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Abstract 

A primary goal of microbial genome-wide association studies is identifying genomic 
variants associated with a particular habitat. Existing tools fail to identify known causal 
variants if the analyzed trait shaped the phylogeny. Furthermore, due to inclusion 
of allochthonous strains or metadata errors, the stated sources of strains in public data-
bases are often incorrect, and strains may not be adapted to the habitat from which 
they were isolated. We describe a new tool, aurora, that identifies autochthonous 
strains and the genes associated with habitats while acknowledging the potential role 
of the habitat adaptation trait in shaping phylogeny.
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Background
GWAS, or genome-wide association study, is an approach for identifying genetic varia-
tions (including genes, SNPs, k-mers) that are associated with complex traits (syn. phe-
notypes). GWAS is highly effective for identifying genetic loci associated with a wide 
range of complex phenotypes [1–3]. Human GWAS studies have successfully identified 
genomic elements associated with height, obesity, and many diseases such as Alzhei-
mer’s and diabetes [3, 4]. The development of microbial GWAS (mGWAS) has lagged 
behind that of human GWAS. While microbial genomes are cheaper to sequence, their 
high plasticity and fast evolution, combined with frequent horizontal gene transfer, has 
made mGWAS difficult to apply successfully [1, 2]. Additionally, microbes reproduce 
asexually which may lead to the formation of lineages that are genetically similar or even 
clonal [5, 6]. This results in a rapidly fluctuating clonal structure in which genomic vari-
ants can be in genome-wide linkage disequilibrium (LD), making it difficult to identify 
the loci causally responsible for a certain phenotype. LD is especially strong in microbes 
where clonal expansion is evident such as in causative agents of infectious diseases [7, 
8]. Recombination or gene loss disrupts LD thus alleviating the cost to fitness associated 
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with carrying non-causal variants that are co-inherited with the causal variants. Thus, 
LD is less confounding in diverse datasets where samples were gathered over a long 
period from multiple geographical locations. A successful mGWAS tool needs to be able 
to account for both LD and complex genetic relatedness, within microbial populations.

Human GWAS analysis focuses primarily on the association of traits with SNPs, but 
mGWAS offers more options. These include SNPs, genes, k-mers, or unitigs (overlap-
ping set of k-mers) as the genetic variants [1], and in practice, it is possible to test all of 
these variants depending on the nature of the analyzed trait. The presence/absence of 
genes is the most interpretable approach but may result in omitting important causal 
sequence variants. On the other hand, downstream processing of significantly associ-
ated k-mers or SNPs can be challenging since there can be thousands of significant hits. 
Traditional methods like mapping the significant variants to a reference genome are 
not possible if the analyzed species are genomically very diverse. Recently, it was sug-
gested to use unitigs instead of k-mers as the tested variant [9, 10]. Because analysis 
of all genomic variants offers distinct advantages, novel bioinformatic tools should be 
designed to work with any feature (presence/absence of genes, unitigs, SNPs, even whole 
pathways, and metabolic modules).

The currently available mGWAS tools are not suitable for identifying genetic variants 
responsible for habitat adaptation because they discard, or disadvantage variants that 
are associated with phylogenetic lineages. Genetic variations whose presence strongly 
depend on the evolutionary history are commonly referred to as “lineage effects” while 
variations influencing phenotype independently of the phylogenetic background are 
referred to as “locus effects” [11, 12]. Although complex traits are often encoded by 
both types [11, 13], most currently available mGWAS tools only focus on locus effects. 
For example, the mGWAS tool Hogwash [14] removes all genetic elements that were 
not gained or lost at least twice in the phylogeny. The Seer algorithm [15] cannot ana-
lyze phenotypes that are uniquely associated with just one lineage. However, if a spe-
cies has a restricted habitat range over long evolutionary time, phylogenetic lineages can 
emerge that are specific to this habitat, which might apply to host specific symbionts 
[16–19]. Thus, the habitat specificity is a phenotype well reflected by both locus effects 
and phylogenetic structure. By strictly accounting for the population structure, the cur-
rently available mGWAS tools fail to identify adaptive variants that influenced bacterial 
diversification, because they assume that causal variants had a negligible effect on the 
analyzed phenotype. This assumption can be safely applied in human GWAS because 
complex human traits are mostly under low selection pressure [20]. Some currently used 
mGWAS tools were inspired by tools used in human GWAS. For example, Pyseer [9, 
21] and DBGWAS [10] use linear models with principal components to account for the 
population structure. Another group of mGWAS tools uses a phylogenetic tree to cal-
culate the number of tree branches or nodes where the phenotype and genotype inter-
acted [14, 22, 23]. These tools have been successfully used to identify causal markers of 
antimicrobial resistance, virulence, and invasiveness [24–27], which can be the result 
of short-term adaptation (encoded by locus effects) that tend not to influence the long-
term phylogeny and form lineages. The problem of causal variants concordant with 
phylogeny had already been recognized. Earle et al. (2016) proposed a method named 
bugwas to identify causal lineage effects [11]. However, this method has the limitation 
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that causal locus and lineage effects are identified in two separate analyses which does 
not allow a direct comparison of their significance. The bugwas method is also suitable 
mostly for identification of variants that arose just once during the course of evolution. 
Variants strongly correlated with phylogeny but present in multiple lineages with mul-
tiple corresponding occurrences in the phylogeny are difficult to identify using bugwas. 
Since dividing causal variants into locus and lineage effects is an artificial partitioning, 
combining analysis of the two in one tool would be a significant improvement. It is also 
desirable to have a robust tool that does not make an assumption about the effect of 
the analyzed trait on the phylogeny, while it still accounts for the clonal structure of the 
microbial population.

Constructing a dataset is a critical step in mGWAS. The accuracy of the mGWAS 
analysis is highly dependent on the quality of metadata associated with the samples. 
Metadata errors can arise from various sources, such as incorrect taxonomic identifi-
cation, faulty measurement of the trait, and mistakes in recording strain provenance. 
Since mGWAS often analyses thousands of strains, some errors are bound to occur 
[28]. Moreover, the source of isolation of a strain is not necessarily the environment to 
which it is adapted, as strains might be allochthonous (not formed where found). Meta-
data errors and strain allochthony can significantly affect the accuracy and validity of 
mGWAS results because mGWAS tools use strict adjustment for population structure 
which gives large weight to outliers (possible erroneously labeled or allochthonous 
strains). Moreover, there may be strains or entire lineages that are well adapted to a habi-
tat while other lineages of the same species do not have a strict habitat preference [29–
31]. This makes for an exceptionally difficult dataset as the host-adapted strains need 
to be analyzed separate from the strains with a broad host range. A new generation of 
mGWAS tools thus needs to be able to identify strains that possess the causal genomic 
variants prior to the mGWAS analysis. Lastly, some phenotypes are not heritable and in 
such a case mGWAS tools should not generate false positives Thus, it is desirable to have 
a tool that can establish if the entire species displays any genomic variants associated 
with the recorded trait.

Here we present a new tool called aurora (AUtochthonous, Random fOrest, Ran-
dom wAlk) that can deal with the confounders described above. aurora was thoroughly 
benchmarked against the most commonly used mGWAS tools that can use the pange-
nome matrix as a feature input table. Multiple simulated datasets and real datasets were 
used to show that aurora can correctly analyze non-heritable phenotypes and is the only 
tool that can retrieve the causal genetic variants despite the presence of numerous mis-
labeled strains and despite the collinearity of the analyzed phenotype and the phylogeny. 
The aurora algorithm is implemented as an R package and is freely available.

Results
Functionality of aurora

aurora has two main functions aurora_pheno() and aurora_GWAS(). The workflow 
of both functions is depicted in Fig. 1. The parameters of both functions are discussed 
in detail in Additional file  1. The file also contains an example analysis of the L. reu-
teri dataset. The purpose of function aurora_pheno() is to identify strains that do not 
possess causal variants associated with the phenotype of interest (i.e., virulence, host 
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specificity). When host adaptation is analyzed, we refer to strains that are able to stably 
colonize as autochthonous (formed where found), while strains that are temporarily pre-
sent but introduced from another habitat are termed allochthonous. A broader term is 
“mislabeled” which refers to any strain that aurora_pheno() identified as not associated 
with the observed class. Therefore, mislabeled strains are either allochthonous strains 
or strains that were erroneously labeled in the user-supplied dataset. These strains 
should be removed from subsequent mGWAS analysis to preserve maximal power for 

Fig. 1 Workflow of the aurora package
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identifying causal variants. The first step of aurora_pheno() is to filter the input feature 
matrix and collapse highly correlated features into a single representative feature. This 
data matrix then enters the Threshold Calculation Phase. In this phase, a cycle of inten-
tional random strain mislabeling, and subsequent training of four ML models (random 
forest, AdaBoost, logistic regression, and CART) is repeated. The Threshold Calcula-
tion Phase generates threshold distributions composed of classification probabilities 
obtained from the four ML models. To identify the mislabeled strains these distributions 
are compared to classification probability distributions obtained in the next step: Outlier 
Calculation Phase. The Threshold Calculation Phase also outputs p-value matrices (visu-
alized in Additional file 1: Fig. S1 for Limosilactobacillus reuteri and Additional file 1: 
Fig. S2 for Lactiplantibacillus plantarum) that show whether the analyzed species have 
variants associated with the classes of the phenotype. The purpose of function aurora_
GWAS() is to identify causal features of the investigated phenotype. If results from 
aurora_pheno() are available, then the strains identified by aurora_pheno()as mislabeled 
are first removed. aurora_GWAS() calculates simple genotype–phenotype association 
scores (F1 values and standardized residuals) on a bootstrapped dataset that is adjusted 
for strain non-independence.

aurora can identify causal variants in simulated data despite inclusion of incorrectly 

labeled strains

To evaluate the performance of aurora, we first created simulated GWAS test data gen-
erated by four methods: two multiple state speciation and extinction models (MuSSE1 
and MuSSE2) [32], Simurg [33], and a script Simulate_pan_genome.py (Scoary script) 
build to test a mGWAS tool Scoary [22]. These datasets were designed to represent four 
different phenotype adaptation scenarios (see Fig. 2). The script Simulate_pan_genome.
py creates a dataset with just one causal gene. This scenario was simulated twice: high 
penetrance—0.85 and medium penetrance—0.6. Both phenotypes were dispersed 
around the phylogenetic tree indicating an insignificant role of phylogenetic history for 
this phenotype. This is measured by D value—a measure of phylogenetic signal strength 
in binary phenotypes [34]. The D values for high and medium penetrance phenotypes 
were 0.4 and 0.2 respectively. In such scenarios, the causal genes will be repeatedly 
acquired and lost in the phylogeny which is typical for highly transient phenotypes like 
virulence and antimicrobial resistance [25–27].

