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Abstract 

Background: Dyslipidemia or hypercholesterolemia are among the main risk factors 
for cardiovascular diseases. Unraveling the molecular basis of lipid or cholesterol home-
ostasis would help to identify novel drug targets and develop effective therapeutics.

Results: Here, we adopt a systematic approach to catalog the genes underlying lipid 
and cholesterol homeostasis by combinatorial use of high-throughput CRISPR screen-
ing, RNA sequencing, human genetic variant association analysis, and proteomic 
and metabolomic profiling. Such integrative multi-omics efforts identify gamma-
glutamyltransferase GGT7 as an intriguing potential cholesterol and lipid regulator. 
As a SREBP2-dependent target, GGT7 positively regulates cellular cholesterol levels 
and affects the expression of several cholesterol metabolism genes. Furthermore, GGT7 
interacts with actin-dependent motor protein MYH10 to control low-density lipopro-
tein cholesterol (LDL-C) uptake into the cells. Genetic ablation of Ggt7 in mice leads 
to reduced serum cholesterol levels, supporting an in vivo role of Ggt7 during choles-
terol homeostasis.

Conclusions: Our study not only provides a repertoire of lipid or cholesterol regula-
tory genes from multiple angles but also reveals a causal link between a gamma-gluta-
myltransferase and cholesterol metabolism.
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Background
As the most abundant sterol in mammals, cholesterol plays many vital roles in both 
physiological and pathological conditions. It not only constitutes a major part of the 
eukaryotic cell membrane but also serves as precursors for many bioactive molecules 
such as bile acids and steroid hormones [1, 2]. In addition, cholesterol can also cova-
lently bind to proteins (e.g., Hedgehog and Smoothened), thereby acting as critical 
regulators of key signaling pathways [3, 4]. Disturbed cholesterol or lipid homeostasis 
has been regarded as a major risk factor for atherosclerotic cardiovascular diseases as 
well as several neurodegenerative diseases and cancers [5, 6]. The levels of cholesterol 

*Correspondence:   
feiteng@mail.neu.edu.cn

1 Key Laboratory of Bioresource 
Research and Development 
of Liaoning Province, College 
of Life and Health Sciences, 
Northeastern University, 
Shenyang 110819, China
2 National Frontiers Science 
Center for Industrial Intelligence 
and Systems Optimization, 
Northeastern University, 
Shenyang 110819, China
3 Key Laboratory of Data 
Analytics and Optimization 
for Smart Industry (Northeastern 
University), Ministry of Education, 
Shenyang 110819, China
4 Research Center for Analytical 
Sciences, Department 
of Chemistry, College of Sciences, 
Northeastern University, 
Shenyang 110819, China
5 College of Medicine 
and Bioinformation Engineering, 
Northeastern University, 
Shenyang 110819, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-025-03531-8&domain=pdf


Page 2 of 26Shan et al. Genome Biology           (2025) 26:59 

within a cell are intricately orchestrated by a series of processes including biosynthe-
sis, uptake, export, and esterification. Pioneering work have identified several key genes 
and signaling pathways underlying these processes and some of them have been targeted 
pharmacologically to treat cardiovascular diseases [2, 7–15]. For instance, HMGCR, the 
rate-limiting enzyme of cholesterol biosynthesis, is the central target for various statin 
drugs which can indirectly reduce serum low-density lipoprotein cholesterol (LDL-C) 
through a feedback regulation. PCSK9, a secreted protein that targets low-density lipo-
protein receptor (LDLR) for lysosome degradation, stands for another successful target 
of therapeutic interventions to lower serum LDL-C and cardiovascular disease risks. 
Therefore, it is important and necessary to systematically identify the functional genes 
during cholesterol metabolism. Moreover, as research advances, a growing number of 
human genetic variants have been associated with cholesterol and lipid metabolism as 
well as cardiovascular diseases. However, a causal link needs to be established to pin-
point the functional genes underlying these physiopathological processes.

The application of clustered regularly interspaced short palindromic repeats 
(CRISPR)-based genome editing tools has significantly accelerated the pace of functional 
gene discovery, especially when combined with a high-throughput genetic screening 
approach [16–18]. CRISPR screening has been performed to identify the genes that reg-
ulate LDL-C uptake, LDLR or PCSK9 levels, HMGCR protein stability, SREBP signaling, 
and cholesterol trafficking using different screening platforms in various cellular models 
[19–28]. Several novel cholesterol regulators are characterized. On the other hand, the 
above studies usually focus on a specific cholesterol-related process and differ in many 
aspects of screening conditions, which generally results in poor consensus for the gene 
hits between different reports. These findings suggest that many more functional genes 
underlying cholesterol or lipid homeostasis need to be discovered with orthogonal or 
complementary screening approaches.

In the present study, we adopted a comprehensive multi-omics approach by combi-
natorial application of CRISPR screening, RNA sequencing, human genetic variant 
association analysis, and proteomic and metabolomic profiling techniques to catalog 
the genes related to cholesterol and lipid metabolism. We further characterize a top hit 
GGT7, encoding a gamma-glutamyltransferase, for its function and mechanism during 
cholesterol and lipid homeostasis using both cellular and genetic mouse models. These 
results provide both valuable datasets and critical insights into cholesterol and lipid 
metabolism.

Results
Genome‑scale CRISPR screens identify key genetic interactions (GIs) underlying cholesterol 

homeostasis

Cholesterol is an essential molecule for cell survival and intracellular cholesterol is 
largely supplied via de novo biosynthesis and direct uptake from outside. Based on this 
fact, we surmise that the two key regulators of cholesterol biosynthesis and uptake, 
HMGCR  and LDLR, respectively, should have a synthetic lethal interaction. Using inde-
pendent single guide RNAs (sgRNAs), we successfully knocked out either HMGCR  or 
LDLR in hepatic HepG2 cells (Fig. 1A and B). As expected, we did observe a dramatic 
loss of cell viability when the two genes were simultaneously perturbed compared to 
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vector control or single gene knockout (KO) (Fig. 1C). Moreover, such synthetic lethality 
was also confirmed with lovastatin, a clinically used inhibitor of HMGCR, in LDLR KO 
cells (Fig. 1D).

Based on the above findings, we designed multiple cell viability-based synthetic lethal 
CRISPR screens in order to identify genetic interactions for key cholesterol regulators 
or pathways. For Screen 1, we used lovastatin to block the cholesterol biosynthesis path-
way or the action of HMGCR, and tried to identify the genes whose loss-of-function 
were synthetic lethal with lovastatin in HepG2 cells using a genome-scale CRISPR 
KO screen (Fig. 1E). A β-score was assigned for each gene using MAGeCK algorithm 
to illuminate the phenotypic strength upon perturbation [29]. A negative score means 
decreased viability and a positive score represents increased cell fitness. The core essen-
tial genes underwent significantly negative selection in both vehicle and lovastatin con-
ditions (Additional file  1: Fig. S1A and B) as expected, and the two samples generally 
correlated quite well (r = 0.88; Fig. 1F), further supporting the high quality of this screen. 
Using an arbitrary cutoff  (scorelovastatin −  scorevehicle ≤ − 0.2 and  scorelovastatin ≤ − 0.3), we 
identified 368 genes as the synthetic lethal or negative GI hits for lovastatin or HMGCR 

Fig. 1 Synthetic lethal CRISPR screening to identify potential cholesterol regulators in HepG2 cells. A 
Immunoblot analysis of HMGCR in HepG2 cells undergoing CRISPR-mediated gene knockout with two 
independent sgRNAs (numbered as _1 and _2). Vector without specific sgRNA insert serves as a control. 
GAPDH serves as a loading control. B Immunoblot analysis of LDLR in HepG2 cells that have undergone 
CRISPR-mediated gene knockout with two independent sgRNAs. C The cell growth analysis of HepG2 
cells after introducing indicated sgRNAs via lentiviral infection for 7 days. Cells were counted with a 
hemacytometer. Mean ± SD with n = 3. Ordinary one-way ANOVA with Tukey’s test, **p < 0.01, ***p < 0.001. 
D The relative cell viability was determined by CCK-8 assay for HepG2 cells expressing indicated sgRNAs and 
treated with indicated doses of lovastatin. Mean ± SD with n = 6. Ordinary one-way ANOVA with Dunnett’s 
test, *p < 0.05, **p < 0.01, ***p < 0.001. E The workflow of genome-scale synthetic lethal CRISPR screens (Screen 
1) to identify negative GIs with HMGCR  using its inhibitor lovastatin in HepG2 cells. F The scatter plot showing 
the β score of each gene and the correlation of both CRISPR screens (vehicle and lovastatin) in HepG2 cells. 
The genes in blue box are preferential targets as the synthetic lethal or negative GI hits. G The rank-ordered 
list of each gene in the CRISPR screens according to the strength of synthetic lethality measured by 
differential β scores between lovastatin and vehicle conditions. The top interesting gene hits are highlighted. 
H The top selected functional terms enriched among synthetic lethal hits of the CRISPR screens (Screen 1) as 
determined by the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
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, including known cholesterol regulators such as LDLR, MVK, and LTBR (Fig. 1F and G, 
Additional file 2: Table S1). These genes were functionally enriched in either core bio-
logical processes (e.g., ribosome biogenesis) or specific functions (e.g., nucleocytoplas-
mic transport, mitochondrial gene expression, vesicle targeting, and transport) (Fig. 1H, 
Additional file 1: Fig. S1C).

