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Abstract 

Background: Understanding the genetic causes underlying variability in chromatin 
accessibility can shed light on the molecular mechanisms through which genetic vari‑
ants may affect complex traits. Thousands of ATAC‑seq samples have been collected 
that hold information about chromatin accessibility across diverse cell types and con‑
texts, but most of these are not paired with genetic information and come from 
distinct projects and laboratories.

Results: We report here joint genotyping, chromatin accessibility peak calling, 
and discovery of quantitative trait loci which influence chromatin accessibility (caQTLs), 
demonstrating the capability of performing caQTL analysis on a large scale in a diverse 
sample set without pre‑existing genotype information. Using 10,293 profiling sam‑
ples representing 1454 unique donor individuals across 653 studies from public 
databases, we catalog 24,159 caQTLs in total. After joint discovery analysis, we cluster 
samples based on accessible chromatin profiles to identify context‑specific caQTLs. 
We find that caQTLs are strongly enriched for annotations of gene regulatory elements 
across diverse cell types and tissues and are often linked with genetic variation associ‑
ated with changes in expression (eQTLs), indicating that caQTLs can mediate genetic 
effects on gene expression. We demonstrate sharing of causal variants for chromatin 
accessibility across human traits, enabling a more complete picture of the genetic 
mechanisms underlying complex human phenotypes.

Conclusions: Our work provides a proof of principle for caQTL calling from previously 
ungenotyped samples and represents one of the largest, most diverse caQTL resources 
currently available, informing mechanisms of genetic regulation of gene expression 
and contribution to disease.
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Background
Genome wide association studies (GWAS) have identified thousands of loci and 
common human genetic variants that are associated with a wide range of complex 
human traits, diseases, and risk factors [1]. GWAS variants are often found in non-
coding regions, where they are likely to be involved in gene regulation [2, 3]. How-
ever, a full picture of the causal regulatory elements that underlie these associations 
remains incomplete for most loci [4]. Characterizing the effects of genetic variants 
on gene expression as revealed by expression quantitative trait locus (eQTL) map-
ping has provided insights into the molecular basis of phenotypes [3, 5–7]. Although 
some eQTL variants directly affect open-reading frames, the vast majority are in non-
coding regions, as has been described for GWAS variants. Connecting causal variants 
to the regulatory elements and the genes of action that they perturb remains a central 
goal of the post-GWAS era.

Accessibility of chromatin regions to transcriptional machinery is a key factor in gene 
regulation [8, 9]. Genetic variants can affect complex traits through changes in gene 
expression levels that are mediated by the effect of variants on transcription factor (TF) 
binding at gene regulatory elements, leading to differences in chromatin accessibility 
[10, 11]. Improved understanding of the mechanisms involved in chromatin accessibility, 
revealed by genetic variants that modulate chromatin accessibility (i.e., caQTLs), has the 
potential to illuminate the molecular mechanisms and genetic regulatory architecture 
of complex traits. caQTLs have been measured in a variety of tissue and cell types, at 
both bulk [12–16] and single-cell resolutions [17]. caQTLs have been used in a variety 
of studies to characterize gene expression regulation [18] and to propose mechanisms 
for risk loci identified through GWAS [19]. In comparison to eQTLs, caQTLs can iden-
tify the direct effect of genetic variants on transcription factor binding at high resolu-
tion through techniques such as transcription factor footprinting [20]. eQTLs, however, 
identify the target gene associated with genetic variants whereas caQTLs inherently 
do not. In some instances, caQTLs may overlap with eQTLs, providing a more com-
prehensive understanding of the genetic mechanisms driving GWAS-associated signals. 
Importantly, caQTLs may be discovered even in the absence of any established eQTL, 
as eQTL studies may not include the relevant cell type or environmental context to 
reveal the change to gene expression. Analysis of the contribution of caQTLs to complex 
human traits can help us better understand the molecular impact of these variants and 
the mechanism(s) driving GWAS signals. To date, caQTL studies have mostly been per-
formed in analyses restricted to single tissue/cell types, a majority of which have assayed 
a limited number of samples.

The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) tech-
nology has been widely used to capture chromatin accessibility in various cell types and 
experimental conditions [21–23]. There is a rapidly accumulating trove of ATAC-seq 
data generated from various experiments, labs, and conditions. This wealth of informa-
tion has the potential to boost power for caQTL analysis. Unfortunately, many of these 
samples do not have matched genotype information, a necessary component for QTL 
analyses. ATAC-seq reads, however, naturally carry the sequence information at nucleo-
tide resolution, providing the possibility of inferring sample genotypes from these data 
directly.
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Here, we have selected and evaluated pipelines to uniformly process ATAC-seq sam-
ples, including peak calling and genetic variant calling directly from ATAC-seq reads. 
We called genotypes using a pipeline incorporating Gencove’s low-pass sequencing 
methods applied to ATAC-seq reads in accessible chromatin, which utilizes imputation 
to infer genotype for variants that are located outside of regions covered by observed 
reads in accessible regions [24, 25]. We benchmarked this pipeline, using gold standard 
genotype information available for a subset of samples, and compared it against exist-
ing methods. Because large-scale public data often contains multiple samples from the 
same donor or even the same cell line, we also developed a method to automatically infer 
donor assignment based on genotype from the called variants. Peak calling from thou-
sands of diverse samples presents challenges of identifying true, distinct regions of chro-
matin accessibility rather than low-signal false positives, or large regions merged from 
what should be distinct peaks [26, 27]. Based on comparisons across various peak-call-
ing approaches, we finalized a pipeline based on Genrich, using an ATAC-seq specific 
method [28] for collectively calling peaks across large, diverse data sets and quantifying 
accessibility in each peak.

Using our ATAC-seq derived genotypes and accessibility estimates across peaks and 
samples, we then called caQTLs from this collection of publicly available ATAC-seq 
data. We identified thousands of caQTLs that share a causal signal with GWAS signals, 
many of which are not explained by known eQTLs. Additionally, we identified many 
GWAS signals that appear to share a causal signal with both eQTLs and caQTLs, ena-
bling a more comprehensive analysis predicting target gene, gene regulatory element 
and even potential transcription factors that are driving GWAS signals for a variety of 
complex human traits. Furthermore, to capture context-specific caQTLs, we inferred 
clusters of samples with similar accessibility profiles, mostly reflecting cell or tissue type, 
and identified cluster-specific caQTLs. With the captured global and cluster-specific 
caQTLs, we investigated potential mechanisms involving transcription factors and their 
role in target gene regulation.

Results
Accurate genotyping and imputation based on ATAC‑seq reads from public repositories

We established a workflow to collect a diverse set of publicly available ATAC-seq 
datasets and ascertain donor genotype from ATAC-seq reads, with the overall objec-
tive of mapping genetic variants that are associated with differences in chromatin 
accessibility for diverse tissues, cell lines, and contexts on a large scale (Fig. 1A). We 
collected 10,293 human samples from 653 projects from the Gene Expression Omni-
bus (GEO) data repository, where most projects were comprised of 10 or fewer sam-
ples (Fig. 1B, Additional file 1: Table S1). The aggregated data includes samples from 
a wide variety of tissues or cell types (Fig.  1C). The publicly available data that we 
collected did not always contain explicit cell/tissue type information readily available, 
and reporting of cell/tissue type is not performed in a standardized manner across 
projects. We performed a thorough manual curation of project abstracts, sample 
labels, and project methods, to annotate each sample with presumed cell/tissue type 
identity and found that the most common cell/tissue types represented in our study 
include T cells and brain, among others. Additionally, based on our metadata review, 
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both cancer and normal primary tissue are well represented, along with cell lines and 
experimentally differentiated cell types (Fig. 1D). The diversity of samples highlights 
the value of a workflow that can aggregate data and genotype samples from ATAC-
seq reads, providing an overall large sample size, but also tissue-specific sample sizes 
larger than any existing genotyped chromatin accessibility study for several individual 
tissues including lung, breast, heart, and pancreas [12, 29–31].