Simurg produces only the pangenome matrix and the phylogenetic tree but not trait 
distribution. Thus, the phylogenetic tree was split into two lineages, and each was 
assigned a different class. Such label distribution is typical for host-adapted species 
where deep branching lineages are associated with a specific host [16–18]. The D value 
for this dataset was estimated to be − 0.37 indicating a strong phylogenetic signal for this 
phenotype. The MuSSE1 model is a more realistic depiction of host adaptation. Each 
time a strain gains a new causal gene, its speciation rate is increased. This reflects the 
fitness benefit that the strain acquired with the causal gene. Since this type of model 
tends to generate causal variants that are lineage effects [11] which some convergence-
based models and some linear models cannot identify, a gene distribution where the 
causal genes are not present exclusively in one lineage was selected (Fig.  2B). The D 
value for this phylogeny and trait distribution was − 0.53 indicating a strong influence 
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Fig. 2 Construction and visualization of simulated data. Four simulated datasets were constructed using 
methods with different assumptions: Simulate_pan_genome.py script published along with Scoary [22], 
pangenome simulation tool Simurg [33], and two multiple state speciation and extinction models (MuSSE). 
A Visualization of the construction of the two MuSSE models. The speciation (λ) and extinction (μ) rates are 
shown for each state. The corresponding transition matrices are shown next to the model scheme. In the 
case of MuSSE1 model, if a strain finished the simulation in a state with blue color (S1, S2, S3) then the strain 
was considered to belong to the blue class of the phenotype. If the final state was red (S4, S5, and S6), then 
the strain belongs to the red class of the phenotype. In the case of MuSSE2 model, once a strain passed 
the red states (S3 and S5), it was considered to belong to the red phenotype even if it later returned to one 
of the blue states (S1, S2, S4). Each time a strain transitions into a new state, it gains the causal gene that 
corresponds to the colored border ring. The colored rings around the states correspond to the colored circles 
in the phylogenetic trees below. Additionally, in MuSSE2 simulation if a strain gains a causal gene (S2, S3, 
S4, S5) then its current extinction rate is reduced by 0.01. B Phylogenetic trees showing how the phenotype 
classes (inner color strip) and causal genes (outer ring with circles) were distributed. Causal genes are those 
which contribute to the red phenotype. The subsequent GWAS analysis was used to discover adaptation 
factors to the red phenotype
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of phylogenetic history on the trait. The MuSSE2 model on the other hand is a simula-
tion of a more transient phenotype (D = − 0.06). Each time a strain gains a causal gene, 
its extinction rate decreases. This reflects the increased resistance to a hypothetical 
inhibitor.

To test how the performance of aurora was influenced by mislabeled strains, we inten-
tionally incorrectly labeled 0, 5, 10, and 20% of strains into the opposite class in the sim-
ulated data and compared the ability of aurora to identify the causal features with that 
of four popular mGWAS tools that can use a pangenome matrix as an input—Hogwash 
[14], Scoary [22], Pyseer [21], and TreeWAS [23]. The measure of how successful a par-
ticular tool was in identifying the causal genes was the rank of these causal genes in the 
output. All genes were first ordered by their p-values in ascending order and then rank 
was computed for the causal genes. An average of those ranks was calculated as the final 
measure of success. In the case of elastic net, the results were sorted based on unad-
justed p-values. The same procedure was applied to the aurora results, but the measure 
of success was the average rank of features ordered in descending order based on either 
F1 values (Simurg and the high penetrance Scoary script data) or standardized residuals 
(all other datasets). If a causal gene was not present in the output, a rank value of 10,000 
was assigned to that gene. It was assumed that if a tool did not report a causal variant, 
the variant is at the end of the list with a p-value equal to 1. The number 10,000 was 
chosen because it reflects the typical pangenome size of a medium-sized dataset (~ 500 
strains). The mean rank measure is especially suitable if the output of a certain tool has 
a large number of significant (p < 0.05) genes. In such a case, the causal genes would be 
significant but other genes (false positives) may have even lower p-values. The results are 
shown in Fig. 3.

Apart from the two tests implemented in the Hogwash package, all other tools per-
formed well on the high penetrance dataset produced by the Scoary script. However, 
only aurora and the three Pyseer models predicted rank 1 for the causal gene irrespec-
tive of how many strains were incorrectly labeled. It should be noted that the p-value 
predicted by the fixed effects model increased from 9.13 ×  10−23 to 4.28 ×  10−9 when 
20% of all strains had swapped labels. A similar trend was observed in the case of the 
linear mixed model. On the other hand, the F1 values produced by aurora slightly rose 
from 0.8 to 0.9. The medium penetrance dataset revealed more about the performance 
of each tool. Only three methods—aurora, fixed effects, and linear mixed effect model, 
managed to predict low rank when no strains were incorrectly labeled. Importantly, the 
performance of the said models deteriorated as more strains were given swapped labels 
while the performance of aurora decreased only slightly Fig. 3A.

The Simurg simulation produced a phylogeny with two distinct lineages. There were 
110 genes present in the first lineage (red color in Fig. 2B) and absent in all strains in the 
second lineage. These genes were considered causal. The best mean rank was thus 55, a 
result which was achieved only by aurora and the Subsequent test when no strains were 
incorrectly labeled (Fig.  3A). Hogwash, Scoary, fixed effects, and linear mixed model 
were unable to analyze the phenotype despite its simplicity. Only lineage-specific genes 
are causal for this trait, and it is thus expected that these tools (geared to the analysis 
of locus effects) would not be able to identify its causal variants. This simulation again 
showed that aurora can identify the incorrectly labeled strains as the tool’s performance 
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Fig. 3 Results of analysis of simulated data. Four simulated datasets were constructed using four different 
methods: Simulate_pan_genome.py a script published along with Scoary (two datasets each with different 
penetrance 0.85 and 0.6), Simurg, and two multiple state speciation and extinction models—MuSSE1 and 
MuSSE2. Each simulation was run a single time. A Results of the GWAS analysis. In each dataset, 5%, 10%, 
and 20% of the strains were mislabeled and the GWAS analysis was repeated. The measure of success (x-axis) 
was the mean of ranks of the true causal genes. All genes were first ordered by their p-values (or F1 values or 
standardized residuals) and then the average rank was computed for the causal genes. Four existing mGWAS 
tools and aurora were used for these analyses. B The graphs show how many causal genes (y-axis) of the 
simulated trait were identified as significant by the mGWAS tools. There are three groups of results: naïve (no 
multiple comparison adjustment) and two sets where the p-values were adjusted by either the Benjamini–
Hochberg method or Bonferroni correction. C In this analysis, the phenotype labels were randomized, and 
the graphs show the number of significant genes (false positives) that each test produced. The graph shows 
the result of naïve analysis
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decreased only moderately from mean rank 55 to 118. Next, we analyzed the perfor-
mance of all the tools on the MuSSE1 dataset. When no strain labels were swapped, fixed 
effects and linear mixed model outperformed aurora (mean rank values of 95 and 114 
respectively vs 203, Fig. 3A). The better mean rank values of the two models are likely a 
result of their shortcomings. The two models ignore genes that are uniquely present in 
one lineage, but aurora takes these genes into consideration. The MuSSE1 causal gene 
distribution was chosen so that no causal variant was a present in only one lineage while 
still being closely tied to the phylogeny. aurora thus considers a larger number of vari-
ants than the two linear models implemented in Pyseer. As the number of incorrectly 
labeled strains increased, aurora reported consistent scores (203 to 265) while the mean 
ranks of fixed effects and linear mixed model increased substantially when only 10% of 
strains had swapped labels (505 and 787 respectively, Fig. 3A). The mean rank value of 
the elastic net model was stable. Although MuSSE1 and MuSSE2 scenarios are very dif-
ferent, the MuSSE2 dataset showed similar results. Again, we observed stable mean rank 
values for aurora and elastic net (however, the former was lower) and initial good per-
formance of fixed effects and linear mixed model, which, however, worsens with a higher 
number of incorrectly labeled strains (Fig. 3A).

Taken together these findings demonstrate that aurora outperforms other tools in 
the identification of causal genetic variants especially in cases where a large number of 
strains have incorrect class labels. These results also confirmed that Hogwash, Scoary, 
fixed effects, and linear mixed effects models are not able to identify causal genes that are 
lineage effects. Moreover, the simulated data showed that aurora can find and remove 
the mislabeled strains, and the true causal signal is not lost upon strain mislabeling.

The mean rank value is not sufficient to fully describe the performance of a tool. Previ-
ous studies focused on using statistical power as the measure of success [15, 22, 35]. In 
the context of mGWAS, statistical power describes the probability that a statistical test 
with a given sample will correctly detect a true causal variant. We thus decided to test if 
the available tools could identify the causal variants in our simulated data as significant. 
To adjust the results for multiple comparisons, we applied the most commonly used 
Benjamini–Hochberg method [36] and the recommended Bonferroni correction [12]. In 
the latter method, the chosen significance threshold (α = 0.05) was divided by the num-
ber of non-correlated variants (number of variants after aurora prefiltering stage), rather 
than the total number of variants, to account for the reduced effective number of inde-
pendent tests. The results are shown in Fig. 3B; aurora and elastic net are not included 
because these methods do not produce p-values. With the exception of the Subsequent 
test, all tools showed the one causal variant in the Scoary script dataset with high pen-
etrance as significant. The Scoary script dataset with medium penetrance was more 
challenging. Albeit with low rank, Hogwash was the only tool that identified the causal 
variant as significant in all cases. Except for tests in TreeWAS, no other tools identi-
fied all causal genes in the Simurg dataset as significant. Fixed effects model and lin-
ear mixed effects model could detect some causal variants in the MuSSE1 and MuSSE2 
datasets but when the same analysis was replicated on a dataset with 20% of strains with 
incorrect class labels most causal variants were not detected as significant. In conclu-
sion, as the results in Fig. 3B vary significantly the ability to detect causal variants relies 
on the chosen tool. Moreover, output from some of the tools contained a large number 
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of non-causal significant hits (p-value < 0.05). This phenomenon was investigated fur-
ther by assigning the strains of the five above-described simulated datasets into two ran-
domly selected phenotype classes. It is not possible to calculate the expected number of 
false positives since it has been shown that the distribution of p-values obtained from 
mGWAS tests is not uniform [14, 23]. Figure  3 shows that naïve results (no multiple 
test adjustment) lead to multiple false positives. The false positives largely diminish after 
applying either of the multiple comparison correction methods but both Hogwash tests 
and simultaneous test still produce many false positives (Additional file  1: Fig. S3). It 
should be noted that aurora does not have a significance threshold and thus it cannot 
produce any false positives but in all cases, function aurora_pheno() correctly identified 
that the strains lack any genomic adaptation towards the randomized phenotype.

aurora is the only GWAS tool that can identify genes responsible for habitat adaptation 

in Mycobacterium avium subsp. paratuberculosis

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne’s 
disease, also called paratuberculosis, in ruminants. Johne’s disease is a chronic gastro-
intestinal disease accompanied by weight loss, diarrhea, and progressive weakness. In 
addition to cattle, MAP is isolated from sheep and goats [37]. MAP has unique genomic 
adaptions to both cattle and sheep [38–41] which makes it a good test case for aurora. 
Mycobacterial genomes are relatively stable with low mutation and recombination rate 
[42]. The MAP dataset is therefore similar to the simulated data created by Simurg.