To determine the effects of cellular background on GI identification, we further 
employed non-hepatic cervical cancer-derived HeLa cells for investigation. The syn-
thetic lethality between LDLR and HMGCR  was reproduced by both genetic and phar-
maceutic perturbations in HeLa cells (Fig. 2A and B). Following similar procedures in 

Fig. 2 Multiple CRISPR screens in HeLa cells for cholesterol regulatory genes. A The cell growth analysis 
of HeLa cells after introducing indicated sgRNAs via lentiviral infection for 7 days. Cells were counted with 
a hemacytometer. Mean ± SD with n = 3. Ordinary one-way ANOVA with Tukey’s test, ***p < 0.001. B The 
relative cell growth determined by cell counting for HeLa cells introducing indicated sgRNAs and treated 
with indicated doses of lovastatin. Mean ± SD with n = 3. Ordinary one-way ANOVA with Dunnett’s test, 
**p < 0.01, ***p < 0.001. C The workflow of genome-scale synthetic lethal CRISPR screens (Screen 2) to identify 
negative GIs with HMGCR  using its inhibitor lovastatin in HeLa cells. D The scatter plot showing the β score 
of each gene and the correlation of both CRISPR screens (vehicle and lovastatin) in HeLa cells. The genes in 
blue box are preferential targets as the synthetic lethal or negative GI hits. E The top selected functional terms 
enriched among synthetic lethal hits of the CRISPR screens (Screen 2) as determined by the GO and KEGG 
analysis. F The workflow of genome-scale synthetic lethal CRISPR screens (Screen 3) to identify negative GIs 
with LDLR in LDLR KO single clone and AAVS1 KO control HeLa cells. G The rank-ordered list of each gene 
in the CRISPR screens (Screen 3) according to the strength of synthetic lethality measured by differential 
tRRA scores between LDLR KO single clone and AAVS1 KO control HeLa cells. The top interesting gene hits 
are highlighted. H Venn diagram showing the overlap of synthetic lethal or negative GI hits between the 
two independent LDLR KO clones in the CRISPR screens (Screen 3). I Venn diagram showing the overlap 
of synthetic lethal or negative GI hits between the three CRISPR screens. J Heatmap showing the relative 
strength of GIs of top selected hits to HMGCR  or LDLR across different CRISPR screens
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Screen 1, we performed Screen 2 in HeLa cells to identify synthetic lethality hits with 
lovastatin treatment or negative GIs with HMGCR  (Fig. 2C). The screens were also of 
high quality to identify correct cell fitness genes (Additional file 1: Fig. S2A and B). 
Using similar criteria as Screen 1  (scorelovastatin −  scorevehicle ≤ − 0.2 and  scorelovastatin ≤ 
− 0.3) to identify synthetic lethal or negative GI hits for lovastatin or HMGCR , a total 
of 359 such hits were identified in HeLa cells (Additional file  2: Table  S1). Interest-
ingly, we found several genes responsible for cholesterol or lipid biosyntheses such as 
HMGCR  itself, MVK, FDPS, and FASN, suggesting a high dependency on cholesterol 
or lipid biosynthesis for HeLa cells (Fig. 2D). In contrast, hepatic HepG2 cells seemed 
to depend on both biosynthesis pathway and LDLR-mediated uptake process to main-
tain proper intracellular cholesterol level (Fig. 1F and G). Functional gene enrichment 
analysis of these synthetic lethal hits showed that specific functional terms relating to 
p53 signaling and protein stability regulation were particularly enriched in HeLa cells 
(Fig. 2E), while other terms were also shared in HepG2 cells (Fig. 1H, Additional file 1: 
Fig. S2C and S1C), indicating a functional conserveness between different cell types.

Using two independent lines of LDLR-ablated single clonal HeLa cells (Addi-
tional file 1: Fig. S2D) and AAVS1 KO cells as control, we further performed Screen 
3 to determine negative GIs with LDLR (Fig.  2F, Additional file  1: Fig. S2E and F). 
A MAGeCK-derived tRRA score cutoff  (scoreLDLR  KO clone −  scoreAAVS1  KO ≤ − 2 and 
 scoreLDLR  KO clone ≤ − 1) was employed to define synthetic lethal or negative GI hits 
for LDLR. Despite intrinsically clonal variations (e.g., different on-target sgRNAs, 
uncontrolled off-target editing, and clone-specific fluctuation), the two independ-
ent LDLR KO clones still produced a significant overlap of consensus synthetic lethal 
or negative GI hits (227) (Fig.  2G and H; Additional file  2: Table  S1). Interestingly, 
mitochondria genes were significantly enriched among these consensus gene hits in 
Screen 3 (Additional file  1: Fig. S2G), further underscoring the functional interplay 
between mitochondria and lipid homeostasis [30, 31]. When comparing the results 
across the three CRISPR screens, we found a statistically significant overlap of syn-
thetic lethal or negative GI hits for lovastatin or HMGCR  between HepG2 (Screen 1) 
and HeLa (Screen 2) cells, suggesting the functional conserveness of those GIs across 
different cellular backgrounds (Fig.  2I). Meanwhile, none or less significant overlap 
was observed between negative GI hits for LDLR (Screen 3) and those for HMGCR  
(Screen 1 or 2) (Fig. 2I). Rather, an anti-correlative pattern of relative GIs with LDLR 
or HMGCR  for shared gene hits of the three screens was observed (Fig. 2J). This is not 
only in agreement with the negative GI relationship between LDLR and HMGCR per 
se but also suggests a high quality and robustness of our results in pivotal GI identifi-
cation underlying cholesterol homeostasis.

Notably, the cell fitness-based genetic screening systems do not exclusively rely on 
cholesterol restriction. Using untargeted metabolomic profiling, we found a dramatic 
decrease of multiple lipids including sterol lipids in LDLR/HMGCR  double knock-
out (DKO) HepG2 cells whereas single KO of LDLR or HMGCR  had much less effect 
(Additional file 1: Fig. S3A–D, Additional file 3: Table S2). Therefore, the GIs identi-
fied here not only underlie cholesterol regulation but also contribute to broader and 
important lipid homeostasis.
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Transcriptome profiling of cholesterol regulatory genes

As typical cholesterol regulator genes (e.g., LDLR, HMGCR , or PCSK9) often undergo 
feedback regulation in response to changes of intracellular cholesterol level, we tried 
to explore novel cholesterol regulatory genes by transcriptome profiling of genetically 
perturbed cells. First, we performed RNA sequencing (RNA-seq) in different HepG2 
cells that were either depleted of LDLR, HMGCR , or both LDLR/HMGCR . Differen-
tially expressed genes (DEGs) were identified for each group by comparison with control 
cells (Additional file 1: Fig. S4A, Additional file 4: Table S3). A great portion of genes 
were shared between the three genetically perturbed cells (Fig. 3A), highlighting their 

Fig. 3 Identification of potential cholesterol regulators at the transcriptional level. A Venn diagram showing 
the overlap of up- or down-regulated DEGs of HepG2 cells upon LDLR KO, HMGCR , or double KO (DKO) 
determined by RNA-seq analysis. B Heatmap showing the DEGs across different samples of HepG2 cells. C 
Volcano plot showing the DEGs in DKO cells compared to control HepG2 cells with several typical genes 
highlighted. D The top five enriched functional terms for either up-regulated or down-regulated DEGs in 
DKO cells compared to control HepG2 cells by GO and KEGG analysis. E Venn diagram showing the overlap 
of DEGs between sterol deprivation condition (sterol depleted vs. normal) and SREBF2 KO under sterol 
deprivation (SREBF2 KO vs. vector control) in HepG2 cells. F Heatmap showing the DEGs across indicated 
samples of HepG2 cells. G Volcano plot showing the DEGs between sterol deprivation and normal conditions 
of HepG2 cells with several representative genes highlighted. H Volcano plot showing the DEGs in SREBF2 
KO cells compared to vector control HepG2 cells in sterol deprivation condition with several representative 
genes highlighted. I Venn diagram showing the overlap of DEGs for indicated comparison groups. J Heatmap 
showing the expression change of representative DEGs that were shared between at least three comparison 
groups of I 
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consensus roles in maintaining cholesterol homeostasis. Interestingly, HMGCR  KO 
cells are more assembled DKO cells than LDLR KO cells in terms of DEGs (Fig.  3B), 
suggesting that cholesterol biosynthesis is more pivotal than the uptake pathway in 
orchestrating intracellular cholesterol levels in HepG2 cells. Several known choles-
terol regulators (e.g., LDLR, MVD, and HMGCS1) were present in the up-regulated 
genes upon LDLR/HMGCR  DKO (Fig.  3C), again corroborating the feedback regula-
tion during cholesterol homeostasis. The genes relating to cholesterol biosynthesis 
were more enriched in the up-regulated genes than in down-regulated genes in DKO 
cells (Fig. 3D), implying that we might identify novel cholesterol regulators from those 
up-regulated genes. Similar transcriptome profiling experiments were also performed 
using HeLa cells with similar conclusions (Additional file 1: Fig. S4B–F, Additional file 4: 
Table S3). The DEGs were largely shared between the three genetically perturbed HeLa 
cells (Additional file 1: Fig. S4C). Also, HMGCR  KO was more alike to LDLR/HMGCR  
DKO than LDLR KO (Additional file  1: Fig. S4D), and up-regulated genes were more 
enriched for cholesterol-related processes (Additional file  1: Fig. S4E and F). Notably, 
the up-regulated DEGs were more significantly overlapped between HepG2 and HeLa 
cells than those down-regulated ones (Additional file  1: Fig. S4G), further supporting 
the functional conserveness of those up-regulated genes in orchestrating cholesterol 
homeostasis.