QTL mapping requires paired genotype and molecular phenotype information for 
each sample. In standard QTL studies, genotyping arrays or whole genome sequenc-
ing (WGS) are used to ascertain sample genotype information [32]. Unfortunately, 
for most of the ATAC-seq data in public repositories that has already been collected, 
genotype data is not readily available. However, ATAC-seq directly captures genomic 

Fig. 1 Study overview and characteristics of specimens utilized in this study. A Overview of study design 
to jointly call genotype and caQTLs across studies. Human ATAC‑seq datasets were obtained from GEO. 
After variant‑calling (Methods), we identified the unique donors in the dataset (Methods) for use in caQTL 
mapping. Created with BioRender.com. B The distribution of the number of samples collected across all n = 
653 studies. C Frequency of the cell/tissue types present in samples collected across studies based on manual 
metadata curation. D Frequencies of cancer, non‑cancer, primary tissues, and cell‑line samples included in 
our study based on our metadata review. For each category, samples were assigned a “Yes” if they belonged 
to that category (e.g., cell line samples for “Cell Line” category), a “No” if they did not belong (e.g., primary 
tissue samples for “Cell Line” category), or an “Unknown” if it was not clear from the metadata
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DNA fragments from accessible chromatin regions; thus, we surmised that it might 
instead be possible extract genotype information for these samples directly from the 
ATAC-seq reads. To obtain genotyping from ATAC-sequencing and evaluate the per-
formance of variant calling using ATAC-seq reads, we applied several approaches: a 
pipeline incorporating genotyping from Gencove, which optimizes genotyping and 
imputation for low-pass sequencing data by calculating genotype likelihoods at all 
positions in the reference panel with at least one read and imputing all genotypes 
from those likelihoods [24, 25, 33, 34], a standard GATK variant calling pipeline [33, 
34], a standard GATK variant calling pipeline followed by imputation, and custom 
machine learning methods for combining GATK with imputation flexibly based on 
read depth (Methods, Additional file 2: Fig. S1). To benchmark the performance of our 
workflow, we used a published dataset of 71 HapMap lymphoblastoid cell lines (LCL) 
samples with paired ATAC-seq and WGS data [35]. We observed that, compared to 
the standard GATK variant calling pipeline, the Gencove pipeline with imputation 
greatly increased the number of variants called and resulted in a median correlation 
of over 0.88 between true and called donor genotype. Imputation also increased the 
performance of the GATK pipeline as well (Fig. 2A). To quantify the effects of read 
coverage on the performance of variant calling, we randomly subselected ATAC-seq 

Fig. 2 High quality genotyping with unique donor information is inferable directly from reads obtained 
by ATAC‑seq. A Variants called for the HapMap samples using multiple pipelines—Gencove, GATK, and 
GATK with imputation. B Accuracy of variant genotype called by Gencove pipeline using a random subset 
of sample reads. Spearman correlation and mean squared error (MSE) are computed between the called 
genotype and genotype from WGS. C caQTLs called using ATAC‑seq derived genotypes across the HapMap 
samples. D Spearman correlation of called genotypes between all samples. E Spearman correlation of 
called genotypes between samples in study PRJNA388006. On the top the “True donor” indicates the donor 
assignment obtained from metadata information for this study, and “Assigned donor” indicates the donor 
assignment derived from called genotypes (Methods)
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reads at varying total read counts for use with the Gencove pipeline. We observed a 
marginal increase in accuracy with deeper coverage, however, variant-calling accu-
racy remained high at effective coverage, which is a function of the fraction of poly-
morphic sites in a reference panel covered by at least one sequencing read [25], as low 
as 0.04 (Fig. 2B). In our full dataset, the distribution of effective coverage was within 
the range previously tested with the gold standard HapMap LCL samples, verifying 
the accuracy of genotype calling in this larger data set. These analyses demonstrate 
the capabilities of accurate inference of genome-wide genotypes directly from ATAC-
seq data.

As a proof of concept, we next performed caQTL mapping using genotypes called 
from ATAC-seq reads, comparing the results to the caQTLs identified using the full 
set of gold standard genotypes in these 71 HapMap LCL samples. We observed that 
caQTL calling using ATAC-seq reads and the Gencove pipeline performed better than 
the standard GATK pipeline, providing 99% accuracy and over 90% recall compared to 
caQTL calling using WGS data, while the GATK pipeline followed by imputation per-
formed only slightly worse than Gencove (Fig.  2C). The performance of the Gencove 
pipeline had substantially greater benefit when testing variants in larger caQTL mapping 
window sizes where recall remained above 90% for the Gencove pipeline but dropped to 
16% for the GATK pipeline at 100 kb, although imputation also somewhat improved the 
performance of the GATK pipeline (Fig. 2C). Overall, we conclude that genotype calling 
from ATAC-seq reads leads to highly accurate caQTL calling with relatively high recall 
and a low rate of false positives. Given the diverse samples collected and varying study 
designs, an individual donor will likely have multiple ATAC-seq samples represented. 
As such, we next developed a pipeline to infer unique donors based on the correlation 
between inferred sample genotypes across different samples and projects (Fig.  2D–E, 
Methods). Applying this pipeline to all samples, we identified 1454 unique donors across 
our entire dataset (Additional file 1: Table S2). The majority of donors (~82%) are found 
within a single project only. As expected, the occurrence of multiple samples per donor 
was especially common among cell lines, which is reflected in the reduced proportion of 
cell line samples in the final unique donor sample set (Additional file 2: Fig. S2).

Peak calling across all samples identifies a plethora of open chromatin regions 

with regulatory potential

The next step in our pipeline was to identify open chromatin regions. Multiple strategies 
have been utilized to call peaks across samples, including calling peaks in each individ-
ual sample followed by combining peaks across all samples [36]. To identify a set of con-
sensus peaks in our diverse sample set, we called chromatin accessibility peaks based on 
evidence across all samples using Genrich, a peak caller optimized for ATAC-seq reads 
[28]. Genrich assigns p values to genomic positions within each sample, then combines 
p values across samples using Fisher’s method to call peaks. We compared this Gen-
rich pipeline to strategies which called peaks in individual samples followed by merging 
(Additional file 2: Fig. S3). The Genrich strategy produced peaks that are likely derived 
from nucleosome-free and mono-nucleosome fragments, as seen by enrichment around 
100 bp and 200 bp in the observed peak length distribution (Fig. 3A).
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Across 10,293 samples, we identified 1,659,379 autosomal peaks with a median peak 
length of 250 base pairs, covering approximately 27% of the genome (Fig. 3A). Chroma-
tin accessibility is influenced by a variety of regulatory processes [38–40], such as active 
binding of transcription factors, and we would expect to see chromatin accessibility 
peaks in regions associated with gene regulation. To verify the quality of our ATAC-seq 
peaks, we annotated our peaks, along with length-matched, randomly selected controls, 
with various genomic features that included transcript annotations and enhancer anno-
tations as defined by the FANTOM5 enhancer atlas [41, 42] (Methods). We found that 
relative to controls, our ATAC-seq peaks were enriched for genomic regions annotated 
as enhancers and all transcript annotations but depleted for gene intergenic regions 
(Additional file  2: Fig. S4, Additional file  1: Table  S3). Similarly, we would expect our 
ATAC-seq peaks to be enriched for histone modifications associated with gene regu-
latory regions [43–45]. The NIH Roadmap Epigenomics Mapping Consortium [46] 
provides chromatin immunoprecipitation with sequencing (ChIP-seq) data represent-
ing eight different histone marks from 556 cell line, tissue, and primary cell samples 
derived from a variety of biological origins. Using these data, the highest enrichment 
of our ATAC-seq peaks and chromatin histone marks was for H3K4me1, a histone 
mark that has been linked to enhancers (Additional file  1: Table  S4) [43]. In contrast, 

