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Abstract 

Background:  Spatial transcriptomics allows gene expression to be measured 
within complex tissue contexts. Among the array of spatial capture technologies avail‑
able is 10x Genomics’ Visium platform, a popular method which enables transcriptome-
wide profiling of tissue sections. Visium offers a range of sample handling and library 
construction methods which introduces a need for benchmarking to compare data 
quality and assess how well the technology can recover expected tissue features 
and biological signatures.

Results:  Here we present SpatialBenchVisium, a unique reference dataset generated 
from spleen tissue of mice responding to malaria infection spanning several tissue 
preparation protocols (both fresh frozen and FFPE, with either manual or CytAssist tis‑
sue placement). We note better quality control metrics in reference samples prepared 
using probe-based capture methods, particularly those processed with CytAssist, 
validating the improvement in data quality produced with the platform. Our analysis 
of replicate samples extends to explore spatially variable gene detection, the outcomes 
of clustering and cell deconvolution using matched single-cell RNA-sequencing data 
and publicly available reference data to identify cell types and tissue regions expected 
in the spleen. Multi-sample differential expression analysis recovered known gene 
signatures related to biological sex or gene knockout.

Keywords:  Spatial transcriptomics, Benchmarking, 10x Visium, Multi-sample analysis, 
Differential expression

Background
Spatial transcriptomic technologies allow gene expression to be measured in complex 
tissue samples in an x-y context [1, 2]. The main approaches for spatially resolving tran-
script expression rely on either imaging based in situ hybridization-based methods (e.g., 
MERFISH [3], seqFISH [4], and CosMx SMI [5]), in  situ sequencing-based methods 
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(e.g., STARmap [6] and HybISS [7]), or array-based sequencing protocols (e.g., Visium 
[8], Slide-Seq1 and 2 [9, 10], and Stereo-Seq [11]). Methods vary considerably in terms of 
the spatial resolution they allow (from sub-cellular to multi-cell) and number of features 
that can be measured (from small focused gene panels to genome-wide expression). The 
rapid expansion in both the spatial transcriptomic protocols available to researchers and 
subsequent analysis methods [12] introduces a need for benchmarking to compare the 
performance of different combinations of platforms and analysis approaches [13]. Recent 
cross-platform benchmarking efforts include the cadasSTre project [14] which focuses 
on sequencing-based methods across a range of mouse tissues, comparison analyses of 
imaging-based methods on human cancer and mouse brain tissue [15, 16], and SpaceTx 
which includes both imaging and sequencing-based technologies using human brain and 
mouse primary visual cortex tissue [17]. Other benchmarking studies aim to evaluate 
the performance of analysis methods developed for different pre-processing and down-
stream procedures [18–21].

One popular sequencing-based method at present is the commercially available 
Visium method from 10x Genomics. Visium’s experimental process involves the capture 
of spatially barcoded mRNA transcripts on a slide, followed by reverse transcription, 
library preparation, and sequencing. The resulting data integrates gene expression pro-
files with spatial coordinates. A notable feature is Visium’s versatility in terms of sample 
compatibility, being able to accommodate both fresh frozen (OCT) and formalin-fixed, 
paraffin-embedded (FFPE) samples, expanding its applicability to a broad range of tissue 
types and experimental conditions. This flexibility allows researchers to leverage existing 
FFPE archives, overcoming the limitation of previous single-cell and spatial technologies 
that are restricted to OCT preserved tissue [22].

A question that requires exploration for Visium technology was how different sample 
handling methods affect data quality, spatially variable gene detection, and downstream 
analysis results. To address this, we generated the SpatialBenchVisium reference dataset, 
which includes replicate tissue sections that span different sample handling methods, 
including fresh frozen with manual tissue sectioning and polyA library preparation and 
the CytAssist (CA) automated method that uses a probe-based protocol, as well as FFPE 
with manual sectioning or CytAssist (which both use probe-based protocols).

Mouse spleens responding to malaria infection were selected as a reference tissue in 
our study. As Plasmodium spp. are blood-borne parasites, the spleen constitutes a key 
site in the immune response to infection, with antibody responses playing an impor-
tant role in protection [23–27]. The development of this antibody-mediated immunity 
requires the establishment of germinal center (GC) structures in lymphoid organs, 
where activated B cells undergo antibody affinity maturation. GC responses to malaria 
have been found to be regulated by transcription factors, such as T-bet, which are pref-
erentially activated in response to the highly inflammatory milieu elicited during acute 
infection [28, 29]. This infection thus provides an excellent experimental system to not 
only investigate functional organ architecture but also analyze specific structures within 
the spleen only visibly upregulated in response to an active infection. Samples from 
both male and female mice along with Tbx21fl/flCd23Cre (conditional knockout of T-bet 
in mature follicular B cells) samples were included in our study, allowing us to explore 
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our ability to recover sex-specific gene signatures as well as examine spatial influence of 
T-bet on GC response.

We use these data to compare sample handling and analysis methods, and develop 
a workflow for multi-sample analysis that is able to recover expected ground truth in 
terms of both tissue architecture and differential expression of known gene signatures.

Results
Reference samples profiled using 10x Visium and scRNA‑seq technology across different 

sample handling × protocol combinations

Our study profiled mouse spleen responding to malaria infection (Fig. 1a) in a total of 13 
samples (Fig. 1b) sequenced across 4 experiments on an Illumina NextSeq 2000 instru-
ment (Additional file 1: Table S1). The samples were processed in 4 different ways (or 
“sample types”): OCT manual, OCT CA, FFPE manual, and FFPE CA (Fig. 1b). These 
refer to tissue preservation, either as fresh frozen at optimal cutting temperature (OCT) 
or formalin-fixed paraffin-embedded (FFPE), and tissue placement, either directly 
placed (manual) or using CytAssist (CA). Samples were of different genotypes and sexes 
(wild type (WT) females, T-bet knockout (KO male) or control (CTL male), where the 
KO and CTL samples were available as OCT preserved only. We grouped these samples 
by sample type and will refer to them as such. We will also make reference to the dif-
ferent OCT manual experiments, KO vs CTL and WT, and the 2 FFPE manual experi-
ments, earlier and later based on sequencing date. Samples processed by FFPE and also 
those prepared with CytAssist use probe-based ligation protocols for library construc-
tion, whereas OCT with manual tissue placement uses a poly-A-based capture method. 
A separate matching single-cell RNA-seq dataset was also generated from three FFPE 
samples.

The data processing workflow builds upon scRNA-seq analysis, with the additional 
use of spatial coordinate information in steps such as feature selection and clustering 
(Fig.  1b). An overview of our dataset shows that across all experiments, probe-based 
samples had higher UMI counts and numbers of detected genes, particularly the CytAs-
sist samples (Fig. 1c, d). Spots located beyond tissue boundaries, and many spots with 
low UMI counts and few detected genes were filtered out during quality control (Fig. 1b).

Probe‑based samples have higher UMI counts

Tissue sections were placed on a Visium slide containing 4992 spots that were used to 
measure gene expression. The number of spots that were covered by tissue depends on 
both its size and shape. Across our experiments using mouse spleen, an average of 1957 
spots (39%) were covered by tissue (range: 592–3224, see Additional file 1: Table S2). The 
amount of sequencing carried out for each sample was adjusted such that larger tissue 
sections were sequenced more deeply, to have on average the same number of reads per 
spot than smaller tissue samples.

