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Abstract 

High-throughput multi-omic molecular profiling allows the probing of biological 
systems at unprecedented resolution. However, integrating and interpreting high-
dimensional, sparse, and noisy multimodal datasets remains challenging. Deriving new 
biological insights with current methods is difficult because they are not rooted in bio-
logical principles but prioritise tasks like dimensionality reduction. Here, we introduce 
a framework that combines archetypal analysis, an approach grounded in biological 
principles, with deep learning. Using archetypes based on evolutionary trade-offs 
and Pareto optimality, MIDAA finds extreme data points that define the geometry 
of the latent space, preserving the complexity of biological interactions while retaining 
an interpretable output. We demonstrate that these extreme points represent cellular 
programmes reflecting the underlying biology. Moreover, we show that, compared 
to alternative methods, MIDAA can identify parsimonious, interpretable, and biologi-
cally relevant patterns from real and simulated multi-omics.

Background
Fundamental processes in cellular biology, such as cell differentiation, development, and 
carcinogenesis, are inherently driven by multiple interacting molecular layers. Those 
encode the information that orchestrates the intricate regulatory networks of proteins, 
transcription factors, and signaling molecules [1] that give rise to biological phenom-
ena. Any attempt to look at a single molecular layer at a time will miss crucial biological 
insights. High-throughput multi-omics technologies that can measure many concurrent 
molecular layers in the same cell or sample promise to help gain a more comprehen-
sive picture of biological phenomena [2]. However, integrating and extracting patterns 
from these high-dimensional, noisy, and sparse data is a significant statistical and algo-
rithmic challenge [3]. The biggest problem is that current state-of-the-art methods are 
based on something other than biological principles but merely focus on the issue of 
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dimensionality reduction in a data-driven fashion, which makes the output of those 
approaches hard to interpret from a biological perspective.

Moreover, some methods might also have limiting assumptions when applied to bio-
logical data. For instance, probabilistic multi-omics factor analysis (MOFA), a technique 
successfully used to find patterns in multiple omics data (e.g., gene expression, protein 
abundances) [5–7], posits that the observed data can be linearly reconstructed from the 
latent factors and their loadings. Latent factors from linear models are interpretable; for 
instance, a factor with high loadings from genes involved in a specific metabolic path-
way might be interpreted as representing that pathway. However, linear models miss 
complex non-linear interactions typical of real biological systems, such as the non-
proportional relationship between gene expression and metabolite concentrations [8], 
threshold-dependent effects of epigenetic modifications on gene activity [9], cooperative 
transcription factor binding [10], and general environmental factors [11].

To overcome the limits of linear models, a popular non-linear dimensionality reduc-
tion framework is the variational autoencoder (VAE) architecture [12, 13]. VAEs can 
model arbitrarily complex interactions between the input variables via an encoding/
decoding mapping parameterised by a deep neural network. The latent space provided 
by VAEs is more powerful and expressive than linear ones. Yet, it is no longer interpret-
able, making VAEs like “black-box” compression machines [14]. This is a limitation for 
biological applications where we want to understand the system. In particular, in biol-
ogy, we need generative models with an interpretable latent space that can be used to 
analyze specific system perturbations. For this reason, we argue that we need to inject 
biological principles into data integration approaches.

Results
Archetypal analysis (AA) [15] is a matrix factorization algorithm designed to decompose 
the input data as a convex (i.e., linear) combination of extreme data points called arche-
types. Contrasted with other methods, AA forces strong constraints on the geometry of 
the latent space and recovers a set of bases that are expressed only in terms of the rela-
tive distances from the archetypes. AA is grounded in the biological principles of evolu-
tionary trade-offs and Pareto optimality, where extreme geometrical points in the space 
of biological “states” represent phenotypic programs cells or organisms converge to [16]. 
AA is a promising alternative for dimensionality reduction because, by construction, its 
coordinate system is trivially interpretable in the same domain of the data. Moreover, 
in the last years, AA has enjoyed active development of efficient algorithms and tools 
(ParTi [17], PCHA [18], gradient-based methods [19]) and has already been shown to be 
able to recover relevant patterns from single-modality high-throughput biological data 
[20–22].

