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Abstract 

TF Profiler is a method of inferring transcription factor (TF) regulatory activity, i.e., 
when a TF is present and actively participating in the regulation of transcription, 
directly from nascent sequencing assays such as PRO-seq and GRO-seq. While ChIP 
assays have measured DNA localization, they fall short of identifying when and where 
the effector domain of a transcription factor is active. Our method uses RNA polymer-
ase activity to infer TF effector domain activity across hundreds of data sets and tran-
scription factors. TF Profiler is broadly applicable, providing regulatory insights on any 
PRO-seq sample for any transcription factor with a known binding motif.
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Background
Transcription is a fundamental process that defines cellular function, stress response, 
and cell identity [1]. The regulation of gene expression patterns is driven by a myriad of 
sequence-specific transcription factors (TFs) that vary in activity based on both cell type 
and environmental factors. While there are over 1600 TFs [2] in the human genome, our 
understanding of how their activity is regulated remains incomplete. For example, there 
is no consensus on when or where individual TFs are actively altering gene expression 
patterns.

Transcription factors orchestrate gene regulation programs by altering the activity of 
cellular RNA polymerases, primarily RNA polymerase II (RNAPII). Some TFs increase 
transcriptional output (an activator) whereas others decrease transcriptional output (a 
repressor). Therefore, characterizing when and where TFs are active—not only where 
they bind in the genome but also when they are actively regulating RNAPII—is neces-
sary to understand their biological function. In fact, one of the goals of the Encyclopedia 
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of DNA Elements (ENCODE) Consortium was to identify all functional regulatory ele-
ments in the human genome [3]. In the ENCODE project, the primary method utilized 
to assess TF activity was chromatin immunopreciptation (ChIP-seq). ChIP informs on 
the genomic localization of a TF, which reflects the function of its DNA binding domain 
typically interacting with DNA in a sequence-specific manner [4].

From ChIP-seq studies, it is possible to infer a position specific scoring matrix (PSSM) 
for a given DNA binding protein. ChIP-seq studies, however, are low throughput as one 
sequence-specific protein is evaluated at a time, in one cell type at a time. Furthermore, 
there is ample evidence that TF binding can occur without altering gene expression 
[5, 6], as the DNA binding domain is usually independent of the effector domain (also 
known as the activation domain or repressor domain). The effector domain interacts 
with co-regulatory factors that directly or indirectly control RNAPII function to alter 
gene transcription nearby; thus, TFs play crucial role in transcriptional regulation [7, 8].

However, measuring the activity of the effector domain (i.e., measuring TF regulatory 
activity) has historically been difficult, at least in part because TF regulatory activity can 
be controlled at multiple stages. For example, TF regulation may occur via changes in 
protein levels (e.g., TF transcription, translation, or degradation) or through post-trans-
lational modifications. Many TFs have well-established mechanisms of activation, such 
as the MAPK pathway phosphorylation events that result in stabilization and activation 
of MYC [9], or the inhibition of the ubiquitin ligase HDM2 resulting in the stabilization 
and activation of p53 [10–12]. In these cases, the MYC and TP53 genes are present at 
the mRNA and protein level in most cellular conditions, despite being repressed until 
activated by specific stimuli. Thus, neither transcription of the gene encoding the TF, 
nor TF-DNA binding guarantees that it will alter RNAPII transcription. The ultimate 
outcome of TF effector domain activity is a change in transcription, hence nascent tran-
scription assays are well-suited to inform on effector domain activity.

Run-on RNA sequencing (such as precision run-on sequencing, PRO-seq [13, 14] and 
global run-on sequencing, GRO-seq [15]) provides a direct read out of RNA polymerase 
activity as RNA is captured from the actively catalyzing cellular polymerases. These nas-
cent run-on RNA assays have revealed extensive genome-wide transcription, at genes 
and enhancers [16–19], and demonstrated that most sites of RNAPII initiation give 
rise to bidirectional transcription. While the function of the resulting RNA transcripts 
within enhancers is incompletely understood, a technical benefit of these transcripts is 
that their distinctive profile can be used to annotate active enhancers genome wide [20, 
21].

Prior studies on individual TFs found that TF activation resulted in concomitant 
changes in transcript levels associated with a subset of ChIP measured TF binding sites 
[22–26]. Subsequent work generalized these findings, showing a strong co-association 
of TF binding sites with sites of RNAPII initiation, the majority of which occurring 
at enhancers [20, 21]. The model that emerged was that the regulatory activity of the 
TF (e.g., activity of the effector domain) results in changes to RNAPII initiation proxi-
mal to the TF binding motif [21]. Armed with this result, methods were developed to 
infer changes in TF activity in response to a perturbation, using nascent transcription 
data and known TF binding motifs [18, 21, 27–30]. The effectiveness of these meth-
ods strongly indicates that nascent transcription serves as a functional readout on the 
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activity of a TF’s effector domain. While changes in nascent transcription levels reliably 
capture changes in TF effector domain activity, only a subset of human TFs are stimulus 
responsive. Many other TFs are required for cell identity and homeostasis, making per-
turbation studies more challenging. What is needed is a wide scale analysis of when a 
TF’s effector domain is active, even in the absence of perturbation data.

To this end, we sought to develop an appropriate null hypothesis and statistical frame-
work for predicting TF activity from a single nascent transcription sample—absent any 
other sample for comparison. To that end, we develop a statistical framework that com-
pares data from an individual nascent transcription sample to a principled, biologically 
informed statistical expectation. When a TF recognition motif co-localizes with sites of 
RNAPII initiation more (or less) than expected by chance, we infer that the TF is func-
tional as an activator (or repressor). Importantly, our algorithm can be used to iden-
tify all actively regulating TFs in a single sample, a technique we call “TF Profiler.” We 
applied our algorithm to 287 high quality nascent RNA sequencing data sets, represent-
ing over 20 different tissues. From this compendium, we identify three classes of TFs: 
ubiquitous (active in all tissue types), tissue-specific, and stimulus responsive. For exam-
ple, our method accurately classifies the well known TFs Oct4 and Nanog as active only 
in embryonic cells. Furthermore, our model uncovered unique sequence features inher-
ent to tissue specific TFs, suggesting a role in the establishment of cell identity.

Results
An expectation model for TF motif co‑occurrences

The activity of the TF effector domain alters nascent transcription proximal to sites of 
TF binding [7]. Based upon this characteristic, methods to infer TF activity changes 
from nascent transcription data and TF sequence motifs have been developed [18, 21, 
27–30]. Our prior work derived a simple metric known as the motif displacement (MD) 
score, which quantified co-localization of TF recognition motifs in DNA sequence with 
sites of RNAPII initiation [21]. A subsequent extension to the MD-score approach incor-
porated changes in transcription levels, effectively capturing when the perturbation 
leads to changes in the potency of the TF effector domain [27]. In fact, increases in the 
MD-score were shown to generally be typical of the activation of an activator transcrip-
tion factor whereas depletion in the score reflected the activation of a repressor.

However, our prior work left it unclear whether the MD-score could be utilized to 
infer which TFs were actively participating in regulation in homeostatic cellular condi-
tions—i.e., in the absence of a perturbation. To answer this question, we reasoned that 
a comparison of the original MD-score [17] to a principled, biologically informed sta-
tistical model of motif co-localization would allow for the assessment of TF effector 
domain activity in a single sample. Thus, when a TF recognition motif co-localizes with 
sites of RNAPII initiation more (or less) than expected by chance, we infer that the TF 
is actively participating in RNAPII regulation (as an activator or repressor). We refer to 
this approach as “TF Profiler.”

