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Abstract 

Background:  Genomic prediction encompasses the techniques used in agricultural 
technology to predict the genetic merit of individuals towards valuable phenotypic 
traits. It is related to Genome Interpretation in humans, which models the individual 
risk of developing disease traits. Genomic prediction is dominated by linear mixed 
models, such as the Genomic Best Linear Unbiased Prediction (GBLUP), which com-
putes kinship matrices from SNP array data, while Genome Interpretation applications 
to clinical genetics rely mainly on Polygenic Risk Scores.

Results:  In this article, we exploit the positive semidefinite characteristics of the kin-
ship matrices that are conventionally used in GBLUP to propose a novel Genomic 
Multiple Kernel Learning method (GMKL), in which the multiple kinship matrices 
corresponding to Additive, Dominant, and Epistatic Inheritance Mechanisms are used 
as kernels in support vector machines, and we apply it to both worlds. We benchmark 
GMKL on simulated cattle phenotypes, showing that it outperforms the classical GBLUP 
predictors for genomic prediction. Moreover, we show that GMKL ranks the kinship 
kernels representing different inheritance mechanisms according to their compatibility 
with the observed data, allowing it to produce hypotheses on the normally unknown 
inheritance mechanisms generating the target phenotypes. We then apply GMKL 
to the prediction of two inflammatory bowel disease cohorts with more than 6500 
samples in total, consistently obtaining results suggesting that epistasis might have 
a relevant, although underestimated role in inflammatory bowel disease (IBD).

Conclusions:  We show that GMKL performs similarly to GBLUP, but it can formulate 
biological hypotheses about inheritance mechanisms, such as suggesting that epistasis 
influences IBD.
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Background
Genome Interpretation (GI) [1, 2] is an area of bioinformatics devoted to decipher-
ing the functional and clinical significance of genetic information contained within an 
organism’s genome [3, 4]. It focuses on the development of computational methods 
to model the relation between genotype and phenotype, with the goal of understand-
ing the potential biological impact of variants and their relevance to traits, diseases, or 
other phenotypes [5, 6]. Outside of bioinformatics, the task of modeling the relationship 
between genotype and phenotype is called Genomic Prediction (GP) [7–9]. It originated 
in agriculture and animal breeding to predict the genetic merit of individuals towards 
valuable phenotypic traits [10, 11]. Modern approaches followed the input of [8, 12] 
and leverage information from genetic markers, rather than relying solely on the ped-
igrees derived from the observed phenotypic traits of the target individuals and their 
relatives, which was the traditional procedure before the advent of Single Nucleotide 
Polymorphisms (SNP) array technology [13, 14]. Since then, GP methods are using high-
throughput genomic technologies, such as genotyping arrays [8, 15] or sequencing [10], 
to collect genetic information from individuals in a population, including in humans [16, 
17]. This genomic data is then analyzed to combine the information from all markers 
into a single score, with the goal of estimating the individuals’ breeding values, which 
consists in their genetic predisposition towards desirable traits. In the context of crop 
and animal breeding, these traits might for example relate to disease resistance, growth 
rate or milk production [12, 18].

Even though there has been some investigation of machine learning (ML) methods 
for GP [7, 19–21], including neural networks (NNs) [9, 22–27] and Reproducing Kernel 
Hilbert Spaces (RKHS) regression methods [28–30], such as support vector machines 
(SVMs) [19, 31, 32], in plant and animal breeding the most widely adopted approaches 
are variants of the Best Linear Unbiased Prediction (BLUP) Linear Mixed Model (LMM) 
[33, 34]. The Genomic BLUP (GBLUP)[8, 12, 35], in particular, uses marker-based rela-
tionship (kinship) matrices to specify the covariance structure between individuals with-
out explicitly modeling the effects of the individual SNPs [36].

While in plant and animal breeding GP can be used to guide selection [37] by pre-
dicting the unobserved genetic value (i.e., the genetic propensity) towards agriculturally 
valuable traits, in human genetics the aim is to model the future phenotypic trajectory of 
an individual, assessing their risk towards developing disease traits [13]. These two fields 
have thus several aspects in common. Nonetheless, BLUP methods are significantly less 
popular in human genetics, which relies instead on linear models, called Polygenic Risk 
Scores (PRS), derived from array-based SNP association studies [38, 39]. Even though 
PRS are statistically less principled than LMMs/BLUP [40, 41], both approaches are lin-
ear models that aim at modeling additive genetic effects [42].

Most GBLUP methods use kinship matrices computed solely from additive inherit-
ance effects to model the genetic similarity between individuals, but approaches to 
take into account dominance [43] and epistatic effects [44, 45] have been proposed 
and they can be integrated into GBLUP or other models [25]. Even if this aspect has—
to the best of our knowledge—been ignored so far, the fact that kinship matrices are 
symmetric and positive definite makes them suitable to be used as kernel matrices 
into SVM models as well. SVMs [46] are supervised ML methods that use kernel 
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matrices to implicitly map data points into a higher-dimensional space, enabling the 
discovery of an optimal hyperplane for classification or regression. The choice of 
kernel in SVMs is crucial, since it determines which possibly highly nonlinear trans-
formation is applied to the input data to facilitate the separability of the prediction 
classes. For example, one of the most popular choice is the Radial Basis functions 
(RBF) kernel, which corresponds to mapping the input data into an infinite dimen-
sional space, and has also been used for marker-based GP [19, 32, 47].

In this article, we propose a novel approach to GP based on using kinship matri-
ces describing Additive, Dominance, and Epistatic genetic effects as kernels in SVM 
models, instead of as covariance matrices in GBLUP models, as is conventionally 
done [34]. Depending on the Inheritance Mechanisms (IMs) involved in generating 
the predicted phenotype, we show that combining multiple kinship matrices encom-
passing different genetic effects can be beneficial for the predictions, and we therefore 
call our approach Genomic Multiple Kernel Learning (GMKL).

With respect to GBLUP and other RKHS methods used in quantitative genetics, 
GMKL provides two main advantages. First, the SVM algorithm guarantees that the 
optimal hyperplane separating the data is found during training [46]. Second, our 
GMKL approach can rank the kinship matrices representing different genetic inherit-
ance effects in function of their compatibility[48, 49] with the target phenotypes. This 
means that our GMKL can produce hypotheses for the inheritance mechanisms (IMs) 
involved in generating the target phenotype, given the observed markers, and it can 
rank them (i.e., Additive, Dominant) in function of their prominence in the data.

To show the potential of GMKL for GP and GI in general, we tested it on 3 different 
datasets. First, we benchmarked it on nine synthetic phenotypes computed on cattle 
genotype data, showing that our approach improves the phenotypic predictions with 
respect to the conventional additive GBLUP, and performs on par with an hypotheti-
cal GBLUP(OP) model artificially provided with the (normally unknown) OPtimal set 
of kinship matrices at each step [25]. Most importantly, we exploit the fact that the 
IMs generating these nine synthetic phenotypes are known, to show that the rank-
ing provided by our MKL approach actually produces hypotheses on the IMs that are 
consistent with the ones used to generate these synthetic phenotypes.