The linear latent space of AA can be turned into a non-linear manifold by combin-
ing AAs with deep neural networks for archetypal decomposition [23]. In this way, 
it is possible to retain the interpretability of the latent space while leveraging the 
power of non-linear dimensionality reduction. Building on this idea, we developed 
MIDAA, an open-source Python framework that integrates multi-omics data using 
deep archetypal analysis. MIDAA supports different input types and neural network 
architectures, adapting seamlessly to the high complexity of modern biological data, 
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which ranges from counts in sequencing assays to binary values in CpG methylation 
assays. In principle, the model could be extended to combine data from non-omics 
sources (e.g., text and images) when combined with embeddings from other deep-
learning models. MIDAA is implemented on a PyTorch [24] backend that leverages 
GPU acceleration, scaling to thousands of cells (e.g., 100,000 cells in ~ 5 min for 500 
epochs training, Additional file 1: Fig. S1).

Using synthetic data (Methods), we tested if MIDAA could decipher two relevant 
biological processes: cellular differentiation (Fig.  1B, C) and evolutionary dynamics 
on a fitness landscape (Fig.  1E, F). In both cases, we generated synthetic data from 
1000 cells (20 datasets, 3 noise levels) with matched ATAC/RNA sequencing (chro-
matin accessibility and gene expression measurements) and compared MIDAA to 
a pipeline where we first performed dimensionality reduction with both linear and 
non-linear models, followed by canonical AA. To ensure a broad comparison, we 
selected a set of methods that use different statistical techniques for multi-omics data 
integration: JIVE [25] based on PCA, intNMF [26] based on non-negative matrix fac-
torization, MOFA [6] based on factor analysis, and a vanilla VAE [27]. In the latent 
space produced by these methods (Supplementary Figs. 2–4), we ran linear archetypal 
analysis as implemented in the R package archetypes [28]. In the differentiation test, 
MIDAA vastly outperformed competing methods, on average reducing the RNA and 
ATAC reconstruction error by 15% and 55%. In the evolutionary dynamics test data-
set, where we simulate a branching cellular differentiation process, MIDAA decreased 
the reconstructor error for the latent space by 13% (average) across all noise levels 
(Fig. 1D–H). Notably, in the latter test, a clear performance difference was observed 
between linear and non-linear statistical models (Fig. 1H), with MIDAA being the top 
performer on average. Interestingly, in the oversimplified case of a linear generative 
latent space (Additional file 1: Fig. S5), while linear models achieved the lowest recon-
struction error, MIDAA was the best non-linear model, suggesting its geometrical 
constraints regularize the model.

A critical problem that involves complex multimodal interactions is the differentiation 
of hematopoietic stem cells (HSC) into mature blood cells, known as hematopoiesis. 
We used MIDAA to extract biologically interpretable insights from single-cell multi-
omics data (whole genome CpG methylation status and transcriptional activity) of 
CD34 + positive cells, a type of hematopoietic progenitor cell [29]. First, we calculated 
the level of commitment for specific lineages in each cell by computing a score for a par-
ticular gene signature [29]. In this dataset, we found a group of hematopoietic stem and 
progenitor cells (HSPC) differentiating first into immature myeloid progenitors (IMP) 
and then into erythroid progenitors (EP) and neutrophil progenitors (NP). MIDAA ana-
lyzed 512 cells to find four optimal archetypes (Additional file  1: Fig. S6 and Fig.  2A, 
B), producing a latent space that recapitulates lineage commitment in this dataset. In 
particular, the archetype weights were strongly associated with all the terminal states in 
the adopted gene signature (Additional file 1: Fig. S7), suggesting that the latent geom-
etry matches the differentiation landscape. In comparison, MOFA and VAE embeddings 
failed to extract the patterns of EP and NP cells, with the most relevant MOFA factors 
driven by highly variable samples. Overall, none of the competing methods fully reca-
pitulated these cells’ differentiation features (Supplementary Figs. 8–10).
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We then investigated whether MIDAA’s latent space reproduced known differ-
entiation lineages for these cells. We compared our archetypes (recapitulated by 
cells with weight > 80%) to a k-means clustering in MOFA and VAE latent spaces to 
answer this. Our archetypes identified clear progenitor cells, whereas the standard 