Samples had a mean of 39,616,270 valid UMI counts, that is, UMIs covered by tis-
sue. As we used a probe set designed with one probe-pair per transcript [30], the num-
ber of UMIs per spot were expected to be comparable across poly-A- and probe-based 
approaches. Across each experiment, the poly-A-based OCT manual samples had a 
mean of 23,642,694 valid UMI counts with sequencing saturation ranging from 0.70 to 
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Fig. 1  Overview of the experimental workflow, data generated and its analysis. a The mouse spleen and 
major cell types (B, T and plasma cells, erythrocytes, neutrophils, and macrophages) and structures (germinal 
centers which are predominantly made up of B cells) expected following infection, which are organized 
into broader tissue regions (red and white pulp). Figure created with BioRe​nder.​com. b 13 samples were 
captured over 4 10x Genomics Visium OCT slides and 3 FFPE slides, and sequenced over 5 runs on an Illumina 
NextSeq 2000. Samples are categorized by sex, genotype, tissue preparation protocol, library construction 
protocol, and tissue placement. A matching scRNA-seq sample of 3 mouse spleens was captured over 1 
gel bead-in emulsion (GEM) well, and gene expression and hashtag oligos (HTOs) were sequenced over 
1 Illumina run. Subsequent data analysis involved processing with 10x Genomics Space Ranger 2.0.0, and 
quality control, feature selection, dimensionality reduction, and downstream analysis using various R-based 
software packages. Figure created with BioRe​nder.​com. c Violin plots of UMI counts per spot for all samples, 
grouped by tissue preparation protocol. The y-axis is on a log10 scale for clarity. d Violin plots of number of 
genes detected per spot for all samples, grouped by tissue preparation protocol. e A scatterplot showing the 
fraction of reads captured by spots under tissue against the mean number of reads per spot. The order of 
experiments is reflected in the shared legend

https://biorender.com
https://biorender.com
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0.77. For probe-based samples (FFPE manual and CA), the valid UMI count mean was 
higher at 41,630,649 with notably lower sequencing saturations of 0.24–0.53, except for 
FFPE CA sample 713 (0.79). Separately, the CA experiment had the highest mean valid 
UMI count of 70,815,948, and the later FFPE manual experiment’s mean (50,309,451) 
was almost double that of the earlier FFPE manual experiment (26,355,327).

Poly-A-based OCT manual samples had a mean of median UMI counts per tissue-
covered spot of 8360. This is lower than our probe-based experiments which had higher 
sensitivity; with the earlier FFPE manual experiment having a median of 33,390 UMI 
counts per spot, the later FFPE manual experiment at 21,730, and the CA experiment at 
24,804. Within each experiment, UMI counts were generally consistent across samples. 
FFPE CA sample 713, however, had a notably lower UMI count and a median UMI count 
of less than half compared to the other CA samples (Fig. 2a). Differences between poly-
A and probe-based experiments are shown for sample 709 as an example in Fig. 2b and 
c. They can also be observed in OCT manual samples (KO vs CTL and OCT) having 
lower counts in Additional file 2: Fig. S1. An edge bias was also apparent, characterized 
by higher UMI counts along the edges of the OCT manual samples.

We also assessed the extent of spot swapping with SpotClean [31], an effect where 
RNA bleeds to surrounding spots, leading to a spot containing UMIs from different 
origins which can confound downstream analyses. This effect has been seen with the 
OCT manual protocol and our results suggest that the use of CytAssist tissue placement 
may correct for it. The average bleeding rate for our OCT manual samples was 0.47 and 
for the FFPE manual samples it was 0.52. For CA samples, this was much lower at 0.11 
(Additional file 1: Table S2).

Probe‑based samples have higher mapping confidence

Reads mapped with more than 85% confidence to the probe set in our probe-based 
experiments. All samples in the earlier FFPE manual experiment and the CA experiment 
had reads mapped with more than 97% confidence, whilst the later FFPE manual experi-
ment ranged between 85 and 98%. This was expected as probe sets are highly specific to 
known sequences in the reference transcriptome. We also observed that poly-A-based 
experiments (OCT manual plus two related OCT manual experiments not included in 
this dataset) had lower values of reads being mapped confidently to the transcriptome 
(66–79%).

CytAssist facilitates the capture of more reads under tissue

Importantly, although some samples from earlier experiments had higher sequencing 
read numbers, the fraction of reads in spots under tissue was close to 100% for sam-
ples placed with CytAssist (Fig. 1e). This is another indication of higher quality over-
all, as a lower proportion of reads would have been filtered out from these samples 
during quality control. In contrast, approximately 65–87% of reads fell within tissue 
boundaries for OCT and FFPE manual samples. For some samples like OCT manual 
460 and FFPE manual 708, a notable amount of sequencing reads were assigned to 
spots outside the boundary of the tissue sections. Tissue boundaries are annotated 
by imaging processing software, but some images or areas of the tissue can be blurry 
and boundary definitions can be inaccurate, making it difficult to decide whether a 
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spot falls within or outside of tissue boundaries. The improvement in reads captured 
within tissue boundaries for CytAssist experiments may be attributed to enhance-
ments implemented in the CytAssist platform.

Fig. 2  Quality control procedures. a The spatial distribution of UMI counts per spot in FFPE CytAssist (CA) 
samples 709 and 713. b Quality control metrics for FFPE CA sample 709 following filtering with scater. c 
Quality control metrics for OCT sample 709 following filtering with scater. d UpSet plot showing the overlap 
of detected genes in all samples, categorized by sample type. Detected genes are defined as genes with a 
count of 3 or more in at least 10% of spots. e Venn diagram of genes in all FFPE manual samples, manual and 
with CA. f Venn diagram of genes in all OCT samples, manual and with CA
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Removing low‑quality spots

The initial phase of all analysis workflows involves evaluating data quality. This includes 
the detection of outlier spots, removal of low-quality spots, and normalization (Fig. 1b). 
Only spots covered by tissue were retained. They were then further filtered out from 
downstream analyses if specific criteria for library size, detected features, and mitochon-
drial content were not met, indicative of low quality. Per-spot metrics were computed, 
and outliers were identified using the scater [32] package. Following spot filtering, nor-
malization using scRNA-seq methods from scater and scran [33] was applied.

Following quality control, the proportion of spots covered by tissue remaining for 
further analysis was greater than 0.90 for all probe-based samples, except FFPE manual 
sample 708 (0.87) (Additional file 1: Table S2). On average, this was 0.95 for probe-based 
samples, compared to 0.83 for poly-A-based samples, as lower proportions of UMIs and 
spots were removed, especially in CA samples. This led to higher proportions of UMIs 
per spot and spots under tissue passing quality control and being retained for down-
stream analysis. Samples from the earlier FFPE experiment retained an even higher 
average proportion of spots (0.96) following filtering. However, these samples initially 
started with low numbers (<1000) and low proportions (on average, 0.14) of spots under 
tissue. Additionally, they displayed the highest proportions of UMIs removed among 
probe-based samples, further restricting the number of spots available for downstream 
analysis.