We then extended our validation by benchmarking our GMKL against other meth-
ods on 3522 samples from an in-house case-control SNP array cohort of inflammatory 
bowel disease (IBD) patients, confirming that GMKL performs similarly to GBLUP in 
terms of prediction performance. In addition to GBLUP, our GMKL can formulate 
hypotheses on the most compatible IMs in this in-house cohort, which turned out to 
be mainly Dominant and Epistatic.

To further validate our approach, we performed the same GMKL analysis on a 
whole exome sequencing (WES) IBD cohort of 3798 samples (3318 cases, 480 con-
trols) from dbGAP, obtaining the same ranking for the inheritance patterns, there-
fore confirming on different data that epistasis could have an important role in IBD, 
similarly to what we suggested in a previous study [50]. Additionally, we show that the 
GMKL predictions have performance similar to the most recent deep learning models 
developed on the same cohort [50].
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Results
The Genomic Multiple Kernel Learning methods for Genomic Prediction

In Fig.  1, we benchmarked five variants of our GMKL approach for the regression of 
the nine real-valued synthetic phenotypes on the CATTLE dataset [25], which contains 
1033 pure-bred Holstein samples genotyped with an Illumina BovineSNP50 Beadchip, 
leading to 26503 SNPs for each sample [21] (see the Methods “Simulated phenotypes 
on cattle SNP array data”  section). We evaluated the prediction methods with a five-
fold cross-validation, comparing them to state-of-the-art methods. Our GMKL method 
comes in different variants, called MEAN, FH, CKA, CKACLOSED, and GD. They differ 
in the strategy used to combine the kinship kernels (see the Methods “Kernel Learn-
ing methods” section for details). The number next to their name in each row of Fig. 1 
indicates how many kinship matrices (from one to five) are considered each time and 
respectively describes Additive (A), Dominant (D), and three types of Epistatic effects.

MEAN is the simplest approach, since the combined KMEAN kernel is just the arith-
metic mean of the selected kinship matrices. For what concerns FH [48] and CKA [49], 
the combined kernels KFH and KCKA are the result of a linear combination of the avail-
able kinship matrices, weighted by their compatibility (i.e., correlation) with respect to 
the ideal kernel matrix produced by the phenotypic similarity between the training set 
samples. This perfect kernel matrix KY [49] is computed as the outer product KY = YY⊤ 
between the vector Y containing the training set labels for a target phenotype. FH [48] 
and CKA [49] take their names from the two different ways to measure the compat-
ibility between kernel matrices they use (see the “Methods” section for the details). 
CKACLOSED is a variation of the CKA algorithm in which the optimal weights for the 
combination of the kernels are computed jointly, in an analytical closed form [49]. The 
last GMKL approach we tested is GD, which stands for Gradient Descent. In this case, 
the combined kernel KGD is obtained by optimizing the linear combination of the five 
kinship matrices trying to maximize its correlation with the perfect kernel KY . Similarly 
to CKACLOSED, only a single GD score is present in Fig. 1 because we always provided 
all the kinship matrices to the optimizer, allowing it to select the optimal combination of 
weights, possibly silencing kinship matrices corresponding to irrelevant or detrimental 
inheritance mechanisms by assigning weights close to zero.

GMKL positively compares against conventional GP methods on the CATTLE dataset

In Fig.  1, we compared our GMKL approaches to state-of-the-art methods. From top 
to bottom, the orange bars labeled RBF and linSVM show the results of conventional 
SVMs with radial basis function and linear kernels respectively, computed directly on 

Fig. 1  Figure showing the comparison between the 9 methods we benchmarked on the CATTLE dataset. 
The MEAN, FH, and CKA GMKL approaches using 1 to 5 kernel matrices are respectively shown in shades 
of green, red and blue. The gray bars show the additive GBLUP model (light) and the optimal GBLUP model 
(dark), which always use the optimal set of kinship matrices. The phenotypes ranging from zero to four 
involve only A and D effects, with Pheno:0 being 100% additive, Pheno:2 being 50/50%, and Pheno:4 being 
purely Dominant. Phenotypes 5–9 include also epistatic effects. They are composed by a base 33% A and 
D components, plus a 34% epistatic component that is additive-additive (Pheno:5), additive-dominant 
(Pheno:6), and dominant-dominant (Pheno:7). Pheno:8 contains a mixture of all effects

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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the genotype matrix, applying the same minor allele frequencies (MAF) thresholds we 
used to compute the kinship matrices to ensure a fair comparison. The light and dark 
gray bars show respectively the scores of the additive GBLUP(A) model and the optimal 
GBLUP(OP) model. The first uses as covariance matrix only the additive kinship matrix 
(standard GBLUP approach), while the latter always uses the optimal set of kinship 
matrices, corresponding to all the IMs involved in generating each synthetic phenotype 
[25] (see Table 4 for the full list). GBLUP(OP) therefore can be considered as an upper 
bound for the predictions on the CATTLE dataset, since it is not normally possible to 
know which IMs are involved in generating the target phenotype in real-life situations, 
where the phenotypes are not simulated. Finally, the violet bar shows the performance of 
the Convolution Neural Network (CNN) approach on kinship matrices proposed in [25]. 
The standard deviation of the GMKL prediction performances in terms of Pearson cor-
relation across different phenotypes simulations is σ < 0.1 (see Additional file 1: Fig. S1).

GMKL uses the kernel alignment heuristics to rank which kinship kernels are optimal 

for the prediction of each phenotype

An important point to clarify is that, contrarily to GBLUP(OP), our GMKL approaches 
do not access the information concerning the optimal set of kinship matrices for each 
phenotype. MEAN, FH, CKA, CKACLOSED, and GD have access to the five kinship 
matrices, and use their kernel alignment heuristics (see the “Methods” section) to rank 
and reweight the kinship kernels in function of their compatibility (correlation) with the 
ideal kernel matrix KY derived from the labels available during training. Figure 1 shows 
in shades of green (MEAN), red (FH), and blue (CKA) the results obtained by adding 
each kinship kernel matrix one at a time (the numbers 1–5 next to each GMKL model), 
following the order (ranking) provided by the respective MKL heuristic. The CKA-
CLOSED and GD GMKL methods (dark and light pink in Fig. 1) always take as input all 
the five kinship kernel matrices and the kernel combination is made by jointly optimiz-
ing their linear combination weights on the training data.

Therefore our GMKL approaches do not depend on external information when it 
comes to determine the relevance of the IMs associated to each kinship matrix, as the 
GBPLUP(OP) model does, but it relies solely on a heuristic assessment of the kinship 
kernel compatibility with the phenotype at hand. This procedure can be considered anal-
ogous to a feature reweighting in kernel space.