Fig. 4 GWAS analysis of colonization factors of Mycobacterium avium subsp. paratuberculosis. A Core genome 
phylogenetic tree of MAP. The innermost circle shows the host from which the strain was isolated. The next 
five circles indicate the presence/absence pattern of cattle-specific essential colonization factors identified 
by Eshraghisamani et al. [41]. The outermost circle indicates which strains were identified as autochthonous 
(black) and allochthonous (blank) by aurora. The arrowheads point to empirically identified allochthonous 
strains in the dataset. B Result of GWAS analyses of putative bovine and ovine colonization factors. The y-axis 
represents the mean of gene ranks. All genes were first ordered by their p-values (or F1 values in the case of 
aurora) and then the average rank was computed for the putative colonization genes. The NA means that all 
putative colonization factors were not in the output or that they all had a p-value equal to 1
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MAP strains are divided into two phylogenetic lineages (Fig. 4A), one dominated by 
cattle isolates (bovine lineage) and one dominated by sheep isolates (ovine lineage). 
We hypothesized that the ovine isolates present in the bovine lineage are either falsely 
labeled or are bovine strains ingested by sheep/goats (allochthonous strains). Likewise, 
the same could occur in the case of the two cattle isolates in the ovine lineage. MAP is 
prevalent and abundant in cattle and contamination of water or soil is common [37]. 
Moreover, because the beginning of MAP infection can be subclinical, and the course 
of the disease is chronic, fecal contamination facilitating transmission of MAP to differ-
ent hosts is likely to occur. Cattle are relatively resistant to infection by the ‘S’ (or sheep) 
type of MAP which causes most cases of ovine and caprine paratuberculosis [43]. This 
suggests that sheep strains cannot stably colonize cattle; thus, the two cattle isolates in 
the ovine lineage should be allochthonous. Genotyping analysis showed that the bovine 
“C” type (or cow) MAP is present in both sheep and goats [44]. C-type is however rare 
in sheep compared to the S-type [44]. This further points to the possibility of mixed host 
labels in the dataset. If this hypothesis is true, then we could use the MAP dataset to test 
the ability of aurora to detect mislabeled strains.

To test this hypothesis, we investigated if the cattle isolate genomes in the ovine line-
age harbored previously identified essential cattle colonization factors. Likewise, we also 
investigated if the ovine/goat isolates in the cattle lineage have cattle colonization fac-
tors. Eshraghisamani et al. identified a set of 690 genes essential for MAP colonization 
of cattle [41]. Only 22 out of the 690 genes could not be mapped to the MAP pange-
nome constructed herein. Out of those that could be mapped to MAP pangenome, 661 
colonization factors belonged to the core genome and 2 genes were not more frequent 
in bovine or ovine isolates. The 5 remaining genes were much more predominant in 
bovine isolates. The presence of these genes was mapped to the MAP phylogenetic tree 
(Fig. 4A). These genes are present only in the bovine lineage and absent in the ovine line-
age. This confirmed that the two cattle isolates in the ovine lineage are not adapted to 
cattle since they lack the 5 essential cattle colonization factors. All six ovine/goat isolates 
present in the bovine lineage had the 5 cattle-specific colonization genes and are thus 
likely to stably colonize the bovine host.

With the correct labels established, we sought to identify additional genes that are 
responsible for host adaptation. To this end, genes present in at least 90% of all strains in 
the bovine lineage and absent in all strains in the ovine lineage were extracted and anno-
tated. Likewise, all genes present in at least 90% of all strains in the ovine lineage and 
absent in the bovine lineage were annotated (Additional file 3). In total, 71 and 103 puta-
tive colonization factors were identified as cattle or ovine-specific respectively. Then, 
Pyseer, Scoary, TreeWAS, Hogwash, and aurora were applied to the MAP dataset. The 
allochthonous strains identified above were not removed. As in the analysis of simulated 
data, the mean of the ranks of the colonization factors was taken as the measure of the 
tool’s success rather than the p-value produced by the tool. Even though the effect sizes 
of the bovine and ovine colonization factors are high, most tools were not able to iden-
tify the cattle and ovine colonization factors as the highest ranking (Fig. 4B). In contrast, 
the top results from aurora were dominated by these genes. In the first phase, aurora 
correctly identified all the mislabeled strains that we independently identified as incor-
rectly labeled above using experimental data from Eshraghisamani et al. [41] (Fig. 4A). 
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Specifically, the Strict mode removed 33 strains which left 492 strains for the subse-
quent GWAS analysis. All ML algorithms correctly identified MAP as host-adapted. The 
results from aurora sorted by F1 values show that all 71 cattle colonization genes were 
the top hits, and the 103 ovine colonization factors were all in the top 106 hits. In sum-
mary, analysis of MAP showed that aurora can be successfully applied to a species with 
low mutation and recombination rates and to identify causal lineage effects. We were 
also able to independently identify strains with incorrect class labels in the MAP data-
set using experimental results and we demonstrated that aurora was able to find and 
remove those strains (Fig. 4A). As per their performance on simulated data, Hogwash, 
Scoary, and Pyseer were not able to analyze trait with causal lineage effects (Fig. 4B).

aurora was the only GWAS tool tested that could identify genes responsible for host 

adaptation in Salmonella enterica serovar Typhimurium

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative bacte-
rium that is responsible for a significant proportion of foodborne illnesses worldwide. 
Salmonella is a genus with a highly variable genome and some serovars exhibit narrow 
host specificity while others can infect a broad spectrum of hosts [29, 45]. Serovar Typh-
imurium has been isolated from multiple hosts such as pigs, humans, cattle, ducks, poul-
try, and wild avian species [29]. Host adaptation of S. Typhimurium is difficult to analyze 
with the existing mGWAS tools or ML algorithms [46, 47] because some lineages have 
a wide host range, while others are restricted to one host [29–31] and because strains 
isolated from humans originated mostly in animals (zoonoses) [47, 48]. Thus, a poten-
tially important colonization factor might be present in only a fraction of the isolates 
from a particular host. The strains and lineages with a wide host range must therefore be 
removed or analyzed separately. S. Typhimurium is a widespread pathogen and a large 
number of sequenced genomes are available. This made it possible for us to divide the 
assemblies into two groups, the first being the discovery group (1223 isolates), which 
consisted of only high-quality genome assemblies. This group was used to identify colo-
nization factors. The second group was the validation group (4816 isolates) used for vali-
dating results from the discovery group.

We first used experimental data to benchmark aurora and the existing mGWAS tools. 
Chaudhuri et al. identified genes essential for the colonization of calves, chickens, and 
pigs using random insertion mutagenesis and subsequent screening of the mutant pool 
of strain SL1344 in the host feces [49]. While S. Typhimurium SL1344 was originally iso-
lated from cattle, it has also been shown to colonize chickens [50], pigs [51, 52], and even 
mice [53]. S. Typhimurium SL1344 is thus considered a model broad-host strain. How-
ever, the results from aurora show that strain S. Typhimurium SL1344 is adapted only 
to the bovine host. Interestingly, out of the 50 poultry colonization factors identified by 
Chaudhuri et al. [49], 47 were present in the S. Typhimurium pangenome constructed 
here and all of these belong to the core genome. Similarly, out of the 63 porcine coloniza-
tion factors identified by Chaudhuri et al. [49] all could be mapped to a pangenome and 
60 belong to the core genome. The remaining three genes were not more predominant in 
porcine isolates than in isolates from other hosts. On the other hand, out of the 283 cat-
tle colonization genes, 270 could be mapped to the pangenome and 11 of those were in 
the accessory genome. These 11 genes thus might be the true host-specific colonization 
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factors. We tested whether aurora and other mGWAS tools could identify the 11 bovine 
colonization factors discovered by Chaudhuri et  al. [49]. None of the mGWAS tools 
(Scoary, Pyseer, Hogwash, and TreeWAS) were able to identify these genes as signifi-
cant cattle colonization factors. aurora on the other hand ranked 8 of these 11 coloniza-
tion factors in the top 84 genes (ranking based on F1 values). The best gene had a rank 
of 10.5. In summary, while S. Typhimurium SL1344 certainly possesses genes that are 
essential for mouse, poultry, and porcine colonization [49, 53], these genes are present in 
all S. Typhimurium isolates and not unique to isolates from these hosts. Analysis of SNPs 
or k-mers would be necessary to identify all host colonization factors including those in 
the core genome. The exceptions are the bovine colonization factors of S. Typhimurium 
SL1344 which are in the accessory genome and which only aurora was able to identify. It 
is possible that the survivability and colonization potential of S. Typhimurium SL1344 is 
higher in the bovine host which is evidenced by the number of colonization factors iden-
tified by Chaudhuri et al. and also by the reported higher average read coverage (which 
however depends on the read coverage in both in input and output pools) [49].

The results from aurora analysis of S. Typhimurium show that while S. Typhimurium 
is host-adapted, not all strains from the same host share the same adaptation strategy 
(Fig. 5AB). We utilized the clustered heatmap calculated from random forest proximi-
ties (output object of function aurora_pheno()) to identify strains with differing sets of 
colonization factors (Fig. 5A). The resulting clusters were mapped to a phylogenetic tree 
(Fig. 5B). Two poultry clusters were identified and named poultry1 and poultry2. Like-
wise, two bovine clusters (bovine1 and bovine2) with distinct adaptation strategies were 
found and one porcine cluster (porcine1) was identified. These five clusters were used 
as new phenotype classes in the function aurora_GWAS() to identify cluster-associated 
genes.