Different genes are detected for poly‑A‑based OCT manual samples than other sample 

types

The poly-A-based capture method, used for OCT manual samples, selects genes or tran-
scripts by their poly-A tail, in theory allowing any expressed gene to be detected given 
sufficient sequencing. This is in contrast with the other sample types (OCT CA, FFPE 
manual, and FFPE CA), where genes are selected using a uniform set of probes. For these 
probe-based samples, only genes that are both expressed and within the probe set can be 
detected. However, as the number of features is smaller in the probe set, more genes can 
be detected at a given sequencing level.

Across our samples, we identified 1,636 genes detected in OCT manual samples that 
used poly-A-based gene selection (Fig. 2d). Here, we define detected genes as genes with 
a count of 3 or more in at least 10% of spots under tissue remaining after quality con-
trol. For probe-based gene selection, a much higher number of genes were detected; 
5800 genes for OCT CA samples and 6681 for FFPE manual and 6581 for FFPE CA 
samples. Sample 709 is used to show these differences in Fig. 2b and c. In total, 38% of 
19,465 genes targeted in Visium Mouse Transcriptome Probe Set v1.0 were detected in 
the probe-based samples. The largest overlap in detected genes is between the 3 probe-
based sample types. The effect of probe-based gene selection on OCT manual tissue for 
detected genes is apparent in Fig. 2f, as there is a much smaller overlap (22.6%) between 
OCT manual and OCT CA samples, compared to the high overlap (84.3%) between 
FFPE manual and FFPE CA samples.

At a more lenient threshold of detected genes being defined as genes with a count of 3 
or more in at least 1% of spots (Additional file 2: Fig. S2), the largest overlap in detected 
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genes instead includes all 4 sample types, with more than 3 times the number of genes 
than at the stricter threshold. This implies that most of the original overlapping genes 
between poly-A-based and probe-based samples were very lowly expressed under the 
poly-A protocol. On the contrary, at both thresholds, the peak overlapping all probe-
based samples showed similar numbers of genes (3708 at 10%, 3775 at 1%).

It is worth noting that specific sets of genes, such as mitochondrial genes, were miss-
ing from probe-based samples (Fig.  2b), making detected genes inconsistent between 
poly-A-based and probe-based samples. Additionally, there were 177 genes detected 
only in OCT manual samples (Fig. 2d), of which there were no mitochondrial genes, but 
57% were either ribosomal or mitochondrial ribosomal protein genes. These were also 
not detected in the probe set as expected. However, of the remaining 43%, more than 
half were included in the probe set, although not detected in the probe-based samples 
according to the detection threshold used. These consisted mainly of mitochondria-
related genes, though a few immune-related genes were detected such as Csf1, character-
istic of red pulp macrophages [34], and Cd7 expressed in T cells [35]. OCT-manual-only 
genes that were not found in the probe set include Hba-a1 expressed in erythrocytes 
[36], and Ccl19 and Ccl21a involved in T cell immune responses [37].

Downstream analysis by sample type

Following pre-processing of individual samples, we applied a standard Bioconductor 
workflow [38] to explore feature selection and clustering. Highly variable genes (HVGs) 
could be identified using established scRNA-seq methods from the scran package [33] 
(Fig. 3a, top row), though HVGs are notably defined based on expression data alone and 
do not consider spatial information. Clustering was also possible following scRNA-seq 
methods with default parameters, deriving clusters in each sample without using spa-
tial coordinates. However, different numbers of clusters were obtained for each sample 
(Fig. 3b).

In addition to not using spatial information, a limitation of using common feature 
selection and clustering methods was the necessity to process samples individually, mak-
ing it difficult to derive broader insights between both biological and technical replicate 
samples. This challenge is further complicated when comparing samples from different 
conditions, such as KO and CTL genotypes. For example, cluster 1 in one sample may 
not correspond to cluster 1 in another sample, necessitating the need for labels to be 
resolved through cell type deconvolution. For a more integrative analysis approach, we 
processed multiple samples simultaneously by sample type, allowing for consistent clus-
ter labels within each batch.

Feature selection

We identified spatially variable genes (SVGs) using nnSVG [39], making use of the spatial 
information in our data (Fig. 3a, bottom row). nnSVG was run in multi-sample mode, 
which firstly finds SVGs in individual samples and ranks them. Ranks of genes that 
reached statistical significance with an adjusted p value below 0.05 are averaged across 
all the samples in a batch to produce a cross-sample rank. Additional gene filtering was 
performed individually per sample and log−counts were then re-calculated. The output 
is a single list of SVGs and their overall ranks across all replicates of the same sample 
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Fig. 3  Summary of downstream analyses. a Top: Spatial expression of the top 2 HVGs for FFPE CA samples. 
HVGs were identified for each sample, but are shown together here, as the top 2 HVGs were the same in both 
samples. Bottom: Spatial expression of the top 2 SVGs for FFPE CA samples. These were identified in a single 
gene list generated through a multi-sample approach. b Clusters identified in each FFPE CA sample following 
a standard Bioconductor workflow. c UpSet plot showing the overlap of the top 1000 SVGs in each sample 
type for all wild type (WT) samples. d Venn diagrams showing unique and overlapping SVGs between FFPE 
samples and between OCT samples, with and without CytAssist, among the top 1000 SVGs. e Top: A UMAP 
plot showing spatial clusters numbered from 1 to 7) across both FFPE CA samples, identified by iSC.MEB. 
Bottom: Spatial cluster 7 projected onto tissue images. f Top: A heatmap showing scores for expression of cell 
type marker gene groups in each cluster (1–7) compared to all other clusters in FFPE CA samples. Bottom: 
The aggregate gene expression of the T cell marker genes in cluster 7. g A deconvolution plot of confident 
weights for T cells generated by spacexr for FFPE CA samples. h FFPE CA samples 709 and 713 with annotated 
spatial clusters following deconvolution and marker gene expression analysis
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type. When comparing the top-ranked (1000) SVGs between different sample types, we 
observe that, reassuringly, the largest overlap are genes shared in common between all 
4 sample handling methods (Fig. 3c). A multidimensional scaling (MDS) plot generated 
using pseudo-bulk counts obtained for each sample based on the commonly detected 
SVGs (Fig. 3c) shows the variation in dimensions 1 and 2 are mostly explained by the 
gene capture method (poly-A versus probe-based, Additional file 2: Fig. S3). Within the 
FFPE and OCT groups, there is also relatively high agreement between FFPE manual 
and FFPE CA samples, and OCT manual and OCT CA samples have equal proportions 
of unique SVGs (Fig. 3d). The second largest category corresponds to OCT-manual-spe-
cific SVGs, drawing attention to the systematic differences between poly-A and probe-
based results highlighted previously. However, upon considering all significant SVGs, 
we find more genes are identified as spatially variable in probe-based platforms, with 
3380 SVGs from the OCT manual samples versus a mean of 8555 genes for probe-based 
sample types (OCT CA, FFPE manual, and FFPE CA) (Additional file 2: Fig. S4a). This 
observation is also supported by the higher intersection of FFPE manual and FFPE CA 
SVGs, and OCT CA only genes occupying a greater percentage of all OCT manual SVGs 
(Additional file 2: Fig. S4b). These findings reinforce the need to analyze OCT manual 
samples that used poly-A-based gene selection separately from samples that use the 
probe-based version of the Visium technology.