The inheritance mechanisms generating the phenotype influence the prediction 

performances of the GP methods

The 1033 Holstein samples in the CATTLE dataset used in the Fig. 1 are associated to 
nine polygenic synthetic phenotypes generated in [25]. They involve different mixtures 
of Additive (A), Dominant (D), and three types of Epistatic effects: additive-additive 
(EAA ), additive-dominant (EAD ), and dominant-dominant (EDD ). Each of these synthetic 
phenotypes has a polygenic nature, with 1000 randomly sampled causative SNPs and a 
broad sense heritability set to 0.7. We report the exact proportions of the IMs involved 
in generating each phenotype in the Methods “Simulated phenotypes on cattle SNP 
array data” section and in Table 4. In the following we summarize them while we discuss 
the prediction results.
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Predicting the phenotypes in the Additive‑Dominant spectrum

The phenotypes ranging from zero to four involve only A and D effects, with Pheno:0 
being 100% additive, Pheno:2 being 50/50%, and Pheno:4 being purely Dominant. From 
Fig. 1, we can see that for the purely additive Pheno:0, GBLUP(A), and GBLUP(OP) have 
the same Pearson correlation, because they are indeed the same model. Our GMKL 
approaches FH and CKA achieve the best Pearson correlation when using only one kin-
ship kernel matrix, which indeed correspond to the A kinship. As intuitively expected, 
adding kinships built from other IMs generally lowers the prediction performance 
because of the pure additive nature of Pheno:0. The SVM with RBF kernel outperforms 
the linear kernel SVM (orange bars), and slightly outperforms the other methods, show-
ing once again the multipurpose nature of this popular kernel.

The second row of plots in Fig. 1 show the performance measured with the Spearman 
correlation, which evaluates the ability of the predictors to establish a reliable rank over 
the phenotypic values of the samples. This is a relevant metric for GP and even clinical 
genetics, since it assesses how well predictors can sort individuals by EBV (in agrotech) 
or by disease risk (in clinical genetics). From the Spearman scores in the second row of 
Fig. 1, we can see that FH:1 and GD are still the best performing GMKL methods, while 
the RFB SVM drops some points with respect to GBLUP(OP) and GBLUP(A).

When looking at Phenotypes 1–5, we can see that increasing the role of the Domi-
nance effect (D) leads first to a situation in which using multiple kinship kernels (red, 
blue and green bars in Pheno:1,3) is beneficial with respect to the GMKL models using 
only one kernel, indicating that indeed GMKL benefits from combining multiple genetic 
effects, if multiple IMs are involved in the target phenotype. At the same time, the per-
formance of GBLUP(A) and of the linear and RBF SVMs steadily decrease. Interestingly, 
when predicting the purely Dominant Phenotype 4, we see again a situation in which the 
best Pearson correlation is obtained when only one (MEAN) or two (FH) kinship kernels 
are used by our models, which indeed in both cases prioritizes the D kinship matrix over 
the others. The large divide between GBLUP(A) and GBLUP(OP) showcases the risks 
of using the standard additive kinship matrix when the IM generating the phenotype is 
purely D instead. From both the Pearson and the Spearman scores on Pheno:4 we can 
see that all our GMKL methods drastically outperform the Deep NN (DNN) method 
from [25] and the conventional SVM and GBLUP(A) approaches.

On Phenotypes 1–4, our GMKL always performed similarly to the GBLUP(OP) model, 
which has access to the knowledge of which IMs are involved in each phenotype and 
therefore represents the upper bound baseline that could be achieved with perfect infor-
mation on this data.

Adding Epistatic effects to the benchmark showcases the benefit of using GMKL

Phenotypes 5–9 are more complex, since they involve Epistatic effects between the 
causative markers. They are composed by a base 33% A and D components, plus a 34% 
epistatic component that is additive-additive E AA in Pheno:5, additive-dominant E AD 
in Pheno:6, and dominant-dominant E DD in Pheno:7. The last phenotype (Pheno:8) is 
produced by the base A and D components plus it divides its 34% epistatic component 
equally among all the 3 types E AA,AD,DD , 11% each. See Table 4 for details.
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From the green, red, and blue bars in the right half of Fig. 1, we can see that with these 
phenotypes in which multiple IMs are involved, the best GMKL model is always one in 
which at least three or four kernel kinship matrices are combined, highlighting the ben-
eficial effects of our GMKL approach. We can also see that for the most complex pheno-
types (i.e., Pheno:7,8), our GMKL models outperforms even GBLUP(OP), both in terms 
of Pearson and Spearman scores. The joint optimization of the kinship kernel combina-
tion provided by CKACLOSED and GD is among the top GMKL performers in multiple 
phenotypes.

The difference between GBLUP(A) and GBLUP(OP) is the largest for the E AD effect in 
Pheno:6, while it appears that the other epistatic components result in a relatively high 
overall additive effect, as hypothesized in [51]. Both GMKL and GBLUP(OP) consist-
ently outperform the conventional linear and RBF SVMs, as well as the DNN model.

GMKL can formulate hypothesis on the inheritance mechanisms involved in generating 

phenotypic traits

As already mentioned, an important difference between the GMKL and the GBLUP(OP) 
scores shown in Fig. 1 is that, while the GBLUP(OP) method always uses the optimal set 
of kinship matrices to predict each phenotype (therefore exploiting the information on 
the IMs generating each phenotype), our GMKL approaches use the FH or CKA heu-
ristics to infer the most relevant kinship matrices for the prediction of each phenotype 
from the training data.

The ability of our GMKL model to gauge the compatibility of the IMs modeled by the 
kinship matrices with the true genetic effects generating the phenotypes is therefore 
crucial for its GP performance. In Table 1, we evaluate the ability of the FH, CKA, CKA-
CLOSED, and GD MKL approaches we used when it comes to detect the IMs underlying 
the synthetic phenotypes of the CATTLE dataset, using the true genetic effects propor-
tions described in Table 4 as ground truth. Table 1 shows the true IMs, the ranking pro-
vided by each method and the proportion B∗ of correct assignments given in the highest 
ranking k kinship matrices, where k corresponds to the number of IMs truly involved in 
generating each phenotype. Pheno:8 is not shown, since all the IMs are involved in gen-
erating it, and obtaining a perfect B∗ score would therefore be trivial.

Table 1  Table showing the comparison between the True IMs used to generate the synthetic 
phenotypes in the CATTLE dataset with the rankings of the IMs proposed and used by the FH, CKA, 
CKACLOSED (called CLSD here), and GD GMKL methods for their predictions. The B∗ score counts 
how many of them are correctly predicted in the best k ranked IMs, where k is the number of 
TrueIMs involved in each phenotype

Pheno TrueIM FH BFH CKA BCKA CLSD BCLSD GD BGD

0 A A 1 A 1 A 1 A 1

1 A,D A, D 1 A, D 1 A, D 1 A, E DD 0.5

2 A,D A, D 1 A, D 1 A, D 1 A, E AD 0.5

3 D, A D, A 1 D, A 1 A, D 1 D, A 1

4 D A 1 A 1 D 1 D 1

5 A, D, E AA A, D, E AA 1 A, D, E AA 1 A, D, E DD 0.66 A, E AD , E DD 0.33

6 A, D, E AD A, D, E AA 0.66 A, D, E AA 0.66 A, D, E DD 0.66 A, D, E AD 1

7 A, D, E DD A, D, E AA 0.66 A, D, E AA 0.66 A, D, E DD 1 A, D, E DD 1
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From Table 1, we can see that Phenotypes 0–4, which are in the Additive-Dominant 
spectrum, are correctly identified by all methods except GD, which is not able to identify 
the D component in Pheno:1–2, mistaking it for epistasis. All the methods, except CKA-
CLOSED, rank the dominant kinship matrix higher than the additive in Pheno:3, when 
indeed the D component becomes predominant (75% D, 25% A, see Table 4).