To further catalog potential cholesterol regulatory genes, we added another two 
groups of transcriptome comparison in HepG2 cells: one was to compare DEGs between 
sterol deprivation condition (DMEM supplemented with 10 μM lovastatin without 
serum) and normal condition; and the other one was the comparison between SREBF2 
(encoding SREBP2, a key transcription factor for cholesterol regulatory genes) KO cells 
and vector control in sterol deprivation condition (Additional file 1: Fig. S4H, Additional 
file 4: Table S3). A significant portion of DEGs were shared between the two compari-
son groups (Fig. 3E) and a majority of up-regulated genes upon sterol deprivation were 
deregulated in SREBF2 KO cells (Fig.  3F–H). Again, only those up-regulated genes in 
sterol starved condition and down-regulated genes upon SREBF2 KO were enriched for 
cholesterol metabolism-related functional terms (Additional file  1: Fig. S4I and J). In 
addition, we highlighted those 29 genes that were reproducibly present in all four com-
parison groups (Fig. 3I and J), including several known key cholesterol regulators as well 
as several uncharacterized ones with potential cholesterol regulatory functions. Taken 
together, these data provided a repertoire of potential cholesterol regulators at the tran-
scriptional level.

Integrative multi‑omics analysis reveals GGT7 as a novel cholesterol regulator

To further explore candidate cholesterol regulators, we performed proteomics analy-
sis to identify differential proteins in LDLR/HMGCR  DKO HepG2 cells compared to 
those in control cells. Among 67 significantly up-regulated proteins, 48% of them were 
also present as DEGs in RNA-seq analysis (Fig. 4A and B, Additional file 5: Table S4). 
In contrast, the overlap for down-regulated proteins with DEGs in RNA-seq analysis 
was quite few (Fig. 4B), suggesting that more meaningful hits were present in up-reg-
ulated proteins or DEGs. Around 61% of differential proteins (55 out of 90) seemed 
to be regulated only at the proteinic level (Fig.  4B), necessitating the proteomics 
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analysis on top of RNA-seq experiments. Similarly, a cohort of pivotal cholesterol 
regulators was among the up-regulated differential proteins such as MVK, MVD, and 
HMGCS1 (Fig. 4C), even using a more stringent cutoff (Additional file 1: Fig. S5A and 
B). Furthermore, only up-regulated differential proteins were significantly enriched 
for functional terms that were all related to sterol or cholesterol biosynthesis path-
ways (Fig. 4D, Additional file 1: Fig. S5C). To discover potential cholesterol regulators 
with human genetic evidence or clinical relevance, we explored public databases with 
Genome-Wide Association Study (GWAS) data and manually curated relevant litera-
ture to compile a gene list whose variants are associated with lipid-related traits or 
cardiovascular diseases (Fig. 4E, Additional file 6: Table S5). Next, we integrated data 
from CRISPR screens, RNA-seq, proteomics, and human genetic analysis for candi-
date cholesterol regulators (Fig. 4F). Apart from known genes, one gene named GGT7 

Fig. 4 Integrative multi-omics analysis to pinpoint key cholesterol regulators. A Heatmap showing the 
differentially expressed proteins in LDLR/HMGCR  DKO cells compared to Vector control HepG2 cells 
determined by mass spectrometry-based proteomics profiling. The number of up- or down-regulated 
proteins is indicated along the heatmap. B Venn diagram showing the overlap of either up-regulated or 
down-regulated genes in LDLR/HMGCR  DKO cells compared to Vector control HepG2 cells between RNA-seq 
and proteomics analysis. C Volcano plot showing the differentially expressed proteins in LDLR/HMGCR  DKO 
cells compared to control HepG2 cells with several typical proteins highlighted. D The top ten enriched 
functional terms for up-regulated proteins in LDLR/HMGCR  DKO cells compared to control HepG2 cells by GO 
and KEGG analysis. E The analytic scheme of human genes associated with lipid disorders or cardiovascular 
diseases. HDL: high-density lipoprotein; LDL: low-density lipoprotein; VLDL: very low-density lipoprotein; 
TC: total cholesterol; TG: triglycerides; CAD: coronary artery disease. F Venn diagram showing the overlap of 
potential cholesterol or lipid regulators between different angles including synthetic lethal CRISPR screens 
(Screen 1–3), DEGs in RNA-seq analysis (DKO vs. vector in HepG2 and HeLa cells, sterol depleted vs normal, 
and SREBF2 KO vs vector), differentially expressed proteins in proteomics analysis (DKO vs. vector in HepG2 
cells), and the compiled list of human genes with variants related to lipid disorders or related diseases. The 
genes of indicated intersections are highlighted
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caught our attention as it was present in all four categories and previously unrecog-
nized to be implicated in cholesterol or lipid regulation.

GGT7 controls cholesterol and lipid metabolism

GGT7 encodes a γ-glutamyltransferase that is involved in glutathione metabolism and 
transpeptidation of amino acids. The γ-glutamyltransferases (GGTs) are mainly found 
in the liver and their increased activities in the blood often inform damaged functions of 
the liver or bile duct [32]. Our integrative analysis indicated that GGT7 was functionally 
synthetic lethal with lovastatin or LDLR KO and up-regulated at both transcriptional 
and proteinic levels upon LDLR/HMGCR  DKO (Figs. 1G, 2G, 3C, 4C, and F). Moreo-
ver, it was reported that the variants of GGT7 are clinically associated with hypertension 
and type 2 diabetes in Chinese and Russian populations, respectively [33, 34]. Several 
clinical studies indicated a positive correlation between GGT activity and multiple 
metabolic characteristics including body mass index, blood pressure, total cholesterol, 
LDL-C, triglycerides (TG), and glucose [35], suggesting GGT as a novel biomarker for 
cardiovascular disease risk. These data imply that GGT7 might be an important regula-
tor underlying cholesterol or lipid homeostasis. Using reverse transcription quantitative 
PCR (RT-qPCR), we confirmed that GGT7 mRNA, as other tested cholesterol regulatory 
genes, was significantly increased upon LDLR/HMGCR  DKO (Fig.  5A). Furthermore, 
the expression of GGT7 was significantly compromised in SREBF2 KO cells under sterol 
deprivation condition (Fig. 5B), suggesting that GGT7 was a SREBP2-dependent target. 

Fig. 5 Functions of GGT7 during cholesterol and lipid homeostasis. A RNA expression analysis of indicated 
genes by RT-qPCR in HepG2 cells upon LDLR KO, HMGCR  KO, or LDLR/HMGCR  DKO. Mean ± SD with n = 3. 
Ordinary one-way ANOVA with Dunnett’s test, compared to Vector control, **p < 0.01, ***p < 0.001. B RNA 
expression analysis of indicated genes by RT-qPCR in HepG2 cells upon SREBF2 KO under sterol deprivation 
condition. Mean ± SD with n = 3. Unpaired two-sided t test, compared to vector control, **p < 0.01, 
***p < 0.001. C Immunoblot analysis of GGT7 in HepG2 cells undergoing CRISPR-mediated gene knockout 
with two independent sgRNAs. GAPDH serves as a loading control. D Decreased total cholesterol levels of 
HepG2 cells upon GGT7 KO using two independent sgRNAs. Mean ± SD with n = 3. Unpaired two-sided t 
test, compared to vector control, *p < 0.05. E Decreased sterol and other lipids upon GGT7 KO in HepG2 cells 
determined by untargeted metabolomic profiling. n = 6 biological replicates for each group
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To determine the functions of GGT7 on cholesterol regulation, we knocked out GGT7 
using two independent sgRNAs in HepG2 cells (Fig. 5C) and measured total cholesterol 
levels of the cells. As shown in Fig. 5D, GGT7 knockout significantly decreased cellular 
cholesterol levels, indicating that GGT7 was indeed a cholesterol regulator. Moreover, 
untargeted metabolomic analysis showed that, in addition to sterol lipids, the levels of 
several other lipids such as fatty acyls were also deregulated upon GGT7 knockout in 
HepG2 cells (Fig. 5E, Additional file 1: Fig. S5D, Additional file 3: Table S2). These results 
indicate that GGT7 is a pivotal regulator for cholesterol and lipid metabolism.