First, let us consider the MD-score metric in a rigorous mathematical framework. Let 
Xk = µ1,µ2, . . . ,µn be the RNAPII initiation sites ( µ ) for a set of bidirectional locations 
genome-wide for some experiment k. Importantly, sites of bidirectional transcription 
can be identified directly from nascent transcription data [17, 21, 28, 31, 32]. Let Yj = 
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y1, y2, . . . , ym be the set of all significant motif instances for some TF-DNA binding motif 
model j genome-wide, which is invariant given the genome of interest (Fig. 1A). We can 
then plot the motif displacement distribution (Fig. 1B) as a heatmap, where heat indi-
cates the number of motif hits ( Yj ) relative to the sites of RNAPII initiation ( Xk ). In this 
framework, we can calculate the MD-score as:

where g() quantifies the count of motif hits for a given motif (j) across the complete set 
of RNAPII initiation sites ( Xk ). The δ(.) term is a simple indicator function that returns 
one if the distance between one RNAPII initiation position ( µ ) has an instance of the 
TF-DNA binding motif (y) within a specified distance (a). Hence, the MD-score ( mdk .j ) 
for a given experiment k and TF recognition motif j quantifies co-localization of motif 
instances near sites of RNAPII initiation (h = 150 bps) relative to a larger local window 
(H = 1500 bp).

Importantly, our prior work showed that the value of the MD-score metric depends 
on precisely defining sites of RNAPII initiation, which is readily accomplished in nas-
cent transcription assays [27]. Furthermore, our Tfit approach [33] to identifying sites of 
bidirectional transcription was previously shown to be highly precise on the position of 

(1)
g(Xk ,Yj; a) =

µ∈Xk y∈Yj

δ(|µ− y| < a)

mdk ,j = g(Xk ,Yj; h)/g(Xk ,Yj;H)

Fig. 1 Overview of the TF profiling model. A Cartoon representing the co-localization between bidirectional 
transcription observed in nascent RNA sequencing (blue and red are data on each strand) and TF motifs. 
The PSSM for AP2B is shown. This co-localization can be used to assess global motif displacement scores. 
B Heatmaps representing the motif displacement distribution [21] for three distinct TFs with different 
activation states, OFF (ZN586), ON-UP (SP3), and ON-DOWN (PAX5). The center of the heatmap is the position 
of the middle of the bidirectional (PolII initiation site) and the heat (darker is more) represents the number 
of motif instances at that position (relative to the center) genome-wide. C Observed promoter (top) and 
non-promoter (e.g., enhancers, bottom) per position base probabilities surrounding PolII initiation sites show 
a profound GC bias. In this data set [38], bidirectionals are 30% at promoters (top) and 70% at non-promoters 
(enhancers, bottom). D The observed motif displacement score distribution assuming a flat background and 
no positional information (left) compared to a position dependent di-nucleotide Markov background (right). 
Each dot is a single TF position specific scoring matrix, colored by its inherent GC content. The probability ( pi ) 
is defined by the observed probabilities (N) at position i. The position and motif displacement distribution for 
AP2B is shown with both background models
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RNAPII initiation [32]. Using Tfit, we find that nascent run-on RNA transcription assays 
(e.g., PRO-seq) strike a balance for defining TF activity with precision (comparable to TF 
ChIP) and scale (comparable to H3K27ac ChIP; Additional file 1: Fig. S1A, B).

To utilize the MD-score as a metric for TF activity, we seek to calculate an odds ratio: 
the MD-score observed (in a single sample) compared to the expected MD-score (from 
a statistical model). Conceptually, the expected MD-score must reflect the nucleotide 
biases of not only the TF-DNA binding motif but also the distinct non-stationary pat-
terns of sequence inherent in genomes. In particular, mammalian genomes have GC-
content enrichment at promoters [3, 34] and enhancers [21], consistent with sites of 
RNAPII initiation. Gene promoters are associated with open chromatin and are highly 
enriched for CpG islands [35–37]. Whereas the human genome is approximately 60% 
AT, promoters are approximately 60% GC and enhancers are more modestly GC rich, 
reaching a nearly equal composition of all four bases (Fig. 1C; see Methods section for 
promoter and enhancer classification). The difference between enhancer and promoter 
GC content is statistically significant (Additional file  1: Fig. S2). Importantly, in both 
cases (enhancers or promoters) the bias is position dependent, reaching a maximum bias 
coincident with the inferred position of RNAPII loading ( µ in our model, inferred by 
Tfit [33]). We observe that this bias correlates with the overall transcription level, where 
regions with higher transcription levels tend to display a higher GC content over a 
broader initiation region (Additional file 1: Fig. S3). Because of the positional base com-
position bias at RNAPII initiation regions, certain motif instances will be favored (high 
GC) or disfavored (high AT) by chance alone. Our background expectation model must 
account for this inherent bias.

Therefore, we took a simulation based approach to the development of the expected 
MD-score. Specifically, we leverage a dinucleotide model of positional nucleotide pref-
erence (Fig.  1D), which accounts for known genomic dinucleotide biases, such as the 
general preference for CG in CpG islands compared to GC (Additional file 1: Fig. S4). 
To this end, sequences of the length of 2H nucleotides were generated, accounting for 
dinucleotide preferences in regions of RNAPII initiation. Importantly, the positions i 
are defined relative to the RNAPII initiation position µ (e.g., the generated sequence is 
µ± H). Let xn = x1, x2, . . . x2H where the probability of a specific nucleotide at each xi is 
determined based on the nucleotide xi−1 . Thus, each position is described by the con-
ditional probability p(Nxi |Nxi−1

) , where N represents one of the four nucleotides (A, T, 
C, or G). The initial dinucleotide x1x2 is calculated as p(N1,N2) and all subsequent posi-
tions are based on the conditional probability of the previous position. Therefore, we 
generate the sequences as:

Importantly, we further capture the natural diversity in GC bias (both magnitude and 
width) by simulating from distinct promoter and enhancer dinucleotide probabilities 
(Additional file  1: Fig. S4). The proportion of bidirectional calls at promoters (versus 
enhancers) varies across data sets (Additional file 1: Fig. S5), which may be biological or 
could reflect ascertainment biases since promoters tend to be more highly transcribed. 
Since promoters are considerably more GC rich than enhancers (Additional file 1: Fig. 

(2)
x1x2 = p(N1,N2)

xi = p(Ni|Ni−1) for i > 2
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S2), TFs with GC rich motifs will be disproportionately enriched (false positives) in data 
sets with high promoter content. To control for this, we simulated sequences from the 
two classes (enhancers and promoters) in proportion to the observed ratio for a total 
of 106 instances (see Methods  section). Using these simulated sequences, we calcu-
lated expected MD-scores (Eq. 1). This enables us to compare the expected (i.e., model 
derived, x-axis) to observed (i.e., experimentally observed, y-axis) MD-score for a single 
data set [38] as shown in Fig. 2A. Thus, the expectation model is calculated on a per data 
set basis to accurately reflect the composition of initiation regions inherent to that cell 
type and condition.

Building TF activity profiles across tissues

The next step was to assess the statistical significance of TF activity for each TF-PSSM 
occurrence; that is, to statistically ask which motif hits in Fig. 2A were significantly more 
(or less) co-localized with RNAPII initiation sites than our background model suggests 
(versus expectation). Logically, TF-motifs with greater (or less) than expected co-local-
ization are the TFs we infer as ON (ON-UP and ON-DOWN, respectively) and partici-
pating actively in RNAPII regulation.