Fig. 1  Performance of MIDAA on a multiomics benchmark dataset. A Schematic representation of the model. 
We allow an arbitrary number of modalities in input, the model then encodes each modality using a private 
encoder. The last layer of these modality-specific encoders is concatenated and given as input to a shared 
encoder that learns the latent space and the simplex structure. The decoding part is exactly the reverse with 
the addition of an optional decoding branch for regression/prediction tasks. B–C We simulate a branching 
differentiation process. The process is indexed continuously by a pseudotime value that roughly recapitulates 
the differentiation level of a cell. We model the differentiation starting from a stem center population with 
pseudotime 0 differentiating towards 3 different states terminal states with high pseudotime. Our goal here is 
to understand if the terminal (i.e., low and high pseudotime) state of differentiation is recapitulated correctly 
by the archetypes D We measured the mean squared error (MSE) between the aggregated expression (top 
panel) or peak counts (bottom panel) of cells at terminal states (bottom 15% and top 75% percentile of 
pseudotime) and the reconstructed archetypes E–F For the second test, we sample from a simplex structure 
in a non-linear latent space, the non-linearity is parameterized by a neural network. G Here we measure how 
well the tools reconstruct the original latent space. As error measures, we computed the MSE of the true 
and inferred archetype weights (top) and the Adjusted Rand Index (ARI) for the true and inferred highest 
archetype assignments. In all the plots “diff.cif.fraction” controls the fraction of divergence among archetypes 
or populations in the development trajectory, a lower number implicates a higher noise
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achieved the worst separation (MIDAA silhouette score increased by ~ 90%) (Fig. 2C 
and Additional file  1: Fig. S11). Interestingly, this analysis highlighted that a single 
MIDAA archetype did not represent immature myeloid progenitors (IMP). Instead, 
we observed that a combination of archetypes represented IMPs. This is consistent 
with IMP cells being in a transition state from HSPC to EP and NP cells.

Finally, we tested whether archetypes could be used in an unsupervised way for the 
discovery of biological programs. To investigate this, we ran a gene set enrichment 

Fig. 2  Multimodal deep archetypal analysis reconstructs an efficient and biologically meaningful latent 
space. A Archetype distribution plotted over the RNA UMAP. B A 2d projection of the simplex latent space. 
Here weights vectors are plotted in 2d polar coordinates. Cells that closely resemble archetypes are far 
from the center and close to the specific archetype on the outer circle, point on the inside are a mixture 
of different archetypes. The weights components can be identified by considering the direction of each 
point in the space as a mixture of unitary vectors pointing at the text labels on the outer circle. A detailed 
mathematical description of the projection can be found in the Methods section C Heatmap of normalized 
[0–1] cell progenitor scores for cells with archetype probability ≥ 80% and K-means clustering in VAE and 
MOFA space. D–E GSEA enrichment analysis for archetypes 1 and 3 using the cell progenitor gene sets from 
[29]. F–G UMAP and 2d simplex projection of the dataset in [30]. H Correlation of transcription factor motif 
deviation and archetype weights. GATA 1 is an erythropoietic commitment marker and TCF3 is enriched in 
dendritic progenitors. I The generative nature of the model makes it easy to produce synthetic datasets from 
the latent space. First of all the user can sample from a Dirichlet distribution specifying the concentration 
parameter and from that the decoder generates realistic multi-modal data. J–K Concordance of gene 
expression and promoter accessibility in a synthetic dataset consisting mainly of the erythropoietic and stem 
archetypes
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analysis on the expression reconstructed for each archetype, using as input gene sets 
the cellular programs of hematopoietic progenitors identified by MIDAA. We found 
one archetype enriched for genes characteristic of EP and one positively enriched for 
NP genes but negatively enriched for HSPC genes (Fig. 2D, E), consistent with our previ-
ous clustering analysis. This suggests that MIDAA’s archetypes can be easily associated 
with well-defined biological characteristics, which can be used for downstream analysis 
to represent realistic data measurements.

To further confirm MIDAA’s flexibility and potential to adapt to different input 
data types, we analyzed a distinct cohort of CD34 + cells, this time generated with 
10 × GEX + ATAC libraries [30]. MIDAA found an optimal number of five archetypes 
(Fig. 2F, G).