The mechanistic insights of GGT7 in cholesterol regulation

To determine how GGT7 orchestrates cholesterol homeostasis, we firstly examined the 
expression of typical cholesterol regulators upon GGT7 knockout in HepG2 cells. A 
large portion of tested genes were affected, further supporting the pivotal roles of GGT7 
in cholesterol homeostasis (Fig. 6A). Notably, most of them were regulated in a direc-
tion towards a feedback response to cholesterol insufficiency. For example, the genes 
accounting for cholesterol biosynthesis and SREBP2 pathway (e.g., ACLY, HMGCS1, and 
MBTPS2) were increased, while the negative regulators mediating cholesterol transport 
and storage (e.g., PCSK9 and PLIN2) were decreased (Fig. 6A). When cells were cultured 
in sterol deprivation condition, LDLR, HMGCR  and SREBF2 were also significantly 
increased to complement the insufficiency of intracellular cholesterol in GGT7-deficient 
cells (Fig. 6B). On the other hand, we did observe some genes that were deregulated to 
cause decreased cellular cholesterol upon GGT7 knockout. For instance, SORL1, which 
was reported to mediate cholesterol uptake into neuronal cells by acting as a receptor for 
apolipoprotein E [36], was significantly down-regulated and might play a causal role in 
cholesterol insufficiency in GGT7-ablated cells (Fig. 6A). To obtain a complete view of 
GGT7 downstream target genes, we performed RNA-seq experiments to profile DEGs 
in GGT7 KO HepG2 cells (Additional file 4: Table S3). Compared to the control group, 
more genes were down-regulated rather than up-regulated (Fig. 6C), and those choles-
terol regulators tested in RT-qPCR displayed similar trends in RNA-seq data (Fig. 6A–
C). Top enriched functional terms included “glycolysis,” “lipid or cholesterol transport,” 
and “cholesterol metabolic process” (Fig.  6D), further confirming the important func-
tions of GGT7 in cholesterol homeostasis.

To further reveal the working mechanism of GGT7, we exogenously expressed GGT7 
in HepG2 cells and employed immunoprecipitation coupled with mass spectrometry 
to identify its associated protein partners (Fig. 6E and F, Additional file 1: Fig. S6A and 
B). The top interacting candidate was a myosin protein MYH10 (Myosin-10) which 
belongs to a large family of actin-based cytoskeletal motors responsible for cargo or ves-
icle transport (Fig.  6F). We validated the endogenous interaction between GGT7 and 
MYH10 using immunoprecipitation coupled with immunoblot analysis in HepG2 cells 
(Fig.  6G). To determine the functional effect of MYH10 during cholesterol homeosta-
sis, we knocked out MYH10 in HepG2 cells (Fig. 6H) and found a significant decrease 
of cellular cholesterol which phenocopied GGT7 knockout (Fig. 6I). Furthermore, simi-
lar to GGT7, MYH10 was also identified as a synthetic lethal hit or negative GI with 
lovastatin or HMGCR in our functional CRISPR screens (Fig. 1F and G). Considering 
that “cholesterol transport” was enriched among GGT7 downstream targets (Fig.  6D) 
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and the involvement of other myosins or cytoskeleton-associated proteins during LDL 
transport such as Myosin Vb and LIMA1 [10], we speculated that GGT7 might work 
together with MYH10 to regulate cholesterol or LDL-C uptake. Indeed, knockout of 
either GGT7 or MYH10 consistently led to a decrease of fluorophore-labeled Dil-LDL 
uptake (Fig. 6J and K), suggesting that GGT7’s action on cholesterol homeostasis can be 
partially through MYH10-involved cholesterol uptake. Meanwhile, the regulatory func-
tions of GGT7 on biomolecule metabolism might also play a role in orchestrating cel-
lular cholesterol levels.

Ggt7−/− mice display impaired cholesterol and lipid homeostasis

To explore the in  vivo functions of GGT7 on cholesterol homeostasis, we decided to 
construct a genetically modified mouse model for its mouse homolog Gtg7. We first ana-
lyzed the expression patterns of GGT7 or Ggt7 across various human and mouse tissues 

Fig. 6 Mechanistic insights of GGT7 in regulating cholesterol metabolism. A RNA expression analysis of 
indicated genes by RT-qPCR in HepG2 cells upon GGT7 KO. Mean ± SD with n = 3. Unpaired two-sided t test, 
compared to Vector control, *p < 0.05, **p < 0.01, ***p < 0.001. B RNA expression analysis of indicated genes by 
RT-qPCR in HepG2 cells upon GGT7 KO under normal or sterol deprivation conditions. Mean ± SD with n = 3. 
Unpaired two-sided t test, *p < 0.05, **p < 0.01, ***p < 0.001. C Volcano plot showing the DEGs in GGT7 KO 
cells compared to vector control HepG2 cells with several typical genes highlighted. The number of up- or 
down-regulated DEGs is indicated. D The top selected functional terms enriched for down-regulated DEGs 
in GGT7 KO cells compared to control HepG2 cells by GO and KEGG analysis. E Coomassie blue staining of 
SDS-PAGE gel with FLAG bead immunoprecipitated materials from vector control- or FLAG-GGT7-expressing 
HepG2 cells. The band position corresponding to GGT7 or MYH10 is indicated with an asterisk. F The top ten 
list of GGT7-interacting protein partners identified by mass spectrometry. G Immunoblot analysis of total cell 
lysis and immunoprecipitants (using IgG control, GGT7, or MYH10 antibody) for indicated proteins derived 
from HepG2 cells. H Immunoblot analysis of MYH10 in HepG2 cells that have undergone CRISPR-mediated 
gene knockout. GAPDH serves as a loading control. I Decreased total cholesterol levels of HepG2 cells 
upon MYH10 knockout. Mean ± SD with n = 3. Unpaired two-sided t test, compared to AAVS1 KO, *p < 0.05. 
Decreased Dil-LDL uptake by HepG2 cells upon J GGT7 or K MYH10 knockout. Mean ± SD with n = 3. 
Unpaired two-sided t test, compared to AAVS1 KO, **p < 0.01, ***p < 0.001
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using RNA-seq data from a public database and found a dramatic difference between 
human and mouse (Additional file 1: Fig. S7A and B). GGT7 was broadly expressed in 
many human tissue types with brain tissue showing the highest expression. In contrast, 
mouse Ggt7 seemed to be exclusively expressed in brain tissue (Additional file  1: Fig. 
S7A and B). Using RT-qPCR, we confirmed that Ggt7 was indeed quite highly expressed 
in mouse brain tissue followed by the spinal cord and testis while other tissues barely 
expressed it (Additional file 1: Fig. S7C). Such tissue specificity discordance somehow 
hindered faithful evaluation of human GGT7 in mouse models and might be explained 
by various expression patterns and cross activities of other GGT family members.