From Table 1, it appears that these kernel alignment methods generally find it more 
difficult to correctly identify the exact type of Epistatic effects involved in the phenotype. 
This might be due to the fact that epistatic effects might result in an additive compo-
nent [51, 52], thereby reducing the apparent role of epistasis, consequently lowering the 
relevance of the corresponding kernels. While FH and CKA correctly identify the pres-
ence of E AA in Pheno:5, they are not able to identify the E AD and E DD epistatic effects in 
Pheno:6–7. GD, by contrast, shows once again some confusion between the Dominant 
and Epistatic effects in Pheno:5.

Overall, this benchmark on the synthetic phenotypes of the CATTLE dataset shows 
that FH and CKA methods are generally able to correctly rank which IMs are involved 
in the phenotypes under analysis, in particular when it comes to effects in the Addi-
tive-Dominant spectrum, while the precise type of Epistatic effect involved is harder to 
detect correctly. Nonetheless, all the methods can detect the presence of some form of 
epistasis, when at least one type is present.

Using GMKL for case‑control discrimination of inflammatory bowel disease

Besides the synthetic phenotypes generated on the CATTLE dataset, we extended the 
validation of our model to clinically relevant human data. To do so, we first employed 
SNP array data from an in-house case-control inflammatory bowel disease (IBD) dataset 
containing 3522 samples (2646 cases, 876 controls) and 156,500 SNPs [53]. In this study 
we will further refer to this dataset as IBDSNP.

IBD is a multifactorial disease where genetic as well as environmental factors impact 
the gut microbiome, the intestinal barrier and the immune response, eventually result-
ing in chronic inflammation of the gastrointestinal tract [54]. The important socio-
economic impact of this incurable and chronic disease, together with its rising global 
prevalence [55], makes it a very relevant test case. In the last decades, over 300 asso-
ciated genetic loci have been identified [56] through genome-wide association studies, 
with NOD2 being one of the most relevant genes [57]. However, the intricate process of 
how these risk variants and genes interact together to produce the heterogeneous group 
of IBD phenotypes remains largely unresolved [50].

In Fig. 2 we show the benchmark, obtained in a fivefolds crossvalidation, comparing 
the prediction performance of our GMKL methods with GBLUP and conventional ML 
methods such as a RBF SVM, a logistic regression and a ridge classifier [58].

From the AUC and AUPRC scores in Fig.  2 it appears that GBLUP results are very 
similar, regardless of the number of kinship matrices used to specify the model covari-
ance structure.

On the other hand, the GKML MEAN, FH, and CKA models monotonically benefit 
from the combination of multiple kinship matrices, suggesting that multiple IMs could 
be at play. The joint kernel combinations provided by CKACLOSED and GD provide 
similar prediction scores as well.
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GMKL can formulate hypothesis on the inheritance mechanisms underlying IBD

What is more interesting, is the way in which our GMKL methods rank the contribution 
of the 5 IMs under scrutiny. We summarize these rankings in Table 2. FH and CKA sub-
stantially disagree on the rankings of the IMs, with CKA placing Dominance in the first 
place, followed by Additivity and the Epistatic effects. The FH and GD rankings, on the 
other hand give more relevance to the epistatic effects, in the following order: E AA , E DD , 
and E AD . The weights assigned to the A and D IMs are negligible for both FH and GD. 
The similarity between FH and GD can be explained by the fact that, as shown in Eq. 12, 
GD and FH both use the F-heuristic (see Eq. 8) in their computation, with the differ-
ence that GD jointly optimizes the linear combination of the kernels, while FH does it 
in a univariate way. CKACLOSED ranking is closer to CKA, except for the inversion 
between the E DD and A effects. Since CKACLOSED performs a joint optimization of 
the kernel weights, including a whitening transformation to remove linear correlations 
between them, we consider its IM hypotheses to be the most mathematically sound (see 

Fig. 2  Figure showing the balanced accuracy (BAC), area under the ROC curve (AUC), and area under 
the precision-recall curve (AUPRC) for the benchmark of our GMKL approaches with GBLUP and other ML 
methods on the IBDSNP dataset

Table 2  Table showing the rankings proposed by the FH, CKA, and GD methods for the IMs 
described by the A, D, E AA , E AD , and E DD kinship kernels on the IBDSNP dataset

FH 
ranking

FH 
weights

CKA 
ranking

CKA 
weights

CKACLOSED 
ranking

CKACLOSED 
weights

GD 
ranking

GD weights

EAA 0.364 D 0.027 D 1818.91 EAA 0.343

EDD 0.269 A 0.025 EDD 1516.01 EDD 0.323

EAD 0.232 EDD 0.018 A 1205.03 EAD 0.221

D 0.070 EAD 0.018 EAD 917.83 D 0.056

A 0.062 EAA 0.018 EAA 558.59 A 0.055
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the Methods “Using kinship matrices for biological meaningful Genomic Multiple Ker-
nel Learning” section and [49]).

Validating the GMKL predictions on an independent whole exome sequencing IBD dataset

To further validate the GMKL ability to discriminate between IBD cases and controls, 
and the consistency of the IMs rankings produced across datasets, we benchmarked our 
GMKL methods on a completely different IBD case-controls Whole Exome Sequenc-
ing dataset from dbGAP. It contained 3798 samples (3318 cases vs. 480 controls), and 
it has been used in [50] to train and test end-to-end GI Neural Networks (NN) mod-
els for case-control in silico discrimination. We refer to this dataset as IBDWES in this 
study, to differentiate it from the previously used SNP array-based dataset. To adapt the 
WES data to the conventional genotype matrix format that GP methods take as input, 
we transformed the 2,121,171 variants in IBDWES in that standard format, representing 
each variant with its zygosity (0,1,2). We then filtered them by removing monomorphic 
variants and by keeping only variants with 0.01 < MAF < 0.2 , to keep the computation 
of the kinship matrices feasible by limiting the RAM used by the Sommer R package. 
Since this MAF filtering might be too stringent, removing the most variable loci in the 
dataset, we compared it with other approaches. They include (i) the random sampling 
of 50k variants, (ii) the selection of a non-redundant set of variants, ensuring that their 
all-against-all Pearson correlation is < 0.5 , and (iii) the selection of just the variants with 
0.2 < MAF < 0.5 . The results of this comparison are shown in Additional file 2. In 10 
cases of the 17 total ( 59% ), our original MAF filtering was the best performing in terms 
of AUC. The second best approach is the sampling of a non-redundant set of variants, 
which yields the highest AUC 29% of the times. See the “Methods” for the details about 
the IBDWES dataset and the processing steps.

Figure 3 shows the fivefold cross validation performance of our five GMKL methods, 
compared with GBLUP, two conventional ML methods (RF and logistic regression), and 
three GI NN models from [50]. On this data, our MEAN models slightly outperform 
the GBLUP models, but AUC scores are generally very similar. In general, the benefit of 
combining multiple kinship kernels is less pronounced than in the IBDSNP dataset, but 
still noticeable, particularly for MEAN.

Linear models could reach high performance by modeling the additive component of epistasis

On the IBDWES and IBDSNP data, the additive GBLUP:1 model reaches high perfor-
mance, but at the same time shows little benefit from the introduction of additional kin-
ship matrices. This behavior can be explained by the fact that real-life datasets generally 
have noisy and heterogeneous conditions that may confound or dilute the inheritance 
mechanisms signals. In these settings, the low complexity (high bias) of the linear mod-
els is beneficial as it translates into robustness [50].