Next, the validation dataset was used to verify the results from aurora and all the other 
mGWAS tools. The top 2 genes from GWAS analysis of adaptation to each host were 
selected (total 6 genes) and these genes were used to fit a multinomial log-linear model 
[54]. The residual deviance of the model was plotted as shown in Fig. 5C. The lower the 
residual deviance, the better the genes explain the variance of the S. Typhimurium vali-
dation set. This process was repeated 10 times. With each iteration, 6 new genes were 
added thus lowering the residual deviance. In the previous analysis (Fig. 5AB), aurora 
detected 5 different clusters belonging to three hosts. The genes were selected from 
these clusters, but the number of genes was kept the same as for other mGWAS tools. 
Figure 5C shows that colonization factors selected by aurora consistently rank the best 
(e.g., account for the most variability) out of all the tested mGWAS tools. This shows 
that the 5 clusters that aurora identified using the discovery dataset are present in the 
S. Typhimurium population and that the genes aurora identified best describe the host 
adaptation of S. Typhimurium. Hence, we demonstrate that aurora is not only a mGWAS 
algorithm, but it can facilitate deeper understanding of the analyzed trait. aurora analy-
sis also identified some hitherto not investigated candidate colonization factors. Anno-
tated list of the top 100 genes associated with each cluster are shown in Additional file 4. 
This list contains genes with known link to the colonization ability of S. Typhimurium 
and also novel putative colonization factors. The significance of these genes for the colo-
nization potential of S. Typhimurium is discussed in Additional file 1.
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Another way to verify the results of aurora is to examine how aurora classified cer-
tain phage types. Phage typing of S. Typhimurium isolates has been used for decades 
for surveillance [55]. It is known that some phage types display a broad host range 
while others are restricted to only one host [29]. Only a few strains in the discovery 

Fig. 5 GWAS analysis of Salmonella enterica serovar Typhimurium. A Distance matrix calculated based on 
random forest proximities obtained in aurora_pheno(). The distance matrix was clustered with hierarchical 
clustering. The two colored strips show the observed and predicted hosts. If the strain was missing some 
colonization factors or had some that are typical for other hosts, then it is labeled as a weakly autochthonous 
(non-typical) strain with a lighter color. If the space is blank, then the strain was found to be allochthonous. 
Five distinct clusters were identified and mapped to a phylogenetic tree. B Core genome phylogenetic tree 
of S. Typhimurium. The inner color strip shows the predicted host. The middle color strip maps the clusters in 
A to the phylogenetic tree. The outer color strip shows the phage types DT193, U310, and U288. C Validation 
of results from aurora and other mGWAS tools using the validation S. Typhimurium dataset. The y-axis shows 
the residual deviance of a multinomial log-linear model fitted using the top n genes (the number of genes is 
shown in the x-axis). Lower residual deviance means that the selected genes better explain the variation in 
the validation dataset
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dataset were phage typed and out of those, only three phage types (DT193, U310, 
U288) had a sufficient number of observations. DT193 is a broad-host phage type 
while U288 is adapted to porcine [29, 56]. Phage type U310 is commonly isolated 
from porcine, bovine, and wild avian species [57, 58], and it is thus considered a 
broad-host range phage type. aurora correctly predicted that DT193 and U310 strains 
are not strictly adapted to any habitat since the majority of them were removed prior 
to the GWAS analysis (Fig.  5B). On the other hand, out of the 15 porcine-adapted 
U288 strains only two were classified as mislabeled by aurora.

aurora can be applied successfully to a variety of phenotypes

As demonstrated above on simulated data, aurora performed equally well on pheno-
types that were the result of long-term speciation and those that were a result of hori-
zontal gene transfer (Fig.  3A). We wanted to confirm this by analyzing real datasets 
with phenotypes other than host adaptation. First, two Neisseria meningitidis datasets 
were obtained. One was used for the discovery of genes conferring penicillin resistance 
and the other for factors of invasiveness. These two datasets had been used in a pre-
vious study to validate the ability of package TreeWAS to retrieve causal variants [23]. 
As reported for TreeWAS in that study, aurora was not able to identify any penicillin 
resistance genes using a pangenome matrix. However, when core genome SNPs were 
analyzed, the output from aurora showed that the top 49 SNPs with the highest stand-
ardized residuals mapped to either murE or penA (Additional file 1: Fig. S4). Both genes 
were previously identified as key for penicillin resistance [59]. When the invasiveness of 
N. meningitidis was previously analyzed using TreeWAS with reference to then available 
literature by Collins and Didelot (2017), three genes were identified as invasion factors: 
nadA, mafA2 (Neisserial adhesins), and hmbR (Hemoglobin receptor protein). aurora 
successfully identified nadA (rank 34), but it was not able to identify hmbR and mafA2 
because these belong to the core genome in our dataset. However, aurora identified 
other genes (Additional file 5). The top invasiveness factor was PorB (outer membrane 
protein) whose role in host–pathogen interaction is known [60]. aurora also identified 
gene tbpB (rank 5) whose product—transferrin-binding protein B—was identified previ-
ously as a meningeal host-colonization factor [61].

Next, we tested if aurora could retrieve the genetic determinants of extra-intestinal 
virulence of the species Escherichia previously identified by Galardini et al. using Pyseer 
and Scoary [26]. That study reported that the high-pathogenicity island (HPI) encod-
ing the yersiniabactin siderophore, aerobactin (iron chelator) operon, and the sitABCD 
operon encoding a  Mn2+/Fe2+ transport system were the strongest determinants of 
extra-intestinal virulence. aurora was run with the same dataset and the top results also 
contain these genes. Additionally, aurora identified more genes that could be important 
for extra-intestinal virulence and that the previous study did not discuss. For example, 
the top results include a permease AmpG whose removal increases beta-lactam suscep-
tibility in Escherichia coli [62]. aurora also identified a gene that seems to be markedly 
absent in extra-intestinal virulent Escherichia isolates. This gene encodes Cytochrome 
 b561 a protein that was previously speculated to be involved in bacterial competition 
[63]. This is understandable, considering that the colonization of extraintestinal sites 
does not involve direct bacterial competition and loss of this gene would thus not impair 



Page 16 of 40Bujdoš et al. Genome Biology           (2025) 26:66 

extraintestinal colonization. The top genes identified by aurora are annotated in Addi-
tional file 6. Taken together, we utilized simulated and real datasets to demonstrate that 
aurora can successfully analyze a variety of different phenotypes, and therefore the user 
does not have to make assumptions about the effect of the trait on the phylogeny and 
about the distribution of the causal variants.

aurora was able to correctly identify host‑adapted and mislabeled strains 

of Limosilactobacillus reuteri and Lactiplantibacillus plantarum

Limosilactobacillus reuteri (formerly Lactobacillus reuteri) is a Gram-positive, rod-
shaped bacterium that inhabits the gastrointestinal tract of mammals. Because of its 
ability to colonize and persist in the gut of experimental animal models, L. reuteri has 
served as a model species for studying microbial adaptations to the mammalian gut [64]. 
Intensive studies have investigated the phylogenetic structure of the species, establish-
ing host-specific phylogenetic lineages, and the gene content within these lineages [65, 
66]. The importance of several genes that allow L. reuteri to colonize rodents have been 
experimentally validated [16, 64, 66–72]. These genes were used for benchmarking of 
aurora and other mGWAS tools (below).

First however we sought to identify the mislabeled strains in the L. reuteri dataset. 
To this end, all available high-quality L. reuteri genomes were obtained. Out of the 207 
genome sequences collected, 90 were rodent isolates. The dataset also contained human 
(27 strains), poultry (39 strains), porcine (26 strains), and primate (25 strains) isolates. 
When aurora_pheno() was run, all of its in-built ML algorithms agreed that L. reuteri is 
a host-adapted species (Additional file 1: Fig. S1). This was further supported by defined 
clusters in the clustered heatmap derived from random forest models (Fig. 6A) and from 
CART models (Additional file 1: Fig. S5B). The random forest models supported divi-
sion of strains into clusters for each of the 5 hosts (Fig. 6A). Since the L. reuteri rodent 
colonization factors are known, we examined the aurora results and verified that the 
predicted labels align with the expected outcomes. This is discussed in detail in Addi-
tional file 1, and more information on host adaptation genes appears below. Additionally, 
we were also interested if the ML algorithms agree on which strains are allochthonous 
(Fig. 6B). With the exception of log regression which suggested removing more strains 
(Fig. 6C), there was a general consensus on which strains are allochthonous, with some 
degree of variation. As discussed in Additional file  1, the ML algorithms complement 
each other and together they are able to capture all allochthonous strains.

Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) is 
a gram-positive, rod-shaped, and non-spore-forming bacterium that is commonly 
detected in various ecological niches, including plant materials, fermented foods, dairy 
products, and the gastrointestinal tracts of animals and humans [73]. In contrast to L. 
reuteri, L. plantarum is considered a generalist species without any specialization to a 
particular habitat [74, 75]. However, some studies have suggested that there may be some 
level of habitat specific adaptation. For example, L. plantarum strains isolated from the 
human gut and pickled cabbage have been shown to have specific gene structural varia-
tions, which may help them to survive and compete in these two different environments 
[76]. On the other hand, clustering based on phenotypic properties showed that human 
isolates are scattered in multiple clusters which points to the fact that human isolates 
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Fig. 6 Results of aurora applied to L. reuteri and L. plantarum datasets. A Distance matrix calculated based on 
random forest proximities obtained in aurora_pheno(). The distance matrix was clustered with hierarchical 
clustering. The two color strips show the observed and predicted hosts. If the strain was missing some 
colonization factors or had some that are typical for other hosts, then it is labeled as a weakly autochthonous 
(non-typical) strain with a lighter color. If the space is blank, then the strain was found to be allochthonous. 
B Core genome phylogenetic tree of L. reuteri and L. plantarum. The innermost strip shows the habitat from 
which the strain was isolated. The four outer strips show which strains were identified as allochthonous 
(mislabeled) by aurora (blank) and which strains were identified as autochthonous in the observed habitat 
(black). C The graphs show detailed predicted labels and the portion of the strains associated with each label
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are not specifically adapted to the human GIT [77]. A small-scale comparative genom-
ics study showed that the human isolate L. plantarum ZJ316 has multiple enzymes and 
pathways that are absent in strains from other sources pointing to a specific adaptation 
towards mammals [78]. Another small-scale comparative study identified differences 
between L. plantarum isolates from human GIT, dairy, and food [79].