Fig. 3 Characteristics of chromatin accessibility peaks and caQTL variants identified in this study. A 
Distribution of peak length across 1,659,379 called peaks (peaks under 1000 bp shown). B Manhattan plot of 
lead variant for 24,159 caQTL peaks. C Distance from lead caQTL variant to midpoint of caQTL peak showing 
elevation of caQTL variant within the identified chromatin accessibility peak. D Lead variants for 24,159 caQTL 
peaks were matched in external caQTL mapping dataset of African LCLs [37]; p values from the replication 
study are plotted here
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our ATAC-seq peaks were depleted for overlap with the histone mark H3K9me3, which 
is associated with gene repression and heterochromatin [47]. Together, these data sug-
gest that our ATAC-seq peaks are enriched for cis-regulatory regions, as expected for 
genomic sequences implicated in regulatory activity and indicating high quality peak 
calls.

Inferred genotypes support high‑powered caQTL mapping across samples

Next, we sought to identify genetic variants that are associated with differences in meas-
ured chromatin accessibility in ATAC-seq peaks, i.e., caQTLs. We tested a 10 kilobase 
(kb) window in cis flanking each chromatin accessibility peak, as we anticipate that 
genetically altered active transcription factor binding sites are likely to be found within 
or very nearby regions of chromatin accessibility due to the causal effect of TF binding 
on chromatin accessibility [48, 49]. Utilizing our peak calling and genotyping pipelines, 
we identified 24,159 chromatin accessibility peaks with a significant caQTL at FDR 5% 
across 1454 unique donor samples (Fig. 3B, Methods, Additional file 1: Tables S5–S6). To 
mitigate potential confounding from population stratification, we estimated variation in 
similarity across donors generated by our genotyping via principal components analysis 
(PCA), including 3 PCs as covariates in discovery analysis. In addition, we also included 
200 PCs generated from the donor chromatin accessibility peak read count matrix to 
mitigate potential latent confounders in QTL mapping [50] (Methods).

To ensure that caQTL mapping results were not being significantly impacted by cer-
tain sample characteristics, such as cell/tissue type or whether samples were cancer-
derived, we separately performed caQTL mapping in various subsets of samples to 
address these concerns. We performed caQTL mapping separately in cancer-derived 
samples (n = 312) and non-cancer samples (n = 1132) and found that ~93% of the caQTL 
peaks found in the cancer samples analysis and ~67% of the caQTL peaks found in the 
non-cancer samples analysis were found in the global analysis (π1 values 0.63–0.99) 
(Additional file 2: Figs. S5–S6). We assessed the impact of sample cell/tissue type in two 
different ways. First, we chose two groups of samples that were well represented in our 
dataset based on our annotations and groupings, T cells (n = 210) and brain (n = 178). 
We found that ~39% of the caQTL peaks found in the brain samples and ~65% of the 
caQTL peaks found in the T cell samples were found in the global analysis (π1 values 
0.51–0.85) (Additional file  2: Figs. S7–S8). Additionally, we performed caQTL map-
ping with all samples by including a cell type covariate based on annotated cell/tissue 
type identity and found that ~87% (π1 value = 0.99) of caQTL peaks were rediscovered 
by including cell type as a covariate (Additional file 2: Fig. S9). These caQTL mapping 
results suggest that our global analysis had the greatest caQTL discovery power and was 
not significantly affected by various sample characteristics.

We examined the quality of our caQTL variants by determining whether they were 
enriched for expected functional characteristics. First, we confirmed that the distribu-
tion of positions for lead caQTL variants was centered within the open chromatin peak 
tested, as expected (Fig. 3C). In addition, we observed that peaks with a mapped caQTL 
were the most strongly enriched for gene 5′ UTRs and enhancer regions while depleted 
in gene intergenic regions (Additional file 2: Fig. S10, Additional file 1: Table S7). Inter-
estingly, caQTL peaks were further enriched in enhancer regions compared to all 
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chromatin accessibility peaks, suggesting that caQTLs we mapped may be found at 
genomic elements involved in distal gene regulation. This could potentially arise due 
to selective pressure reducing functional variation in promoters and other proximal 
elements.

Additionally, we examined whether our caQTL peaks were enriched for transcrip-
tion factor binding sites in the ENCODE transcription factor ChIP-seq data from 129 
cell types and 340 transcription factors [51]. As expected, caQTL peaks, compared to 
matched random controls (Methods), were significantly enriched for binding sites for 
many transcription factors (Additional file 1: Table S8). Enrichment of these functional 
characteristics supports the conclusion that our caQTLs are high quality, reflect enrich-
ment in expected regulatory elements, and can help identify genetic mechanisms rel-
evant to regulation of gene expression. We sought further evidence that caQTL variants 
were enriched for functional roles in gene expression regulation by intersecting them 
with eQTLs. Across all 49 Genotype-Tissue Expression (GTEx v8) tissues, we observed 
caQTL/eQTL enrichments ranging from 1.96 to 4.75-fold per tissue and a total of 
2972 (~13% of unique caQTLs) unique overlapping lead caQTL/lead eQTL variants 
found across all tissues, for an enrichment of approximately 1.73-fold (Additional file 1: 
Table S9).

Finally, to further demonstrate that our catalog represents reproducible peaks and 
caQTLs, we compared our findings here to a recent caQTL study that identified vari-
ants associated with chromatin accessibility in African LCL samples [37] not included 
in our discovery effort. Lead caQTLs and peaks identified in our study resulted in a 
replication rate (π1 value [52, 53]) of 0.62 with this orthogonal study (Fig.  3D). Addi-
tional replication analyses were performed for another molecular QTL, histone QTLs 
(hQTLs), from a study that measured levels of H3K27ac and H3K4me1 in LCLs and 
identified 6261 enhancer hQTLs [54]. We identified a modest number of overlapping 
lead caQTLs/hQTLs that were enriched ~ 5.96-fold over hQTL lead variant overlap with 
caQTL-matched background variants. Effect direction of overlapping caQTLs/hQTLs 
was largely concordant and caQTL summary statistics for lead hQTLs were enriched 
for low p values, suggesting that both studies are capturing common signals, although 
power differences may lead to differences in discoveries (Additional file  2: Fig. S11). 
Together, these analyses further demonstrate that on average, our catalog of caQTLs is 
high quality and provides insight into how genetic variation may affect gene regulation 
and complex traits.