From a biological perspective, the high performances of additive models such as 
GBLUP:1 can be further explained by the possibility to approximate epistatic effects by 
their additive components, as shown in [51]. Even purely epistatic effects might result 
in a noticeable additive component [52, 59–61], which could explain why nonepistatic 
mechanisms could be partially explanatory for the phenotype [52], in particular at 



Page 12 of 25Raimondi et al. Genome Biology           (2025) 26:84 

relatively low sample size, where it is still difficult to reliably infer more complex patterns 
[50].

Deep learning GI models offer the best performance

The best performing models in terms of AUC are the NNd and NNb neural networks 
proposed in [50] (purple bars), while the BAC and AUPRC scores are more similar. 
Besides the fact that these end-to-end NNs do not filter out any of the WES variants as 
a preprocessing step, the main difference with GMKL lies in the way the genetic data 
is integrated into the model. In the kernel methods, the genetic data is used to com-
pute a marker-based similarity between the samples, resulting in kinship matrices that 
no longer hold information on the individual variants and genes, because of the dataset 
underdetermination and the impossibility to compress information about individual var-
iants in a small kinship matrix. While these matrices can take into account inheritance 
mechanisms, they are not specifically tailored to the phenotype and its causal variants.

Except for the newly introduced NNd and NNb e2e NN GI models, which have a 
slightly higher AUC, Fig. 3 shows that our GMKL approaches consistently perform on 
par with state-of-the-art methods and more conventional approaches on two unrelated 
IBD datasets, generated with completely different sequencing technologies and cohorts.

The inheritance mechanisms identified by GMKL are similar across IBD datasets

We then analyzed the ranking of the kinship kernel matrices produced by our GMKL 
methods on the IBDWES dataset, comparing them with the ones we previously obtained 
on the IBDSNP dataset. These results are shown in Table 3. We can see that the ranking 

Fig. 3  Figure showing the comparison between the nine methods we benchmarked on the IBDWES dataset. 
The MEAN, FH, and CKA GMKL approaches using one to five kernel matrices are respectively shown in shades 
of green, red, and blue. The black to gray bars show the additive GBLUP models, while the bottom bars show 
the performance obtained by the Neural Networks methods proposed in [50]
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provided by FH is quite similar to the one shown in Table 2, in the sense that the epi-
static effects are deemed the most relevant, with once again negligible weights for the 
A and D IMs. The only difference is that the relevance of the E DD and E AD is swapped 
between the two datasets.

Also the CKA ranking is macroscopically identical, in the sense that D and A effects 
are indicated to be the most relevant, while the epistatic effects have 32% lower weights, 
but are still not negligible.

The ranking provided by the GD method is identical to the FH column in Table 3 and 
similar to the GD results shown in Table 2, in the sense that also in this case the epistatic 
effects are indicated to be the most relevant, with the same inversion between E DD and 
E AD shown in the FH ranking. Both these methods assign one order of magnitude lower 
weights to the A and D IMs. Finally, there is little agreement between the IM ranking 
provided by CKACLOSED between the IBDSNP and IBDWES datasets.

Discussion
Epistatic effects may be important genetic drivers of IBD

IBD is a multifactorial disease where environmental and genetic factors produce per-
turbations on different pathways that are relevant for the homeostasis between the gut 
microbiome, the intestinal barrier, and the host immune system, eventually leading to 

Table 3  Table showing the rankings proposed by the FH, CKA, and GD methods for the IMs 
described by the A, D, E AA , E AD , and E DD kinship kernels on the IBDWES dataset

FH 
ranking

FH 
weights

CKA 
ranking

CKA 
weights

CKACLOSED 
ranking

CKACLOSED 
weights

GD 
ranking

GD weights

EAA 0.378 D 0.028 EDD 6600.12 EAA 0.316

EAD 0.309 A 0.026 D 3919.44 EAD 0.300

EDD 0.265 EAA 0.019 EAD 1676.01 EDD 0.280

D 0.024 EAD 0.019 A 1142.83 A 0.052

A 0.022 EDD 0.019 EAA 437.25 D 0.051

Table 4  Table summarizing the inheritance mechanisms involved in generating the nine synthetic 
phenotypes used in DS1. The numbers indicate the mean contribution of each type of inheritance 
towards the simulated phenotype. These values have been reported from [25] and shown here for 
clarity

Phenotype 
Number

Mean inheritance mechanism contribution Description

µA µD µEAA
µEAD

µEDD

0 100 0 0 0 0 Purely additive phenotype

1 75 25 0 0 0 Predominantly additive

2 50 50 0 0 0 Mixture of additive and dominance

3 25 75 0 0 0 Predominantly dominant

4 0 100 0 0 0 Purely dominant phenotype

5 33 33 34 0 0 Mixture of additive, dominant and E AA
6 33 33 0 34 0 Mixture of additive, dominant and E AD
7 33 33 0 0 34 Mixture of additive, dominant and E DD
8 33 33 11.3 11.3 11.3 Mixture of all the effects considered
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the dysregulated immune response and chronic inflammation that characterizes the dis-
ease. Multiple identified risk and protective variants can be mapped on different disease 
pathways, together leading to the complex spectrum of IBD symptoms and phenotypes 
[62]. It is therefore not surprising that variants and genes affecting such an intricate sys-
tem would exhibit complex interaction patterns, such as epistasis. Our previous work on 
the case-control prediction of IBD showed empirical evidence for the presence of epista-
sis between genes [50], by demonstrating a predictive advantage of including such inter-
actions in the model. This has already been hypothesized for Crohn’s disease [52], and it 
has been shown for severe very-early onset IBD, which exhibits Mendelian inheritance 
patterns with casual rare genetic variants [62], and where interactions between multiple 
genetic factors can modulate its severity [57, 63].

Since our GMKL method uses heuristics to evaluate the compatibility between kinship 
kernels corresponding to different inheritance mechanisms (IMs), it can be used also to 
empirically formulate hypothesis on the IMs involved in generating the predicted phe-
notypes. In Table 1, we benchmarked the reliability of the identified IMs on the CATTLE 
dataset synthetic phenotypes, showing that identifying phenotypes in the A-D spectrum 
is relatively easy (in particular for FH and CKA), while discerning the specific types of 
Epistasis is more difficult. Nonetheless, the methods appear to be reliable when they are 
just asked to identify the presence or absence of any form of epistasis.

In Tables 2, 3, we used our GMKL to rank the kinship kernels corresponding to the 
5 IMs hypothesis we consider, on two different IBD cohorts. While the results are not 
identical, much is preserved between the two tables, even if the two datasets are com-
pletely different in terms of samples and sequencing technology (SNP array and WES). 
In particular, if we collapse the three types of epistasis into a single category E∗ , we see 
that all methods assign a nonnegligible relevance to it. FH and GD rank it the highest, 
CKACLOSED assigns the highest ranking to a form of epistasis in both datasets, and 
the weights assigned to E∗ kernels by CKA is just around 30% lower than A and D, and 
we therefore cannot consider it as an attempt to completely discard it, like the A and D 
matrices for FH and GD (see Tables 2 and 3).