There is a high degree of overlap between the top SVGs and top HVGs, indicating 
that a significant amount of biological signal in our dataset is captured by the spatial 
distribution of cells, particularly in red pulp and white pulp. For FFPE CA samples, the 
highest overlap between all gene lists—HVGs from sample 709, HVGs from sample 713, 
and multi-sample FFPE CA SVGs—was ∼0.76 , at the intersection of 537 genes (Addi-
tional file 2: Fig. S4c). These lists also share the same top gene, Car2 (Fig. 3a), following 
removal of highly abundant hemoglobin and immunoglobulin genes [40].

Gene Ontology (GO) terms enriched amongst the top 1000 SVGs in FFPE CA samples 
relate to immune activation and regulation, with focus on leukocytes and lymphocytes 
like B cells, which are active during an immune response [41, 42] (Additional file 2: Fig. 
S4d). Inspecting the spatial distribution of additional highly ranked SVGs reveals two 
distinct cell clusters and gene expression profiles (Additional file 2: Fig. S5). It is clear 
from pathology image analysis using a trained classifier (Additional file 2: Fig. S6) and 
further downstream analysis that these reflect the distribution of red pulp and white 
pulp, the two major regions of the spleen [43].

Clustering

Methods adapted from single-cell analysis workflows were previously demonstrated on 
individual samples. In our multi-sample approach with spatially aware clustering, we 
could derive clusters that were concordant across all samples types using the iSC.MEB 
[44] package. Normalized counts of each sample in a sample type group were combined 
into a single matrix for iSC.MEB to perform principal component analysis (PCA) to 
obtain principal components (PCs). The top 10 PCs were then used for spatial cluster-
ing to obtain cluster labels. iSC.MEB also offers differential expression analysis, which 
was used in guiding cluster refinement to avoid over-clustering of spots. As a result, we 
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identified 7 spatial clusters in FFPE CA samples (Fig. 3e), and both samples appear to 
have been integrated evenly following batch correction (Additional file 2: Fig. S7).

Cell type deconvolution

Using these spatial clusters, we first examined the expression of marker genes selected 
from previous studies and literature search (see Methods  section) that are particular 
to the cell types (B, T and plasma cells, macrophages, neutrophils, and erythrocytes) 
expected in a spleen responding to infection. We developed a cluster score approach 
using groups of marker genes that could be used to identify a cell type or tissue region 
(Additional file 3: Table S3), defining the score as the log-fold change between one clus-
ter and all other clusters (see Methods section). This is demonstrated in Fig. 3f for FFPE 
CA samples, which shows distinct scores reflecting prominent cell types, for clusters 
3–7 in particular. The score for (red pulp) macrophages was not as high as for red pulp 
and erythrocytes, which may be due to the exclusion of some marker genes from the 
probe set. Cluster scores for the major regions present in this spleen model (germinal 
center, red pulp, marginal zone, and white pulp) were also included to investigate their 
cell type compositions. Their scores signify that mostly erythrocytes constitute the red 
pulp, B cells and some T cells can be seen in the marginal zone, and germinal centers, 
B cells, and T cells are located in white pulp, aligning with their expected distributions 
[45]. The strong signal for germinal centers also reflects the presence and robust activity 
of these structures during an immune response.

The high-performing spacexr [21, 46] (formerly Robust Cell Type Decomposition 
(RCTD)), was also chosen to perform cell type deconvolution. spacexr uses annotated 
scRNA-seq data to generate gene expression profiles for each cell type in the reference. 
It then fits a probabilistic model to estimate cell type proportions for each spot and cre-
ates spatial maps of cell types, fitting each spot as a linear combination of individual cell 
types. There are different modes to process data with one, two, or an unknown number 
of cells in each spot. We used the latter multi-mode recommended for Visium, which 
can accommodate for more than two cell types per spot and considers all such cell types 
when estimating proportions. We also used our matching scRNA-seq reference dataset. 
Estimates can be classified as confident, and the distribution of confident weights infer-
ring cell type proportion can be visualized in a spatial map as shown in Fig. 3g. From this 
analysis, we were able to consolidate the classification of major cell types B cells, T cells, 
erythrocytes, and neutrophils.

To evaluate the performance of our matching scRNA-seq reference, we also performed 
deconvolution with a public mouse spleen dataset [47]. We compared the proportion of 
spots with confident assignments as a metric, defining confidence as a confident weight 
calculated by spacexr of greater than 0.5. The public reference was more finely annotated 
initially and required additional grouping of cell types into broader categories, after 
which it produced similar results to those generated with our matching reference.

With the public reference, proportions ranged from 0.73 to 0.86 for FFPE manual sam-
ples, 0.60 to 0.90 for OCT manual samples, 0.85 to 0.89 for FFPE CA samples, and 0.83 
to 0.93 for OCT CA samples. With our matching reference, proportions ranged from 
0.65 to 0.85 for FFPE manual samples, 0.49 to 0.91 for OCT manual samples, 0.83 to 
0.84 for FFPE CA samples, and 0.88 to 0.94 for OCT CA samples. Samples in the earlier 
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FFPE experiment (460, 463, and 463) were also observed to have lower proportions 
(0.65–0.79) than those in the later FFPE experiment (0.80–0.85) when using the Spatial-
BenchVisium reference. Notably, all CA samples had high proportions above 0.8, though 
overall, these results are not necessarily indicative of data quality. For example, FFPE 
manual sample 709 has more mean reads per spot and a higher fraction of reads in spots 
under tissue than OCT manual sample 708 (Fig. 1e), but its proportion metric is lower at 
0.81, compared to OCT manual sample 708’s 0.91.

Spatial cluster annotation

We combined our results from all the above steps in the multi-sample downstream 
analysis to assign cell type labels to each spatial cluster. It is important to consider that 
Visium does not provide single-cell resolution, and therefore a singular label is not 
entirely reflective of the cell type proportions at each spot. Nonetheless, we assigned 
labels for the most abundant cell type in each cluster and showcase an effective visual 
representation of the mouse spleen during infection (Fig. 3h). We observed similar cell 
type compositions across each protocol (Additional file 2: Fig. S8).

While the classification of most cell types was relatively straightforward, varied results 
were presented during the assignment of red pulp clusters. This issue was observed 
across all sample type groups. The top HVG and SVG in FFPE CA samples, Car2, is 
a marker gene of erythrocytes [48] and can be seen expressed in a distinctive spatial 
pattern, with a wide outer edge around the spleen and in a series of circular structures 
in the middle of the tissue (Fig. 3c). The distribution of confident weights for erythro-
cytes exhibited a similar pattern following cell type deconvolution (Additional file 2: Fig. 
S9). Our image segmentation classifier (see Methods  section) also mirrored this pat-
tern, showing a clear distinction between the red pulp and white pulp regions (Addi-
tional file 2: Fig. S5). However, the clusters in question, 1 and 5, appeared to be distinct 
in the cluster UMAP (Fig. 3e) and cluster scores (Fig. 3f ), separating into inner and outer 
regions of spots. Yet, the highest score for cluster 1, albeit low, pointed to erythrocytes. 
Ultimately, these clusters were both labeled as red pulp.