Colocalization suggests shared causality between chromatin accessibility, complex traits 

and expression QTLs

To gain further insight into the molecular mechanisms underlying GWAS signals, we 
sought to link GWAS association signals, expression QTLs (eQTLs), and caQTLs 
together via statistical colocalization (Methods). Colocalization analysis discerns if an 
association signal is likely shared between two traits, suggestive of a common underly-
ing genetic mechanism. First, we examined which caQTL signals are shared with GWAS 
signals across a variety of complex human traits. We obtained GWAS summary statistics 
from a subset of the UK Biobank (UKBB) study, selecting 78 traits of interest with high 
confidence of significant heritability (Methods) [55]. We then performed colocalization 
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analysis (Methods) for any caQTL peak that was located within 1 Mb of a genome-
wide significant lead GWAS signal (Methods). We observed that 69 traits had a caQTL/
GWAS colocalization event (PP3 + PP4 > 0.8 and PP4/(PP3 + PP4) > 0.9.) for a total 
of 13,735 colocalization events across all traits, involving 4735 (~ 20%) unique caQTL 
peaks and 5197 (~ 37%) unique tested GWAS signals (Additional file 1: Table S10).

Regulatory variants do not always affect the nearest gene and assigning a GWAS sig-
nal to a causal gene is not a trivial procedure [56, 57]. Furthermore, comparison of the 
overlap between lead variants of GWAS signals and the lead variant of eQTLs can sug-
gest the incorrect causal gene [58]. Given the prominence of long-range gene expression 
regulation, colocalization of cis regulatory elements with eGenes can suggest a shared 
causal variant [59, 60]. We performed colocalization analyses between caQTLs and 
eQTLs from 49 tissues obtained from GTEx v8. Across all tissues, between 385 (kid-
ney) and 5856 (thyroid) eGenes colocalized with our caQTLs and showed consistent 
directionality across shared lead variants that colocalized (Additional file  2: Fig. S12). 
Colocalized caQTLs/eQTLs were shared across a median of three tissues and a mean 
of eight tissues, while 18,826 unique eGenes colocalized with caQTLs in any GTEx tis-
sue (Additional file 2: Fig. S13, Additional file 1: Table S11). We found that only 14% of 
eQTL/caQTL colocalizations involve the gene nearest to the lead caQTL and that there 
was a median of 5 genes closer to the lead caQTL than the colocalizing gene (Additional 
file 2: Fig. S13), highlighting the role of caQTLs in distal gene regulation. Additionally, 
the putative regulated gene transcription start site (TSS) was a median of 76,129 base 
pairs away from the colocalizing caQTL (Additional file 2: Fig. S13). These results sug-
gest that caQTLs may often be found tagging and potentially modifying the behavior of 
distal gene regulatory elements and highlight the complexities of gene regulation.

Multiple molecular QTL datasets provide insight into regulatory mechanisms underlying 

GWAS associations

eQTLs have been shown to provide a regulatory mechanistic hypothesis for GWAS 
associated signals, yet only an estimated ~25–43% of GWAS signals colocalize with 
known eQTLs [6, 61], implying that more than half of GWAS loci may lack an obvi-
ous functional, mechanistic hypothesis [6, 62–64]. caQTL mapping could help close 
that gap if, for example, the effects of the eQTL are only apparent in certain cellular 
contexts, during specific developmental stages, or in the presence of external stimuli 
[65–67], whereas chromatin accessibility may be primed and reveal effects in a dif-
ferent context [68]. caQTL mapping could also provide mechanistic explanations for 
GWAS loci in  situations where multiple independent eQTLs may complicate colo-
calization analyses [69]. Across all traits and GTEx tissues, we find that lead GWAS 
signals colocalize with a median of 6 eQTLs and 2 caQTLs (Additional file  2: Fig. 
S14). For each GWAS trait, we then considered whether independent GWAS lead 
signals colocalize only with eQTLs, colocalize with both caQTLs and eQTLs, or 
colocalize only with caQTLs. Across all GWAS, a median of 34 unique signals colo-
calized with a caQTL only, a median of 70 unique signals colocalized with an eQTL 
only, and a median of 56 unique signals colocalized with both a caQTL and an eQTL 
(Fig. 4, Additional file 1: Table S13). To gain a better understanding of what is gained 
by caQTLs compared to eQTLs when colocalizing with GWAS signals, we analyzed 
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the colocalization posterior probabilities for loci where GWAS signals colocalized 
only with caQTLs. At many of these loci, we found that eQTL/GWAS colocalization 
posterior probabilities suggested that independent variants were causal for the two 
traits (COLOC PP3), or that an association was only found with one trait (COLOC 
PP1) (Additional file  2: Figs. S15–S16). These differences may reflect context-spe-
cific behavior of gene regulation that is not well captured by steady-state, adult gene 
expression data, but may still be reflected in chromatin accessibility. Another possi-
bility is that eQTL studies, which in GTEx ranged from 73 to 706 samples, are under-
powered to detect variants that are causal for GWAS signals. In this case, we expect 
that more GWAS signals would colocalize with both caQTLs and eQTLs, and fewer 
would colocalize only with caQTLs. Overall, these results demonstrate that incorpo-
rating both caQTLs and eQTLs nominates putative causal mechanisms for approxi-
mately 28% more GWAS signals than using eQTLs alone. Furthermore, 59% of GWAS 
signals we tested were linked with either a caQTL, eQTL, or both (Additional file 2: 
Fig. S17). Instances where GWAS signals colocalized with both caQTLs and eQTLs 
may also allow for a better delineation of the mechanism at these loci by nominating a 
candidate caQTL-associated gene regulatory element to a target eGene [70].

To gain insight into molecular mechanisms that may be unique to caQTLs as com-
pared to eQTLs, we calculated the enrichment of colocalizing caQTLs and lead 

Fig. 4 caQTLs map to regions tagged by GWAS and eQTL variation. For each GWAS trait, independent lead 
GWAS variant signals were checked for colocalization with caQTL and eQTL signals across all GTEx tissues. 
Plotted is the number of unique lead GWAS signals per colocalization group, as multiple caQTL peaks, 
eGenes, etc. can colocalize with the same lead GWAS signal. Traits with greater than 50 colocalizing lead 
variants shown
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eQTLs for diverse genomic annotations. caQTLs and eQTLs involved in colocali-
zations with GWAS signals were both significantly enriched for all tested genomic 
annotation categories except for intergenic regions, where they were significantly 
depleted, compared to length, GC, repeat matched random controls (Additional 
file 2: Fig. S18, Methods). However, caQTLs from GWAS/caQTL and caQTL/GWAS/
eQTL colocalization events were further enriched for enhancer regions and slightly 
less depleted in intergenic regions than eQTLs from GWAS/eQTL colocalizations 
alone (Additional file 2: Figs. S19–S20, Additional file 1: Tables S14–S16). In contrast, 
lead variants of eQTLs that colocalized with a GWAS were less enriched in enhancer 
regions and showed slightly greater depletion for intergenic regions consistent with 
previous reports (Additional file 2: Fig. S21) [6, 71]. In contrast, eQTL regions were 
further enriched for gene 3′ UTRs when compared to regions involved in colocaliza-
tions involving caQTL regions. These differences in enrichment may be due to sys-
tematic differences in GWAS signals that are explained by eQTLs compared to those 
explained by potentially distal regulatory mechanisms captured by caQTLs, whose 
regulatory effects may be less dependent on distance to gene TSS [72, 73].