To empirically verify the relevance of the epistatic effects E∗ for the IBD prediction, 
thereby possibly corroborating our previous findings [50], we compared the prediction 
performance obtained with the GMKL models when respectively considering only A, D 
or A,D,E∗ effects on both datasets. On the IBDSNP dataset, adding the three E∗ kernels 
on top of the A and D ones increases AUC performances significantly for all the GMKL 
methods (DeLong [64] p-values: 1.7× 10−11 , 7.9× 10−05 , 5.2× 10−08 , 6.4 × 10−15 , and 
3.3× 10−05 for MEAN, FH, CKA, CKACLOSED, and GD, respectively). We see simi-
lar results on the IBDWES dataset, with the AUC improvements because of the inclu-
sion of the E∗ kernels being significant for the MEAN (DeLong [64] p = 0.0003 ), CKA 
( p = 0.04 ), and CKACLOSED ( p = 0.0003 ) GMKL methods.

Similarly to our previous work [50], here we provide empirical evidence for the impor-
tance of epistasis in the genotype-to-phenotype modeling of IBD, although through a 
completely different approach and data. In both studies, the incorporation of epistasis, 
although through two conceptually different computational approaches, enhances pre-
diction. Moreover, in contrast to most existing evidence for epistasis in IBD, typically 
investigating the interaction between only a limited set of susceptibility loci [65–69], our 
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GI approaches manage to model epistasis without the need to explicitly predefine the 
interacting variants or genes.

Using the kernel alignment heuristics to rank inheritance mechanisms

While the kernel alignment heuristics used in MKL can improve the predictive signal 
and lower the contribution from kernel matrices that poorly correlate with the target 
labels, the exact weights used to combine these kernel matrices have limited impact on 
the end results. Indeed, lowering the contribution of a kernel matrix only reduces the 
variance associated with the features in the corresponding high-dimensional space, but 
these features can, under certain circumstances, still be exploited by the ML model for 
prediction. More specifically, lowering the weight of a kernel has the effect of decreas-
ing the scale of its corresponding features in the high-dimensional space, and therefore 
shifting them toward lower principal components. However, the number of dimensions 
visible to the ML model is bounded by the size of the training set. Indeed, any positive-
definite kernel matrix of size n× n can be decomposed into n eigenvector-eigenvalue 
pairs, therefore limiting the number of dimensions to n in practice. Because the latter 
is finite, the consequence is that there is always a point at which reducing the weight of 
a kernel ensures that the corresponding features are (almost) no longer reflected in the 
n principal components, and can no longer be used by the ML model for prediction. 
Therefore, the differences in weights that should be highlighted when using our GMKL 
to hypothesize the IMs underlying the phenotype under prediction are the most drastic 
drops, such as the ones assigned by FH to D and A IMs in Tables 2, 3, instead of more 
gradually decreasing rankings (i.e., CKA weights in Table 3).

How to choose a MKL heuristic for genomic prediction

In this article, we used two kernel alignment heuristics (FH [48] and CKA [49]) to build 
and benchmark five GMKL methods (MEAN, FH, CKA, CKACLOSED, and GD) for GP, 
showing that these methods can both predict the phenotypes and formulate hypotheses 
on the IMs underlying them. But which of the GMKL approaches we tested should be 
used in practice, on unseen data?

In terms of predictions, these GMKL methods perform similarly, without a clear win-
ner, as shown in Figs. 1, 2, 3. In terms of the detection of the IMs underlying the pre-
dicted phenotype, there is a disagreement between the FH and CKA alignment methods, 
as shown in Tables  2  and  3. This disagreement is due to the algorithmic differences 
between these two approaches: while they all build on the idea of kernel alignment, in 
CKA and CKACLOSED, the alignment is computed after centering the kernel matrices 
[49], therefore turning the alignment function into something closer to an actual cor-
relation metric, while this step is not considered in FH, MEAN, and GD [48] (see the 
Methods “Using kinship matrices for biological meaningful Genomic Multiple Kernel 
Learning” section). The centering of the kernels is a theoretical improvement of CKA/
CKACLOSED over FH/GD, as explained in [49]. Moreover, CKACLOSED performs a 
whitening transformation on the kernel alignments to remove the linear correlations 
between them. Because the CKACLOSED algorithm appears to be the most mathemati-
cally sound kernel alignment method currently available in literature, we recommend 
the users to rely on this approach for their analyses. This might change in the future, 
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if novel approaches are proposed, for example allowing a nonlinear combination of the 
kernels.

Conclusion
In this article, we propose novel Genomic Multiple Kernel Learning (GMKL) meth-
ods for Genomic Prediction and Genome Interpretation (GI). GMKL revolves around 
using the kinship matrices commonly used to determine the similarity between sam-
ples in GBLUP models as biologically meaningful kernels in support vector machines 
(SVM) models, using them for the regression or binary classification of quantitative and 
phenotypic dichotomic traits. Several kinship matrices, mirroring different inheritance 
mechanisms (IMs), such as Additive, Dominant, and different Epistasic models, can be 
combined with kernel alignment techniques, obtaining GMKL models with a complete 
view of the IMs underlying the phenotype under study.

We show that our GMKL approach positively compares with conventional Machine 
Learning (ML) approaches and GP methods, such as GBLUP, evaluating it both on syn-
thetic data and two inflammatory bowel disease (IBD) cohorts.

More importantly, we show that our GMKL approach is can rank the IMs generat-
ing the phenotype by evaluating the compatibility of the kinship kernels corresponding 
to each IM with the training set data. This allows our approach to effectively produce 
hypotheses on the IMs generating the target phenotypes, opening new possibilities for 
the understanding of the relationship between genomic data and the observed pheno-
types, and taking a step towards Explainable ML.

Methods
Datasets

Simulated phenotypes on cattle SNP array data

We retrieved from [25] an Illumina BovineSNP50 Beadchip dataset involving 1033 
pure-bred Holstein Friesian samples genotyped [21]. After quality control based on call-
rate, MAF and the removal of SNPs with unknown map position or mapped on the sex 
chromosomes [21, 25], the final dataset contains 26,503 SNPs. We also retrieved nine 
simulated phenotypes computed on this data [25]. We refer to the combination of these 
genotypes and the corresponding simulated phenotypes as CATTLE dataset in this 
paper.

We summarize here the procedure used in [25] to generate them. These phenotypes 
have been generated with the Simphe R package [70] with different mixtures of Additive 
(A), Dominant (D), and Epistatic effects. Three types of epistasis have been considered: 
additive-additive (EAA ), additive-dominant (EAD ), and dominant-dominant (EDD ) [25].

To mimick the polygenicity of the traits, the simulated phenotypes are functions of 
1000 randomly-sampled SNPs. We refer to these SNPs as Quantitative Traits Markers 
(QTMs), since they are artificially causative for the nine phenotypes. To each QTM, 
Simphe assigned an effect sampled from Gaussian distributions with inheritance mech-
anism-specific means µA,µD,µEAA ,µEAD ,µEDD , and variance σ 2

∗  equal to 10% of the cor-
responding mean µ∗ . The sign of the effect of each QTM is randomly generated, with 
equal probabilities of positive and negative contributions to the final phenotype to 
remove biases toward reference/alternative alleles[25]. Additional Gaussian noise has 
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been added to simulate a broad-sense heritability of 0.7. The mixtures of A, D, and E ∗ 
effects used to generate these phenotypes are summarized in Table 4. See [25] for more 
details.