Overall, our results align with the structures and lack of architecture consistent with 
malaria infection [45] (Fig. 1a). There is less organization and definition observed in the 
structures containing B cells and T cells, B cell follicles and T cell zones respectively, and 
transient loss of marginal zones (Fig. 3h). A key detail is the striking presence of germi-
nal centers, which are formed in response to infection.

Comparing gene expression between replicate male and female spleens

We also used sex-specific differences between samples as ground truth to evaluate dif-
ferential expression between CTL (male) and WT (female) OCT samples from experi-
ment 2. We clustered spots jointly for all CTL and WT OCT samples (Fig.  4a and 
Additional file 2: Fig. S10), identifying erythrocyte (clusters 3, 4, and 6), B cell (cluster 
5), neutrophil (cluster 1), germinal center (cluster 2), plasma cell (cluster 7), and T cell 
(cluster 8) enriched spots using the marker genes described above (Fig. 4b and c). For 
each cluster, we then aggregated spot counts at the sample-level, filtered genes with low 
counts using edgeR [49, 50] and performed differential expression (DE) analysis with 
the limma-voom [51] pipeline comparing male versus female samples. Figure 4d shows 
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an MA plot (log-fold-change versus average expression) for the male versus female DE 
comparison within the B cell cluster, with plots for the other clusters included in Addi-
tional file 2: Fig. S11. Chromosome X genes that were previously identified as X inactiva-
tion escape genes in mouse spleens [52] (17 genes were in the original list, one of which 
is not present in the CellRanger reference we used, all remaining 16 genes are detected 
in at least one of the samples used in the DE analysis) and chromosome Y genes (a total 

Fig. 4  Pseudo-bulk differential expression analyses using biological sex as the ground truth. a A UMAP plot 
showing clusters identified by iSC.MEB across CTL (male) and WT (female) OCT manual samples. b Heatmap 
of expression scores generated using marker genes for different cell types or tissue regions expected in 
the spleen for each spatial cluster compared to all other clusters. c Spatial plot showing spots annotated 
using cluster maker gene expression from b. d Log-fold-change vs mean expression plot of the differential 
expression analysis between male and female samples based on pseudo-bulk counts from cluster 2 
(annotated as B cell enriched cluster). Sex-specific genes are highlighted in color (red: chromosome Y genes, 
blue: genes that escape X inactivation in mouse spleen). e Barcode plot of male versus female differential 
expression (DE) analysis results from pseudo-bulk counts from the B cell cluster (cluster 2), with the ranks of 
sex-specific genes highlighted in color (red: chromosome Y genes, blue: genes that escape X inactivation in 
mouse spleen)
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of 10 genes located on chromosome Y are detected in at least one sample) are differ-
entially expressed in the expected direction (i.e., upregulation of chromosome Y genes 
and downregulation for X inactivation escape genes) for the major clusters (Fig. 4d high-
lights these genes in the B cell cluster DE analysis). Barcode plots highlighting these 
genes shows clear enrichment in the major clusters, with Fig. 4e showing the ranks of 
these sex-specific genes in the B cell cluster DE results, and Additional file 2: Fig. S12 
showing barcode plots for other clusters. Table 1 summarizes the results from applying 
the ROAST gene set test [53] to the sex-specific signature across the spatial DE cluster 
comparisons, with statistically significant p values for enrichment obtained in all cases.

Comparing gene expression between replicate knockout and control spleens

We also applied pseudo-bulk DE analysis to the T-bet knockout (KO) and control (CTL) 
OCT manual samples and assessed the level of agreement in results with those from a 
previous bulk RNA-seq study, where cell sorting was used to select for germinal center B 
cells from mouse spleens 15 days post-malaria infection in samples with the same geno-
types [29] (see Methods section). All KO and CTL spleen samples were clustered jointly 
and we obtained 5 distinct cell type/tissue region clusters after marker gene based anno-
tation, including erythrocyte (clusters 2, 4, and 6), B cell (cluster 1), T cell (cluster 7), 
plasma cell (cluster 5), neutrophil (cluster 3), and germinal center (cluster 8), which is 
similar to what was obtained for the previous sex-based comparison. Figure 5a shows the 
spatial distribution of the annotated clusters, and Additional file 2: Fig. S13a and b shows 
the iSC.MEB clustering result and S13c shows the marker gene heatmap used for cluster 
annotation. After aggregating spot counts and filtering genes with low expression, we 
performed DE analysis comparing the B cell cluster from the KO samples against the 
CTL samples. The T-bet regulated genes from the previous study are highlighted in the 
spatial DE analysis results for the B cell cluster in both an MA plot (Fig. 5b) and barcode 
plot (Fig. 5c) to highlight the concordance. Enrichment of this gene set in B cell cluster 
was tested using ROAST, which gave a p value of 0.0068 suggesting enrichment of this 
signature and highlighting concordance between the Visium and bulk RNA-seq results.

Furthermore, Visium allowed us to extract additional information that could not be 
deduced from previous bulk RNA-seq analysis on sorted GC B cells [29]. Conditional 
deletion of T-bet in the B cell compartment identified numerous DE genes not only in 
the B cell cluster (237 genes) but also in other populations in the spleen in response 

Table 1  ROAST p  values from testing the enrichment of a sex-specific gene signature in the 
pseudo-bulk differential expression analysis between male and female spleen samples per 
annotated cluster or tissue region

Low count gene filtering was performed for each cluster individually, resulting in a different number of genes from the sex-
specific set that could be tested for enrichment in each cluster

Cluster ROAST p value Set size

B cell 0.000065 22

Erythrocyte 0.0000025 22

Germinal center 0.000225 18

Neutrophil 0.00049 16

Plasma cell 0.00075 19

T cell 0.0011 19
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to malaria infection. For instance, 106 genes were differentially expressed in the T cell 
cluster, and Gene Ontology (GO) enrichment analysis of these genes revealed terms 
involved in antigen-receptor mediated signaling (GO:0050851) and cytoplasmic transla-
tion (GO:0002181) were downregulated (Additional file 2: Fig. S14), illustrating how the 
absence of T-bet in B cells has important indirect downstream effects on T cell function. 
It has been previously found that ubiquitination in GC B cells prevents premature exit 
of antigen-experienced B cells from the GC reaction [54]. We observed downregulation 
of multiple terms involved in ubiquitination by the absence of T-bet in the B cell clus-
ter (GO:0030433 ubiquitin-dependent ERAD pathway; GO:0010992 ubiquitin recycling) 
and GC cluster (GO:0006513 protein monoubiquitination; GO:0031398 positive regula-
tion of protein ubiquitination) suggesting that this transcription factor might contribute 
to the enhanced ubiquitination activity required to allow the development of high affin-
ity B cells clones in the GC reaction.