While our caQTLs were called from heterogeneous cell/tissue samples, they are 
enriched for brain and whole blood samples (Fig. 1). To reflect this, we also performed 
an analysis of caQTL/GWAS colocalizations compared to eQTL/GWAS colocalizations 
from brain cortex and whole blood only. Across 70 GWAS, each trait has at least one 
GWAS signal that colocalized only with a caQTL, and one trait, standing height, had 371 
lead GWAS signals that colocalized exclusively with caQTLs compared to brain eQTLs. 
In contrast, we identified a maximum of 43 lead GWAS variants that colocalize only 
with eQTLs for a given trait. Across all GWAS, a median of 78 unique signals colocal-
ized with a caQTL only, a median of 11 unique signals colocalized with an eQTL only 
in whole blood, and a median of 14 unique signals colocalized with both a caQTL and 
a whole blood eQTL (Additional file 2: Fig. S22, Additional file 1: Table S17). Further-
more, across all GWAS, a median of 90 unique signals colocalized with a caQTL only, a 
median of 7 unique signals colocalized with an eQTL only in brain cortex, and a median 
of 8 unique signals colocalized with both a caQTL and a brain cortex eQTL (Additional 
file 2: Fig. S23, Additional file 1: Table S18). Compared to the analysis considering eQTLs 
across all tissues, we find that caQTL/GWAS only colocalizations occur with a larger 
proportion of GWAS signals in single tissue eQTL analysis colocalizations. This discrep-
ancy provides further evidence that using caQTLs can provide molecular insight into 
GWAS association signals beyond eQTLs when restricting to a single eQTL tissue.

Integration of caQTLs informs mechanistic interpretation at many GWAS loci

Colocalization analysis with QTL datasets across multiple modalities, such as expres-
sion and chromatin accessibility, has previously been shown to nominate putative target 
genes underlying more GWAS signals than a single modality alone [70, 74]. We identi-
fied signals that colocalized separately with both caQTLs and eQTLs and quantified how 
many of the GWAS-colocalizing caQTLs and eQTLs also colocalized with each other. 
We identified 53,223 unique colocalization events involving a GWAS trait, caQTL peak, 
and eGene identified in a GTEx tissue (Additional file 1: Table S19). These were com-
prised of 2564 unique eGenes and 1894 unique caQTL peaks.



Page 13 of 26Wenz et al. Genome Biology           (2025) 26:81  

In cases where caQTLs colocalize with both GWAS signals and eQTLs, they provide 
a more complete picture of the mechanisms likely driving the association signal. First, 
we provide an instructive example of a well-characterized GWAS locus strongly associ-
ated with plasma low-density lipoprotein cholesterol (LDL-C) at the 1p13 locus. eQTL 
colocalization analyses at this locus, followed by functional characterization in vitro and 
in vivo, suggest that the causal gene at this locus is SORT1, with expression differences 
observed in the liver [49]. We find a caQTL at this locus that colocalizes with both the 
SORT1 eQTL in liver, and the GWAS trait self-reported high cholesterol (Additional 
file 2: Fig. S24). This caQTL peak contains a well-studied noncoding variant that creates 
a C/EBP (CCAAT/enhancer binding protein) TF binding site, altering hepatic expres-
sion of SORT1 and plasma LDL-C levels [49]. This highlights the ability of our analyses 
to identify verified mechanisms underlying GWAS signals.

In a second example, we identified a compelling locus where a caQTL peak, a whole 
blood eQTL for PAX8, and a GWAS signal for blood urea levels colocalized (Fig. 5). The 
shared lead caQTL and eQTL variant, rs7589901, is an intronic variant within the PAX8 

Fig. 5 Change in chromatin accessibility and expression implicate PAX8 in serum urea levels. The top three 
plots are the colocalization windows (10 kb + caQTL peak) for the caQTL, eQTL, and GWAS, respectively. The 
following two plots are showing a larger window to illustrate the eQTL and GWAS signals, respectively, at this 
locus at a different scale. The bottom gene track highlights the position of genes at this locus, as well as the 
location of the caQTL peak (gold dotted lines)
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gene. The reference allele of rs7589901-A is associated with increased chromatin acces-
sibility in the associated peak when considering the aggregated signal across all samples 
(Additional file 2: Fig. S25). This relationship is also seen across many cell/tissue-types 
groups based on our sample annotations, suggesting that this caQTL effect is mostly 
shared across many of the well-powered cell type groups (Additional file  2: Fig. S26). 
Based on motif analysis, several TFs are predicted to bind to a motif at this locus. One 
such TF, ZNF135, is predicted to bind to a motif overlapping rs7589901, with the alter-
nate C allele strongly favored for binding based on the position weight matrix (PWM), 
a model that reflects the relative frequency of the base occurring for that position in 
the motif [75] (PWM value: C allele = 0.81, Additional file  2: Fig. S27). In GTEx, the 
rs7589901 eQTL direction of effect is concordant with the caQTL direction of effect, 
suggesting that increased accessibility at this locus is associated with increased PAX8 
gene expression in whole blood. The lead GWAS variant at this locus, rs7421852, is asso-
ciated with increased blood urea levels, is ~3000 bp from rs7589901, and is in strong 
LD (r2 = 0.85) with rs7589901 in our caQTL sample genotypes. These results suggest a 
potential mechanism where ZNF135 is acting as a transcriptional repressor at this locus, 
a functional role that has been implicated in a different context [76]. The culmination 
of evidence suggests a mechanism where decreased ZNF135 binding leads to increased 
chromatin accessibility, increased expression of the PAX8 gene, which has been linked 
to urea regulation [77], and lower blood urea levels (Additional file 2: Fig. S28). Impor-
tantly, at any locus where colocalizations nominate eGenes and/or variants are predicted 
to affect TF binding, functional experiments are needed to validate proposed mecha-
nisms. Such examples, however, demonstrate the power of integrating multiple molec-
ular QTL datasets to nominate mechanistic hypotheses that may be further validated 
experimentally.

Sample heterogeneity enables identification of context‑specific clusters

Because profiles of chromatin accessibility often segregate context or cell-type specific 
information, we next grouped our samples by their profiles of chromatin [78]. We per-
formed dimensionality reduction [79] and applied an unsupervised clustering method 
[80] to identify groups of similar samples, identifying 11 clusters (Fig.  6A, Methods). 
After clustering, we used sample metadata to assign a label to each cluster, denoting the 
presumed biological origin. Although many of the cell/tissue type labels were generated 
and harmonized by our review of each project and incorrect assignments are possible 
where metadata was lacking, overall, clustering appears to be mainly driven by the tis-
sue or cell type from which the sample is derived (Additional file 2: Figs. S29–S30). For 
example, blood cell types appear to be grouped together or near each other in separate, 
but related clusters. In addition, we found other examples of clusters where nearly half of 
the samples are derived from a single tissue, such as pancreas. Annotating samples with 
other aspects of metadata, such as primary sample vs. cell line, or cancer vs. non-cancer 
samples, did not appear to explain clustering results (Additional file 2: Fig. S31).

Clustering allows for identification of caQTLs in specific clusters

To determine whether clustering samples of similar biological origin enables the dis-
covery of additional caQTL signals, we next performed caQTL mapping within each 



Page 15 of 26Wenz et al. Genome Biology           (2025) 26:81  

cluster. Each cluster is composed of a different number of samples, with varying contri-
butions from cell types and projects, which is reflected in the number of caQTLs identi-
fied in each cluster. Cluster sample size ranged from 84 to 203 unique donor samples 
(Additional file 1: Table S20) and resulted in 231–15,447 (FDR < 5%) caQTLs identified 
in a single cluster. As in the global analysis, cluster caQTLs showed similar patterns of 
genomic region annotation enrichments (Additional file  2: Fig. S32) and lead caQTLs 
were centered within the open chromatin peak tested (Additional file 2: Fig. S33). Across 
all clusters, cluster caQTLs rediscovered 34–94% of caQTL peaks observed in the global 
analysis (Fig. 6B) with median global caQTL replication rate of 0.99 (π1 value) across all 
clusters (Additional file 2: Fig. S34). Analysis comparing cluster caQTL peak discover-
ies to other clusters resulted in a range of caQTL peak rediscovery (Additional file  2: 
Fig. S35) but high replication rate across clusters (π1 value 0.92–0.99) (Fig.  6C, Addi-
tional file 1: Table S21). This suggests that clusters are capturing common global signals, 
but some clusters are better powered at identifying caQTLs that might be cell/tissue-
specific. For example, cluster 9, which identified the largest number of cluster caQTLs, 
is comprised of more than 50% LCL samples, many of which are from a single study. 
Approximately 2/3 of the caQTL peaks identified in cluster 9 are not identified as caQTL 
peaks in the global analysis performed across all tissues/cell types, suggesting that clus-
ter 9 may be better powered to discover caQTLs more prevalent in LCLs and related 
blood cell samples. As a measure of reproducibility across experiments, we found that 