Taking advantage of the ATAC measurement, we first ran chromVar [31] to calculate 
the dataset’s transcription factor (TF) motif deviations. We then correlated the inferred 
values for some critical TFs of hematopoietic development with the archetype weights, 
observing a significant positive correlation trend (Fig.  2H). This shows again how 
MIDAA’s latent space recapitulates the known biological processes in the data.

To demonstrate the clear advantages of archetype analysis (AA) in biological discov-
ery, we compared the expression of known cell markers across the top 15% of cells with 
the highest scores for each archetype and cluster. We focused on SPINK2, a marker of 
hematopoietic stemness, and CA1, a marker of erythropoietic lineage commitment. 
In the case of SPINK2, several clusters exhibit high SPINK2 expression, while a single 
archetype demonstrates a clearer, stronger enrichment in the marker expression (Addi-
tional file 1: Fig. S11A and B). A similar pattern is observed for CA1 (Additional file 1: 
Fig. S11C and D). This evidence suggests that archetypes provide a more specific and 
less ambiguous signal of biological processes, offering stronger, more consistent insights 
for downstream analyses. Similarly, we plotted the cell type composition for both AA 
and clusters (Additional file 1: Fig. S11E and F). As anticipated, the clusters exhibit sig-
nificant heterogeneity, containing a mixture of multiple cell types. In contrast, arche-
types are predominantly composed of a single cell type, particularly those representing 
extreme states within the differentiation process.

Thanks to its generative architecture, MIDAA makes it possible to simulate multi-
omics data from the latent space in a biologically informed fashion. To achieve this, the 
user can sample from the archetypes simplex and, from these samples, the decoder will 
generate realistic data measurements (Fig.  2I). To show this, we sampled a synthetic 
dataset consisting mainly of archetypes 3 and 5 associated with HSC and dendritic cell 
(DC) progenitors. The output recapitulates the expected HSC to DC transition, as evi-
denced by the MPO and MEIS1 markers. Notably, this effect is observed at the gene 
expression level and as chromatin accessibility in the promoter, proving how MIDAA 
can produce realistic, consistent synthetic data across distinct data modalities.

The fit quality of the deep archetypal analysis model depends highly on the overall 
geometry of the latent space of the input data. Specifically, as we try to approximate the 
convex hull of the latent space, the result will be less reliable if it is highly non-convex, as 
it would produce a polytope with low density regions. At the same time, even when con-
vex, a space that is poorly approximated by a polytope (i.e., a circle in 2d) will produce a 
very large number of archetypes and thus will be harder to interpret.



Page 7 of 16Milite et al. Genome Biology           (2025) 26:90 	

Care must be also taken when interpreting the results in the light of evolutionary 
trade-offs and Pareto optimality [16]. The setting described in [16] is indeed a suffi-
cient condition for the data to be arranged in a convex polytope structure, but it is not 
a necessary condition. Consequently, it is possible for some biological systems to have 
archetypes that do not correspond to optimal phenotypic programs. Nevertheless, their 
interpretation as extreme points still holds and, as such, can be useful for modeling 
purposes.

Conclusions
In this paper, we demonstrated that MIDAA generates interpretable, biologically coher-
ent, and expressive embeddings for multi-omics data. Moreover, thanks to its generative 
architecture MIDAA can also be used to simulate new synthetic data.

Methods
The matrix factorization problem

Omics data is commonly represented in the form of high-dimensional, sometimes 
sparse, numerical matrices. In this context, dimensionality reduction becomes essential 
not only to make subsequent analysis feasible from a computational point of view, but 
also to filter out technical noise and minor sources of variability. Indeed, the most com-
mon analysis pipeline for single cell RNA and ATAC assays first involves dimensional-
ity reduction using PCA or similar methods, and then graph modularity clustering to 
extract relevant groups in the dataset.

The general definition of the problem is quite simple: given an input matrix XN×M 
with N ∈ N samples and M ∈ N features, we wish to find a two-matrix decomposition 
of X . In other words, after fixing an R ∈ N < M , our decomposition writes as:

Here H is an N × R matrix, and W is an R × M matrix. This formulation describes 
an extremely broad family of methods, depending on the specific constraints and prop-
erties we force on the two matrices H and W and on the metrics we optimize for the 
reconstruction. For instance, when we constrain the W matrix to be orthogonal and to 
explain the maximum amount of variance by component we obtain the PCA. On the 
other hand constraining both matrices to be positive while minimizing some generic 
cost function corresponds to the learning formulation of NMF.