Discussion
We have created SpatialBenchVisium, a unique multi-sample spatial benchmark-
ing dataset which profiles the mouse spleen as a reference tissue, generated using 10x 
Genomics’ Visium spatial technology. By harnessing Visium’s capacity to use both OCT 
and FFPE tissues, and integrate optimized workflows from the CytAssist platform, we 
systematically evaluated different sample handling protocols, data quality, and perfor-
mance in various downstream analyses. We applied an effective workflow to extensively 

Fig. 5  Pseudo-bulk differential expression analyses of T-bet knockouts. a Spatial plot of KO and CTL OCT 
manual samples with marker gene based annotated clusters. b Log-fold-change vs mean expression plot 
of the differential expression analysis between KO and CTL samples based on pseudo-bulk counts from B 
cell enriched cluster. A signature of differentially expressed genes in T-bet knockout compared to control 
samples from Ly et al. [29] are highlighted in color (red: upregulated genes, blue: downregulated genes) 
and T-bet is highlighted by a blue triangle. c Barcode plot of knockout versus control differential expression 
analysis results from pseudo-bulk counts from the B cell cluster, with the ranks of a set of previously identified 
differentially expressed genes following knockout of T-bet highlighted in color (red: upregulated genes, blue: 
downregulated genes)
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analyze the dataset, generating group-level cluster labels, identifying expected cell 
types, and validating existing biological knowledge of spleen dynamics during immune 
responses.

We observed that probe-based samples exhibited higher UMI counts, mapping con-
fidence, and had greater proportions of retained spots after quality control than poly-
A-based samples. The additional use of CytAssist in sample handling produced higher 
data quality, capturing almost all reads in spots located within tissue boundaries. This 
is important as only such tissue-covered reads pass the initial stage of quality control. 
Our findings validate 10x Genomics’ expectations for the CytAssist platform, which was 
designed to improve data quality through the enhanced localization of transcripts within 
tissue by using optimized reagents, precise microfluidic control, and automated work-
flow steps. For poly-A-based samples, the lower mapping confidence may be attributed 
to the presence of unknown sequences or non-poly-adenylated transcripts in the refer-
ence, resulting in a larger proportion of unused reads. This contrasts with probe-based 
capture methods, where probe sets exhibit higher specificity to a pre-defined number of 
known sequences. This specificity, combined with workflow modifications, may explain 
the lower average sequencing saturation observed compared to the less efficient poly-A-
based capture of full-length transcripts. In these poly-A-based samples, we also detected 
a bias showing higher UMI counts along tissue edges. A possible explanation could be 
sub-optimal permeabilization conditions in our experiments, which can impact sensitiv-
ity and spatial resolution [55]. Unlike FFPE manual and CytAssist workflows which use 
standard conditions [56, 57], OCT manual sample preparation involves tissue optimi-
zation experiments to determine optimal permeabilization conditions for tissues before 
library sequencing. Yet our permeabilization time was established following optimi-
zation performed under 10x Genomics’ guidance, closely aligning with their in-house 
results. Overall, our results may therefore indicate inherent limitations with the poly-A-
based protocol. It is worth noting that, however, a number of genes including some in 
the probe set were only detected in OCT manual samples, after filtering. Of these genes, 
there were several related to immune response and red pulp. Moreover, certain cell type 
marker genes were absent from the probe set. Without significant efforts to design cus-
tom probes, probe-based data also lack the ability to measure genetic variation in tran-
scripts or isoform-level expression variation if long-read sequencing were applied to the 
library [58, 59], and are only available for human and mouse species at present, which 
will affect the derivation of meaningful biological insights in many applications. These 
considerations will motivate the use of poly-A capture in some studies despite its poorer 
sensitivity.

As the field of spatial transcriptomics has evolved following single-cell transcriptom-
ics, methods have emerged to integrate spatial information [60]. Many of these were 
initially adapted from scRNA-seq data analyses [1] and have proven to be adaptable 
in procedures such as pre-processing in spatial transcriptomics workflows [61]. Our 
own workflow incorporated scRNA-seq analysis steps following a Bioconductor work-
flow [38], using established packages like scater and scran. We also investigated differ-
ences between HVGs and SVGs identified with scRNA-seq and spatial analysis tools, 
respectively, and observed considerable overlap. This implies that the spatial distribution 
of cells, particularly within the major regions (red pulp and white pulp) of the spleen, 



Page 17 of 26Du et al. Genome Biology           (2025) 26:77 	

effectively captures biologically meaningful information in our dataset [46]. From 
another perspective, this outcome may also suggest that HVGs suffice in downstream 
analyses. However, it should be noted that sensitivity is compromised in the absence of 
spatial information, rendering scRNA-seq tools only a short-term solution. For example, 
while library size is commonly considered an technical artifact and used for normaliza-
tion in single-cell analyses, variation in library sizes across tissue structures more accu-
rately reflect biological rather than technical variation in spatial data [60]. This warrants 
caution when adopting single-cell methods to spatial data analysis.

The efficacy of our matching scRNA-seq dataset was assessed with cell type decon-
volution, showing comparable results to an established public reference [47] and out-
performing it in several instances. The proportion of spots in each sample that were 
assigned highly confident cell type labels generated through deconvolution, served as 
the performance metric. Several reference-guided deconvolution methods evaluated 
in previous benchmarking studies [18, 21] were also explored, though we encountered 
various challenges in installation and computational efficiency, before advancing with 
spacexr. To streamline future analyses, we have included our scRNA-seq dataset in Spa-
tialBenchVisium as a practical option, alleviating additional efforts required to source, 
compare, and further process different public references.

Major cell types and structures expected within a mouse spleen during malaria infec-
tion, including B cells, T cells, neutrophils, and germinal centers, were identified through 
a combination of various downstream processes. The spatial distributions of these com-
ponents provided a detailed visualization of the formation of germinal centers and the 
disrupted organization of B and T cells, characteristic of an immune response. However, 
a challenge emerged concerning the labeling of red pulp, as clusters separating inner and 
outer regions of spots were identified. These clusters were ultimately assigned a single 
label based on our findings from SVG expression, deconvolution of erythrocytes, and 
image segmentation of red pulp and white pulp. This discrepancy could potentially be 
attributed to the notably lower UMI counts detected in central tissue regions compared 
to the edges, impacting the sensitivity of our data. The classification of cellular sub-
types was less straightforward due to the limited resolution of Visium and absence of 
clearly defined marker gene groups beyond those for major cell types, though this could 
be addressed through refined iterations of deconvolution [46]. Further analyses may 
include a more thorough examination of clusters, deconvolution, and the comparison of 
these results to structures identified from H&E images using object or pixel classifiers. 
Annotations from these images could be further used to train a custom deep learning 
model, which could enhance the validation of clusters and cell types.

Multi-sample spatial analysis was performed by grouping samples based on sample 
handling protocols, a decision that was driven by variations observed in data quality 
and pre-processing results. Further grouping of probe-based samples for analysis was 
attempted but challenges arose from persistent batch effects. iSC.MEB is one of few 
tools capable of processing multiple samples simultaneously [44] and allowed for the 
identification of concordant spatial clusters across samples within each group, enabling 
the generation of group-level results. Methods extended to address scenarios, where 
more pronounced batch effects are seen across protocols and tissue sections, would 
strengthen the capacity for multi-sample analysis. On a broader scale, the additional 
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integration of high-performing spatial feature selection, clustering, and deconvolution 
methods would also improve workflow efficiency, offering a more streamlined approach 
to spatial analysis.