Fig. 6 Clustering and discovery of cluster caQTLs across ATAC‑seq samples. A UMAP followed by k‑means 
clustering to identify groups of related samples based on chromatin accessibility profiles across all peaks. 
B Cluster characteristics, caQTLs identified, and replication with respect to global caQTL mapping. The size 
of each bar represents the magnitude of each category within each cluster. C Replication rate (π1 value) of 
caQTLs identified in each cluster compared to those found in all other clusters
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cluster 9 caQTL lead variants were enriched for evidence of caQTL peak causality in 
the original study [35] that the majority of cluster 9 samples originate from (Additional 
file 2: Fig. S36). These results suggest that, as with eQTLs, future work increasing the 
sample size to examine cell/tissue-specific caQTLs is likely to capture novel caQTLs that 
will be useful for elucidating molecular mechanisms underlying GWAS signals.

Mapping caQTLs in clusters highlights the increase in caQTL discovery power of 
aggregating all samples across experiments, particularly for caQTLs that might be found 
across cell types. In our global analysis, we identified 24,159 caQTL peaks, with a max-
imum of 5315 of those also identified in a single cluster caQTL mapping experiment. 
This suggests that by considering all samples, we achieve greater than a 4.5-fold increase 
in caQTL discovery power for global caQTLs. Across all clusters, we identify 8643 (36% 
of global) caQTL peaks that were also found in the global analysis and 15,029 caQTL 
peaks that were not found in the global analysis.

Cluster‑specific caQTLs can explain additional gene regulation and GWAS signal causality

We next performed colocalization analysis between GTEx eQTLs and the caQTLs iden-
tified within each cluster to determine if cluster-specific caQTLs appear to be involved 
in gene regulation as well. As in the cluster caQTL analysis, we find that the number of 
colocalizations found per cluster was commensurate with the number of caQTLs identi-
fied in each cluster. We find a maximum of 13,989 unique eGenes colocalizing in a sin-
gle cluster, and a total of 17,187 unique eGenes colocalize when considering all clusters 
(Additional file 1: Tables S22–S23). Compared to the global analysis, which identified a 
total of 18,826 unique colocalizing eGenes, 14,459 were also colocalized in the cluster 
analyses, suggesting that the majority of colocalizing eGenes are identified across both 
analyses. As in the cluster caQTL analyses, we find that colocalizing eGenes are often 
shared across clusters (Additional file 2: Fig. S37). Considering all cluster colocalization 
events, 7940 total eGenes were found to uniquely colocalize in a single cluster, with 5653 
(71%) of these in cluster 9. Overall, we find a variable number of cluster-specific caQTL/
eQTL colocalizations per cluster, many of which are shared across clusters.

Our previous analyses assessed the benefit of utilizing global caQTLs in GWAS colo-
calizations compared to eQTLs. In this analysis, we considered eQTLs that were dis-
covered in experiments performed in single tissues, experiments that are much more 
likely to identify variants with tissue-specific effects compared to our multi-tissue, global 
caQTL mapping strategy. Cluster-specific caQTLs might more closely mimic these 
single-tissue eQTL datasets, as these caQTLs were mapped in clusters of samples that 
likely shared a similar biological origin. To better compare the contribution of eQTLs 
and caQTLs to GWAS signals, we considered caQTLs identified in both global and clus-
ter-specific analyses to assess colocalization improvement. Across all GWAS traits and 
eQTL tissues tested, we find that combining global and cluster-specific caQTLs results 
in an increase of the contribution of caQTLs to GWAS colocalizations. Specifically, we 
find a median of 44 GWAS signals colocalizing with caQTLs only and a median of 76 
GWAS signals colocalizing with both caQTLs and eQTLs (Additional file  2: Fig. S38, 
Additional file 1: Table S24). Both measurements are increases compared to the global 
analysis only. In contrast, the median number of GWAS signals that colocalize with 
eQTLs only decreased to 48 (Additional file  2: Fig. S38, Additional file  1: Table  S24). 
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Leveraging both global and cluster caQTLs, together with eQTLs, we explained a 
median of 64% of GWAS signals tested (Additional file 2: Fig. S39). Overall, we find that 
both global and cluster-specific caQTLs can contribute to the causal mechanisms under-
lying GWAS signals not captured by eQTLs.

Discussion
We developed a pipeline to discover caQTLs on a large scale by aggregating and gen-
otyping large-scale ATAC-seq data across many studies. We collected 10,293 human 
ATAC-seq samples, representing 1454 unique donors, from public databases that come 
from a diversity of cell types and conditions, demonstrating that genotype data can 
be accurately called from ATAC-seq data, and identified unique sample donors, both 
within and across projects. Combining accessibility and genotype information, we per-
formed caQTL analysis and were able to capture global and cluster-specific caQTLs. 
caQTL studies are often limited by sample size constraints. We show that amassing 
public-domain project data allows for identification of a greater number of caQTLs than 
smaller individual studies alone. We demonstrated that caQTLs are enriched for various 
regulatory elements and likely underlie gene expression differences and complex human 
traits. We provide our large catalog of global and cluster caQTLs as a resource.

Our study does have limitations and opportunities for further development. Natu-
rally, as more ATAC-seq data are generated, a similar study could be repeated on a 
larger scale. Additionally, the clustering performed in our study was coarse and may 
have grouped multiple cell types or contexts together. With a larger sample size from 
new studies or more extensive exploration of clustering methods or cell type predic-
tion approaches, these grouping could be further refined and made more homogeneous, 
which would be expected to boost statistical power for discovery. Although we analyzed 
a large and diverse set of samples and experiments, many GWAS signals were not tagged 
by one of our caQTLs (and/or by eQTLs). One explanation for this is that we are missing 
many cluster/context-specific caQTLs that may underlie the remaining GWAS signals. 
Another limitation of this study is that while the sample contexts were diverse, we still 
do not have sufficient sample size across some disease-relevant contexts to fully examine 
context-specific caQTLs. Further work, perhaps using single cell ATAC-seq data, is nec-
essary to gain insight into tissue/cell context specific caQTLs. Other types of molecular 
QTLs may underlie some unexplained GWAS signals [63]. Incorporating additional data 
modalities, such as those reflecting chromosome conformation changes, may identify 
additional QTLs underlying GWAS loci. A recent study has shown that genetic vari-
ants in enhancer regions affect gene expression changes via enhancer-promoter touch-
ing and looping processes [81]. Integrating HiC or HiChIP datasets with ATAC-seq data 
can provide insight into this process. These datasets may also help identify target genes 
or resolve situations where multiple eGenes are implicated as causal genes at a locus 
[82]. Furthermore, other mechanisms, such as DNA methylation (meQTLs) [83, 84] or 
post-transcriptional processes such as splicing (sQTLs) [71] or protein concentrations 
(pQTLs) [85], could underlie GWAS signals that have yet to be explained.