Trivially, if we have multiple input modalities, if we index them by g = [1, . . . ,G] , we 
can naturally reframe the problem as:

In this case, we allow the number of features to differ by modality so that we have Xg 
and Wg specific for each modality, with dimension N × Mg and R × Mg where Mg is 
the number of features for modality g .

X ≈ HW

Xg ≈ HWg
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Archetypal analysis

Archetypal analysis (AA) is a dimensionality reduction method that solves the matrix 
factorization problem by enclosing the data into a convex polytope [15]. The verti-
ces of this polytope, which span its convex hull, are called archetypes and are gener-
ally interpreted as extreme or ideal samples in the dataset. Differently from clustering, 
where centroids are mean or prototypic representation of a given class, in AA the arche-
types represent the farthest point in the data cloud and as such can be seen as the most 
extreme points in a dataset. Another important difference with clustering is in the inter-
pretation of archetypes and centroids. While in clustering we use the centroids as repre-
sentative for all the points belonging to a cluster, and thus we discretize the data; in AA 
each point is always seen as a continuous mixture of archetypes, this property has a clear 
advantage in non-discrete settings.

More formally, let us fix the number of vertices (or, equivalently, archetypes) to K ∈ N , 
and introduce the matrices A = (ank) and B = (bkn) with sizes respectively of N × K  
and K × N  . Moreover, let us constraint these matrices to be row stochastic, namely:

In this setting, by assuming again multiple input modalities our AA decomposition 
reads as:

which reduces to the original matrix factorization problem if we set R = K , H = A , 
and W = BgXg .

The original algorithm to solve AA was introduced by [15] and formulated as an alter-
nating least square problem on the two matrices. Faster approaches have been devel-
oped such as the principal convex hull method [18] and the Frank-Wolfe method [32] 
gradient. Nevertheless, also those former optimized methods still need to perform com-
putations using the full input matrix, making AA generally slow for datasets of millions 
of points. Archetypal analysis has been successfully used in modeling single-modality 
data in biology [17, 33, 34]; our goal here is to extend it to multimodal data and provide 
a unified framework in the context of deep latent variable models. All of this is con-
veniently packed in a user-friendly Python package that easily adapts to the plethora of 
omics data currently available.

Deep multi‑omics archetypal analysis

We started from the deep learning extension of the archetypal analysis proposed in [23] 
to build our MIDAA model. Our main goal is to perform amortized inference over the 

N

n=1

ank = 1 and ank ≥ 0

K
∑

k=1

bkn = 1 and bkn ≥ 0

Xg ≈ ABgXg
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two matrices A and B in some latent space Z , now treated as random matrices. The main 
idea of amortized inference is to spread out (or amortize) the computational cost of 
inference over multiple input data points by learning a reusable inference model. Instead 
of performing inference from scratch for each new data point, a neural network is 
trained to quickly approximate posterior distributions or latent variables, making infer-
ence more efficient.

Ideally, we want a reduced latent representation of the input in some non-linear shared 
space Z and then learn the convex polytope. Indeed, our method performs joint infer-
ence over the polytope and the latent space. To reduce the degrees of freedom and avoid 
optimizing both over the number of archetypes and the dimensionality of the hidden 
space, we fix the polytope shape to be a simplex and set the number of dimensions of the 
hidden space as the number of archetypes—1, as in [23].

Moreover, we will use an encoder-decoder to encode our latent space and project back 
the AA results. Formally, let us define the number of latent dimensions as K − 1 and 
the latent space representation as Z with dimensions K × N  . Then, we can define the 
simplex reconstruction in latent space Z∗ as:

Unlike [23], we do not fix BZ  to be the standard simplex; rather, we explicitly learn 
and compute both the factor BZ in one passage. We do this for two reasons: first, we 
have fewer parameters to tweak, and second, we observed that, in this configuration, our 
latent space formulation achieves better average scores on synthetic tests (Additional 
file 1: Fig. S12). In our model, we constrain Z to be in [0, 1]K−1  instead of the standard 
isotropic Gaussian used in VAEs [27]. This choice regarding inference will be made more 
evident in the next sections.