To this end, the MD-scores for 388 TF motifs (HOCOMOCO core version 11 [39]) 
were calculated for all control data sets of sufficient quality (n = 126; see Methods sec-
tion). In each data set, the observed MD-score was compared to the expected MD-score. 
To assess statistical significance, we further assumed that the majority of TFs will be 
OFF across all control data sets (75% not significantly different from expectation; Addi-
tional file 1: Fig. S6A). The distribution of residuals (Additional file 1: Fig. S6B) was then 
used to assess significance for all TF motifs within all control data sets. This resulted in 
a range of 80–164 TFs that were called ON in any given data set (mean = 123.5, p value 

Fig. 2 Generating and clustering of TF profiles. A Scatter plot showing the expected (x-axis) and observed 
(y-axis) MD-scores for all PSSMs in HOCOMOCO for embryonic stem cells [38]. Significant differences 
are colored with ON-UP red and ON-DOWN blue (see Methods section). The collection of ON and OFF 
(gray) labels is the TF profile for this experiment. B Ward clustering of TF profiles (columns) in 126 samples 
representing over twenty tissue types. Each sample is labeled by its tissue of origin (top, colored bar) with 
tissue labels further classified into tissues (e.g., bone, blood), developmental (e.g., fetal, embryo), and organ 
(e.g., breast, kidney). The ON-DOWN TFs (at the top, blue) tend to be shared across samples. The ON-UP 
(red) shows a variety of patterns including tissue specific pockets (middle) and ubiquitously on and active 
(bottom)
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< 0.05). The ON TFs can be split into two categories, on and enriched (ON-UP, activa-
tors; range of 74–148, mean = 109.9) or on and depleted (ON-DOWN, repressors; range 
5–28, mean = 13.6) (Additional file 1: Fig. S6C). We refer to the collection of ON TFs 
(either UP or DOWN) for a given cell line as its TF activity profile.

An example TF activity profile is shown in Fig. 2A, where red and blue represent TFs 
that are classified as ON-UP (red) and ON-DOWN (blue) and gray represents TFs that 
are OFF. When applied to an embryonic stem cell data set (Fig. 2A; n = 3 biological rep-
licates) [38], we called 95 enriched and 9 depleted TFs (Fig. 2A). Enriched TFs included 
the pluripotent factors responsible for embryonic stem cell self-renewal, Oct4 (pval 
= 1.3e−5 ), Nanog (pval = 2.7e−5 ), and SRY-Box Transcription Factors 3 and 4 (pval = 
0.008, pval = 0.03, respectively). Importantly, across 3 additional independent embry-
onic stem cell data sets [40–42] the same pluripotency factors were consistently called as 
active. TFs identified as depleted include a variety of known repressors including SNAI2, 
CEBPA, and E2F1 [43–45].

We next sought to expand our examination of TF activity profiles by clustering the 
profiles across tissues and cell types that had high quality nascent run-on RNA sequenc-
ing data (see Methods section). In total, we examined 126 distinct data sets representing 
a total of 299 nascent run-on RNA-sequencing samples in basal conditions (i.e., nor-
mal growth or control samples). We used Ward’s method to cluster the TF activity pro-
files (using Euclidean distance) across the DBNascent high-quality control samples. We 
found that the major determinant in clustering was tissue identity (Fig. 2B; Additional 
file 1: Fig. S7).

Moreover, the clustering of TF activity profiles suggested that at the extremes, some 
TFs are active across nearly all cell types and other TFs are tissue specific. Notably, only 
4–6 TFs per tissue type were truly tissue specific; however, they were the major deter-
minant for clustering. For example, the TF MyoD is a strong determinate in muscle dif-
ferentiation [46] and was uniquely ON-UP (pval = 7.0e−9 ) in the myoblast data set [47] 
and OFF in the other 125 data sets tested. The blood associated factor, GATA-2, was 
uniquely called as ON-UP across several blood samples [28, 48–52] and was notably 
OFF within the other data sets. In addition to these well known cell type specific TFs, we 
also recovered less well annotated TFs that infer uncharacterized biological functions. 
For example, ZNF121 in blood, or ZNF146 in organ function.

We also noticed that some TFs implicated in general cellular processes were com-
monly called ON-UP in the TF activity profiles. These “ubiquitously active” TFs included 
members of the ETS family, the E2F family, and KLF/SP family. These TFs have highly 
redundant binding motifs and their biological functions relate to cellular homeostasis 
and proliferation [53–55]. Additionally, these ubiquitous TFs may help maintain pro-
moter accessibility and/or enable promoter-promoter looping [56, 57].

TF region selection across tissues

We next sought to further characterize the two extreme classes of TF regulatory activity: 
the ubiquitous and tissue-specific classes of TFs. First, we noted that the GC content of 
the TF recognition motifs differed between ubiquitous and tissue-specific TFs (Fig. 3A). 
The ubiquitous TFs bound GC-rich regions that were close to the average GC composi-
tion at promoters, consistent with prior reports [56]. By contrast, the tissue-specific TFs 
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tended to have motif preferences closer to genomic background (Fig. 3A). Notably, this 
result was recapitulated in SELEX and protein binding microarray data independent of 
genomic context (Additional file 1: Fig. S8).

Given the sequence preferences inherent to the ubiquitous and tissue-specific TF 
classes, we next wondered whether these TFs would act at distinct genomic regions 
(e.g., promoters vs. enhancers). As previously noted [58–60], enhancer regions are more 
tissue specific whereas promoters are often transcribed more broadly across cell types 
(Fig. 3B). Thus, we examined the number of enhancer and promoter regions contributing 

Fig. 3 Tissue specific and ubiquitous factors have distinct localization and regulation preferences. A Violin 
plots showing the GC content of the TF motif (PSSM) of ubiquitously shared TFs (pink), tissue specific TFs 
(purple), and all TFs (gray). B Bar plot showing that enhancers (orange) are far more tissue specific than 
promoters (blue) which tend to be on in all tissues. C Set of consensus bidirectional regions in embryonic 
stem cells containing a centered motif for the tissue specific Nanog (left) or the ubiqitous KLF12 (right), 
colored (promoter: blue, enhancer: orange) by presence or absence across multiple tissues (x-axis). Across 
662 regions containing Nanog in ESC cells, 86.1% of regions are enhancers, with some being shared (bottom, 
solid orange) and others being more tissue specific (middle, mostly white). Across the 6388 KLF12 containing 
regions in ESCs, 70.3% are promoter regions. D Fraction of ChIP-seq binding sites at the 5  end of genes 
(promoter, blue) or at distal regulatory regions (enhancers, orange) for ubiquitous TFs (pink) and tissue 
specific TFs (purple) [61, 62]. E Motif displacement score as a heatmap (darker is higher) for ubiquitous TFs 
(pink) and tissue specific TFs (purple)
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to each TF’s activity profile. We observed that tissue specific TFs predominantly regu-
late at enhancers whereas ubiquitous TFs generally regulate at promoters (Fig. 3C). For 
example, Nanog is an embryonic specific TF. The vast majority of transcribed regions 
containing the Nanog motif in embryonic stem cells (86.1%) are enhancers, the majority 
of which are unique to the embryonic tissue samples. In contrast, the regions with the 
KLF12 motif, a ubiquitous TF, tend to be promoter associated (70.3%) and transcribed 
across most tissues.

We next wondered whether the region bias identified by TF Profiler was also present 
in transcription factor chromatin immunoprecipitation (ChIP). Thus, we next examined 
TF ChIP-seq data curated from cistromeDB [61, 62]. To select for high quality ChIP 
signal, we only considered TF ChIP-seq peaks within regulatory regions (n = 53,244 
promoters, n = 559,150 enhancers). We then asked how often ChIP peaks fell within 
promoter regions versus enhancer regions. The ChIP data further supported the obser-
vation that ubiquitous TFs bind and regulate predominantly at promoters, whereas tis-
sue-specific TFs bind and regulated predominantly at enhancers (Fig.  3D). This result 
is reliably captured by the MD-score approach, where ubiquitous TFs have higher MD-
scores on average than tissue specific factors (Fig. 3E).