Most of the studies that investigate habitat adaptation of L. plantarum did not control 
for population structure which is a major confounder in microbial comparative studies 
[2]. Furthermore, most studies analyzed only a small number of strains. This leads to 
underpowered analyses and results that cannot be generalized to the whole L. plantarum 
population. Since L. plantarum may be isolated from multiple overlapping ecological 
habitats, it is clear that strains may shift between habitats. Indeed, multiple studies sug-
gest that L. plantarum strains isolated from the human GIT are not specifically adapted 
to this environment [75, 77, 80]. Additionally, a study of hundreds of human, environ-
mental, and food metagenome-assembled genomes (MAGs) showed that L. plantarum 
is neither prevalent nor abundant in the GIT of humans and it is likely not a long-term 
resident there [81, 82]. Probiotic trials also showed that probiotic L. plantarum strains 
colonize the human gut only transiently [83–85]. Because food is a common source of L. 
plantarum, it is likely that the human gut isolates were ingested with the food.

aurora was applied to the L. plantarum dataset to test if it can identify human L. 
plantarum isolates as an allochthonous population. Five hundred fifty five high-quality 
genomic assemblies of L. plantarum were downloaded and annotated. Out of those, 
60 were human isolates. The dataset was dominated by plant isolates—255 (only edible 
plants were considered) and dairy isolates (173). Additionally, the L. plantarum dataset 
also contained 32 strains isolated from cereals and 35 from Drosophila melanogaster. A 
pangenome matrix and a core genome phylogenetic tree were used as input into aurora. 
The clustered heatmap constructed using proximities derived from random forest mod-
els did not reveal defined clusters as had been identified for L. reuteri (Fig. 6A). Specifi-
cally, human isolates were spread across the clustered heatmap. The p-value matrix from 
random forest models showed that human strains are indistinguishable from plant and 
cereal isolates (Additional file 1: Fig. S2). Random forest models also indicate that only 
seven out of 60 human isolates are autochthonous in this habitat. On the other hand, 
dairy and D. melanogaster isolates are significantly different from each other and from 
the other habitats. The D. melanogaster isolates are the only isolates that seem to form 
one almost continuous cluster (Fig. 6A). Additionally, CART models predict that 32 out 
of the 35 D. melanogaster isolates are autochthonous in this environment. However, it 
should be noted that the D. melanogaster strains in the dataset belong to only two line-
ages with short branches (Fig. 6B). It was shown that the adaptation of L. plantarum is 
influenced by the diet of D. melanogaster rather than by the host itself [86]. The forma-
tion of these two lineages could be a result of a differential diet of two D. melanogaster 
populations. To establish if L. plantarum adapts to D. melanogaster, a larger and more 
diverse dataset would have to be gathered. The size and diversity of human isolates are, 
on the other hand, sufficient for this analysis. Random forest thus confirmed that L. 
plantarum strains isolated from human GIT are not adapted to this environment.

Log regression analysis generated a similar finding. According to this algorithm, 
with the exception of the D. melanogaster host, none of the analyzed classes can be 
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distinguished (Additional file  1: Fig. S2). Log regression also confirmed that human 
strains are not adapted to their isolation habitat. Only 15 strains out of 60 were classified 
as autochthonous in the human GIT (Fig. 6C). The results from AdaBoost and CART are 
consistent with the previous two algorithms. AdaBoost did not identify even one human 
autochthonous isolate while CART identified 18 such strains.

Figure 6B and C show that if all ML algorithms were considered (e.g., a Strict mode in 
aurora_GWAS()) almost all L. plantarum strains would be classified as mislabeled. Only 
two strains were classified as autochthonous by all algorithms. Thus, if the user wishes to 
run GWAS analysis on this dataset, then a Consensus mode would have to be applied. In 
this mode, only strains that are identified as mislabeled by all applied ML algorithms are 
removed. This mode removed a total of 237 strains and there are 318 strains left for the 
GWAS analysis. Despite the lack of adaptation to most habitats, we annotated the top 
50 genes for each habitat (Additional file 7). Taken together, aurora demonstrated that it 
can correctly recognize that most L. plantarum strains do not have strict habitat range.

Benchmarking mGWAS on L. reuteri and L. plantarum datasets

Given that the adaptation mechanisms of L. reuteri to the rodent GIT are known, 
we aimed to evaluate aurora’s ability to find colonization factors compared to other 
mGWAS tools. Urea is abundant in the rodent gut, and the urease operon has been 
shown to contribute to ecological performance by increasing acid resistance of L. reuteri 
in the stomach, which is its primary niche in rodents [87]. Another critical adaptation 
of L. reuteri to the gut environment is the production of biofilms. L. reuteri forms bio-
films on the gastric epithelium of the forestomach, allowing it to persist and compete 
with other gut microbiota members. L. reuteri produces an extracellular matrix [88] and 
surface proteins that allow the cells to aggregate [70]. Frese et al. showed that a surface 
adhesin—SRRP (serine-rich repeat protein) whose export is enabled by the SecA2-SecY2 
pathway allows initial adhesion of cells in the rodent gut and is essential for biofilm for-
mation, colonization, and competition [89]. These are thus essential genes for rodent 
colonization. Additionally, the presence of glutaminase genes can further enhance acid 
resistance in the rodent isolate L. reuteri 100–23 [72].

Next, we wanted to investigate whether these genes were exclusively present in 
rodent isolates. The presence of the urease (ure) operon in the pangenome was very 
selective and specific for rodent isolates. Eighty nine out of 90 rodent genomes har-
bored a complete ure operon. One strain did not possess any of the ure genes except 
for the urease accessory protein ureD. The complete ure operon was also present in 2 
(5% of all poultry strains) poultry isolates, 8 (30%) human isolates, and 10 (40%) pri-
mate isolates. The SecA2-SecY2 dependent SRRP was present in all 90 rodent isolates. 
Additionally, the adhesin was present in 3 (8%) poultry, 7 (26%) human, 2 (8%) por-
cine, and 12 (48%) primate isolates. The SecA2-SecY2 protein translocation pathway 
genes were not as specific to rodent strains. The majority of rodent isolates (88 out 
of 90) had the secretion pathway genes as well as 3 (8%) poultry, 6 (22%) human, 14 
(56%) primate strains, and 22 out of 26 porcine isolates (85%). There were two glu-
taminase genes present in the pangenome. The first, glsA, was present in almost all 
isolates across the hosts, while the second, glsA_1, was present in 47 out of 90 rodent 
isolates and mostly absent in isolates from other hosts. The latter gene glsA_1 and 
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the SecA2-SecY2 pathway are thus low effect size variants without full penetrance 
and are thus valuable test examples for the sensitivity of mGWAS tools. In summary, 
a successful mGWAS tool should be able to identify the ure operon, genes for the 
SecA2-SecY2 pathway, the genes encoding SRRP, and glutaminase glsA_1 as signifi-
cant rodent gut colonization factors of L. reuteri. These four colonization factors were 
used for benchmarking of mGWAS tools.

Pyseer, Scoary, TreeWAS, Hogwash, and aurora were run with both L. reuteri and 
L. plantarum datasets. Some of these tools do not implement multiclass problems, 
and thus, only the adaptation of L. reuteri to rodent GIT and L. plantarum to human 
GIT was analyzed. Scoary produces two p-values per gene: a p-value from Fisher’s 
exact test that is adjusted for multiple comparisons and a population-aware empirical 
p-value. Only genes for which both p-values were below 0.05 were considered sig-
nificant. Scoary identified 425 significant rodent colonization factors. However, the 
ure operon, SecA2-SecY2 pathway, and glsA_1 genes were not among the significant 
genes. While Fisher’s exact test p-values of these genes were below 0.05, the empirical 
p-values were between 0.97 and 0.2. Only the SRRP was correctly identified as signifi-
cant with an empirical p-value of 0.02.

The fixed effects model used by Pyseer on the other hand correctly identified the ure 
operon, SecA2-SecY2 pathway, and SRRP as significant. The genes in the ure operon 
were among the most significant genes, and similarly, the SRRP had the fourth lowest 
p-value (Table 1). However, these genes are not difficult to identify since their effect 
sizes are large. The fixed effects model failed to identify the low effect size glsA_1 
which had an unadjusted p-value = 0.26. The p-value of the SecA2-SecY2 pathway 
passed both the Bonferroni correction and Benjamini–Hochberg method; however, 
the two genes ranked very low (133.5, Table 1). The linear mixed effects model failed 
to identify all genes as significant. The lowest unadjusted p-value was that of the ure 
operon (< 0.01) but this was not enough to pass Benjamini–Hochberg or Bonferroni 
adjustments. The unadjusted p-values of all the other genes were between 0.4 and 
0.96. The elastic net model had non-zero slopes for all the genes and the ranks of the 
ure operon, SecA2-SecY2 pathway, and the SRRP were between 10.5 and 43. On the 
other hand, the rank of glsA_1 was only 143.5 (Table 1). It should also be noted that 
Pyseer labeled the ure operon genes and the SRRP with “bad-chisq” label. This means 
that (i) these genes have large effect sizes and (ii) the initial prefiltering was not strin-
gent enough. It is a common practice to discard such genes [35] which further points 
to the inappropriateness of this method for this dataset. We also computed the line-
age effect association test using the bugwas method [11]. However, none of the princi-
pal components were significantly associated with the rodent host.

The Simultaneous test implemented in the TreeWAS package identified 429 genes 
with unadjusted p-value < 0.05 with ure operon, SRRP, and glsA_1 included (Table 1). 
The ure operon genes had one of the lowest p-values. However, after the Benjamini–
Hochberg procedure or Bonferroni adjustment, none of these genes were significant. 
Moreover, the SecA2-SecY2 pathway genes had an unadjusted p-value > 0.3. Using the 
Subsequent test, only the ure operon and SRRP were significant after both the Ben-
jamini–Hochberg method and Bonferroni adjustment. All the remaining genes pass 
neither significance threshold after adjustment.
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The Synchronous test implemented in Hogwash identified 223 significant genes based 
on unadjusted p-values with ure operon and glsA_1 having one of the lowest p-values. 
Only these two genes were significant even after the Benjamini–Hochberg procedure 
and Bonferroni adjustment (Table 1). PhyC test identified 220 significant associations. 
However, neither of the genes discussed herein are among those. PhyC test prioritizes 
genes that are only present in rodent isolates and absent everywhere else, but this comes 
at the expense of sensitivity.

In summary, as was the case for our analysis of simulated data, we found major differ-
ences between the results from all the tested tools even though all of them have the same 
hypotheses. The results are summarized in Table 1. Based on the ranks of the known col-
onization factors, only the Subsequent test implemented in the TreeWAS package would 
be suitable for the identification of all rodent colonization genes in L. reuteri. None of 
the existing mGWAS tools would be able to identify the four colonization factors after 
multiple comparison adjustments. Next, aurora GWAS analysis was run on an L. reuteri 
dataset where all mislabeled strains were removed. As shown in Table 1, aurora was the 
only tool that assigned a low rank value to the four investigated colonization factors. 
Overall, aurora was the only tool that identified the four colonization factors in the top 
50 results (Table 1). We have annotated the foremost 50 colonization factors across all 
hosts, and these results are available in Additional file 8.

We also benchmarked Pyseer, Scoary, TreeWAS, Hogwash, and aurora on the L. plan-
tarum dataset. Only adaptation towards the human GIT was evaluated. As discussed 
above, L. plantarum is a generalist species, and fermented food, cereals, and dairy are 
likely the original sources of human GIT isolates. Thus, specific genomic adaptation to 
the human gut should not be detected and GWAS analysis should not lead to any signifi-
cantly associated genes. However, several tools produced a number of significant genes 
(unadjusted p-value < 0.05). Scoary outputs 208 such genes. Even after adjusting for mul-
tiple tests, Scoary still predicts that 134 and 13 genes (adjusted by the Benjamini–Hoch-
berg method and Bonferroni respectively) are significantly associated with the human 
host. To test if these associations are purely accidental, we created a new artificial phe-
notype where two classes were assigned randomly (random phenotype). Even in this 
case, Scoary still predicted that 34 genes are significant (lowest p-value = 0.005).