In MIDAA, we use the standard encoder-decoder inference approach of VAE [27]. In 
our specific case, the parameters of the ABZ distributions are amortized by a neural net-
work  f θg  , referred as the encoder.

To simplify the notation, we will write the encoder as a single function for the rest of 
this section. However, it is important to note that the first step of the encoding process is 
specific to each modality, meaning that each modality has its own independent function 
and network. The outputs of these individual modality encoders are then concatenated 
and passed into a shared encoder, as shown in Fig. 1A.

To then compute the training loss, we project the simplex reconstruction Z∗ back to 
the original space using another neural network, called the decoder, which reconstructs 
the input features using as input Z∗ . In addition to the input reconstruction loss (RHS of 
the equation below) of standard autoencoders, we allow the network to optionally clas-
sify side data Y that we index with  s ∈ N (LHS of the equation). This is useful when 
we want our archetypes to also reflect some additional variables that we do not want to 
include in the encoding phase. For instance, in a scRNA-seq experiment we might want 
the latent space and archetype model to reflect previously annotated cell types, without 
however using this information to inform the gene expression reconstruction.

In particular, given a likelihood distribution with its parameter set, the total likelihood 
reads as:

Z∗ = ABZ
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where we define X = [X1, . . . ,XG] and Y = [Y1, . . . , YG] .
Here, f ψg  and  fs are the decoding network for the side and input data. Again, for sim-

plicity, we omit that there is a shared part and a modality-specific part and refer to 
Fig. 1A for a full representation of the network used. As different modalities can have 
different numbers of features, we allow the user to specify constants �g and �s to normal-
ize the likelihood; by default, they are set to respectively  1

Mg
 and  1

Ms
 in order to give the 

same importance to each modality (where Mg and Ms are the number of features for 
each input and side modality).

Model inference and formulation

We define the learning objective in a way akin to a standard VAE [27] but with some 
significant differences regarding the form of the distribution involved in the latent space. 
The loss function that we optimize is, however, the same, as well the evidence lower 
bound (ELBO) that we maximize throughout training using stochastic gradient descent 
with the Adam optimizer:

Our variational distributions  q are defined over the matrices A, Z and B  and we 
assume the following factorization 

∏

n q(an)
∏

k q(bk)
∏

nm q(znm) . To keep the notation 
consistent, here we multiply and over respectively the rows and the columns (i.e., we 
assume independence among archetypes, latent dimensions, and samples).

The choice of the variational distributions comes naturally from the constraint of AA:

Here with we index the output dimensions of the encoder. Priors have the same func-
tional forms as the variational posteriors and have equal unitary concentration for the 
Dirichlet, while the Uniform has a range [− 1, 1]. Regarding the distribution for z , we 
departed from the standard isotropic Gaussian as a prior as it tends to concentrate prob-
ability density on the shell of a hypersphere (in high dimension) or push towards the 
center (in lower dimensions) and, as such, makes the space particularly badly suited for 
learning a simplex representation of the data [35].

Regarding the likelihood distributions, we allow flexibility and currently support a 
broad range of distributions as valid likelihoods:

p (X, Y|A, B, Z) =

G
∑

g=1

�gp
(

Xg |f
ψ
g

(

Z∗
)

)

+

S
∑

s=1

�sp
(

Ys|f
ξ
s

(

Z∗
))

q(an) = Dirichlet
(

f θ0,n(X)
)

q(bk) = Dirichlet
(

f θ1,k(X)
)

q(znk) = Uniform
(

f θ2,n,k(X)
)
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•	 Beta, for variables distributed in the [0, 1] range such as allelic frequencies.
•	 Poisson and negative binomial for counts data with and without overdispersion, 

such as those produces by scRNA-seq or scATAC-seq experiments.
•	 Gaussian and gamma for respectively real and positive continuous values, like 

normalized gene expression or PCA components.
•	 Categorical for discrete and binary classes, like the absence or presence of a muta-

tion or the cell cycle phase.

Benchmark on simulated data

We used the scMultisim tool [36] to generate synthetic single-cell multi-omics data, 
which uses real-data inferred gene regulation networks to sample both trajectory-like 
and clustered gene expression and chromatin accessibility data.

Here we give a brief mathematical description of the other tools used in the bench-
mark; we refer the reader to the original papers for further details.