As GGT7 in general was not an essential gene according to the DepMap database 
(Additional file  1: Fig. S7D), we continued to establish a whole-body Ggt7 knockout 
mouse model by CRISPR-based method to evaluate its in vivo functions (Fig. 7A and B, 
Additional file 1: S7E and F). As expected, Ggt7−/− mice were viable and followed nor-
mal Mendelian ratios. We then challenged them with a high fat/high cholesterol (HFHC) 
diet and evaluated the effect of Ggt7 ablation on lipid metabolism. HFHC diet caused an 
increase of body weight for both Ggt7+/+ and Ggt7−/− mice compared to those fed under 
a normal diet (ND) (Fig. 7C). Interestingly, Ggt7−/− mice displayed a significantly lower 
body weight for the ND group and similar trend still held for HFHC group though not 
statistically significant (Fig. 7C). The circulating total cholesterol levels in the blood were 
significantly decreased in GGT7−/− mice especially under HFHC diet (Fig.  7D). Simi-
lar trend was also observed for the blood high-density lipoprotein cholesterol (HDL-C) 
level, while the decrease of circulating LDL-C was mainly evident in Ggt7-ablated mice 
fed with ND (Fig. 7E and F). In contrast, we did not observe an apparent difference in 
TG in the blood between Ggt7+/+ and Ggt7−/− mice (Fig.  7G). Furthermore, the liver 
size and functions as evidenced by serum alanine transaminase (ALT) and aspartate 
transaminase (AST) assays were not significantly changed upon Ggt7 KO (Additional 
file 1: Fig. S7G–I). Unlike in humans, serum GGT in mice or rats is usually very low or 
even undetectable according to previous studies [37]. Consistently, we failed to detect 
serum GGT activity using a commercial detection kit in both Ggt7+/+ and Ggt7−/− mice. 
Although the lipid droplet was more accumulated in liver tissue under the HFHC diet 
compared to ND, no significant difference was observed between Ggt7+/+ and Ggt7−/− 
mice (Additional file 1: Fig. S7J). Concordantly, the levels of total cholesterol and TG in 
the livers were neither changed in Ggt7-ablated mice (Fig. 7H and I). This was consistent 
with the notion that Ggt7 expression is low in mouse liver. However, in mouse brain tis-
sue where Ggt7 is highly expressed, we did see a minor decrease in total cholesterol and 
a significant drop in TG levels in Ggt7−/− mice under either ND or HFHC diet (Fig. 7J 
and K). These data demonstrate that Ggt7 plays an important role in cholesterol and 
lipid homeostasis in mice. We further collected tissue samples of mouse brain or liver 
for RNA-seq analysis (n = 5 for each group), and DEGs were identified by comparison 
between Ggt7+/+ and Ggt7−/− groups (Additional file 4: Table S3). We found more DEGs 
in the brain than those in the liver (Fig. 7L). Although the overlap of DEGs between the 
two tissue types was low (Fig.  7M), those DEGs seemed to be functionally important 
for either the brain or liver as evidenced by gene enrichment analysis (Fig. 7N). Whole-
body KO of mouse Ggt7 affected genes related to “neural development and functional 
processes” in the brain, whereas, in the liver, the deregulated genes were preferentially 
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Fig. 7 Impaired cholesterol and lipid homeostasis in Ggt7 knockout mice. A The construction strategy 
of whole-body Ggt7 KO mice using two sgRNAs targeting the flanks of exon 2 and exon 3 of Ggt7 in the 
mouse genome. B Immunoblot analysis of Ggt7 in different types of tissues derived from Ggt7+/+ and 
Ggt7−/− mice. β-actin serves as a loading control. C Body weight measurements for Ggt7+/+ and Ggt7−/− mice 
under normal diet (ND) (n = 12 and 10, respectively) or high-fat high cholesterol (HFHC) diet (n = 7 and 8, 
respectively). Unpaired two-sided t test, *p < 0.05, ns means not significant. D The serum total cholesterol 
levels (n = 12, 10, 7 and 8 for each group), E serum HDL-cholesterol (HDL-C) levels (n = 10, 10, 7 and 8), F 
serum LDL-cholesterol (LDL-C) levels (n = 11, 10, 7 and 8) and G serum triglycerides (TG) levels (n = 12, 10, 7 
and 8) in Ggt7+/+ and Ggt7−/− mice fed with ND or HFHC diet. Unpaired two-sided t test, *p < 0.05, **p < 0.01, 
ns means not significant. H The total cholesterol (TC) levels (n = 12, 10, 7 and 7) or I TG levels (n = 12, 10, 7 
and 8) in the livers of Ggt7+/+ or Ggt7−/− mice fed with ND or HFHC diet. Unpaired two-sided t test, ns means 
not significant. J The TC levels (n = 12, 10, 7, and 7) or K TG levels (n = 12, 10, 7, and 7) in the brain tissues 
of Ggt7+/+ or Ggt7−/− mice fed with ND or HFHC diet. Unpaired two-sided t test, **p < 0.01, ns means not 
significant. L Volcano plot showing the DEGs upon Ggt7 knockout in the mouse liver or brain tissues. The 
number of up- or down-regulated DEGs is indicated. M Venn diagram showing the overlap of DEGs between 
Ggt7 KO in mouse liver, Ggt7 KO in mouse brain, and GGT7 KO in HepG2 cells as determined by RNA-seq 
analysis. N The top five enriched functional terms for either up-regulated or down-regulated DEGs in the liver 
or brain tissues of Ggt7−/− mice vs. Ggt7+/+ mice



Page 14 of 26Shan et al. Genome Biology           (2025) 26:59 

implicated in liver functions such as “response to hormones” or “biomolecule metabolic 
processes” (Fig. 7N). Notably, the overlap of DEGs between mouse tissues and human 
HepG2 cells upon GGT7 KO was also not significant (Fig.  7M), further suggesting a 
functional difference between different species as well as in vivo versus in vitro systems. 
Nevertheless, these results corroborate that GGT7 can orchestrate cholesterol and lipid 
homeostasis in vivo.

Discussion
Unraveling the cholesterol regulatory genes is important for understanding the molec-
ular basis of cholesterol and lipid metabolism and for developing novel therapeu-
tics against related diseases. In this study, we integrated multiple high-throughput 
approaches from functional genetics to multi-omics profiling and systematically cata-
loged cholesterol regulatory genes at genetic, transcriptional, proteinic, and functional 
levels. These datasets and gene repertoire offered valuable resources to the relevant 
research fields. In addition, we further validated a gamma-glutamyltransferase GGT7 
as a novel regulator for cholesterol and lipid metabolism in both cell line models and 
genetically modified mice. This work functionally linked a well-established liver dam-
age indicator to cholesterol and lipid homeostasis, suggesting the possibility of using 
gamma-glutamyltransferase as both a diagnostic biomarker and therapeutic target for 
cardiovascular diseases.

Pioneering researchers have elucidated the core signaling and cellular pathways relat-
ing to cholesterol biosynthesis, uptake and export, trafficking, and esterification [2]. 
However, the key functional genes accounting for these processes identified to date are 
still limited. Our integrative multi-omics approaches here leveraged both the power 
of functional genomics and the comprehensiveness of large omics profiling. The gene 
landscape we described here not only contains the cholesterol-responsive or -regulatory 
genes across different cell types at transcriptional or translational levels but also mani-
fests the complicated genetic interactions between those functional genes. In addition to 
those known cholesterol-related genes, we were able to identify many more intriguing 
hits that were worthy of further investigation in future studies.

Multiple layers of evidence ranging from CRISPR screening to transcriptional and 
proteomic profiling pointed to GGT7 as a novel regulator of cholesterol and lipid 
homeostasis. We demonstrated that loss-of-function of GGT7 down-regulated intra-
cellular cholesterol levels in cells and serum cholesterol levels in mice. As an unchar-
acterized gamma-glutamyltransferase, GGT7 is evolutionarily divergent to classic 
gamma-glutamyltransferase GGT1 [32], suggesting that additional functions of GGT7 
may exist. GGT7 is down-regulated in glioblastoma and gastric cancer, and functions 
as a tumor suppressor possibly via its regulation of glutathione metabolism and asso-
ciated redox status [38, 39]. Interestingly, in GGT7-overexpressing gastric cancer cells, 
the most significantly enriched functional term for differentially expressed genes is 
“steroid biosynthesis” [39]. Moreover, Rab7 was identified as one of the most prominent 
GGT7-interacting proteins in gastric cancer cells [39]. Another recent study showed 
that Rab7 GTPase controls NPC1-dependent lysosomal cholesterol export [26]. These 
findings agree with our results that GGT7 may fulfill its function by regulating choles-
terol metabolism. Although the enzymatic activity test of gamma-glutamyltransferase 
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has been introduced for several decades as an indicator of liver damage, the knowledge 
about the genes encoding these GGT enzymes remains quite limited. Clinical observa-
tions from several cross-sectional and longitudinal studies showed that increasing GGT 
levels were positively correlated with body mass index, total cholesterol, LDL-C, and the 
risk of all-cause mortality [33, 35, 40–48], suggesting GGT level as an independent or 
stand-alone risk factor for cardiovascular diseases. Here, we provide the first evidence, 
to our knowledge, in basic biology that GGT enzymes directly participate in the control 
of cholesterol levels. By establishing such a causal link between GGT7 and cholesterol 
levels, our work not only corroborates the validity of using GGT level as a biomarker 
of cardiovascular diseases but also suggests a potential way of therapeutic interventions 
by targeting GGT7 via inhibitory compounds or monoclonal antibodies. Before moving 
forward, it is still necessary to elucidate the molecular mechanism of GGT7 and the con-
tribution of other GGT family enzymes to cholesterol homeostasis.