The fixed effects model and linear mixed model performed similarly. In the case of 
the random phenotype or the human L. plantarum isolates, the former did not iden-
tify any significant genes after multiple comparisons adjustment. After Bonferroni cor-
rection, the linear mixed model identified only two genes significantly associated with 
the human host. The Subsequent test on the other hand predicted more than 6000 
genes (after Benjamini–Hochberg adjustment) as significantly associated with both 
the random phenotype and the human host. The Simultaneous test predicted that over 
500 genes are significantly associated with the two phenotypes; however, only a few 
remained significant after multiple comparison adjustments. Both tests in the Hogwash 
package correctly failed to identify any significant genes associated with the random 
phenotype, but the Synchronous test predicted over 1000 genes significantly associated 
with human hosts even after multiple comparison adjustments. Lastly, aurora correctly 
predicted that no adaptation exists for both phenotypes. Taken together, as in the case 
of simulated data (Additional file 1: Fig. S2), this analysis has shown that TreeWAS and 
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Hogwash produce multiple false positives when the set of strains is not genomically 
adapted to the analyzed trait. On the other hand, aurora and two models in Pyseer cor-
rectly predicted the absence of adaptation.

Discussion
aurora is a comprehensive analysis tool implemented in the R programming language 
(https:// cran.r- proje ct. org/) with multiple hyperparameters that can be modified by 
more experienced users to suit their needs. However, aurora either provides or estimates 
a set of parameters that will accompany most datasets and it is thus easily executed even 
by users with limited experience with R and machine learning. The design of the aurora 
package allows for combining the results of function aurora_pheno(), which identifies 
allochthonous strains and strains with incorrect class labels, with other mGWAS tools. 
aurora provides wrapper functions to run TreeWAS [23] and Hogwash [14] and func-
tions that produce input to Pyseer [21] and Scoary [22]. Common workflows using the 
aurora package are demonstrated here (https:// dalim ilbuj dos. github. io/ aurora/).

p‑values produced by mGWAS tools are not accurate

Our results revealed several problems inherent in the other mGWAS tools under exami-
nation (Pyseer, Scoary, TreeWAS, and Hogwash). The accuracy of p-values produced by 
these mGWAS tools varies greatly depending on the dataset. This has been previously 
noted, where a study focused on Staphylococcus aureus showed that linear regression 
model utilized by a GWAS tool PLINK [90] yielded many false positives and mGWAS-
specific test yielded many false negatives [27]. Permutation methods (i.e., Scoary, Tree-
WAS, or Hogwash) can also lead to frequent false positives ([91], synonymous SNPs in 
this case). Similarly, a benchmarking study showed that some GWAS tools when applied 
to microbial data produce results with a high rate of false positives [35]. Additionally, 
simulated data showed that the p-values produced by the mGWAS tools are not reliable 
nor consistent with each other (Fig. 3B,C) which is unexpected since the test assump-
tions in mGWAS are minimal [2] and they all have the same null hypothesis: the genetic 
variants do not influence the trait. aurora does not produce any p-values or significance 
threshold. Instead, it produces two association metrics: F1 values and standardized 
residuals. The latter are correlated with p-values of χ2 test only when the number of ana-
lyzed categories is two. The relationship between standardized residuals and p-values 
in a χ2 test becomes more complex as the number of categories increases. Throughout 
the manuscript, we demonstrate that these metrics are a better measure of association 
than p-values (Figs. 3, 4, and 5, and Table 1). The use of two association metrics has its 
justification. Just like effect size, the standardized residuals quantify the magnitude of an 
observed effect. However, the magnitude of an effect is not enough to assess association 
significance. Therefore, it was proposed to combine effect size estimates with frequency 
cutoffs to filter out non-causal variants [9]. Because the frequency of variants needs to 
be considered when assessing the strength of genotype–phenotype associations aurora 
additionally calculates F1 values for each variant. F1 values implicitly consider the fre-
quency of a variant (Additional file 1: Fig. S6) and thus no subjectively chosen frequency 
cutoff is necessary. The focus of the F1 metric on high frequency variants can obscure 
the identification of low-effect size variants with low frequency which may be ranked 

https://cran.r-project.org/
https://dalimilbujdos.github.io/aurora/
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under non-causal variants. We thus envision that the two metrics that aurora calculates 
should be used in two different scenarios. In some mGWAS works, the goal is to identify 
a key mechanism underlying the observed trait [16, 26, 92]. In these studies, the F1 value 
should be prioritized. On the other hand, some studies try to investigate all potential 
genetic contributions to the phenotype [11, 13, 91, 93]. In such a case, ranking variants 
based on standardized residuals while removing those with low frequency or low recall 
value is the recommended approach.

An additional benefit of aurora also rests in its ability to visualize complex datasets 
using clustered heatmaps. Visualization is a key step in human GWAS where the anal-
ysis relies on Manhattan plots [94]. The applicability of Manhattan plots in microbial 
mGWAS is constrained due to the lower conservation observed in microbial genomes 
compared to human genomes. We demonstrate the utility of the clustered heatmaps, 
which offer a nuanced perspective on trait distribution and the interconnectedness of 
microbial strains.

Multiple testing correction methods cannot work with mGWAS data

An additional challenge linked to the issue of accuracy is that currently, there is no 
consensus on handling the multiple testing problem in mGWAS [2]. Some studies and 
tools use Bonferroni correction [11, 13, 21, 22] and some use the Benjamini–Hochberg 
method [10, 22]. However, significant disparities exist in the outcome when these two 
commonly used methods are applied (Fig.  3C, Additional file  1: Fig. S3). Bonferroni 
correction is more stringent and often leads to false negatives in the result. Benjamini–
Hochberg method may on the contrary lead to frequent false positives. Another problem 
is that both methods assume feature independence. Due to LD and population structure, 
it is not possible to fulfill this requirement. When Bonferroni correction is used, it was 
recommended to group features with identical presence/absence pattern into one and 
thus reduce the multiple testing burden [12]. This will still lead to a large number of false 
negatives because feature non-independence persists. If aurora users want to use Bon-
ferroni correction to calculate a new significance threshold, which would be applied to 
results of other tools since aurora does not produce p-values, we recommend using the 
number of features after data filtering and grouping done by aurora_pheno(). These ini-
tial steps ensure that only unique informative features are preserved. This pre-calculated 
Bonferroni threshold is part of the aurora_pheno() results.

Publicly available data contain mislabeled strains

All real datasets used in this study were sourced from public databases, and each was 
found to include instances of mislabeled strains. It is thus not uncommon to encoun-
ter allochthonous strains and assemblies with erroneous metadata. A case in point was 
illustrated with Mycobacterium avium subsp. paratuberculosis, where strains despite 
being well adapted to their hosts were shown to circulate among multiple hosts (Fig. 4 
[43, 44]). The primary repositories for information on strain origin or any other pheno-
type are the BioProject and BioSample databases [95, 96]. However, entries in these data-
bases are manually entered and lack standardization [97]. Consequently, any endeavor to 
acquire a dataset for mGWAS is susceptible to human errors, either on the part of the 
submitter or the mGWAS researcher. Even if all metadata are accurate, contamination or 
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taxonomic misclassification can still pose challenges. Various methods can be employed 
to exclude affected assemblies before mGWAS analysis [98, 99], but there is a risk that 
these methods may not be stringent enough. Moreover, sequence and metadata errors 
are also propagated to secondary databases, making it difficult to trace the sample’s ori-
gin [97]. With the increasing number of sequenced bacterial genomes, manual verifi-
cation of metadata correctness for all dataset entries becomes an impractical task. It is 
anticipated that artificial intelligence will play a role in labeling strains [100]. However, it 
is important to note that using these models may introduce additional errors. Therefore, 
the ability of aurora to detect and eliminate mislabeled strains (allochthonous strains or 
strains with incorrect class label) is crucial. Throughout this paper, we demonstrate that 
removing mislabeled strains prior to mGWAS analysis significantly enhances the ability 
to identify causal variants.

aurora’s GWAS approach operates without the presumption that the trait did not impact 

the phylogeny

In addition to its ability to discern mislabeled strains, aurora also provides an enhanced 
mGWAS method. One of the most significant breakthroughs in the development of 
mGWAS tools came with the recognition that microbial traits are influenced by both 
lineage and locus effects [11]. This realization resulted in the development of a method 
known as bugwas, capable of pinpointing lineage-level associations [11]. Notably, upon 
analyzing simulated datasets, we showed that most other mGWAS tools are primarily 
focused on identifying locus effects alone (Fig. 3A). In practice, lineage and locus effects 
are analyzed separately [13]. Frequently, a variant’s occurrence correlates closely with 
the phylogeny, yet the variant is not uniquely confined to one lineage. As a result, such 
a variant is not strictly a locus nor lineage effect, and the categorization of variants into 
these groups is essentially arbitrary. A key motivation behind the creation of aurora was 
to simultaneously analyze lineage and locus effects, facilitating a direct comparison of 
their impact on the phenotype. This combined with the removal of mislabeled strains 
prior to GWAS analysis allowed aurora to surpass all other mGWAS tools on both sim-
ulated and real datasets. Furthermore, we showed that aurora can be used for analysis 
of a variety of phenotypes, and it is thus the most flexible tool that does not assume any 
causal variant distribution.

aurora was able to identify experimentally verified colonization factors

To validate the results of aurora and to benchmark it against other tools, we carried out 
seven comprehensive mGWAS analyses on real datasets. These datasets have various 
characteristics. Host adaptation of MAP is facilitated by lineage effects and the data-
set includes a few mislabeled strains; the S. Typhimurium dataset exemplifies a case 
with locus effects and many mislabeled strains; L. reuteri shows a mix of lineage and 
locus effects with many mislabeled strains, and L. plantarum is a generalist species. We 
annotated the top genes within each phenotype class of each dataset, revealing intrigu-
ing genotype–phenotype associations. Notably, certain causal variants uncovered were 
experimentally characterized before, exemplified by the well-established roles of gogB 
and ssrB as S. Typhimurium colonization factors [101, 102]. The identification of known 
colonization factors further supports the utility of aurora, and discussion in Additional 
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file 1 thoroughly examines the identified S. Typhimurium and L. reuteri colonization fac-
tors. Lists of annotated variants of each mGWAS dataset are available as Additional files.