•	 JIVE aims at decomposing the set of input matrices as Xg = J+ Ag + ǫg , where J 
is a common matrix among the modalities, while Ag models modality-specific fac-
tors and ∈g is a noise term. Importantly, the rows of joint and individual structures 
are constrained to be orthogonal.

•	 intNMF is a method that extends non-negative matrix factorization (NMF) to the 
multimodal setting. More precisely, it tries to solve the problem 
argminHg, w

� Xg −WHg �2 i = 1, 2, . . . , m such that all the entries Hg , Wg ≥ 0.
•	 MOFA is a popular tool for solving factor analysis problems in multi-omics 

settings. The problem setting is similar to the one above: namely, we model 
Xg = HWg + ǫg . Where H  is a common loadings matrix and Wg  is a modality-
specific factors matrix ǫg is an error term. MOFA is a Bayesian model and, instead 
of specifying hard constraints in the optimization problem, it assigns prior dis-
tributions to the matrix entries, a likelihood distribution for each modality, and 
computes a posterior distribution for the two matrices.

•	 VAE is a non-linear generative model that learns a probabilistic mapping from 
data modalities Xg to a latent space Z and back to the original space. Both the 
encoding

(

p
(

Z
∣

∣Xg

))

 and the decoding (p(X|Z )) distributions are parameterized by 
a neural network. It maximizes a lower bound on the likelihood called the evi-
dence lower bound (ELBO).

We analyzed two main case studies: one in which the latent space is a simplex and 
one in which it is instead a differentiation trajectory. In the first case, we generated 
a cohort in which the mapping function from the space of observables to the latent 
space is linear and another one in which it is non-linear.

For each of these cases, we simulated 20 datasets of 1000 cells.
We also repeated the experiments for three values of the parameter diff.cif.fraction 

in the sim_true_counts function, namely [0.6, 0.75, 0.9] to simulate different amounts 
of noise (lower values correspond to higher noise).
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To generate the datasets in the latent simplex case, we first sampled three clusters 
and took their centroids as archetypes. The single cells were then simulated by sam-
pling a matrix of archetype weights from a Dirichlet distribution A  and multiplying 
it with the observation centroid for each modality Cg . In the non-linear case, we first 
learn a latent space with a variational autoencoder AC , compute the centroids in this 
latent space, and then feed A to the decoder (note that this time centroid are modality 
agnostic). We tested how well the methods reconstructed the archetype distribution 
A . If we call Ã the inferred the score we computed is:

We also computed the Adjusted Rand Index (ARI) between the inferred and true 
highest archetype defined as hi = argmax ai.

For the trajectory cohorts, we were interested in comparing the archetypes to the 
terminal points of the trajectory. In this case, we define the terminal points as those 
having the lowest and highest pseudotime values. We computed a set of trajectory 
endpoints tk by aggregating the expression of the bottom 15% percentile and the top 
75% percentile of pseudotime for each terminal branch. We did the same to get and 
aggregate the 75% percentile of cells with the highest weight for each archetype to hk . 
We matched each archetype index k̂  to the differentiation branch k with the lowest 
Euclidean distance and then computed:

where M is the number of features. We computed this score for both the RNA and 
the ATAC reconstruction.

Real data analysis: G&T

For the methylation and expression CD34 + dataset, we first filtered the CpG data by 
keeping only those with sites with less than 65% missing cells. We then filled the NA 
with 0 (unmethylated CpG). For the RNA, we used as input the batch-corrected latent 
representation of Scanorama [37] already computed by the authors in the original 
work (Additional file 1: Fig. S13A). We then run our model with a Gaussian likelihood 
for the RNA and a Bernoulli likelihood for the methylation. We set a batch size of 300, 
a learning rate of 0.0001 with an exponential decaying schedule with a rate of 0.1, and 
run the inference for 1000 epochs using the Adam [38] optimizer. We run the model 
for a number of archetypes ranging from 2 to 12 and choose the best value of 4 based 
on plateaus in the ELBO plot (Additional file 1: Fig. S7).

Scores for the different progenitor cells were computed using the function score_
genes of Scanpy [39] from the gene sets in [29].