For differential expression analysis, a conventional workflow of clustering and aggre-
gating spot counts to pseudo-bulk values per sample and cluster was performed. Com-
parisons between male and female samples recovered the expected sex-specific gene 
expression changes across all major cell type and region-based clusters. We also ana-
lyzed DE in samples with conditional knockout of T-bet in mature follicular B cells and 
obtained highly concordant results with a previous T-bet gene signature obtained from 
sorted germinal center B cells from samples with the same genotypes, albeit at a slightly 
different time point (day 15 versus day 12). Furthermore, Visium revealed additional 
information that could not be inferred from previous bulk RNA-seq of sorted GC B 
cells, such as the profound indirect effect that conditional deletion of T-bet in B cells has 
on other cell types present in the spleen, such as T cells, presumably derived by cognate 
signals and/or soluble factors. Our results highlight Visium’s potential in higher order 
multi-sample analyses across distinct tissue structures, while also outlining challenges 
in applying methods originally developed for single-cell or bulk RNA-seq experiments, 
especially in obtaining comparable clusters. Limited tools currently exist for multi-sam-
ple spatial analysis, and this is an area in need of further development.

We have demonstrated a comprehensive spatial pre-processing workflow and down-
stream analysis approach integrating SVGs and marker gene expression, cell type decon-
volution, and image segmentation, both for individual samples and groups of replicate 
samples. Challenges in annotating some specific cell types arose potentially due to low 
sensitivity in several samples and the limited resolution of Visium-generated data. How-
ever, overall our framework enabled thorough annotation of our samples, leading to 
detailed visualizations of the spatial context of structures within the mouse spleen. As 
the field of spatial transcriptomics continues to evolve, we anticipate the development of 
advanced methods capable of more effectively harnessing the power of spatial informa-
tion in multi-sample, multi-group experiments. We envisage SpatialBenchVisium to be 
adaptable to include such methods to analyze the depth of spatial data, and to expand 
our data generation efforts to include more platforms, such as Visium HD and others 
with higher spatial resolution in the future.

Conclusions
We present SpatialBenchVisium, a comprehensive Visium spatial transcriptomics data-
set spanning several tissue handling protocols, that includes replicate samples and a cor-
responding scRNA-seq reference dataset. Our investigation into the differences between 
poly-A and probe-based capture library preparation protocols revealed higher qual-
ity among probe-based samples, particularly those processed with CytAssist. We also 
showcase the successful application of our dataset in a comprehensive analysis workflow, 
including steps such as pre-processing with established scRNA-seq methods and multi-
sample spatial approaches to feature detection and clustering, enabling the generation of 
results for groups of samples. Through our analyses, we demonstrated an accurate char-
acterization of the cellular composition of the mouse spleen during an immune response, 
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identifying expected cell types and structures. We anticipate that our dataset and results 
may serve as a practical guide to data from multi-sample 10x Visium experiments.

Methods
Mouse spleen samples

To visualize germinal centers arising in the spleen in response to infection, a number 
of male Tbx21fl/flCd23Cre and Cd23Cre control mice as well as wild type (WT) female 
8-week C57BL/6J mice were infected intravenously with 1× 105 Plasmodium berghei 
ANKA parasitized red blood cells (pRBCS), and then drug cured at the onset of dis-
ease symptoms using chloroquine and pyrimethamine as described previously [29]. The 
Tbx21fl/flCd23Cre conditional knockout deletes T-bet in mature follicular B cells.

Sample preparation and library construction

Twelve days post-infection, mice were euthanized and spleens were fixed in 10% v/v for-
malin and paraffin-embedded (FFPE) or embedded in optimal cutting temperature com-
pound (OCT) prior to freezing using a PrestoCHILL instrument. The DV200 scores or 
RIN values were checked for every FFPE or OCT block respectively. All FFPE blocks had 
a DV200 > 80% and all OCT blocks had a RIN of >8.5.

Fresh frozen (OCT) Direct Placement Visium

The permeabilization time for spleen sections was first determined using the Visium 
Spatial Tissue Optimization Reagents Kits User Guide. An optimal permeabilization 
time of 40 min was established (Additional file  2: Fig. S15). Ten-micrometer  sections 
were cut on a Cryostat and placed directly onto a Visium Spatial Gene Expression Slide. 
Slides were placed into slide mailers and stored at −80 °C until use. The Visium slides 
were processed according to the 10x Genomics Methanol Fixation, H&E Staining & 
Imaging for Visium Spatial Protocol followed by the fresh frozen Visium Spatial Gene 
Expression Reagent Kits protocol according to the manufacturer’s instructions.

FFPE Direct Placement Visium

Five-micrometer sections were placed onto a Visium Spatial Gene Expression Slide. 
Slides were heated at 42 °C for 3 h on a thermocycler with a Visium PCR Adaptor then 
placed in a desiccator at room temperature from o/n up to 1 week. The Visium slides 
were processed according to the 10x Genomics Visium Spatial Gene Expression for 
FFPE—Deparaffinization, H&E Staining, Imaging & Decrosslinking protocol followed 
by the Visium Spatial Gene Expression Reagent Kits for FFPE protocol according to the 
manufacturer’s instructions.

Fresh frozen (OCT) CytAssist Visium

Ten-micrometer sections were cut on a Cryostat and placed directly onto a Superfrost 
Plus microscope slides. Slides were placed into slide mailers and stored at −80 °C until 
use. The Visium slides were processed according to the 10x Genomics Visium CytAssist 
Spatial Gene Expression for Fresh Frozen—Methanol Fixation, H&E Staining, Imaging 
& Destaining protocol followed by the CytAssist Spatial Gene Expression Reagent Kits 
protocol according to the manufacturer’s instructions.
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FFPE CytAssist Visium

Five-micrometer sections were placed onto a Visium Spatial Gene Expression Slide. 
Slides were heated at 42 °C for 3 h on a thermocycler with a Visium PCR Adaptor 
then placed in a desiccator at room temperature from o/n up to 1 week. The Visium 
slides were processed according to the 10x Genomics Visium CytAssist Spatial Gene 
Expression for FFPE—Deparaffinization, H&E Staining, Imaging & Decrosslinking 
protocol followed by the Visium CytAssist Spatial Gene and Protein Expression Rea-
gent Kits protocol according to the manufacturer’s instructions.

10x Single‑cell samples

Cells were sorted on the BD Aria III (100 µm nozzle, 1.5ND filter) using DAPI as a 
live/dead cell marker. The sorted cells were centrifuged at 400×g for 5min at 4 °C and 
re-suspended in 25 µ l Cell Staining Buffer (BioLegend). 2.5 µ l of 1:10 TruStain FcX™ 
PLUS (anti-mouse CD16/32) (BioLegend) was added and incubated for 10 min on ice. 
0.1 µ g mouse TotalSeq™-A HashTag and the mouse TotalSeq™-A universal cocktail 
v1.0 (Biolegend) diluted 1:4 were added in a total volume of 25 µ l, mixed and incu-
bated on ice for 30 min. Cells were washed 3 times with Cell Staining Buffer, centri-
fuged at 400×g for 5 min at 4 °C and resuspended in 1X PBS + 0.04% BSA. Cells were 
counted on the Countess III with trypan blue, pooled evenly and a total of 35,000 live 
cells were loaded onto a single lane of a 10x 3’ v3.1 Chip G. Gene expression libraries 
were produced according to the 10x Chromium Next GEM Single Cell 3’ v3.1 pro-
tocol, with HashTag and TotalSeq™-A antibody libraries produced according to the 
BioLegend TotalSeq™-A Antibodies and Cell Hashing protocol.