There are several limitations to the current study. First, the functional CRISPR screens 
here depended on cell fitness as the readout, which phenotype could be affected by 
many factors and was not exclusively due to cholesterol or lipid insufficiency. Therefore, 
the results must be interpreted together with other evidence to specifically claim cho-
lesterol regulatory genes. Second, our interrogation of potential cholesterol regulators 
was mainly performed in limited cell models especially human hepatoma HepG2 or cer-
vical cancer HeLa cells. More cell models of different tissue types and non-cancerous 
origin are needed in future work to expand the functional gene list and to correct the 
bias from individual cell models. Third, due to the expression and functional discrepan-
cies between human and mouse species, the genetic mouse model of Ggt7 would not 
faithfully reflect the in vivo function of the human GGT7 gene. In addition, the poten-
tially functional redundancy and crosstalk between multiple members of gamma-glu-
tamyltransferases further added complexity to this issue. Finally, as an initial effort to 
systematically screen potential cholesterol and lipid regulators, we did not put much 
emphasis on elucidating the detailed molecular mechanisms of any single hit even 
for GGT7. Future work is needed to carefully explore the potential interplay between 
gamma-glutamyltransferases and cholesterol homeostasis especially in the context of 
cardiovascular diseases.

Conclusions
In summary, our study comprehensively maps cholesterol or lipid-related genes using 
an integrative multi-omics approach and functionally connects a gamma-glutamyl-
transferase gene GGT7 to cholesterol and lipid homeostasis. Further work is needed 
to decipher the detailed molecular mechanism of GGT7 in orchestrating cholesterol 
metabolism and to explore the possibility of targeting gamma-glutamyltransferase for 
treating cardiovascular diseases.

Methods
Cell line models

Human hepatic cancer cell line HepG2, cervix cancer cell line HeLa, and HEK293FT 
cells were obtained from the American Type Culture Collection (ATCC). Authentication 
was not performed after obtaining these cells. All the cells were maintained in Dulbecco’s 
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modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS, Notacor) and 1% 
penicillin/streptomycin (Gibco). Sterol deprivation medium was DMEM supplemented 
with 10 μM lovastatin without FBS. Cells were cultured in a 5%  CO2 atmosphere at 37 
°C. All the cell lines were tested negative for mycoplasma.

Mouse models

All animal care and experimental procedures used in this study were approved by the 
Animal Care and Use Committee of Northeastern University (NEU-EC-2021A019S), 
according to national and institutional guidelines. Mice were housed under a 12-h light–
dark cycle with free access to water and a normal chow diet supplemented with 20% 
crude protein (Beijing Huafukang Bioscience, 1022), except as noted. All mice used were 
bred on the C57BL/6 J background. Ggt7 whole-body knockout mice were generated by 
using a CRISPR/Cas9-based protocol. Briefly, Cas9 mRNA, sgRNAs, and donor plas-
mids were injected into fertilized zygotes. Sequences of sgRNAs and donor oligos used 
for generating Ggt7 whole-body knockout mice are shown in Additional file 7: Table S6. 
The microinjection and initial breeding were performed by Cyagen company. Founder ± 
Ggt7+/− mice were bred with C57BL/6J for two rounds. Ggt7+/+ and Ggt7−/− littermates 
were generated by breeding Ggt7+/− mice. For studies with special diets, 15-week-old 
male mice were placed on high-fat/high-cholesterol diet (normal diet plus 1.25% cho-
lesterol, 15% fat, and 0.5% cholic acid, Beijing Huafukang Bioscience) for a total period 
of 30 weeks. Body weight was recorded at the endpoint of the treatment period. Blood 
samples were clotted at room temperature for 30 min followed by centrifugation at 3000 
rpm for 10 min at 4 °C. The supernatant was collected and stored at − 80 °C until use. 
Mice were anesthetized using isoflurane (RWD Life Science).

Plasmid construction

The sgRNAs were cloned into pLentiCRISPRv2-Puro (Addgene, 52961) using the BsmBI 
restriction enzyme site. The sgRNA sequences are listed in Additional file 7: Table S6. 
The expression construct for FLAG-tagged GGT7 was generated via Gibson assem-
bly using the linearized pHAGE-EF1α-puro lentivector and RT-PCR amplified GGT7 
cDNA (NM_178026) fragment (with a N-terminal FLAG sequence and a C-terminal HA 
sequence) from HepG2 cells.

Lentivirus production and transduction

Lentiviruses were packaged in HEK293FT cells. Cells were transfected the following day 
after seeding, with a lentiviral expression vector, the packaging vectors pCMV R8.74 and 
pMD2.G at a ratio of 1:0.75:0.5 using Lipofectamine 2000 transfection reagent (Thermo 
Fisher Scientific, 11668030). Six hours post transfection, the media were replaced with 
fresh media. Supernatants containing the secreted lentiviruses were collected twice at 
48 h and 72 h followed by centrifugation at 3000 rpm for 5 min to remove the cellular 
debris. The collected lentiviruses were stored at − 80 °C before use. For lentiviral trans-
duction of target cells (HepG2 and HeLa), lentiviruses were directly added to the cell 
culture media with 6 μg/mL polybrene. To get rid of uninfected cells, puromycin (Solar-
bio, P8230) selection (1.5 μg/mL puromycin for 72 h) can be performed after 48 h post 
infection.
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Cell growth and viability assay

HepG2 cells and HeLa cells were plated at 4 ×  103 cells per well in DMEM with 10% 
FBS and 1% penicillin/streptomycin (normal medium) in 12-well plates. The cells were 
infected with lentiviruses expressing vector, sgRNAs targeting LDLR or HMGCR . The 
medium was changed every 2–3 days. The cell number was counted after 7 days with 
a hemacytometer. For detecting the synthetic lethal of lovastatin treatment in HeLa 
LDLR KO cells, cells were plated at 4 ×  103 cells per well in the normal medium into 
12-well plates. After incubation for 24 h, the cells were treated with lovastatin (Med-
Chem Express, HY-N0504) with gradient concentrations. Seven days later, the cell 
number was counted with a hemacytometer and then normalized to the vehicle group. 
For detecting the synthetic lethal of lovastatin treatment in HepG2 LDLR KO cells, 
cells were plated at 1 ×  103 cells per well in the normal medium into 96-well plates. 
After incubation for 24 h, the cells were treated with lovastatin with gradient concen-
trations. Seven days later, 10 μL of CCK-8 reagent (Hanbio, HB-CCK-8–5) was added 
to each well. Following 1 h of incubation at 37 °C, the absorbance was recorded at 450 
nm using the microplate reader (Gene Company Limited, Synergy H1).

Genome‑wide CRISPR screening

The genome-wide CRISPR knockout screens were performed with a human H3 
CRISPR knockout library (Addgene pooled library, 133914) which was designed with 
improved algorithms and superior performance. It consists of 117, 606 sgRNAs target-
ing more than 18,000 protein-coding genes in the human genome under the lentiviral 
pLentiCRISPRv2-Puro vector backbone. The plasmid library was amplified in elec-
troporated E. coli electrocompetent cells with enough coverage and the plasmid pool 
was extracted using EndoFree Plasmid Maxiprep Kit (TianGen, DP117). To produce 
a lentivirus library, the plasmid pool was transfected into HEK293FT cells in 15 cm 
dishes along with those packaging plasmids. Transfection conditions were as follows: 
20 µg pLentiCRISPRv2-Puro, 15 µg pCMV R8.74, 6 μg pMD2.G, 80 µL transfection 
reagent X-tremeGENE and 3 mL serum-free OPTI-MEM per plate. The medium was 
changed 16 h post-transfection. Lentiviral supernatants were collected, centrifuged, 
and stored at −80 °C before use. Around 1.2 ×  108 HepG2 or HeLa cells were trans-
duced at a low multiplicity of infection (MOI) of ~ 0.3 with the viral pool to achieve 
an average coverage of more than 300 × . Cells were treated with puromycin for 72 h 
and 3 ×  107 cells were harvested as a sample of Day 0 (start point). The remaining cells 
were divided into two parts for the further vehicle or lovastatin treatment (0.3 μM 
for HepG2 or 0.2 μM for HeLa). At least 3 ×  107 cells were maintained at any given 
time point to ensure enough sgRNA representation. Cells were passaged every 3 days. 
Treated HepG2 cells were harvested on Day 10 while HeLa cells were harvested on 
day 14 as endpoint. Genomic DNA (gDNA) was isolated from harvested cell samples 
via the classical isopropanol precipitation method. The sgRNA sequences were ampli-
fied from gDNA using a two-step nested PCR approach using the primer sequences 
listed in Additional file 7: Table S6. All PCRs were performed using Q5 High-Fidelity 
DNA Polymerase (New England Biolabs, M0491S). Illumina adaptors and barcodes 
were introduced via the last round of PCR to construct sequencing libraries. The final 
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PCR products were gel purified and pooled for PE150 high-throughput sequencing 
(Novogene) to determine the abundance of sgRNAs.