To compare the representation power of the different methods, we set the number 
of latent dimensions in both the VAE and MOFA to 4 and correlate the gene scores to 
the latent coordinates. For the K-mean clustering, we again chose 4 as the number of 
clusters, but this time we learned a MOFA model with 30 factors to simulate a more 
realistic scenario. GSEA [40] was computed for archetypes 1 and 3 on the cell pro-
genitor gene sets using the Python packages [41].

MSE

(

A,
∼

A

)

=
1

NK

∑

nk

(

ank − ãnk
)2
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Real data anaylsis: 10×
The input matrices for RNA and ATAC where generated by taking the highly variable 
genes and 10,000 peaks and then log transform and scale them after a library size 
normalization using Scanpy [39] and SnapATAC [42] (Additional file  1: Fig. S13B). 
We then run the model with a Gaussian likelihood for 3000 steps, exponential decay 
of 0.1. The best number of archetypes 6 was selected by again running the model in a 
range of [2, …, 12] and looking at the negative ELBO decrease.

We confirmed the relation between archetype weights and cell fate commitment by 
first running chromVAR [31] to obtain transcription factor deviation scores and then 
correlating marker TFs with archetype weights. We used the model learned from this 
dataset to generate some synthetic data. We sampled archetype weights for each cell 
from a Dirichlet with concentrations [1e − 16, 1e − 16, 2, 1, 2] that were then fed to 
the decoder. Clustering was performed on the RNA portion using the Leiden algo-
rithm implemented in the Scanpy [39] function scanpy.tl.leiden, with a resolution of 
0.2, producing a number of clusters comparable in size to the archetypes. Cell mark-
ers were sourced from the CellTypist [44] annotation tool.

Projection of a multidimensional simplex in a 2d space

A convenient way of plotting archetypes in a lower dimensional 2d space that cap-
tures the space’s salient feature is a projection to polar coordinates in a polytope 
bounded by a unit circle.

We describe the procedure for a single point in the space.
This point is described by a vector a ∈ [0.1]K s.t.

∑

k αk = 1  with respect to the 
archetype basis. The archetypes have coordinates in the latent space Q = BZ . The first 
step is to find the relative positions of the archetypes on the circle (outer labels in the 
plots); we ideally want archetypes close in the latent space to be close on our circle.

To do that we compute the Euclidean distance among all pairs of arche-
types 

√

< qk, qj > and then solve a traveling salesman problem (TSP) to find the 
path optimizing the pairwise distances. Once we have the optimal order and dis-
tances dk , we normalize them to sum d̂k =

dk
∑

k dk
 and divide the circle accordingly to 

get the label position or, equivalently, vertices of the polytope lk = 360×
∑k

j=1 d̂j.
We can then write the angle θ and the norm of the vector ρ as:

We end up with a representation where the mixture of archetypes is represented 
as the angle of the vector representing a point and the amount of purity by its norm. 
Note also that only pure archetypes have norm one and live in the circle’s perimeter, 

ρ =

√

√

√

√

(

∑

k

αk cos (lk)

)2

+

(

∑

k

αk sin (lk)

)2

θ = arc tan 2

(

∑

k

ak cos (lk),
∑

k

ak sin (lk)

)
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while the other points shape the polytope. It is important to note that this representa-
tion is not unique, and as such the greater the number of archetypes the less reliable 
the plot becomes. A similar idea appears in [43].

Interpreting the model results

Translating the final model to interpretable biological knowledge is crucial in all 
machine learning analyses in life science. The advantage of generating synthetic data that 
resembles actual measurements opens the possibility of extracting meaningful biological 
information. To achieve this, one can follow at least three distinct approaches.

First, one can assign the archetypes with features from the original data. For example, 
from a single-cell transcriptomics assay, one could compute log-fold change estimates or 
gene set enrichment scores between reconstructed archetypes. This would characterize 
the archetypes (but not necessarily the potentially non-linear weights), at least for the 
data modality of interest to the user. Second, one can compute the correlation between 
features and archetype weights to determine which features are related to the weights. 
This straightforward operation can be implemented by using non-parametric correlation 
measures that capture non-linear relations, such as Spearman’s correlation coefficient. 
Third, one can compute how important each data modality or feature is to determine 
archetypes by adopting a leave-one-out approach. In particular, one could remove either 
a feature or a data type and re-run the model, measuring the distance between the full 
and reduced models.
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