Regulation of gene encoding TF

Given the distinct binding sites and biological functions of the ubiquitous and tissue-
specific TFs classes, we next asked whether the regulation of these TF classes was dis-
tinct. To this end, we first examined the transcription level of the gene encoding each TF. 
For example, we assessed the transcription level of GRHL2 (tissue specific) and CREB1 
(ubiquitous) across the control data sets. The tissue specific TF had many samples with 
low gene transcription and a few samples with high gene transcription. Thus, the distri-
bution of the TF gene transcription level followed an exponential distribution, consistent 
with an transcription of the gene in a limited subset of the data. In contrast, the tran-
scription of the ubiquitous TF was normally distributed (Fig. 4A), consistent with the TF 
gene being transcribed in all samples. Consequently, we classified each gene encoding 
a TF as either fitting an exponential or normal distribution. Notably, the tissue specific 
TFs tended to fit an exponential distribution, like GRHL2, and ubiquitous TFs had a bias 
towards a normal distribution of transcription like CREB1 (Additional file 1: Fig. S9). In 
sum, the two classes show distinct corresponding cumulative density functions for tran-
scription of the gene encoding the TF across a subset of high confidence TFs (Fig. 4B; 
see Methods section).

We next examined these distributions the context of TF regulatory activity (the MD-
score). As a representative example, Fig. 4C shows a plot of the MD-score vs. the tran-
scription level (RPKM) for the ubiquitous TF KLF12. There was no correlation between 
the TF gene transcription level and predicted TF activity. This pattern was observed 
across many ubiquitous TFs such as SP1 and ETV1 (Additional file  1: Fig. S10A) and 
suggests that there is no obvious relationship between a ubiquitous TF’s transcription 
level and its activity (i.e., MD-score). In contrast, the tissue specific TF Nanog shows a 
positive correlation between its activity (MD-score) and gene transcription level (RPKM; 
Fig. 4D). Moreover, this positive correlation was observed for many tissue specific fac-
tors, including MyoD and GATA-2 (Additional file  1: Fig. S10B). This result indicates 
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that tissue specific TFs are not transcribed unless they are actively regulating within a 
cellular context, suggesting that repression of tissue specific TFs transcription plays a 
role in blocking their function. In summary, the two classes of TFs, ubiquitous and tissue 
specific, have categorically distinct transcription patterns and suggests biologically dis-
tinct mechanisms of TF gene activation (Fig. 4E).

To further probe these results, we sought to determine whether these trends would be 
recapitulated in steady-state RNA levels. We utilized single cell RNA-seq (scRNA-seq) 
data from the atlas of fetal gene expression [63] as it allowed us to capture expression 
values for these TFs across 172 distinct human tissues. We observed that the ubiqui-
tous TFs were generally expressed in all tissue types whereas the tissue specific TFs were 
expressed in fewer tissues (Fig. 4F). When we assessed the expression of TFs with the 

Fig. 4 Tissue specific TFs are regulated at transcription. Ubiquitous factors are post-transcripionally regulated. 
A Histogram of the transcription level (x-axis) of a tissue specific TF (GRHL2; purple) and ubiquitous TF (CREB1; 
pink) across the nascent RNA-seq datasets. B Cumulative distribution function of the transcription of the 
gene encoding the TF (RPKM) for a set of high confidence tissue specific factors (purple) and ubiquitous 
factors (pink) across 126 control experiments. The relationship between the transcription level of the gene 
encoding the TF (x-axis) and observed MD-score (y-axis) for (C) ubiquitous TF (KLF12) and (D) a tissue specific 
TF (Nanog). HOCOMOCO PSSMs shown in lower right corner. E Plot of the significance of the MD-score 
(top) and the transcription of the gene encoding the TF (bottom) for all TFs (gray), highlighting KLF12 (left, 
pink) and Nanog (right, purple). F Violin plots of frequency of expression in single cell RNA-seq [63] across 
172 tissues for ubiquitous (pink), tissue specific (purple), and all TFs (gray). G Violin plots of frequency of 
expression in single cell RNA-seq [63] across 172 tissues for TFs with the bottom 10% (green) and top 10% 
(gold) GC content within their PSSMs. H Histogram of the number of tissues that a tissue specific TF (GRHL2; 
purple) and ubiquitous TF (CREB1; pink) are expressed in by single cell RNA-seq [63]. I Cumulative distribution 
function of the steady-state RNA level (scRNA-seq) for the same high confidence tissue specific factors 
(purple) and ubiquitous factors (pink) across 172 tissues from atlas of fetal gene expression [63]
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lowest GC content motifs (bottom 10%), we found that the median number of tissues 
with TF expression falls far below the total median. 72.7% of TFs with the low GC motif 
set are classified as tissue specific. The TFs with the highest GC content motifs (top 10%) 
are expressed in more tissues than expectation and many are ubiquitously active TFs 
(65.5% ubiquitous; Fig.  4G). Similar to the observed trends in nascent transcription, 
tissue specific TFs are expressed in fewer tissues lending to an exponential fit of their 
expression profiles, whereas the ubiquitous TFs have gene expression that tends to be 
normally distributed (Fig. 4H, I). Overall, the trends we observed at the transcriptional 
level (PRO-seq) are recapitulated at the steady-state RNA level (scRNA-seq) suggesting 
this is a fundamental regulatory strategy for ubiquitous TFs versus tissue specific TFs.

Stimulus responsive TFs

The ubiquitous and tissue specific TFs represent the extremes of ON and OFF patterns 
within our clustering (Fig.  2B). Yet many transcription factors were ON in groups of 
samples, either several tissues or more sporadically across samples. We reasoned that 
stimulus responsive TFs could give rise to a more sporadic pattern of activity, as the 
activity of the TF would depend on the fine details of the growth environment. Thus, we 
next sought to identify high confidence stimulus responsive TFs. To accomplish this, we 
identified 161 data sets in treatment conditions from corresponding publications with 
our control data sets [60]. We applied TF Profiler to this “perturbation” collection (Addi-
tional file 1: Fig. S11A–C), identifying 53 high confidence stimulus responsive TFs.

We next sought to characterize the 53 high confidence stimulus responsive TFs. To 
this end, we first probed whether the stimulus responsive TFs have a have recognition 
motif preferences comparable to either the ubiquitous or tissue specific TFs. We deter-
mined that stimulus responsive TFs have recognition motifs that are similar to genomic 
background, as seen with tissue specific TFs (Additional file 1: Fig. 12A). We next exam-
ined ChIP-seq data for the stimulus responsive TFs, finding that they bind and act pri-
marily in enhancer regions, similar to tissue specific factors (Additional file 1: Fig. 12B, 
C). Among each of our classified TF groups, we found a positive correlation between 
the GC content of the recognition motif and the preference for binding within promoter 
regions, where ubiquitous TFs dominate the high GC percentage regime and the other 
two classes (tissue specific and stimulus responsive) behave similarly in the low GC per-
centage regime (Fig. 5A).

We next examined the regulation of the gene encoding the stimulus responsive TFs. 
Intriguingly, we found that many stimulus responsive TFs are broadly transcribed, simi-
lar to ubiquitous factors, but active in only a subset of samples, similar to tissue specific 
TFs (Fig. 5B, Additional file 1: Fig. 13A–C). This is consistent with the fact that many 
stimulus responsive factors are post-transcriptionally regulated. For example, under nor-
mal conditions, p53 is constantly transcribed and translated, but subsequently degraded 
via the ubiquitin ligase HDM2 [64, 65]. Consistent with post-translational regulation, 
we observed elevated activity scores only in samples where p53 was directly stimulated 
(Additional file 1: Fig. 13B).