Analysis of CRISPR screening data

The MAGeCK algorithms were used for CRISPR screening analysis with default param-
eters [29]. The raw FASTQ files of sequencing data were processed and trimmed to 
retrieve sgRNA target sequences followed by the calculation of sgRNAs in the reference 
sgRNA library file using MAGeCKFlute [29]. For Screen 1 and Screen 2, the gene selec-
tion status was measured by a “β score” generated by the MAGeCK-MLE function. A 
positive β score (β > 0) means the corresponding gene is enriched or positively selected 
after screening, whereas a negative β score (β < 0) indicates the corresponding gene is 
depleted or negatively selected. Synthetic lethal or negative GI hits in Screen 1 or Screen 
2 were selected by β  Scorelovastatin −  Scorevehicle ≤ − 0.2 and  Scorelovastatin ≤ − 0.3. For 
Screen 3, a transformed RRA (tRRA) score generated via ReadRRA function through 
returning the log10 transformed RRA score was employed to indicate gene selection 
status during the screening by comparing sgRNA count at the end point of screen ver-
sus that of corresponding Day 0 for each sample. Synthetic lethal or negative GI hits in 
Screen 3 were selected by tRRA  ScoreLDLR KO clone −  ScoreAAVS1 KO ≤ − 2 and  ScoreLDLR KO 

clone ≤ − 1. Core essential genes are expected to be negatively selected in cell fitness 
screens. The list of core essential genes is provided by MAGeCKFlute [29]. The strength 
of negative GI was defined as differential values of β Score or tRRA Score between lovas-
tatin treatment vs. vehicle or LDLR KO clone vs. AAVS1 KO control samples.

Untargeted metabolomic profiling

HepG2 cells (1.5 ×  106) were infected with lentiviruses to generate LDLR KO, HMGCR  
KO, or LDLR/HMGCR  DKO HepG2 cells. After continuous culture for 6 days, cells 
were washed twice with pre-chilled PBS, and dissolved in 1 mL pre-chilled 60% metha-
nol (Chromatographic grade). Cells were then centrifuged at 1000 g for 1 min at 4 °C to 
collect the pellet. The collected samples were further processed by Novogene company 
for LC–MS/MS analysis. LC–MS/MS analysis was performed on a Vanquish UHPLC 
system coupled to a Q-Exactive HF-X (Thermo Fisher Scientific) in both ESI positive 
and negative modes. LC–MS/MS data alignment, peak picking, adduct deconvolu-
tion, normalization, and identification were performed using Progenesis QI (Waters, 
Nonlinear Dynamics, UK) software. Lipid annotations were performed using KEGG, 
HMDB, and LIPID MAPS database. Six replicates were performed for each condition. 
Significantly changed metabolites were defined with the cutoff of |FoldChange|≥ 2, 
p-value ≤ 0.05, and VIP (Variable Importance in Projection) ≥ 1. A more stringent cutoff 
of |FoldChange|≥ 2, p-value ≤ 0.01, and VIP ≥ 1 was also used. For untargeted metabo-
lomic profiling of GGT7 KO or vector control HepG2 cells, the samples were prepared 
following similar procedures as above, while LC–MS/MS analysis was different due to 
the upgrade of the instrument and software (Novogene). Briefly, LC–MS/MS data align-
ment, peak picking, and identification were performed using CD software. Lipid anno-
tations were performed using Lipidblast and the LIPID MAPS database. Six replicates 
were performed for each condition. Significantly changed metabolites were defined with 
the cutoff of |FoldChange|≥ 1.5, p-value ≤ 0.05, and VIP ≥ 1. A more stringent cutoff of 
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|FoldChange|≥ 1.5, p-value ≤ 0.01, and VIP ≥ 1 was also used. The heatmap was plotted 
by the pheatmap R package.

RNA isolation and qPCR

Total RNA was isolated from cells using a UNIQ-10 Trizol total RNA extraction kit 
(Sangon, B511321). One microgram of total RNA was reverse transcribed using a High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 4368814). Mouse tis-
sues were weighed up to 50 mg, dissolved in Trizol reagent, lysed by homogenization 
and sonication. Lysates were clarified by centrifuging at 12,000 rpm for 5 min at 4 °C. 
The following RNA extraction and cDNA reverse transcription were similar to the pro-
cedures used for cells. The SYBR mixture (Cwbio, CW0957H) was used for qPCR per-
formed on a QuantStudio™ 5 System (Applied Biosystems) with an initial 95 °C step for 
10 min followed by 40 cycles of denaturation at 95 °C for 10 second (s), annealing at 60 
°C for 30 s, and extension at 72 °C for 32 s. Gene expression levels were normalized to 
the expression level of internal control gene RPS28 or Rplp0 in human cells or mouse 
tissues, respectively. Each sample was analyzed in triplicate wells for qPCR. Relative 
mRNA levels were quantified using the ΔΔCt method. Primer sequences are listed in 
Additional file 7: Table S6.

RNA‑seq analysis

HepG2 or HeLa cells were cultured in a normal medium for 7 d, and then scraped in Tri-
zol reagent. Mouse liver or brain tissues were collected and snap-frozen in liquid nitro-
gen before storage at −80 °C. Frozen liver or brain tissues (~ 20 mg) were homogenized 
and lysed in Trizol reagent. Total RNA was isolated as above. For samples of SREBF2 
KO vs. vector control and sterol deprivation vs. normal conditions, the library was pre-
pared using the rRNA removal method. The libraries of other samples were prepared 
using the polyA enrichment method. All libraries were sequenced on the Illumina PE150 
platform (Novogene). Triplicate samples were analyzed for cell culture-based RNA-seq, 
while mouse tissues collected from five individual mice were analyzed for each group 
during RNA-seq analysis. After obtaining the Fastq file, FastQC was used to perform 
pre-mapping sequencing quality evaluation. Then the sequencing reads were mapped to 
the hg38 human reference genome or mm10 mouse reference genome by HISAT2 with 
the default parameters. HTSeq was used to calculate the raw gene counts. DESeq2 was 
used to normalize and process the raw gene counts for differential gene expression anal-
ysis. Adjusted p-value was calculated using the Benjamini–Hochberg method to control 
for false discovery rate. The criteria for DEGs were as follows: for DEGs in HepG2 LDLR 
KO/HMGCR  KO/DKO cells compared with vector, the cutoff was |fold change|≥ 2, 
mean read count ≥ 10, p-value ≤ 0.05 and p.adjust ≤ 0.05; for DEGs in HeLa LDLR 
KO/HMGCR  KO/DKO cells compared with vector, sterol depleted versus normal (vec-
tor), or SREBF2 KO versus vector (sterol depleted), the cutoff was |fold change|≥ 1.5, 
mean read count ≥ 10, p-value ≤ 0.05 and p.adjust ≤ 0.05; for DEGs in liver or brain of 
Ggt7−/− mice compared with Ggt7+/+ mice, the cutoff was |fold change|≥ 1.5, mean 
read count ≥ 10, p-value ≤ 0.05 and p.adjust ≤ 0.25. The p-value of Venn overlap was 
calculated in R by Fisher’s exact test. The functional enrichment analysis of DEGs was 
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performed by GO and KEGG analysis with clusterProfiler R package. The volcano plot 
was generated by the ggplot2 R package.

Proteomics analysis

HepG2 cells (2 ×  106) were seeded into one 15 cm dish, infected with sgRNA-containing 
lentiviral particles for LDLR/HMGCR  DKO. Six days later, cells were washed twice with 
pre-chilled PBS, and dissolved in 500 μL lysis buffer (6 M Urea, 0.1 M  NaHCO3, 0.2% 
SDS) plus protease inhibitor. The collected cell samples were further processed by Novo-
gene company for mass spectrometry analysis. The separated peptides were analyzed by 
Q Exactive HF mass spectrometer (Thermo Fisher Scientific). The resulting spectra from 
each fraction were searched separately against the Uniprot database. Triplicate samples 
were analyzed for each group. Proteins with |FoldChange|≥ 1.5 and p-value ≤ 0.05 are 
regarded as significant. A more stringent cutoff of |FoldChange|≥ 1.5 and p-value ≤ 0.01 
was also used.

Functional enrichment analysis

The functional enrichment analysis of gene hits was performed by gene ontology (GO) 
and Kyoto encyclopedia of genes and genomes (KEGG) analysis in clusterProfiler R 
package. The BP (Biological Process) module was used for GO analysis. Significant terms 
were defined with a cutoff of p-value < 0.05 and q-value < 0.05 for both GO and KEGG 
analysis.