Conclusions
In mGWAS, currently available tools make the erroneous assumptions that all causal 
variants are present in multiple phylogenetic lineages and that the phenotype was not 
influenced by the evolutionary history of the species. However, these assumptions are 
valid only for a specific subset of microbial traits. To address these limitations, we have 
developed and rigorously tested an R package named aurora, designed to handle typical 
mGWAS confounders and operate independently of assumptions regarding the distribu-
tions of causal variants or the phenotype. This makes aurora the most versatile mGWAS 
tool currently available. Through extensive testing with both simulated and empiri-
cal datasets, we demonstrate aurora’s efficacy in identifying causal genetic variants, 
regardless of whether they manifest as locus or lineage effects. Additionally, we show 
that publicly available datasets contain allochthonous strains and strains associated with 
erroneous metadata. aurora utilizes machine learning algorithms to identify and remove 
these strains, thereby enhancing the power to detect genuine genotype–phenotype asso-
ciations. This functionality is independent of the subsequent mGWAS analysis, allow-
ing users to utilize aurora for strain filtering before employing other mGWAS tools. 
Importantly, aurora can identify cases where an entire species does not possess genomic 
variants associated with the analyzed phenotype, a feature some mGWAS tools fail to 
recognize, resulting in numerous false positives. Notably, aurora’s GWAS method does 
not rely on any determined significance threshold, a crucial consideration in mGWAS 
due to the high collinearity of analyzed variants and the inherent limitations of methods 
attempting to disentangle these collinearity patterns. Despite these improvements, we 
acknowledge that aurora has its limitations. When a phenotype is determined solely by 
lineage effects, as seen in the MAP dataset presented here (Fig. 4), linkage disequilibrium 
can lead to inflated association metrics of non-causal variants. Furthermore, if there is 
an imbalance in the number of strains across phenotype classes, aurora may oversample 
the less numerous category, resulting in inflated association metrics. Hence, we strongly 
recommended that there is at least 20 strains in each phenotype class assuming that the 
strains are not clonal. Additionally, aurora can be highly computationally demanding, 
with run-time largely dependent on the number of strains (Additional file  1: Fig. S7). 
Finally, aurora may struggle to identify the true autochthonous population if it is con-
siderably smaller than the population of non-adapted strains. Therefore, we emphasize 
the necessity of validation experiments or the use of validation datasets to confirm the 
existence of causal links between the identified genotype and the analyzed phenotype. 
Users of any mGWAS tool should exercise caution, especially in the identification of 
low effect size variants, as the choice of algorithm, significance threshold, or prefilter-
ing options can significantly influence the analysis outcome. It is noteworthy that the 
mGWAS tools employed herein produced divergent results despite utilizing the same 
input data. aurora consistently exhibited strong performance across various trait distri-
butions and outperformed existing mGWAS tools when applied to diverse phenotypes 
such as invasiveness, virulence, antibiotic resistance, and host adaptation. aurora is an 
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accessible tool for entry-level users requiring minimal coding experience but modular 
enough to accommodate advanced analyses.

Methods
Input into aurora

aurora package contains two primary functions aurora_pheno() which identifies misla-
beled strains and determines if the analyzed species harbors variants associated with the 
recorded trait and aurora_GWAS() which removes the mislabeled strains and calculates 
genotype–phenotype association scores. The required data inputs into aurora_pheno() 
are (i) a reconstructed phylogenetic tree imported as a phylo object or a pairwise dis-
tance matrix (kinship matrix) that represents the phylogenetic distances (i.e., the amino 
acid identity of conserved genes (cAAI) or average nucleotide identity (ANI) converted 
to distances, Mash distances [103], etc.). We recommend constructing the tree by align-
ing sequences of core genes using MAFFT [104] or MUSCLE [105]. This step is imple-
mented in both the Panaroo [106] and Roary [107]. The aligned sequences can then 
be used as input into either IQ-TREE [108] or RAxML [109]. (ii) A pangenome matrix 
obtained from either Panaroo [106] or Roary [107] or any kind of presence/absence 
binary matrix (SNPs, k-mers, unitigs, etc.). aurora can also work with output from 
DRAM [110] which represents each strain as a set of modules and pathways. (iii) Lastly, 
a data frame that contains unique index for each strain and the corresponding trait 
value. Only categorical traits can be analyzed. The required input into aurora_GWAS() 
function is the same as for aurora_pheno() but if the results from aurora_pheno() are 
provided as well then all mislabeled strains are removed prior to the GWAS analysis. The 
workflow of aurora is depicted in Fig. 1.

Implementation

This section contains a summary of the aurora package. Additional file  1 provides a 
more detailed description of each step with an example dataset. The first step removes 
features that have very low or very high presence frequency in the binary matrix. By 
default, features that are present in less than 3% (low_perc_cutoff) of strains in the ana-
lyzed dataset are removed. Features that are present in more than 99% (upp_perc_cut-
off) of the strains are also removed. The user has the option to run the χ2 test with each 
feature (run_chisq). If the p-value of the χ2 test is high (> 0.1), which means that the fea-
ture is uniformly distributed in the trait classes, then the feature is removed. This option 
is recommended only if the number of features is high after the initial frequency filter 
(~ 10,000). The user also has the option to run an ancestral state filter (ancest_rec_fil-
ter). This step utilizes ancestral state reconstruction to identify genomic variants that are 
prevalent and highly mobile. These features are often fragments of larger gene families 
or associated with transposases, IS elements, or common plasmid elements (Additional 
file 2). Such features are not causal and should thus be removed.

The next step is to group strongly correlated features. Our package implements two 
methods for grouping. Firstly, a jaccard_filter in which a Jaccard distance is calcu-
lated between the features and the resulting distance matrix is used as an input to the 
DBSCAN algorithm [111]. The features that end up in the same cluster are then grouped. 
Secondly, the other method uses Hamming distance. The hamming_filter groups only 
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features that differ in the presence/absence in only x strains where x is a cut-off specified 
by the user (default = 3). Because DBSCAN has two parameters that usually require fine-
tuning, the hamming_filter is simpler and thus a default option. If the dataset contains 
a large number of features that need to be collapsed, the jaccard_filter is then preferred 
because the hamming_filter collapses rare features with higher frequency which may 
result in a significant loss of information.

In the next optional step, the phylogenetic distances of outlying strains to the rest of 
the population are reduced (parameter reduce_outlier). If such outliers are present in the 
dataset, they will be sampled with higher frequency than the rest of the strains. This is 
usually desirable but if these deviations arose due to contamination or incompleteness of 
the genome assemblies, then such faulty assemblies may dominate the resulting training 
datasets. First, z-scores are calculated for either the tree branches or the pairwise dis-
tances in the input distance matrix. Pairwise distances or branch lengths higher than a 
threshold µ+ 3 • σ are assigned a value equal to the threshold. Elements of the pairwise 
distance matrix or branches of a tree that are equal to zero are assigned a new value that 
is equal to the minimal non-zero element present in the matrix or tree respectively.

Either Random walk algorithm or Phylogenetic walk algorithm is then applied to build 
a training dataset that captures the population structure of the species (default phylo-
genetic_walk). These algorithms are described in detail in Additional file  1. The algo-
rithms either oversample or undersample the analyzed strains to yield a new dataset. 
A Phylogenetic walk produces training datasets that are accurate representations of the 
population structure while a Random walk only captures trends in the phylogenetic 
reconstruction. Both algorithms are stochastic and thus need to be repeated multiple 
times to ensure representative results are obtained. The number of repetitions is con-
trolled by the parameter no_rounds. The default value is 100 but it can be reduced to 
lower the computational time.

Threshold calculation phase

The goal of the next step is to construct threshold distributions and to find out if the 
species has genomic variants associated with the user-supplied phenotype. This is done 
by first intentionally mislabeling one strain from each class of the phenotype to all other 
classes and then calculating classification probabilities in the new and the original class. 
This process is repeated multiple times (specified by the parameter no_rounds). Each 
round four machine learning classification algorithms (random forest, AdaBoost, log 
regression, and classification and regression tree—CART) are used to get the classifica-
tion probabilities. At the end of the Threshold Calculation Phase if the non-mislabeled 
strains belonging to class x of the analyzed phenotype have significantly higher class x 
classification probabilities than strains mislabeled into the class x, then the species is 
adapted to class x of the phenotype. The Kolmogorov–Smirnov test is used to assess 
whether the differences are statistically significant. The output of the Threshold Calcula-
tion Phase is a square matrix containing p-values of the Kolmogorov–Smirnov tests. If 
both pairwise p-values of any two classes are above 0.05, then the classes are considered 
indistinguishable, and the species is not differentially adapted towards the two classes 
(see an example of the p-value matrix in Additional file 1: Fig. S1 and S2). Additionally, 
aurora in this step obtains distributions of classification probabilities of strains that were 
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intentionally mislabeled and strains that were not mislabeled. These distributions are 
used in the next phase to identify mislabeled strains.

Outlier calculation phase

In this phase, aurora identifies strains that are mislabeled in the original dataset and 
strains that have low classification probability in their observed class but are not mis-
labeled (non-typical strains or weakly autochthonous strain in cases where the pheno-
type is habitat adaptation). Weakly autochthonous strains can be autochthonous in the 
observed class, but they are not typical representatives of the class. The process is the 
same as in the Threshold Calculation Phase, only this time none of the strains are inten-
tionally mislabeled. First, the original dataset (without any intentional mislabeling) is 
resampled by either Random walk or Phylogenetic walk and then the resulting dataset is 
used for training the four machine learning models. The models are then used to predict 
class probabilities of the original dataset. This step is repeated multiple times (default: 
100 times) and each time the classification probabilities of each strain are recorded. The 
results after finishing all the cycles of the Outlier Calculation Phase are sets of classifica-
tion probabilities for each strain in each class. After sets of classification probabilities 
for each strain are obtained, the sets are compared to the sets of classification probabili-
ties obtained in the Threshold Calculation Phase. The Kolmogorov–Smirnov test is used 
to calculate if the differences are significant. Additional file 1 contains a set of rules by 
which the strains’ predicted class is determined. If the predicted class is the same as the 
observed, then the strain is considered autochthonous.

The output of the function aurora_pheno() is a list with multiple objects. For each 
machine learning algorithm, aurora_pheno() outputs a set of AUC (area under receiver 
operating characteristic curve) values documenting the classification performance of 
the tool. A set of feature importances of each machine learning tool is also generated. If 
parameter fitting was requested, then the fitted parameters are also part of the output. 
The main output objects are tables that detail the predicted class labels of each strain 
and three heatmaps that visualize the similarities between the strains. Two heatmaps are 
calculated based on the similarities derived from random forest models. The third heat-
map is calculated based on the distances derived from CART models. It is essential to 
carefully examine these heatmaps to identify more potentially mislabeled strains. Exam-
ining these distance matrices can also reveal if there are multiple adaptation strategies to 
the phenotype classes.