To fully understand the distinct behavior of stimulus responsive TFs, we selected NFκ B 
as a case study, as it has the most high-quality data (six data sets, four tissue types [26, 
66–70]). NFκ B is a key regulator of the inflammation response across tissue types [71]. 
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Across four of the NFκ B subunits (REL, RELB, NFκB2, and T65), we noted that the TF 
region selection differed across tissue types, specifically within enhancer regions which 
represent the majority of putative binding sites (Fig. 5C, Additional file 1: Fig. S14A–C). 
In fact, within a tissue with multiple cell lines (lung; IMR90 and BEAS2B) the region 
selection varied, but within a tissue with the same cell line replicated from different pub-
lications (heart; AC16) the enhancer region selection was consistent. This suggests that 
the NFκ B response regions are defined by the cell type. Despite this, there was a robust 
NFκ B response in all tissues (Fig. 5D, Additional file 1: Fig. S15). While enhancer region 

Fig. 5 Stimulus responsive TFs utilize distinct regions to achieve equitable stimulus response across tissues. 
A Scatter plot of the percentage of ChIP-seq sites within promoters (x-axis) vs. the GC content of the TF motif 
(PSSM, y-axis) for ubiquitous (pink), tissue specific (purple), and stimulus reponsive (green) TFs. B Comparing 
the transcription level (RPKM) of the gene encoding the TF NFκ B (x-axis) and MD-score (y-axis). Significant 
ON-UP instances of NFκ B are colored green and labeled with the stimulus. Inset is the PSSM for NFκB2. C 
Bidirectional regions with a centered NFκ B2 motif from TNFα treated cells (larger font in B, four tissues). 
Enhancer regions in orange and promoters in blue. Across 2302 regions with NFκ B2 motif instances, 77.5% 
are classified as enhancers. Of the enhancers, 1406 (78.9%) are unique to a given tissue type. Other subunits 
of NFκ B shown in Additional file 1: Fig. S14. D Heatmap of NFκ B target genes (y-axis) across the four tissues 
in (C) (heart, intestine, lung, prostate). Upregulated (green); gold (downregulated). E Upset plot of promoter 
regions (n = 519) shown in (C) where 42.0% are shared across all tissues (teal) and 81.0% are shared between 
at least two tissues. Numerous NFκ B target genes (teal text) are labeled. Three target genes (NFκB2, REL, and 
RELB, bold) are three subunits of the NFκ B TF complex
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selection was highly variable, active promoter regions with NFκ B2 motifs are more con-
sistent across tissues. Out of 519 promoter regions across the TNFα treated samples, 218 
(42.0%) are shared across all tissues (Fig. 5E). We next examined the genes associated 
with these promoter regions. Multiple genes were direct NFκ B targets, including subu-
nits of the NFκ B TF (NFκB2, REL, and RELB).

Discussion
Here we present TF Profiler, a method of TF activity inference that identifies which TFs, 
among hundreds with well-characterized motifs, are actively regulating RNAPII from 
a single nascent RNA-sequencing experiment. The method relies on a robust sequence 
based expectation model derived from the base probabilities at RNAPII initiation 
regions. Using this method, we can identify which TFs are ON and active, regardless 
of whether the TF is an activator or repressor. We anticipate that this method will be 
broadly useful for assessing the set of TFs active in any cell type, provided that high-
quality nascent sequencing data is available. Interestingly, the TF Profiler method identi-
fied three classes of TFs: ubiquitous TFs which are always on regardless of cell type or 
condition, tissue specific TFs that drive cell identity and stimulus responsive TFs that are 
poised to alter transcription in response to a perturbation. We also showed that these 
TF classes have distinct DNA binding preferences and are regulated via distinct mech-
anisms. Because TFs drive all biological processes and are among the most important 
class of proteins in biology, it is critical to develop tools to reliably assess TF activity.

The ubiquitous TFs have GC-rich recognition motifs and bind preferentially at pro-
moters. The ubiquitous TFs are represented in part by the ETS, KLF, E2F, ATF, and SP1 
families. We note that among the ubiquitous TFs (n = 78), many motif preferences are 
similar and therefore difficult to distinguish from each other. While there may be subtle 
differences in which TFs are active in a given cell line, a subset of these ubiquitous TFs 
are always active regardless of cell line or condition. In agreement, most of the genes 
encoding ubiquitous TFs were transcribed in nearly all data sets tested, suggesting they 
function cooperatively or redundantly. Moreover, individual ubiquitous TFs are typically 
not essential, suggesting they behave collectively to regulate RNAPII function, perhaps 
to help maintain nucleosome-free promoters [56], though genomic regions with high 
GC content naturally exclude nucleosomes [34]. Finally, ubiquitous TFs regulate genes 
important for cellular proliferation, metabolism, and homeostasis [72–74], consistent 
with their general requirement across cell types.

Distinct from the ubiquitous TFs, the tissue specific TFs preferentially bind enhanc-
ers, which are lower transcribed, with binding motifs that have a nucleotide composition 
similar to genomic background, i.e., more AT-rich. It is difficult to disentangle which of 
these features—enhancer/promoter preference, sequence content, or transcription lev-
els—is critical to the tissue specific nature of these TFs. Importantly, there are a subset 
of TFs that bind AT-rich regions but were not called ON in any of our data sets. Many 
of these never ON TFs are implicated in cell identity for cell types with no nascent RNA 
sequencing data. For example, UNCX is a TF implicated in regulation of the cerebellum 
with an AT-rich binding preference. Yet no cerebellum data is present within DBNascent 
[60], which could explain why we do not see UNCX as ON in any of these data sets. 
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Many of the tissue specific group of TFs are not transcribed unless they are ON within a 
given cellular context, e.g., their activity may be regulated by their transcription.

Many TFs are neither ubiquitous or tissue specific. This includes TFs that are on in 
subsets of, often related, tissues. It also includes the stimulus responsive TFs, which 
share many of the same recognition properties as the tissue specific TFs. Namely, they 
bind predominantly at enhancer regions and have recognition motifs similar to genomic 
background composition. Yet unlike tissue specific TFs, the gene encoding stimulus 
responsive TFs are typically transcribed across a broad range of tissue types and condi-
tions (similar to the ubiquitous TFs). This pattern is consistent with post-transcriptional 
regulation of these TFs, allowing them to be poised for activation but are not always ON; 
instead, post-transcriptional mechanisms regulate their activity.

We speculate that the binding preferences and mechanism of regulation for a given 
TF may be predicted based on the TFs function. While it is known that tissue specific 
TFs play a crucial role in defining cell identity, we postulate that these TFs are not tran-
scribed unless actively regulating transcription as they are key players in establishing tis-
sue specific enhancer regions. Furthermore, it is tempting to speculate that these tissue 
specific enhancer patterns would then directly explain the subset of tissue specific stim-
ulus responsive regulatory sites. However, the set of tissue specific TFs are not enriched 
directly in or adjacent to the cell type specific stimulus responsive sites. This contra-
diction suggests that tissue specific stimulus responses may arise from some complex 
interaction between tissue specific TFs at some sites and other factors such as chromatin 
state or transcriptionally active domains.

Importantly, our approach detects TF effector domain activity because of the co-local-
ization of binding motif instances with sites of RNA polymerase II initiation. However, 
some transcription factors may alternatively function as chromatin modifiers. If a TF 
functions primarily to modify chromatin without direct effects on transcription, our 
approach may not identify this activity. In fact, our prior work identified a small number 
of TFs whose motif co-localization was consistently offset from sites of RNA polymer-
ase II initiation, with many of these TFs annotated as chromatin modifiers [21]. Detect-
ing the regulatory activity of chromatin modifying TFs will likely require accessibility 
and conceptually similar methods developed for that data, such as ChromVAR [75]. It is 
intriguing to speculate whether the combination of these approaches, on matched nas-
cent and accessibility data, would uncover novel classes of transcription factor function.

Conclusion
In summary, TF Profiler is a broadly applicable method of inferring transcription factor 
regulatory activity directly from nascent run-on sequencing assays. TF Profiler provides 
a method of assessing the activity of a TF’s effector domain directly from the co-occur-
ance of TF recognition motif instances and sites of RNAPII initiation.

Methods
Code availability

The stand-alone TF Profiler application can be found on github (https:// github. com/ 
Dowell- Lab/ TF_ profi ler) and Zenodo [76]. TF Profiler takes an annotation file for 
bidirectional regions from a nascent sequencing experiment and derives a TF activity 

https://github.com/Dowell-Lab/TF_profiler
https://github.com/Dowell-Lab/TF_profiler
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profile. This includes generating simulated sequences based on the base composition of 
the regions provided, scanning for PSSM hits within the genome and statistically assess-
ing TF enrichment and depletion.

