considered miRNA with 
FDR < 0.05 differentially expressed. We calculated TPR as the proportion of significant 
miRNA among those where we induced an effect for TPR. We calculated TNR as the 
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proportion of non-significant miRNA among those where we did not induce an effect. 
We also used area under the ROC curve, to assess the ability to distinguish differentially 
expressed miRNA from miRNA with no group difference, regardless of any one FDR 
threshold. Where appropriate, we also separately looked at each method’s performance 
metrics when the effect was induced up or down, and where no effect was induced.

To identify miRNA with differential isomiR usage, we tested whether the random 
slope parameter τ1j in the miRglmm model contributes significant information with a 
1-degree of freedom (1-df ) likelihood ratio test (LRT) comparing likelihoods from the 
model specified above and a model removing only the τ1j parameter. With this test, we 
can identify miRNA with differential isomiR usage (i.e., significant random slope effects) 
and summarize by induced effect groups.

Analysis of a benchmark experiment using synthetic miRNA pools

We used experimental benchmark data with known expression differences to assess the 
performance of miRglmm, miRglmm-Poisson, and existing methods to estimate DE. 
The Extracellular RNA Communication Consortium (ERCC) was established to facili-
tate expansion of the field of extracellular RNA (exRNA) biology and consisted of col-
laborative projects to develop robust methods for isolation and analysis of exRNA data 
[45]. One of these projects was a multi-protocol, multi-institution assessment of the bias 
of four sRNA-seq library preparation methods, using ratiometric pools of synthesized 
small RNAs [31]. Chemically synthesized RNA oligonucleotides were added in varying 
ratios to pool A and pool B, from 10 to 1 and 1 to 10, leading to 15 levels of DE (from 
logFC = -2.3 to logFC = 2.3), providing a known fold change value for each miRNA that 
can be used to evaluate the accuracy of miRglmm and other methods (Additional File 1: 
Fig. S14).

The ERCC sequence runs with 4N method (4 random nucleotides on both ends of the 
reads) were chosen (n = 104 runs). The reference sequence database consisting of 286 
human miRNAs and 48 other spikein miRNAs were indexed using bowtie-index. The 
reads were processed for Illumina adapters ’TGG AAT TCT CGG GTG CCA AGGA’ using 
cutadapt [46] followed by alignment using bowtie aligner [47]. The parameters for bow-
tie include "No mismatch (-n 0)", "Trim 4 nucleotides on both ends (-5 4 -3 4)", "Avoid 
alignment against the reverse-complement reference strand (-norc)," and output in SAM 
format (-S). The SAM files were processed for read counts across each mapped miRNA 
account for PCR duplicates (4N-based) using custom Python scripts. The miRNA counts 
were used for the downstream analyses.

The ERCC data was processed by 6 different laboratories (Lab), and we used dimen-
sionality reduction using non-metric multidimensional scaling (NMDS) to assess if there 
was sufficient laboratory variability to require adjustment for Lab in the analysis. The 
samples separated along the first dimension by Lab, and the second dimension appeared 
to capture the Pool effect (Additional File 1: Fig. S15A). We included a fixed effect for 
Lab in the models for all methods to adjust for the technical effect of the differences in 
lab-specific sample handling, processing, and sequencer on the counts. Due to the need 
for adjusting for Lab, we did not run the Wilcoxon method for this analysis. The ERCC 
dataset included synthetic RNAs that were much longer at 50–90 nucleotides than the 
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typical 18–24 nucleotide miRNAs. We excluded any RNA specified to have a length > 45, 
resulting in a set of 303 small RNAs.

This synthetic dataset also provided justification for establishing filters at both the 
miRNA and isomiR level. Since the oligonucleotides were synthetically added, we 
expect all included miRNA to be expressed. The distribution of miRNA expression via 
log(median CPM) of aggregated counts in this data can be used to determine a suitable 
threshold for miRNA expression, supporting our choice of log(median CPM) > 5 used in 
all analyses. To filter sequences, we aimed to separate biologically relevant isomiR counts 
from random background expression. Since the ERCC contains sequence isoforms that 
do not map to known miRNA, we can consider these background counts and compare 
the distribution of expression levels to isomiR counts that map to known miRNA to 
identify an appropriate range for an isomiR-level filter. When we compared the distribu-
tion of background sequence expression (reads not mapping to any known miRNA) to 
expression of sequences that map to miRNA, we saw that the distributions separated 
around a log(median CPM) value of -1 (Additional File 1: Fig. S15B). We ran miRglmm 
without any sequence filtering, and also compared the performance of miRglmm under 
a range of reasonable filters (log(median CPM) > -1 (default) to 2). We also assessed the 
effect of filtering prior to aggregation when using the aggregation methods.

For each miRNA, we estimated a differential Pool effect, adjusted for Lab and meas-
ured via logFC estimates, using miRglmm under a variety of isomiR filters. We also 
aggregated the data to the miRNA count level and ran the aforementioned aggregation 
methods for comparison. We used MSE and 95% confidence interval coverage propor-
tions to assess the performance as described above. We utilized a  LRT as previously 
described to assess if there was significant differential isomiR usage.

Differential expression analyses of real biological data of tissues and cell types

Our goal in selecting samples for these analyses was to minimize possible technical vari-
ation, and therefore capture true biologically relevant isomiR-level differences. We chose 
bladder and testes tissues for this analysis because they represented a large set of tis-
sues available from a single study [26], where sample processing and sequencer would be 
consistent across samples. We used bladder and testes samples from the Genotype-Tis-
sue Expression (GTEx) Project as a comparator dataset. Additionally, we chose a set of 
immune cell types that were also derived from a single study as our cell type differential 
expression analysis set [28]. We aimed to produce miRNA-level differential expression 
(DE) estimates using miRglmm and compare these results to other commonly used dif-
ferential expression tools that run on aggregated miRNA-level count data.

For each miRNA, we estimated a miRNA-level differential group (tissue or cell type) 
effect, measured via log fold-change (logFC) estimates, and assessed significance, using 
miRglmm. We utilized a LRT as previously described to identify miRNA that have sig-
nificant differential isomiR usage. We can produce isomiR-level estimates of expression 
within group by summing fixed and random effects for each isomiR.
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Additional File 2: miRglmm software package vignette
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