The inflammatory bowel disorder SNP array data

SNP array data of an in-house case-control dataset including 2646 IBD cases and 876 
controls was used. Genotyping was performed using Immunochip (Illumina). Immuno-
chip is a high-throughput genotyping chip based on the Illumina Infinium chip includ-
ing approximately 240,000 SNPs [71]. The majority of these (196,524 SNPs) are based 
on genome-wide association studies of 12 autoimmune and inflammatory diseases, 
including Crohn’s disease (CD) and ulcerative colitis (UC). The remaining approximately 
25,000 SNPs are from other diseases and included as control (null-SNPs). The main 
puproses of the Immunochip were finemapping of known loci, and replication of sugges-
tive associations. SNPs on the Immunochip were mapped on the GRCh37/hg19 build of 
the human genome.

Quality control (QC) on the genotype data was performed according to [53] with 
missingness per person < 0.02 , heterozygosity rate within 95% interval, missingness per 
SNP < 0.02 and Hardy-Weinberg equilibrium p-value (computed on controls) > 10−10 . 
We then applied a final number of SNPs after QC is 156,500. We refer to this dataset as 
IBDSNP.

Whole exome sequencing IBD data

From the inflammatory bowel disease (IBD) Exome Sequencing Study (dbGaP 
phs001076.v1.p1) [72], we retrieved 3318 IBD cases and 480 controls. Similarly to IBD-
SNP, the 3318 cases consist of the two main subtypes of IBD: 2036 Crohn’s disease (CD) 
patients and 1215 ulcerative colitis (UC) patients[50]. For 67 cases, the IBD subtype is 
unknown (indeterminate colitis). In the control group, 39.4% of the participants are male 
compared to 46.7% of the cases. The data is provided as a VCF file listing the observed 
variants. From this, a total superset of 2,121,171 biallelic variants was extracted, describ-
ing them with a 0,1,2 value indicating their zygosity in each sample. We then filtered out 
the monomorphic variants, and we applied a MAF filtering. This time we used 0.2 as 
maximum MAF threshold instead of the 0.5 used on the previous datasets because the 
sommer [44] R package used to compute the kinship matrices was requiring excessive 
RAM memory. This resulted in a total of 118001 variants. We refer to this dataset as 
IBDWES.

Building kinship matrices

Genotypes coming from SNP array data are traditionally represented as a N ×M geno-
type matrix M where N is the number of samples, M the number of observed SNPs and 
each position Mi,j contains the simplified allele count 0, 1, 2 for biallelic loci. This repre-
sentation is also called marker count matrix or minimal allele count matrix [34] in litera-
ture, and it is used as input features for ML [47] and statistical methods such as MBLUP 
[36], linear regressions [13, 39], and SVMs with conventional kernels [19, 31, 47].

Kinship matrices (also called Genomic Relationship Matrices) are generally computed 
from the genotype matrix M with some variation of a scaled and centered inner product 
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G = MM⊤

m  [8, 36, 43] and therefore are Positive Definite symmetric matrices. They can 
be built to measure the similarity between genomic samples from the point of view of 
several genetic inheritance mechanisms, including additive (A), dominant (D), addi-
tive-additive (EAA ), additive-dominant (EAD ) and dominant-dominant (EDD ) epistasic 
effects[25, 43, 45].

In this article we compute the A, D, E AA , E AD , and E DD kinship matrices with the R 
package sommer [44]. We first filtered the input genotype matrices M to include only 
markers with Minor Allele Frequency (MAF) between 0.01 and 0.5.

Linear Mixed Models and RKHS Regression for Genomic Prediction

The Genomic Best Linear Unbiased Prediction (GBLUP) is a member of the Linear 
Mixed Model (LMM) family [33, 36] that has been adapted for GP[35, 36]. It leverages 
genomic information, typically represented by SNP array data, to estimate the genetic 
merit of individuals for agriculturally relevant traits [13]. The model can be written as

where µ is the dataset mean for the trait y , u is the vector of random genetic effects, 
assumed to follow a multivariate normal distribution u ∼ N (0,Gσ 2

a ) , G is a genomic 
relationship (kinship) matrix and e is the vector of residual errors, assumed to follow 
a normal distribution e ∼ N (0, Iσ 2

e ) [25]. GBLUP derives the genetic information from 
the kinship matrix G , which captures the pairwise genetic relationships among indi-
viduals, usually in terms of additive effects. Reproducing Kernel Hilbert Space (RKHS) 
regression extends previous model by allowing G to be constructed from pairwise eval-
uations of a reproducing kernel, therefore implicitly constructing a Hilbert space, and 
enabling the nonlinear modeling of genomic information [28, 30].

Also, the GBLUP model in Eq. 1 can be extended to include multiple kinship matrices 
at the same time [25]:

where each random effect ui is sampled from a different random variable 
ui ∼ N (0,Giσ

2
i ) whose covariance matrix Gi is defined by the kinship matrix computed 

considering different inheritance mechanisms IM = {A,D,EAA,EAD,EDD} , correspond-
ing to additive, dominant or epistatic effects [43–45]. Usually it is suboptimal to include 
kinship matrices corresponding to inheritance mechanisms that are not involved in the 
phenotype under study [25], and the standard GBLUP model shown in Eq. 1 is preferred, 
equipped with just the additive kinship matrix GA.

In this article, we use two versions of the GBLUP model as baseline. We call the first 
GBLUP(A) because it corresponds to Eq.  1 and uses only an additive kinship matrix. 
The second is based on Eq.  2 and it is called GBLUP Optimal (GBLUP(OP)) because 
on the CATTLE dataset it always has access to the optimal set of random effects that 
correspond to all the known inheritance mechanisms involved in generating the nine 
synthetic phenotpes, and it is therefore an approximation of the optimal predictions that 
can be obtained on this data. See Table 4 for the details of the inheritance mechanisms 
involved in each synthetic phenotype. We implemented these GBLUP models with the 

(1)y = µ+ u + e,

(2)y = µ+
i∈IM

ui + e
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BGLR R package [29]. We provide a Python wrapper to this package here: https://​bitbu​
cket.​org/​eddie​wrc/​gmkl/​src/​main.

Kernel learning methods

Kernel methods are a type of instance-based learners. Instead of learning the parameters 
w associated to the feature representation φ(xi) for each target object xi , they learn a 
weight ai for each training sample (xi, yi) ∈ T  . The prediction of unseen samples xj /∈ T  
is computed as the weighted sum of a similarity function k(xj , xi) between the target 
sample xj and the training samples xi ∈ T .

This function k : X × X → R is a symmetric positive definite function commonly 
called kernel function. It corresponds to the inner product K (xi, xj) = �φ(xi),φ(xj)� 
of the samples x in the feature space produced by φ(x) . The representer theorem [73] 
states that a function f (i.e., a ML model) minimizing an empirical risk function (i.e., an 
objective function used for training f) can be equivalently be expressed as the (1) linear 
combination of the weights w and the features φ(x) or (2) as an instance-based model 
obtained by the linear combination of a parameter ai for each training sample xi and the 
similarities between samples provided by K:

The right hand side of Eq. 3 formula is called kernel expansion and provides an equiva-
lent dual formulation that allows expressing the relationships between data points xi in 
a transformed space without explicitly computing the transformations φ(xi) , enabling 
working in high-dimensional or even infinite-dimensional spaces, as in the case of Radial 
Basis Functions (RBF) kernels.