Additional stand-alone scripts and useful data files associated with this work can be 
found on github (https:// github. com/ Dowell- Lab/ TF_ profi ler_ addit onal_ scrip ts) and 
Zenodo [77].

Curating data from DBNascent

All nascent RNA sequencing data, which includes both precision run-on sequencing 
(PRO-seq) and global run-on sequencing (GRO-seq), were obtained from DBNascent 
[60]. Briefly, the database contains 502 human PRO-seq samples from 60 publica-
tions and 780 human GRO-seq samples from 106 publications. All data were aligned 
to the human reference genome (hg38; https:// github. com/ Dowell- Lab/ Nasce nt- Flow; 
archived at Zenodo [78]) and were subjected to extensive quality control. Data was addi-
tionally processed for identifying sites of bidirectional transcription (also known as tran-
scribed regulatory elements) via a NextFlow pipeline built upon Tfit [17] (https:// github. 
com/ Dowell- Lab/ Bidir ectio nal- Flow) and archived at Zenodo [79]. Standardized Next-
flow pipelines are described in detail in Sigauke et al. [60].

To prepare the data for TF Profiler, high quality nascent RNA samples were selected 
from the database, with minimum quality score of 4 (minimum of 5 million reads, over 
50% of reads map to the reference genome and less than 95% duplication). Within these 
samples, Tfit [17] was utilized to annotate bidirectional regions. All Tfit calls between 
biological replicates of a given cell type within a given paper were merged using 
muMerge [27]. If only one biological replicate passed the quality score cut-off, it was still 
used for subsequent analysis as a single replicate data set. The grouped biological repli-
cates within a cell type and paper are referred to as “data sets” in this study. All data sets 
are described with cell type, perturbations, tissue identity, and the utilized SRR identifier 
numbers in Additional file 2. Bidirectional annotations were merged on a per-cell and 
per-paper basis to maximize number of reliable calls per data set.

To account for low complexity in some data sets, which can arise from either poor pull 
down efficiency or high sequencing noise, we also filtered data sets based on the quality 
of the bidirectional calls. To this end, we required that the region within 2h of µ had a 
base composition of at least 50% GC content. The final requirement is that at least 50% 
of called regions must not be at an annotated promoters. If promoter regions are over-
represented, then we lose sensitivity when calling many TFs, as most TFs bind predomi-
nantly at distal regulatory elements, such as enhancers.

Curating a master bidirectional region list

After this two-step quality control process, we ended up with 126 distinct data sets from 
88 publications that represent 79 unique cell lines under basal conditions (e.g., basal, 
normal growth conditions; n = 299 unique biological samples). Samples were merged 
step-wise, with all samples of a given tissue type were merged into a tissue specific 
regions file. Any region less than 20 nt were windowed to be at least 20 nt in length. The 
tissue specific region files were then merged into the master file. From the same publica-
tions as the control samples an additional 161 data sets with identifiable perturbation 

https://github.com/Dowell-Lab/TF_profiler_additonal_scripts
https://github.com/Dowell-Lab/Nascent-Flow
https://github.com/Dowell-Lab/Bidirectional-Flow
https://github.com/Dowell-Lab/Bidirectional-Flow
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or genome modified conditions also passed the quality control process. These samples 
come from 65 of the 88 control publications and represent 46 unique cell lines (n = 411 
unique biological samples).

Regions within the master file (control samples only) were divided into two sets: pro-
moters and enhancers. Promoters were defined as all regions (windowed by h = 150) 
within 1000 bp (300 bp upstream, 700 bp downstream) of RefSeq (hg38 release GCF_
(109.20190607_2019_06) annotated transcription start site (TSS). All other regions were 
labeled as enhancer. This resulted in a total of 53,244 promoter regions and 611,963 
enhancer regions within the master file.

Calculating positional probabilities

Both regions types (promoters and enhancers) used to independently extract two sets of 
positional probabilities surrounding µ using a window size of H = 1500 (e.g., µ± 1500 ). 
Sequences were extracted using bedtools getfasta (bedtools/2.25.0). All ambiguous bases 
were replaced with randomly sampled nucleotides (A, C, G, T) using a flat distribution 
(all bases equal probable). Two distinct probability distributions are then tallied from 
the sequences. First, the dinucleotide (n = 16; AA, AT, CA, CG, etc.) frequencies at the 
start of each sequence (e.g., at −1500 from µ ). These probabilities are used to initiate 
the sequence generator. The second distribution obtained from the sequence data is the 
per position conditional probabilities (e.g., P(ni|n(i − 1)) ) (see Additional file 1: Fig. S4). 
The dinucleotide and conditional probabilities are described by Eq. 2. Position specific 
mononucleotide frequencies, which simply reflect the probabilities of a given nucleotide 
at a given position across the window, were calculated for Fig. 1C. Position independent 
(also referred to as “flat”) probabilities (shown in Fig. 1D, left) were generated by taking 
the mononucleotide probabilities and averaging them across the window (H = 1500∗2).

Note that base composition plots (Additional file 1: Fig. S4A and Fig. 1C) are smoothed 
for clear visualization (scipy savgol filter version 1.5.4). Code used to calculate the posi-
tion specific probabilities can be found within the sequence_generator module of TF 
Profiler.

Generating simulated sequences around RNAPII initiation

Using the dinucleotide training data described in Calculating positional probabili-
ties section, we employ a Markov chain to generate 106 sequences each from the pro-
moter and enhancer probability sets. This was achieved by using numpy (version 
1.19.5) random number generator based on (1) the initial dinucleotide probability and 
(2) the subsequent conditional probabilities that account for position X-1 to select the 
nucleotide in position X. The sequences were checked to ensure there was no identi-
cal sequences within the 2 ∗106 sequences generated. The validity of sequence generation 
was confirmed by ensuring that generated sequence recapitulate the probability distri-
butions used in their generation (within ± 0.0001). Sequences were generated in batches 
with distinct numpy seeds (seeds used: 38–50, 107–119, 275–287, 395–407, 462–474, 
523–535, 687–699, 721–733, 831–843, 986–998) and the probabilities used are available 
on the additional data github page. The generation of mononucleotide and flat simulated 
sequences were generated in a similar manner (including the same seeds), only using 
the mononucleotide and position independent probabilities, respectively. Code used 
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to generate all sequences can be found within the sequence_generator module of TF 
Profiler.

Counting over genes and bidirectionals

RefSeq gene counts for human sample within DBNascent were counted over hg38 Ref-
Seq genes (hg38 release GCF_000001405.40-RS_2023_03) using Rsubread, feature-
counts (version 2.12.3) [60, 80]. For all samples within a biological replicate for a given 
data set (both control, n = 299 and perturbation, n = 411 biological replicates), the mean 
RPKM was calculated for every gene isoform. Only the highest mean RPKM isoform for 
every gene was retained. Gene counts were used for additional analyses, including the 
transcription level of the gene encoding the TFs across tissue types, the transcription 
level of TF genes vs. TF activity and DESeq2 analyses between control and perturbation 
conditions.

Bidirectional counts were also measured to assess (1) whether GC content of bidi-
rectionals relates to the transcription level and (2) how this relates to enhancer and 
promoter content. This data is shown in Additional file 1: Fig. S3. To count over all bidi-
rectionals, the master bidirectional file was utilized (generation of this file described in 
Calculating positional probabilities  section). This file contains all bidirectionals called 
within the 126 control data sets. To ensure that the regions were wide enough, the 
regions within the master bed file were windowed ±150 bp surrounding µ . This could 
cause some regions to overlap, therefore the bedfile was sorted (sort -k1,1 -k2,2n) and 
merged (bedtools merge, version 2.28.0). Feature counts was used to count over the 
windowed master file using Rsubread, featurecounts (version 2.0.1). Like with genes, all 
individual control biological replicates (n = 299 independent samples from n = 126 con-
trol data sets) were used to count over the windowed-master bed file.