Compiling candidate genes via human genetic variant analysis

Three sources of GWAS data were considered to compile the candidate genes associated 
with lipid disorders and cardiovascular diseases. For source 1, the GWAS meta-analysis 
results were accessed via five phenotypes or traits from the HuGeAMP database (https:// 
hugea mp. org), including cholesterol, high-density lipoprotein, low-density lipoprotein, 
coronary artery disease, and myocardial infarction. HuGE (Human Genetic Evidence) 
scores quantify genetic support for the involvement of genes in the diseases or traits with 
a value ≥ 30 meaning very strong. We considered the genes with scores above 50 as the 
candidates of the current study. For source 2, a gene list linked to lipids was downloaded 
from the GWAS Catalog (EFO_0004529) and the cutoff was p-value ≤ 1E − 30. Then we 
removed duplicate genes, miRNA, or lncRNA genes from the list to obtain the candi-
dates of the current study. For source 3, twenty literatures were collected to comprehen-
sively search the genes related to abnormal lipid metabolism. These published literatures 
cover the results of human genetic variants analysis spanning the following resources 
and types [20, 49–67]: (1) exome datasets from the Global Lipids Genetics Consortium 
(GLGC) and the UK Biobank (UKBB), as well as Million Veteran Program (MVP); (2) 
individual-level phenotype and genotype data from 66,240 individuals of European 
descent in 32 cohorts; (3) GWAS for coronary artery disease comprising 181,522 cases 
among 1,165,690 participants of predominantly European ancestry; (4) protein-cod-
ing genetic variants in 47,532 East Asian individuals using an exome array; (5) HuH7 
LDL uptake regulators which are enriched for LDL GWAS associations; (6) GWAS in 
34,541 CAD cases and 261,984 controls of UK Biobank resource followed by replica-
tion in 88,192 cases and 162,544 controls from CARDIoGRAMplusC4D; (7) analysis of 

https://hugeamp.org
https://hugeamp.org
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the population-specific differences of coronary artery disease between European and 
East Asian descents; (8) genome-wide association data from three studies (n = 8816 that 
included 2758 individuals from the Diabetes Genetics Initiative as well as 1874 individu-
als from the FUSION study of type 2 diabetes and 4184 individuals from the SardiNIA 
study; (9) GWAS results of metabolic traits in Finnish cohort; (10) GWAS analysis of 
loci affecting lipid traits sampled randomly from 16 population-based cohorts; (10) 
GWAS of 17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, 
triglycerides, ApoA1, and ApoB in 17,296 women from the Women’s Genome Health 
Study (WGHS); (12) peripheral blood RNA-seq data from 2116 unrelated individuals 
and systematically identified context-dependent eQTLs using a hypothesis-free strategy; 
and (13) 450,636 UK Biobank participants with dyslipoproteinemia subtypes. A non-
redundant gene list was compiled from the three sources as candidate genes associated 
with lipid metabolism and related diseases with human genetic evidence (Additional 
file 6: Table S5).

Immunoblot analysis

Cell lysates or homogenized mouse tissues (approximately 20 mg) were prepared in 
RIPA buffer (Beyotime, P0013) with addition of PMSF (Beyotime, ST506) and incubated 
on ice for 10 min with frequent vortex and then centrifugated at 14,000 rpm for 10 min 
at 4 °C. Protein concentration was determined by bicinchoninic (BCA) protein assay 
(Meilunbio, MA0082). Protein supernatant was mixed with 5 × loading buffer and boiled 
at 95 °C for 5 min. Samples were resolved on 10% SDS-PAGE gels followed by transfer 
onto nitrocellulose filter membrane (Pall, C05-05002). Membranes were blocked with 
5% milk in TBST buffer and incubated with primary antibody at 4 °C overnight in TBST 
buffer. Membranes were washed three times with TBST and incubated with secondary 
antibodies before proceeding to a chemiluminescent analyzer for band visualization. The 
following antibodies were used in this study: Rabbit monoclonal anti-HMGCR (Abcam, 
ab174830), Rabbit polyclonal anti-LDLR (Proteintech, 10785–1-AP), Rabbit polyclonal 
anti-GAPDH (Santa Cruz, sc-25778), Rabbit polyclonal anti-GGT7 (Proteintech, 24674–
1-AP), Rabbit polyclonal anti-MYH10 (Proteintech, 19673–1-AP), Rabbit control IgG 
(Proteintech, 30000–0-AP), Mouse monoclonal anti-FLAG (Invitrogen, MA191878), 
Rabbit polyclonal anti-β actin (Invitrogen, PA1-16889), Goat anti-Rabbit IgG (H + L) 
Secondary Antibody (Invitrogen, 31460), and Rabbit anti-Mouse IgG (H + L) Secondary 
Antibody (Invitrogen, 31450).

Identification of GGT7‑associated proteins

HepG2 cells cultured in 15 cm dishes were infected with lentiviruses expressing 
FLAG-GGT7. After 7 days, cells were solubilized with lysis buffer (TNE, 50 mM Tris 
HCl, pH 7.4, with 150 mM NaCl, 1 mM EDTA, and 1% Triton X-100, supplemented 
with protease inhibitor cocktail (Roche, 4693159001)). Protein lysates were extracted 
and incubated with Anti-DYKDDDDK Magnetic Agarose (Thermo Fisher Scientific, 
A36797) at 4 °C for 6 h. After washing with PBS, the bound proteins were eluted 
with 3 × FLAG peptide (Sangon, T510060-0005). The eluted samples were added to 
5 × loading buffer and boiled at 95 °C for 5 min. The purified proteins were quan-
tified using SDS-PAGE, followed by Coomassie blue staining. Proteins of the whole 
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lane in the gel were cut and analyzed by mass spectrometry (Novogene). Database 
searching of all raw data was performed using Proteome Discoverer 2.4 software 
(Thermo Fisher Scientific). Identified proteins were ranked in descending order by 
score, and more unique peptides indicated higher confidence. For validation of inter-
action between GGT7 and MYH10, HepG2 cells were lysed with TNE for 10 min on 
ice. The supernatant was incubated with 2 μg control IgG, GGT7, or MYH10 anti-
body pre-incubated with Protein G agarose (Thermo Fisher Scientific, 10004D) at 4 °C 
overnight. The samples were washed with TNE for three times. The pellet was mixed 
with 2 × loading buffer and boiled at 95 °C for 5 min, followed by immunoblot analy-
sis with MYH10 and GGT7 antibodies.

Histological analysis

Mouse liver was collected and fixed with 4% paraformaldehyde for 36–48 h. After fix-
ation, the samples were immersed in a 70% alcohol solution overnight. Gradient con-
centration of alcohol was used for dehydration. The dehydrated tissues were soaked 
into xylene and then into soft paraffin at 58 °C for 1.5 h as well as hard paraffin for 
1.5 h. The tissues embedded in paraffin were cut into 5 μm slices. All the paraffin 
was dissolved away with xylene and washed with several changes of gradient alco-
hol to remove the xylene. The slide was stained with hematoxylin for 5 min and then 
stained with eosin for 2 min. Following washing with different concentrations of alco-
hol, the slide was dissolved with xylene for 20 min and observed by LEICA DM4000 
B LED microscope. For Oil Red O staining of lipid droplets, frozen liver samples were 
embedded in Tissue-Tek OCT compound (Sakura) and cut into 7 μm. The sections 
were washed with 60% isopropanol for 5 min, and incubated with Oil Red O working 
solution for 30 min. Then the sections were stained with hematoxylin and the images 
were captured under a microscope (LEICA DM4000 B LED).

Blood and tissue sample analysis

Blood samples were collected and centrifuged at 3000 rpm for 10 min at 4 °C. The 
supernatant was directly used to detect serum total cholesterol (Nanjing Jiancheng 
Bioengineering Institute, A111-1–1), triglycerides (Nanjing Jiancheng Bioengineering 
Institute, A110-1–1), high-density lipoprotein cholesterol (HDL-C, Nanjing Jiancheng 
Bioengineering Institute, A112-1–1), low-density lipoprotein cholesterol (LDL-C, Nan-
jing Jiancheng Bioengineering Institute, A113-1–1), aspartate aminotransferase (AST, 
Nanjing Jiancheng Bioengineering Institute, C010-2–1), alanine aminotransferase (ALT, 
Nanjing Jiancheng Bioengineering Institute, C009-2–1) and γ-glutamyltransferase 
(GGT, Nanjing Jiancheng Bioengineering Institute, C017-2–1) according to manufac-
turer’s instructions. To measure the lipid (cholesterol, triglycerides, HDL-C, and LDL-C) 
levels of the liver and brain, snap-frozen samples were weighed (~ 40 mg) and homog-
enized in chloroform:methanol (2:1; v/v) mixture and vigorously vortexed for 20 s. The 
lower organic phase was collected and dried. Use 200 μL of 1% Triton X-100 in ethanol 
to dissolve the samples. Triglycerides and cholesterol content were determined using the 
enzymatic reagents based on the manufacturer’s instructions as above.
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Quantification and statistical analysis

Statistical details of experiments can be found in the figure legends. Statistical analysis was 
performed using GraphPad Prism (version 9.5.1), MAGeCK (version 0.5.9.2), or R (ver-
sion 4.2.3). All values are reported as Mean ± SD. Data were analyzed using a two-tailed 
unpaired t test, one-way ANOVA with Tukey’s, and Dunnett’s tests where appropriate. 
Asterisks indicate *p < 0.05, **p < 0.01, and ***p < 0.001.
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