Support vector machines

Support vector machines (SVMs) are a specific instance of kernel learning methods that 
aim at finding the best hyperplane �w, x� + b = 0 separating the two classes, namely the 
one with the largest distance 2/‖w‖ from any of the samples [46]. Here, we briefly recap 
the SVM algorithm for the binary classification case, see [74] an in-depth explanation.

Given a dataset D = {(x1, y1), ..., (xn, yn)} with n samples xi ∈ R
m and prediction labels 

yi ∈ {−1, 1} , SVMs aim at finding the optimal hyperplane separating the two classes. 
Hyperplane w is found by solving the following constrained optimization problem:

where C is the penalty term for misclassified samples (soft-margin SVM). Contrarily to 
the kernel expansion in Eq. 3, the SVM algorithm does not consider all the training sam-
ples when computing the decision function. The decision hyperplane is instead based on 
a subset of the data, called support vectors, for which the constraints in the second term 
of Eq. 3 are active, meaning that they lie inside the margin: �w, xi� + b = yi . SVMs are 
therefore also called sparse kernel machines. The Lagrangian of this problem is given by

(3)f (x′) = �w,φ(x′)� + b =
N
∑

i=1

aiK (x′, xi)+ b.

(4)
minw,b wTw + C

n
∑

i=1

ζi,

subject to yi(w
Tφ(xi)+ b) ≥ 1− ζi ∀i ∈ {1, . . . , n},
ζi ≥ 0 ∀i ∈ {1, . . . , n},

https://bitbucket.org/eddiewrc/gmkl/src/main
https://bitbucket.org/eddiewrc/gmkl/src/main
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where r, a are Lagrange multipliers.
After solving the Karush-Kuhn-Tucker conditions, the SVM objective function 

becomes

In the dual formulation (Eq. 6), the kernel k(xi, xj) emerges, allowing the SVM to learn 
a linear decision function (hyperplane) over an implicit space that is a possibly highly 
nonlinear transformation of the original data space wherein each xi point lies. In Addi-
tional file 1: Section S1 we discuss the connection between SVMs and the RKHS regres-
sion methods used in GP.

Multiple kernel learning

Various kernels have been designed to operate on specific types of data, including docu-
ments, strings[49], text[75], graphs, trees [76], and biological sequences [77, 78].

Selecting the appropriate kernel Ki for the data at hand is indeed crucial [49, 79], and 
ways to combine P kernels KP(xi, xj) = fν

(

{Kp(x
p
i , x

p
j )}Pp=1

)

 have been developed [79]. 

They can be used to incorporate in the SVM model different notions of similarity on the 
same data, or to combine heterogeneous sources of information, evaluating each with a 
data-specific kernel [79, 80].

These techniques fall under the term of multiple kernel learning (MKL) [79]. Initial 
MKL approaches focused on modifying the SVM optimization algorithm to jointly learn 
the SVM parameters and the parameters ν of the function fν used to combine the ker-
nels (one-step approches) [79, 81], but the added computational complexity and the gen-
erally disappointing results [49, 82] pushed researchers towards two-steps approaches in 
which the combined kernel KP(xi, xj) is first devised offline, for example using heuristic 
techniques, and it is then used in a conventional SVM [49].

Using kinship matrices for biological meaningful Genomic Multiple Kernel Learning

In this article, we compare five heuristic two-steps MKL methods to combine kinship 
kernels for GP, and we describe them here. For each dataset used in this article, we com-
puted the additive (A), dominant (D), additive-additive (EAA ), additive-dominant (EAD ), 
and dominant-dominant (EDD ) epistasic effects[25, 43, 45] with sommer [44]. We refer 
to these kinship kernels as base kernels in the following text, to avoid loss of generality 
since the MKL methods described here are valid for any choice of input kernels.

These methods assume that the theoretically optimal kernel is the ideal one derived from 
the outer product of the training labels KY = YY⊤ , and that each kernel Ki can be ranked in 
function of its alignment with KY  [83]. We use two notions of alignment between kernels, 

(5)

L(w, b, ζ , a, r) =
1

2
wTw + C

n
∑
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ζi −
n
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the F-heuristic proposed in [48] and the Centered Kernel Alignment (CKA) proposed in 
[49]. The F-heuristic measures the correlation between two matrices and it is defined as

where �·, ·�F indicates the Frobenius inner product �A,B�F =
∑L

i=1

∑L
j=1 aijbij for two 

matrices L× L [48].

FH method:  The F-heuristic computes the Pearson correlation between kernels, and these 
values are then used to define a linear combination KFH of the kernels Ki based on these 
alignment weights:

we refer to this approach as FH in the results section of the article.

MEAN, CKA, and CKACLOSED methods:  The CKA method extends this approach by 
centering the kernels in the feature space first [49], and then computes the F-heuristic align-
ment on them. The authors of [49] claim that without centering, there is no guarantee that 
the alignment provided by F (Eq. 7) truly correlates with the prediction performance. To 
combine the centered base kernels, the authors of [49] propose three approaches. The sim-
plest one, that we call MEAN, is to compute the combined kernel as the arithmetic average 
of the centered kinship base kernels:

where we used the superscript c to denote the centering described in [49].
The second approach, which we call CKA, computes the combined kernel:

as a linear combination of the centered kinship kernels Kc
i  , weighted proportionally to 

their F alignment with the perfect kernel KY .
The weighted linear combination above computes the kernel weights independently from 

each other, meaning that it ignores the possible correlation between the base kernel matri-
ces [49]. To overcome this issue, in [49] they proposed a method to determine the kernel 
mixture weights µi jointly. We call this approach CKACLOSED, since it can be computed 
in the following closed form:

where M is the matrix defined as Mij = �Kc
i ,K

c
j �F∀i, j ∈ [1,P] and a is the vector 

a = (�Kc
i ,KY �F , ..., �Kc

P ,KY �F )⊤ [49].
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GD method:  The last method is called GD because it uses pytorch [84] Gradient 
Descent optimization to learn the optimal weights w to combine the base kernels to 
maximize the alignment F(KGD,KY ) , with the following maximization:

We applied a softmax to the weights w to ensure that each wi ≥ 0 , therefore ensur-
ing that the resulting combined matrix KGD is PSD, since the sum of kernels is a 
kernel.

Evaluation of the performance

We evaluated the prediction performance using a fivefold cross-validation on all the 
datasets used. The metrics used are specific to each dataset. The synthetic phenotypes 
in the CATTLE dataset are real-valued, and therefore we evaluated them with the 
Pearson correlation and the Spearman correlation which evaluates the ability of the 
predictors to establish a reliable rank over the samples. This is a relevant metric in GP, 
since it measures how reliably these methods can be used to select the samples with 
the highest breeding value, assuming that higher phenotypic values are desirable [25].

The two IBD datasets provide a binary classification problem (cases vs. controls), 
and therefore we used the area under the receiver operating characteristic (ROC) 
curve (AUC), the area under the precision-recall curve (AUPRC), and the balanced 
accuracy, which is the mean between sensitivity and specificity.
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