Although we observed colocalization analysis between our caQTLs and GWAS sig-
nals on par with previous studies [73], experimental validation is necessary to deter-
mine whether putative causal variants underlying these QTLs directly mediate disease 
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risk [86, 87]. Previous studies have shown that this type of analysis has led to the cor-
rect identification of molecular mechanisms underlying disease. For example, regulatory 
mapping has successfully identified gene targets that can be experimentally modulated 
to produce a phenotypic effect both in vitro and in vivo [88]. Furthermore, caQTL anal-
yses have been used to predict mechanisms underlying GWAS signals with follow-up 
functional experiment results supporting these predictions [15]. Ultimately, regulatory 
elements and gene targets that we identify as implicated at GWAS loci will need addi-
tional support from low-throughput experimental techniques to confirm our findings, 
such as using base editing to dissect variant function [89]. Toward the goal of under-
standing molecular mechanisms underlying GWAS signals, molecular QTLs generate 
hypotheses and our work has demonstrated that including caQTLs in these experiments 
increases the number of GWAS signals for which a putative molecular mechanisms may 
be identified.

Conclusions
In summary, we have deployed a pipeline to call a set of consensus peaks from thou-
sands of publicly available ATAC-seq samples and genotype these samples directly from 
the experimental sequencing reads. We leveraged these data to identify caQTLs that 
likely share causal variants with eQTLs and GWAS signals. We show that caQTLs can 
improve our understanding of the mechanisms underlying GWAS signals and we pro-
vide this dataset as a resource for use in further fine-mapping experiments.

Methods
Sample collection

ATAC-seq samples were identified through the Gene Expression Omnibus (GEO) data-
base and downloaded. Collected sample metadata is found in Additional file 1: Table S1.

Benchmarking on HapMap samples

We downloaded ATAC-seq for 71 HapMap samples from ENA project PRJEB28318 [35]. 
Cram files were converted to bam files and reads that map to the mitochondrial genome 
were removed. We aligned the sequencing reads to GRCh38 using bowtie2 and retained 
only autosomal chromosomes. Duplicated reads tagged by Picard were removed and 
Base Quality Score Recalibration (BQSR) was performed using GATK tools. Vari-
ant calling was done using GATK HaplotypeCaller [34, 90, 91], HaplotypeCaller with 
imputation, and with Gencove’s low-pass sequencing pipeline. Loci with less than 2 
reads were filtered out and variants were mapped to GRCh37 using Picard LiftoverVcf. 
Minimac4 was utilized to run imputation with reference panel derived 1000G Phase 3 
(https:// csg. sph. umich. edu/ abeca sis/ mach/ downl oad/ 1000G. Phase3. v5. html). We kept 
only the genotype for common variants derived from 1000G with MAF > 0.05. The gold 
standard variants were obtained from https:// www. inter natio nalge nome. org/ data- por-
tal/ data- colle ction/ grch38 [92]. At loci with discordant genotype calls between GATK 
genotype caller and imputation, we used custom machine learning methods for com-
bining the GATK and imputation results. With these models, 80% of the samples were 
utilized for training and the remaining 20% were utilized for testing. During training, 
each model is trained to use genotypes from the GATK genotype caller and imputation 

https://csg.sph.umich.edu/abecasis/mach/download/1000G.Phase3.v5.html
https://www.internationalgenome.org/data-portal/data-collection/grch38
https://www.internationalgenome.org/data-portal/data-collection/grch38
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to predict the gold standard genotypes obtained through WGS. The training script is 
found in train_genotype_predictor.py. We then compared the called genotype dosage to 
the gold standard genotype by computing the Spearman correlation and mean squared 
error (MSE).

Benchmarking for caQTLs in HapMap samples

We first obtained caQTLs using ATAC-seq reads with Benjamani-Hochberg (BH) cor-
rected p value < 0.05, then ran QTL analysis using gold standard genotype and obtained 
caQTLs with BH corrected p value < 0.05. The precision is computed as the percentage 
of replicated caQTLs at FDR < 0.05 using the gold standard genotype. Similarly, we first 
obtained caQTLs using gold standard genotypes with BH corrected p value < 0.05, then 
ran QTL analysis using ATAC-seq reads and obtained caQTLs with BH corrected p 
value < 0.05. The recall is computed as the percentage of replicated caQTLs at FDR < 0.05 
using the ATAC-seq reads.

Peak calling

Genrich [28] (v0.6.1) was used to call peaks. A slightly modified version of Genrich was 
applied to allow peak calling across a large number of samples (https:// github. com/ 
maxdu dek/ Genri ch). Genrich assigns p values to genomic positions within each sam-
ple followed by combining p values across samples using Fisher’s method to call peaks. 
Bam files were filtered using “samtools view -S -b -q 10.” Bam files were name sorted 
using “samtools sort -n /path/to/q10_filtered_bams/sample.bam | samtools view -h -o /
path/to/nameSortedBams/sample.bam.” Peak calling parameters were “Genrich -t /path/
to/nameSortedBams/sample1.bam, path/to/nameSortedBams/sample2.bam, path/to/
nameSortedBams/sampleN.bam, -j -o /path/to/outputFile -v -E /path/to/blacklistRe-
gions.bed -r -q 0.05-y.”

Genomic annotation enrichment

Genomic annotation enrichment analyses were performed using the R package anno-
tatr (v.1.28.0) (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ annot atr. html). One 
hundred iterations of random, matched background data using bedtools shuffle with 
flags “-chrom -excl /path/to/blacklistRegions.bed -g /path/to/chrSizes.txt.” caQTL peak 
background regions matched on length, GC content, and repeats were generated using 
R package gkmSVM v.0.83.0 function genNullSeqs with parameters “repeat_match_
tol = 0.1,GC_match_tol = 0.1,batchsize = 7000,length_match_tol = 0.05.” Annotations were 
made with annotatr function annotate_regions with parameters “ignore.strand = TRUE, 
quiet = FALSE,minoverlap = 200.” p values were calculated by quantifying the number of 
random data iterations that were more extreme than the true data values for each category.

NIH roadmap enrichment

Histone ChIP-seq data derived from adult human samples were downloaded from 
https:// www. encod eproj ect. org/ searc h/? type= Exper iment & status= relea sed& award. 
proje ct= Roadm ap. ATAC-seq peaks that overlapped histone mark data were identi-
fied using bedtools intersect -wo -a /path/to/encodeData.bed -b /path/to/peakCoords.
txt. One hundred iterations of random, matched background data using bedtools shuffle 

https://github.com/maxdudek/Genrich
https://github.com/maxdudek/Genrich
https://bioconductor.org/packages/release/bioc/html/annotatr.html
https://www.encodeproject.org/search/?type=Experiment&status=released&award.project=Roadmap
https://www.encodeproject.org/search/?type=Experiment&status=released&award.project=Roadmap
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with flags “-chrom -excl /path/to/blacklistRegions.bed -g /path/to/chrSizes.txt.” p values 
were calculated by quantifying the number of random data iterations that were more 
extreme than the true data values for each histone mark.