GWAS analysis

The GWAS analysis is governed by the function aurora_GWAS(). The input is the same 
as for aurora_pheno() and the function can be run even without a prior execution of 
function aurora_pheno(). The first (and optional) step of aurora_GWAS() is a reduction 
of the phylogenetic distances of outlying strains to the rest of the population (param-
eter reduce_outlier). This step is the same as in aurora_pheno(). In the following step, 
if the results from aurora_pheno() are available then all strains whose predicted class 
does not match the observed are removed (mislabeled strains). We refer to such strains 
as “mislabeled” further in this text. Parameter rm_non_typical controls if non-typical 
strains should be viewed as mislabeled (default: FALSE). aurora_GWAS() operates in 
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two modes: strict or consensus. The former removes a strain if it was classified as mis-
labeled by at least one machine learning model, and the latter removes a strain only if it 
was classified as mislabeled by all machine learning models. If the results from aurora_
pheno() are not available, then no strain is removed. In the next phase, the dataset is res-
ampled using Phylogenetic walk to capture the population structure. Then χ2 test with 
each variant is performed and the standardized residuals are computed from this test. 
Standardized residuals are a way to quantify how much the observed data differs from 
the expected data. Large positive standardized residual indicates a strong positive asso-
ciation with the class and vice versa. aurora also calculates precision, recall, and F1 value 
for each feature and each class treating each feature as if it was a decision stump. The 
output of aurora_GWAS() is a list with multiple objects. The main object is a data frame 
that shows F1 values and standardized residuals for each feature. The output object 
can also serve as input into other functions in the aurora package that execute other 
mGWAS tools with the filtered dataset.

Simulated datasets

To test the performance of aurora, four different methods were used to simulate 
mGWAS datasets. The script used to benchmark Scoary [22] Simulate_pan_genome.
py available here: https:// github. com/ Admir alenO la/ Simul ate_ pan_ genome was used to 
simulate 200 strains with the causal gene penetrance set to 0.85 and 0.6. A phylogenetic 
tree was constructed by calculating pairwise Jaccard distance between all strains using 
the presence/absence matrix generated by the script and then a UPGMA algorithm was 
used to construct the tree. Only genes that were present in at least 75% of all strains were 
used for the Jaccard distance calculation. A pangenome simulation tool Simurg [33] 
was used to simulate a pangenome with 100 core genes and 200 strains. The file pan_
genome_reference.fa from the pangenome construction of Limosilactobacillus reuteri 
was used as a reference multi-fasta file for the simulation. All other parameters were left 
at the default values. The resulting coalescent phylogenetic tree clearly showed two line-
ages (Fig. 2B). These two lineages have been assigned their unique phenotype class. The 
two multiple-state speciation and extinction models (MuSSE) were constructed using 
the tree.musse() function from diversitree R package [32]. The speciation and extinction 
rates as well as the transition matrices are shown in Fig. 2A. Two hundred strains were 
constructed in each MuSSE simulation. The tree.musse() function simulates the phylog-
eny and the distribution of the trait and its causal variants. To simulate the pangenome 
matrix containing the non-causal background genes, a function simulate_pan_pan-
stripe() from the panstripe R package [112] was used. Panstripe uses a function simSeq() 
from package phangorn [113] to simulate the genes. The phylogenetic trees and the trait 
distributions with causal variants are shown in Fig. 2B. The simulations shown in Fig. 3A 
were each conducted one time. This was deemed sufficient because in our preliminary 
test, the variance of the results was small and independent of the tool and of how many 
strains were mislabeled.

Real datasets

Available Limosilactobacillus reuteri genome assemblies were downloaded from NCBI 
in January 2023. Only assemblies that were between 1.8 and 2.4 Mb in size were retained, 

https://github.com/AdmiralenOla/Simulate_pan_genome
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and only assemblies with less than 200 contigs and confirmed NCBI taxonomic status 
were used. All human, poultry, porcine, rodent, and primate isolates (based on BioSa-
mple entries) were reannotated by PROKKA v1.14.6 [114] and the pangenome was then 
constructed with Panaroo v1.2.9 [106]. Panaroo was used with strict mode, and with 
parameters –merge_paralogs, –remove-invalid-genes, –remove_by_consensus. The phy-
logenetic tree was constructed by first aligning protein sequences of all single-copy core 
genes using MAFFT v7.490 [104] with a maximum number of iterative refinements set 
to 1000 and with 6merpair algorithm. The alignments were trimmed by trimAI v1.4.15 
[115] with the default parameters. These alignments served as an input into IQ-TREE 
v2.2.0 [108]. IQ-TREE was run with the LG + G + F model and 1000 bootstrap repli-
cates using UFBoot [116]. The tree was rooted by midpoint rooting. Lactiplantibacillus 
plantarum was used as a test case for a generalist species, and its genome dataset was 
constructed similarly. All available assemblies were downloaded from NCBI in January 
2023. Only assemblies with lengths between 3 and 3.5 Mb, with less than 200 contigs and 
confirmed NCBI taxonomic status, were used. The pangenome and phylogenetic tree 
were constructed the same way as described above. To investigate pathogen genomes 
with low mutation and recombination rates, Mycobacterium avium subsp. paratuber-
culosis data were obtained by downloading all Mycobacterium avium assemblies from 
EnteroBase in February 2023 [117]. The pangenome was constructed as described above 
and diagnostic genes described in Bannantine et al. [118] were used to identify M. avium 
subsp. paratuberculosis (MAP) strains. Again, only strains with less than 200 contigs 
were used for the GWAS analysis. A Salmonella enterica serovar Typhimurium data-
set was constructed similarly. First, 6039 genome assemblies with a contig count of less 
than 200 were downloaded from EnteroBase [117] and reannotated by PROKKA. This 
dataset was further narrowed by filtering genomes larger than 5.3 Mb and smaller than 
4.7 Mb. Then the dataset was then split. The final 1223 genome assemblies were used 
to construct a pangenome as described above and the remaining 4816 genomes were 
used as a validation dataset. An Escherichia dataset as well as the associated experimen-
tal measurements were obtained from Galardini et al. [26], and the data were processed 
as described therein. Both Neisseria meningitidis datasets and the corresponding resist-
ance and virulence metadata were obtained from the Neisseria Bacterial Isolate Genome 
Sequence Database (BIGSdb accessible at https:// pubml st. org/ organ isms/ neiss eria- spp, 
[119]). Only isolates from serogroup B were selected. Pangenome and phylogenetic tree 
were constructed as described above. The core genome SNPs for Neisseria meningitidis 
analysis were called using Snippy v4.6.0 (https:// github. com/ tseem ann/ snippy) with the 
genome assemblies as an input and strain 35,304 (assembly with the smallest number 
of contigs) as a reference. The unitigs were generated using unitig caller v1.3.0 (https:// 
github. com/ bacpop/ unitig- caller), and Phandango [120] was used to visualize the 
results.

GWAS analyses

All mGWAS tools including aurora use frequency filter to discard non-causal variants 
before the analysis and some also use p-value cutoffs after the analysis. These cutoffs 
were kept as low as possible so the maximum number of variants are reported and 
mean rank can be computed. When the simulated datasets were analyzed by aurora 

https://pubmlst.org/organisms/neisseria-spp
https://github.com/tseemann/snippy
https://github.com/bacpop/unitig-caller
https://github.com/bacpop/unitig-caller
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the default parameters were used and only CART and random forest were run. aurora 
analysis of the L. reuteri dataset was run with default parameters and with all four 
machine learning algorithms. L. plantarum dataset analysis was run with all default 
parameters except no_rounds which was increased to 200, upp_perc_cutoff was 
changed to 95 and low_perc_cutoff was changed to 1. Because MAP is a species with 
low recombination and mutation rate aurora was run with cutoff_asr set to 3, low_
perc_cutoff set to 1, and hamming_cutoff set to 1. S. Typhimurium analysis was run 
only with CART and random forest and with the following parameters: upp_perc_cut-
off = 95, low_perc_cutoff = 5, hamming_cutoff = 5. The analysis of the two Neisseria 
meningitidis datasets with pangenome matrix as the input and the Escherichia dataset 
were all run with the default parameters. When penicillin resistance was analyzed with 
SNPs as the feature input, then the following parameters were used: low_perc_cut-
off = 5, upp_perc_cutoff = 95, run_chisq = TRUE. Scoary version v1.6.16 [22] in all 
cases was run with 1000 permutations (-e 1000) and p_value_cutoff set to 0.99 so the 
order of all genes could be analyzed. The fixed effect model in Pyseer version v1.3.9 
[21] was used as follows: First, the pairwise patristic distances were extracted from 
each phylogenetic tree by running Pyseer script phylogeny_distance.py. The resulting 
multidimensional scaling components from the kinship matrix were visualized in a 
scree plot and the number of components was chosen to preserve maximum infor-
mation. The linear mixed models in Pyseer were constructed as shown in the Pyseer 
documentation (https:// pyseer. readt hedocs. io/ en/ master/). The elastic net models 
(enet) were constructed using the –wg enet flag. The mixing parameter (α) was kept at 
the default value of 0.0069 which indicates low regularization. No sequence reweight-
ing was carried out. Variants with β (slope) lower than 0 were filtered out from the 
results of fixed effects models and the linear mixed models. TreeWAS [23] was run 
with default parameters except for p-value which was set to 0.99 to analyze the order 
of all features and n.snps.sim which was set to 100 × the number of input features. 
All analyses with Hogwash [14] were also performed with the default parameters. 
Only fdr cutoff was set to 0.99 and the permutation number was set to 5000. When 
a mean rank was calculated the following function in R was used: base::rank(…, ties.
method = “average”).

Gene annotation and analysis

Three tools were used to annotate the genes: eggNOG-mapper v2.1.6 [121], Kofam-
Scan (https:// github. com/ takar am/ kofam_ scan) a CLI version of KofamKOALA 
[122], and a COG database [123]. In both COG and eggnog-mapper, diamond [124] 
in ultra-sensitive mode was used as the alignment tool. KofamScan on the other 
hand was used with HMMER v3.1 [125]. The parameter –tax_scope_mode in egg-
NOG-mapper was set to “Bacteria”. The result of the annotation is a.xlsx file that 
contains one sheet for each annotation tool. All these sheets contain annotation 
output from the tools for each gene but also confidence values. These are present 
because the annotation output represents the annotation of multiple sequences. The 
confidence values are the percentages of sequences that had this annotation. The 
COG and KofamScan sheets contain three confidence values. This is because each 
sequence can be associated with multiple COGs or KEGG identifiers respectively. 

https://pyseer.readthedocs.io/en/master/
https://github.com/takaram/kofam_scan
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These COGs or KEGG identifiers are ordered based on their frequency, e.g., the 
most common identifier will be first. If the first confidence value is 80, it means that 
80% of the sequences had this annotation as the most likely. If the second confi-
dence value is 70, it means that 70% of the sequences had this annotation as the 
second most likely. iTOL [126] was used to visualize the phylogenetic trees. To 
verify the presence of high-ranking gene families from the GWAS analyses in the 
validation dataset of S. Typhimurium, HMMER v3.1 [125] was used. First, all the 
protein sequences of the gene were aligned using MAFFT as described above. Then 
the HMMR logo was built, and the validation dataset was searched with this logo as 
a query. The threshold for homology was an E-value ≤ 0.01 and a score above 100. 
Unless specified otherwise, the threshold for statistical significance was p < 0.05, and 
only positive genotype–phenotype associations were evaluated.
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