Sequencing

All libraries were sequenced on the Illumina NextSeq2000 according to 10x 
guidelines.

Pre‑processing: Visium

Raw sequencing data were processed using the 10x Genomics Space Ranger 2.0.0 
mkfastq pipeline to generate FASTQ files. Sequences were aligned to the mm10 tran-
scriptome with the Visium Mouse Transcriptome Probe Set v1.0 and default param-
eter settings, and gene expression counts were obtained using Space Ranger count. 
Quality metric plots were created using ggplot2 [62] version 3.4.4 and ggpubr [63] ver-
sion 0.6.0. SpotClean [31] version 1.6.1 was used to calculate the RNA bleeding rate 
for each sample using the main function. Individual samples were pre-processed fol-
lowing a standard Bioconductor workflow for spatial transcriptomics analysis [38].

Pre‑processing: 10x Single‑cell RNA‑seq

Data were run through Cell Ranger 7.0.0 [64] and demultiplexing of the HTO 
data was performed using R/Bioconductor package demuxmix version 1.0.0 [65]. 
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Pre-processing was then conducted following a standard Bioconductor workflow for 
scRNA-seq analysis [66], using methods from scran [33] version 1.24.1 and scater [32] 
version 1.24.0.

Feature selection

nnSVG [39] version 1.0.4 was used to first conduct feature selection. Genes were ranked 
by the estimated likelihood ratio value, then only those with adjusted p values below 0.05 
were retained. A multi-sample approach was implemented by taking the mean of gene 
ranks to generate lists of spatially variable genes (SVGs) for each sample type group. 
These were then compared with UpSet plots and Venn diagrams generated using Com-
plexUpset [67, 68] version 1.3.3 and ggvenn [69] version 0.1.10. Highly ranked hemo-
globin and immunoglobulin genes in these lists were excluded in downstream processes 
due to high abundance [40]. To explore the relationships between samples, we aggre-
gated the spot-level gene counts into sample-level pseudo-bulk counts for the 488 SVGs 
commonly detected across all samples and used limma [70] version 3.58.1 to visualize 
the pseudo-bulk samples in a MDS plot (Additional file 2: Fig. S3).

Multi‑sample cluster analysis

Pre-processed individual samples were combined into lists of Seurat [71] objects to cre-
ate iSC.MEB objects used as inputs for multi-sample analysis with iSC.MEB [44] version 
1.0. An iSC.MEB model was fitted to each object and its relevant list of SVGs, based on 
sample type group. Principal component analysis (PCA) was conducted on the data and 
the top 10 principal components (PCs) were selected for analysis. iSC.MEB then iden-
tified spatial clusters concordant across all samples in each sample type group, visual-
izing them in a UMAP plot, and further analyzed differential gene expression between 
clusters.

Marker gene selection and use in cluster annotation

Marker genes for relevant cell types (Additional file 1: Table S3) were primarily identified 
from previous studies and existing literature. Specific genes for germinal centers were 
also chosen from a previous study [29]. Zone-level marker genes for analyses comparing 
red pulp and white pulp were derived from individual or combined cell type marker gene 
lists. Some zone-specific genes such as Hba-a1 [48] were also included here. A cluster 
scoring approach was developed by firstly summing the expression of groups of cell type 
marker genes for each spot in a cluster for each sample, then normalizing by the num-
ber of spots per cluster. This calculation was repeated across all spots in all clusters and 
a cluster score was calculated as the log-fold-change between one cluster and all other 
clusters. Heatmaps of cluster scores and all spatial expression plots were created using 
ggplot2 version 3.4.4.

Cell type deconvolution

Cell type deconvolution was performed on each sample with spacexr [46] version 2.2.1, 
using either a matching scRNA-seq dataset or an external mouse spleen reference from 
the Tabula Muris compendium [47]. Multi mode was used as recommended for Visium, 
accounting for more than two cell types per spot.



Page 22 of 26Du et al. Genome Biology           (2025) 26:77 

Image segmentation

QuPath [72] version 0.4.3 was used for image segmentation on pathology images. A 
representative image was used for color deconvolution with “Estimate Stain Vectors,” 
which was then applied to the entire dataset. A training image with 15 patches was 
created by selecting 3–5 patches per image that were representative of background 
and white pulp and used to train a pixel classifier to predict two classes: white pulp 
and *Ignore. The trained classifier segmented white pulp across the dataset, and a tis-
sue threshold generated a tissue mask. The red pulp mask was obtained by subtracting 
the white pulp annotation from the tissue mask. Red pulp and white pulp annotations 
were exported as a GeoJSON file, which was processed using R packages sf [73, 74] 
version 1.0–14 and ggplot2 version 3.4.4.

Pseudo‑bulk differential expression analysis

Multi-sample clustering and marker gene based cluster annotation was performed on 
relevant datasets (OCT manual CTL and OCT manual WT replicate samples were 
analyzed together in the male versus female comparison and OCT manual KO and 
OCT manual CTL replicate samples were analyzed together in the KO versus CTL 
analysis). Next, pseudo-bulk counts were aggregated for each cluster in each sam-
ple and lowly expressed genes were filtered using edgeR’s [49, 50] filterByExpr func-
tion for each cluster separately. The limma-voom pipeline [51] was performed with 
limma [70] version 3.58.1 and edgeR version 4.0.16 to summarize data from replicates 
samples and compare different sample groups (e.g., male versus female or KO ver-
sus CTL) per cluster. For the male versus female analysis, ROAST gene set testing 
[53] was applied to a sex-specific gene set in a directional way, with chromosome Y 
genes given gene.weights of 1 and X-inactivation escape genes previously identi-
fied from mouse spleens [52] given gene.weights of −1 . For the T-bet knockout 
versus control comparison, ROAST gene set testing [53] was applied to the spatial DE 
results using the significantly differentially expressed genes (those with an adjusted 
p value cut-off < 0.05 , 109 genes) from Ly et al. [29], where a similar knock-down and 
infection module was used to investigate T-bet’s role in germinal centers at day 15 
post malaria infection. The t-statistics from the previous study were used as gene.
weights in ROAST to account for both the directionality and confidence of the pre-
vious DE results. GO term enrichment analysis with the clusterProfiler package [75] 
was performed using the significantly differentially expressed genes per cluster type 
as input and either Molecular Function (MF) or Biological Process (BP) ontologies.

scRNA‑seq analysis

Clustering was performed with clusterCells from scran, using igraph’s Louvain 
method [76, 77] in a bluster [78] shared nearest-neighbor (SNN) graph. SingleR [79] 
version 2.0.0 was used with celldex [79] version 1.8.0’s mouse reference datasets, 
ImmGenData and MouseRNAseqData, to annotate cell types. Clusters were further 
refined in an iterative approach of sub-clustering, re-processing, and re-assigning 
cluster labels.
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