Motif scanning

Motif scanning was performed using the MEME suite (version 5.0.3) function FIMO 
scan [81]. This scan was performed using a flat background model (equal distribution 
assumed of the four canonical nucleotides). The threshold was set to 1e−5. The motif 
files used were from HOCOMOCO version 11 [39]. The scan was performed across the 
human genome (hg38) and these motif hits were used for subsequent analysis. Internal 
to the TF Profiler program, the motif scan can also be performed de novo across only 
the bidirectional regions provided, or take in pre-scanned regions genome wide. Motif 
scanning was performed on simulated sequences using the same parameters. Code used 
to perform motif scanning can be found within the fimo_scanner module of TF Profiler.

Calculating distances between RNAPII initiation and motif hits

To measure TF co-localization, the relative distance between a motif hit and the center 
of the bidirectional transcript must be assessed. The distance for all motif hits within the 
large window (H = 1500) of a given region was calculated, using the center of the motif 
and the center of the bidirectional. For motifs and regions of odd length the center is 
rounded to the nearest even integer per the native python rounding function. Each motif 
hit is associated with the distance to the center of the bidirectional as well as two ranking 
metrics. The two ranking metrics are a distance rank metric (e.g., which motif is closest 
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to the center of the bidirectional, where 1 is closest) and a quality rank (e.g., defined by 
FIMO score where 1 is the highest quality hit in the region). All motif hits within the 
large window are stored within the distance tables.

For this study only a single motif hit for a given PSSM per bidirectional was retained 
for further analysis. Hence, for each bidirectional region and distinct PSSM, only a single 
hit per unique PSSM is considered for further analysis. In the case of multiple motif hits 
for a single PSSM within one bidirectional, the motif hit used for further analysis was the 
motif hit closest to the center of the bidirectional (i.e., distance rank = 1). Code used to 
generate these distance tables can be found within the distance_module of TF Profiler.

PSSM GC content analyses

To calculate the GC content of the PSSMs, we extracted all probabilities for both G and 
C across the length of the PSSM and summed them together. This was then divided this 
by the length of the PSSM to give the overall probability of a GC within the PSSM itself. 
This was done for all HOCOMOCO core TFs. To validate that the GC percentage is 
associated with a given TF rather than genomic context (nucleosome arrangement, for 
example), we looked at both SELEX and protein binding microarray data (CIS-BP ver-
sion 2.00). The GC content was calculated for PBM and SELEX in the same manner as 
HOCOMOCO PSSMs (Additional file 1: Fig. S8A, B).

Calculating MD‑scores

The calculation of MD-scores was originally defined in Azofeifa et  al. [21] and is 
described mathematically by Eq.  1. Briefly, the MD-score quantifies co-localization of 
motif instances (hits) near sites of RNAPII initiation (h = 150 bps) relative to a larger 
local window (H = 1500 bp) genome wide. Precision in position of RNAPII initiation is 
required for robust MD-Score calculation [27, 82].The MD-score was calculated for all 
motifs within HOCOMOCO core version 11 (n = 388 motifs) [39], in every data set in 
this study (n = 287 data sets).

To calculate expected MD-score from simulated data, we leverage each data set’s dis-
tinct proportion of enhancer to promoter bidirectionals (Additional file 1: Fig. S5)—thus 
accounting for each data sets’ distinct composition profile. To this end, we calculate the 
proportion of promoter associated bidirectionals (see Curating a master bidirectional 
region list  section for labeling promoter bidirectionals). The proportion of promoter 
associated bidirectionals ranges from 0.14 to 0.49 across the 287 data sets. Based on this 
for every 0.02 step from 0.14 to 0.5 we calculated simulated MD-scores using 106 simu-
lated sequences (and associated motif hits) total. To do so we used numpy random num-
ber generator to randomly select a given proportion of promoters from the 106 promoter 
sequences and the remainder from the 106 enhancer sequences. For example, if a given 
data set had a proportion of 0.26 promoters, then 260,000 promoter sequences and 
740,000 enhancer sequences were be selected from the dinucleotide simulated sequence 
data. From these 106 sequences the expectation MD-scores were calculated and used for 
the basis of comparison for subsequent analyses. For each data set the MD-score pro-
portion was rounded to the nearest 0.02 (a proportion of 0.255 rounds to 0.26; a propor-
tion of 0.245 rounds to 0.24), and the expected MD-scores are selected from that set 
as the background model. Five seeds (96, 118, 559, 603, 961) were used for the numpy 
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random number generator to subset the sequences. All resulted in similar expectation 
MD-scores for a given TF within a promoter proportion set. The seed used for selecting 
promoter and enhancer sequences for all subsequent analysis was 118.

Statistically assessing TF activity profiles

We sought to statistically assess whether the MD-score for a given TF was higher (ON-
UP) or lower (ON-DOWN) than expectation for each data set. For the meta-analysis, 
TFs across all data sets were combined for subsequent linear fits. Two separate fits were 
conducted, one on the control condition data (Additional file  1: Fig. S6A, n = 48,888 
points, 126 data sets with 388 TFs) and one on perturbation conditions (Additional 
file 1: Fig. S11A, n = 62,468 points, 161 data sets with 388 TFs).

In each case when all data is fit the slope is greater than 1, indicating higher activity 
in the experimental data than the expectation model. This is an expected result as some 
TFs should be ON and active in a given cellular context. Therefore, we opted to use an 
inlier method, where we fit a set proportion of inlier TF MD-scores to a linear regres-
sion. The proportion of inliers was optimized for each set independently by testing every 
5% inlier proportion from 5% (almost no TFs being fit) to 100% inliers (all of the data). 
The proportion closest to slope of 1.0 and intercept of 0.0 is assumed to identify the set 
of TFs unchanging within the set of data. The normal distribution of the residuals of the 
inliers was then used to attribute a p value for each TF across all data sets (Additional 
file 1: Fig. S6B, Additional file 1: Fig. S11B). While the data was fit all together to get a 
better estimate the distribution of the residuals, the TF Profiler program fits the residu-
als of the inliers for a single data set at a time by default for single case uses. Code used to 
generate these distance tables can be found within the statistics_module of TF Profiler.

Clustering TF activity profiles

To generate the highest confidence TF activity profiles for a given TF, we required 
a degree of replication across tissue types in control samples. For tissues with at least 
four data sets, a TF within the TF activity profile needed to be called as ON in at least 
50% of the samples. For tissues with sparse data (less than four data sets), this replica-
tion was not required. There were a total of 26 tissue classifications for defining the high 
confidence TF activity profiles: blood (hematopoieticprogenitor), blood (K562), blood 
(lymphoid), blood (marrow), blood (myeloid), bone, brain, breast, embryo, eye, heart, 
intestine, kidney, liver, lung, lung (fetal), lung (muscle), muscle, ovary, prostate, skin, skin 
(foreskin), skin (lymph), stem cell, umbilical, uterus. Which data set belongs in which tis-
sue set is defined in the sample_metadata_table found on in the additional data github. 
The tissues were defined in narrow categories as TFs vary between cell types as well as 
between tissues. The narrow classification permits for greater sensitivity when defining 
high confidence TF activity profiles.

Once tissue specific profiles were rigorously defined, they were clustered using the 
R (version 3.6.0) package ComplexHeatmaps (version 2.2.0) which utilizes the native R 
function hclust. For clustering purposes, the TF activity profiles were numerically repre-
sented as 1 (ON-UP), −1 (ON-DOWN), and 0 (OFF). The Euclidean distances were used 
followed by Wards method to cluster the profiles. A full cluster map was generated and 
shown in Additional file 1: Fig. S7. For the main text figure, the tissues were manually 
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divided into three categories, tissue, organ, and developmental. The tissues within those 
categories were clustered to assess which are most closely related. This ordering was 
used for Fig. 2B.