caQTL mapping

Sample peak counts were generated for all samples used for peak calling. To remove 
potential outlier peak regions, peaks with mean count < 1 and max count > 100,000 were 
removed. Peaks were also removed if > 5000 peak-calling samples had a read count of 
zero in that peak. Given that a single individual might contribute multiple samples to 
the 10,293 sample pool, we identified each sample that can be attributed to each indi-
vidual and averaged sample peak CPM values to calculate a single CPM value per peak 
for each individual donor. This workflow results in 1454 individual donor samples for 
caQTL mapping. Code available in file “Post_peakCalling_CountMatrixGeneration_
Pipeline.txt.” tensorQTL (v.1.0.9) [93] was used to identify caQTLs using a linear model 
with 3 genotype PCs, explaining 88% of the variance, and 200 principal components, 
explaining 51% of the variance, as covariates. The results of ADMIXTURE’s (v.1.3.0) 
[94] cross-validation procedure suggested that three ancestry populations were repre-
sented in our data (Additional file 2: Fig. S40). We compared the results of caQTL map-
ping with 5 genotype PCs rather than 3 genotype PCs and found 23,699 concordant 
caQTL peaks (Additional file  2: Fig. S41). PCs generated from the chromatin accessi-
bility peak read count data sample matrix was used to map caQTLs on chromosome 1 
over a large range of included PCs. PC correlation with sample metadata was performed 
using Spearman and Pearson correlation, as well as with Multivariate Analysis Of Vari-
ance (MANOVA) (Additional file 2: Fig. S42). The optimized PC covariate number was 
chosen based on the elbow of the PCs included vs. caQTL discovery plot on chromo-
some 1 (Additional file 1: Table S25). We tested all genotyped biallelic genetic variants 
with MAF > 0.05 within 10 kilobases of all open chromatin peak boundaries detected by 
Genrich from the ATAC-seq data. Empirical p values were estimated by tensorQTL to 
get peak-level p values and q values [95]. caQTL mapping code available in file “caQTL_
mapping_code_pipeline.txt.” All caQTL mapping analyses performed on sample subsets 
followed the same pipeline described for the global analysis. To assess whether refer-
ence allele mapping bias contributes significantly to caQTLs, we ran RASQUAL [10] on 
FDR5 caQTL peaks identified with tensorQTL and a randomly selected subset of sam-
ples (n = 48). RASQUAL produces a reference allele mapping bias (Phi) score for each 
variant tested (Additional file 2: Fig. S43). Considering caQTL lead variants tested with 
any caQTL peak, 38,660/38,938 (~ 99%) of the Phi estimates were between 0.25 and 0.75 
and 33,849/38,938 (~ 87%) of the Phi estimates were between 0.4 and 0.6.

Lead caQTL/eQTL enrichment

Significant lead eQTL variants were downloaded for 49 tissues from GTEx v8 publicly 
available data. Unique global sample analysis lead caQTLs (n = 21,647) were intersected 
with lead eQTL variants to assess overlap within each GTEx tissue. The unique inter-
section of overlaps across all tissues was considered to determine the total number 
of caQTL lead variants that were found to be a lead eQTL variant in at least one tis-
sue. Background variants were selected to perform enrichment analyses. Background 
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variants were chosen by randomly sampling non-lead caQTL genetic variants that were 
matched, ± 10%, to the allele frequency and distance to nearest gene transcription start 
site of true lead caQTL variants. Enrichment of caQTLs/eQTLs in each tissue was cal-
culated as the ratio of the overlap of true lead caQTL/eQTL compared to the overlap of 
background variants/eQTL across 100 iterations.

Replication analysis

An external dataset was identified that was not included in our peak calling or caQTL 
mapping workflow [37]. Global FDR5 caQTL peaks with any overlap with the external 
study and variants tested in both analyses against these shared peaks were identified. 
External study p values were used for π1 replication rate calculation and plotted.

GWAS trait/signal selection

GWAS summary stats for traits were downloaded February 2021 from the UKBB Neale 
Lab repository and selected for relevant traits based on the following filters: h2 > 0.05, 
z > 7, confidence = = high. Independent significant GWAS signals from 78 traits were 
chosen to prevent counting a single GWAS signal multiple times. This was done by 
selecting GWAS signals with a minimum p value of 5e − 08, considering a window of 50 
kb on either side of these variants, clumping all variants with R2 > 0.01, and selecting the 
variant with the most significant p value as the lead GWAS signal for this locus.

Colocalization analyses

Colocalization was performed using coloc [62] (v.5.2.3). All reported colocalizations uti-
lized a previously published approach to define significance [68]. This approach consists 
of considering whether the colocalization is sufficiently powered, PP3 + PP4 > 0.8. For 
those events that surpass this threshold, we assessed whether the colocalization is sig-
nificant, PP4/(PP3 + PP4) > 0.9. GTEx v8 data were downloaded from https:// www. gtexp 
ortal. org/ home/ downl oads/ adult- gtex/ bulk_ tissue_ expre ssion.

Colocalization genome annotations

Genomic annotation enrichment analyses were performed using the R package anno-
tatr (v.1.28.0) (https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ annot atr. html). For 
each type of colocalization, caQTL peaks involved in the colocalization were labeled 
with genomic annotations they overlap. To perform an enrichment analysis, true data 
results were compared with the median of 1000 iterations of random genomic regions 
matched to the true data using bedtools shuffle with flags “-chrom -excl /path/to/black-
listRegions.bed -g /path/to/chrSizes.txt.” Summaries were produced by identifying sig-
nificant enrichments (annotation category enriched/depleted p value ≤ 0.05) across all 
traits or trait/tissue pairs and calculating the mean and median enrichment/depletion 
values.

Clustering analyses

To reduce the dimensions of the data, Uniform Manifold Approximation and Projec-
tion (UMAP) was performed on the normalized sample CPM count matrix across all 
peaks. K-means clustering was performed on UMAP coordinates 1 and 2. Eleven outlier 

https://www.gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression
https://www.gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression
https://bioconductor.org/packages/release/bioc/html/annotatr.html
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samples were removed from analysis. The number of clusters was optimized using sev-
eral clustering metrics (Additional file 1: Table S26) and samples were assigned to a clus-
ter based on the results of the clustering algorithm.

Cluster‑specific caQTL mapping

caQTL mapping was performed as in the global analysis. In this analysis, peaks identi-
fied in the global analysis were included if at least 50% of cluster samples had non-zero 
CPMs in that feature, resulting in the removal of 5–5920 (0.0003–0.35% of total peaks). 
All steps of the caQTL mapping pipeline were performed within each cluster. caQTL 
mapping was performed including 3 genotype PCs and an optimized number of princi-
pal components based on each cluster. For each cluster, a range of PCs generated from 
each cluster’s chromatin accessibility peak read count data sample matrix was used to 
map caQTLs on chromosome 1. The optimized PC covariate number was chosen based 
on the elbow of the PCs included vs. caQTL discovery plot. We tested all genotyped 
biallelic genetic variants with MAF > 0.05 within 10 kilobases of all open chromatin peak 
boundaries detected by Genrich from the ATAC-seq data. Empirical p values were esti-
mated by tensorQTL to get peak-level p values and q values [95]. All colocalizations 
were performed as described for the global analyses.

Cluster caQTL replication analyses

Cluster caQTL replication of global caQTLs was assessed by extracting global caQTL 
peak test statistics from each cluster and calculating π1 replication rate. The reported 
replication rate for each cluster was calculated by calculating the median π1 replication 
rate after calculating π1 replication rate with a range of values for the lambda parameter 
(from = 0.1, to = 0.9, by = 0.05). Cluster caQTL replication rate across all other clusters 
was calculated in a similar fashion. For each cluster, cluster caQTL peak test statis-
tics were extracted from all other clusters and π1 replication rate was calculated. The 
reported replication rate for each cluster was calculated by calculating the median π1 
replication rate after calculating π1 replication rate with a range of values for the lambda 
parameter (from = 0.1, to = 0.9, by = 0.05).
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