Classifying TFs

Here we define three categories of TFs: ubiquitous, tissue specific, and stimulus respon-
sive. All classifications were defined using the high confidence TF activity profiles. 
High confidence TF activity profile generation is described in Clustering TF activity 
profiles section.

To classify a TF as ubiquitous, it was required to be ON-UP in at least 95% of the con-
trol data sets. To classify a TF as tissue specific, it needed to be uniquely ON in a given 
tissue. The exception for this is blood TFs (such as GATA and STAT TFs). These TFs had 
strong signatures in blood but also tended to be called ON in many organ samples. For 
this reason, blood specific TFs were excluded from being called ON in developmental 
or organ sets. Additionally, many organ TFs were shared due to similar function across 
tissues. If a TF in organ samples was only shared across two organs, it was still defined 
as tissue specific. One category not discussed in depth is shared, but not ubiquitously 
shared TFs. This general group is classified as TFs that are on in more than two organs, 
more than one blood cell type, or more than one developmental cell type. Finally, the 
stimulus responsive TFs defined by (1) TFs that were called ON in the perturbation sam-
ple but not called ON in the control sample and (2) not a ubiquitous or tissue specific 
TF within the tissue of the experiment tested. TF classifications are outlined in the TF_
classes_table found on in the additional data github.

Comparing bidirectional regions across tissue types

To compare region usage in control conditions, each tissue was assigned a consensus 
region set. To generate consensus regions across tissues, the master bed file (described 
in Curating a master bidirectional region list section) was used. For each region within 
the master bed file, the data set that contributed to that region was noted. The tissues 
were broken into broad categories (n = 15; brain, blood, muscle, fetal, liver, ovary, 
hematopoietic, breast, skin, kidney, eye, umbilical, bone, prostate, and uterus) for region 
selection to increase the total number of regions accounted for in subsequent compari-
sons (see Additional file 2). For a region to be called within the consensus profile, the 
region needed to be attributed to at least 50% of the data sets within the broad tissue 
set. This ensures that the regions called are truly active bidirectional regions within the 
broad tissue category. Distances between the consensus regions and all HOCOMOCO 
motif hits were calculated using the distance calculations described in Calculating dis-
tances between RNAPII initiation and motif hits section. Motif hits within ±150 bp of 
initiation for a given bidirectional were considered a positive hit. Positive motif hits and 
consensus regions were used to systematically assess TF region selection across tissues, 
as shown in Fig. 3C.

The perturbation condition TNFα is one of the most highly represented perturbations, 
with 6 data sets in 6 independent publications applied across a myriad of tissue types. To 
study region selection across tissue type in TNFα conditions, we used muMerge across 
the 6 independent TNFα data sets to create a master TNFα bed file. Contributions to 
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each region per data set were retained. These regions were used for distance calculations 
with all HOCOMOCO motif hits. As previously, motif hits within ±150 bp of initia-
tion for a given bidirectional were considered a positive hit. This data was used to assess 
NFκ B subunit region selection as shown in Fig. 5C and Additional file 1: Fig. S14.

Using ChIP‑seq data from CistromeDB

Both TF and histone ChIP-seq region data was obtained from CistromeDB [61, 62]. 
Within this database there are six total quality parameters assessed for every ChIP-seq 
experiment. These can be broken into two main categories, mapping and peak quality. 
The mapping scores account for sequence quality, number of unique sequences, and 
unique molecule representation after sub-sampling the data. The peak scores account 
for the number of peaks, the signal to noise ratio, and the overlap of peaks with acces-
sible regions. In order for the ChIP-seq sample to be used here, we required the sample 
to pass at least one parameter within both mapping and peak scores. CistromeDB con-
tained TF ChIP-seq data for 316 unique TFs within HOCOMOCO v11 core set (n = 388 
total) that passed the defined QC standards.

Promoter associated ChIP-sites were defined as a ChIP site falling within 
1000 bp (300 bp upstream, 700 bp downstream) of RefSeq (hg38 release GCF_
(109.20190607_2019_06) annotated transcription start site (TSS), as with bidirectional 
calls. The percentage of promoter-associated regions was calculated by the total number 
of promoter associated ChIP-sites over the total number of ChIP-sites that fall within a 
bidirectional region from the master bed file. This reduces noise and regions where a TF 
is bound but not actively regulating. Thus, the ChIP promoter percentage reflects the 
percentage of functional TF binding events that occur within promoter regions versus 
all functional binding events.

In many cases, there were multiple ChIP-seq samples for a single TF. In this case, the 
median calculated promoter percentage was used. Heatmaps in Fig. S1 use cistromeDB 
regions from five independent samples per condition detailed in Additional file  3 
(extended information on these samples resides in a file called ChIP_metadata_table on 
the additional data github page). Distance tables were generated using the TF Profiler 
program as previously described in Calculating distances between RNAPII initiation 
and motif hits section. The R (3.6.0) package ComplexHeatmaps (version 2.2.0) was used 
to plot the motif localization using the generated distance tables.

Fit classification for transcription level of TFs

We construct a simple classifier to assess the distribution of the transcription level for 
all genes encoding TFs across all data sets. To do this, we used Fitter (version 1.5.2) built 
on scipy (version 1.5.4). This program takes an array RPKM normalized counts across 
control data sets (as described in Counting over genes and bidirectionals section) and 
assesses how well that array fits a given data distribution. We used Fitter to classify the 
transcription level distributions as either exponential or normal, with the best fit defined 
as the minimum sum of the error metric squared (parameter fitterf.get_best(method = 
‘sumsquare_error’)). If the KS p value was greater than 0.1, this indicated a poor fit for 
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both exponential and normal, thus the TF was classified as “other” (Additional file 1: Fig. 
S9).

We generated the cumulative frequency plots for the TF gene transcription across 
control samples using a bin size of 0.001 RPKM. The mean cumulative frequency across 
high confidence TFs was plotted as a black line and the standard error is shown as a 
colored region across the high confidence TFs (Fig. 4B). The high confidence TFs were 
selected by significance values (p value ≤ 0.001). These TFs were parsed down to a group 
of TFs with a similar range of transcription level such that they could be plotted on the 
same x-axis for the cumulative frequency plots. The most confident tissue specific fac-
tors within their respective tissue types were identified as MyoD, GRHL2, TEAD4, p63, 
GATA1, and Oct4. The most confident ubiquitous factors across all tissue types were 
identified as NFYB, ELK1, CREB1, SP1, ATF1, and SP3.

Single cell RNA‑seq data

For single cell RNA-seq data (scRNA-seq), we used data published from the “human cell 
atlas of fetal gene expression” [63]. This data was accessed from NCBI GEO accession 
number GSE156793. We used the publicly available file titled: “GSE156793_S6_gene_
expression_celltype.” To be considered “expressed” in a given tissue we used the expres-
sion cutoff of 0.01. scRNA-seq expression values were fit to either an exponential or nor-
mal distribution by Fitter as described in Fit classification for transcription level of TFs.

Differential expression

Gene counts previously quantified from DBNascent were used for differential expression 
analysis (see Counting over genes and bidirectionals section). We focused on 6 data sets 
in which there was TNFα treatment and their corresponding controls. Data sets from 
the same tissue type were grouped within a single DESeq2 (version 1.26.0) object. Dif-
ferential gene expression was assessed between TNFα vs. control separately for the 4 
tissues represented (heart [26, 66] n = 8 control samples, n = 7 treatment samples; lung 
[68, 69] n = 5 control samples, n = 5 treatment samples; intestine [67], n = 2 control 
samples, n = 2 treatment samples; prostate [70], n = 2 control samples, n = 2 treatment 
samples). Additional sample information is defined within Additional file 2 and extended 
information on these samples is on github in a file called sample_metadata_table and dif-
ferential expression results can found on the additional data github page. NFκ B targets 
were defined from the GSEA Hallmarks (version 5.0) pathway: TNFα signaling via NFκ B 
(n = 200 genes).
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