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Abstract 

Background: Identifying transcriptional cis-regulatory elements (CREs) and under-
standing their role in gene expression are essential for the precise manipulation 
of gene expression and associated phenotypes. This knowledge is fundamental 
for advancing genetic engineering and improving crop traits.

Results: We here demonstrate that CREs can be accurately predicted and utilized 
to precisely regulate gene expression beyond the range of natural variation. We firstly 
build two sequence-to-expression deep learning models to respectively identify distal 
and proximal CREs by combining them with interpretability methods in multiple crops. 
A large number of distal CREs are verified for enhancer activity in vitro using UMI-
STARR-seq on 12,000 synthesized sequences. These comprehensively characterized 
CREs and their precisely predicted effects further contribute to the design of in silico 
editing schemes for precise engineering of gene expression. We introduce a novel con-
cept of “editingplasticity” to evaluate the potential of promoter editing to alter expres-
sion of each gene. As a proof of concept, both exhaustive prediction and random 
knockout mutants are analyzed within the promoter region of ZmVTE4, a key gene 
affecting α-tocopherol content in maize. A high degree of agreement between pre-
dicted and observed expression is observed, extending the range of natural variation 
and thereby allowing the creation of an optimal phenotype.

Conclusions: Our study provides a robust computational framework that advances 
knowledge-guided gene editing for precise regulation of gene expression and crop 
improvement. By reliably predicting and validating CREs, we offer a tool for targeted 
genetic modifications, enhancing desirable traits in crops.
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Background
Phenotypes are largely associated with gene expression, which is mainly determined by 
two factors: cis-regulatory elements (CREs) and trans-acting factors [1]. Over the past 
two decades, quantitative trait locus (QTL) analysis and genome-wide association stud-
ies (GWAS) in plants have revealed that a substantial proportion of trait variation can be 
attributed to functional regulatory variants. For example, regulatory variation typically 
accounts for over half of the QTLs observed in maize and tomato [2]. This suggests that 
genetic engineering of cis-regulatory mutations holds great promise for elucidating how 
regulatory variants affect phenotypic variation and crop improvement.

Recently, researchers have begun to employ gene editing technology to target known 
CREs and in doing so have generated edited variants conferring altered phenotypes 
suitable for crop improvement [3–6]. Indeed, by fine-tuning target gene expression, 
regulatory edits generally induce subtle phenotypic changes, and are therefore often 
considered more feasible for crop breeding compared to coding mutations. For instance, 
a 4-bp deletion within a known silencer downstream of SlWUS gene increased fruit 
locule number in tomato [4], while knockout of a 698-bp promoter region of ZmFCP1 
increased maize yield [3].

Achieving such precise gene regulation in plants, however, requires a priori and high-
resolution genome-wide map of CREs. While combined epigenomic signals such as 
open chromatin and histone modifications have been used to indirectly infer CREs [7], 
these approaches only provide broad genomic regions (hundreds to thousands of bases) 
that are insufficient for high-resolution identification and precision editing. Although 
an exhaustive search or random editing can be applied, such as a tiling-deletion-based 
CRISPR–Cas9 screen [5], this is currently infeasible and overly costly, especially for 
crops with large genomes including maize and tomato. A recent pioneering study used a 
convolutional neural network (CNN) to build a classification model with a 3K-bp input 
in order to predict if a gene was expressed or not [8]. This study thus opened up a new 
avenue for in silico identification of CREs. A number of deep learning architectures have 
been developed for predicting gene expression in humans and their predictive perfor-
mance has been continuously improved with longer input sequences and correspond-
ing modularization of model architecture [9–13]. Beyond accurately characterizing 
genome-wide CREs, it would be more valuable to determine whether this knowledge 
could enable in silico saturation mutagenesis of individual or combined CREs (beyond 
single base mutations), aiming to explore the extensive spectrum of potential expression 
changes for a given gene. In principle, the goal is to create predictive models that eluci-
date the general rules of CRE-mediated gene regulation, paving the way for rational and 
quantitative gene editing.

In this study, we provide a novel and systematic solution including both CRE iden-
tification and editing (Fig.  1). Specifically, we built two sequence-to-expression deep 
learning models with long (120K-bp) and short (3K-bp) inputs of genomic sequence 
in the four plant model species of maize, rice, tomato, and Arabidopsis thaliana, and 
combined the interpretability methods to accurately identify distal and proximal CREs 
in a genome-wide manner. These models further enabled us to introduce a new con-
cept, “editing plasticity (EP),” as a means by which to theoretically estimate the potential 
for expression changes due to promoter editing. This newly developed tool was applied 
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in an empirical study of ZmVTE4, a key gene affecting α-tocopherol content in maize 
[14]. We generated an edited-allele with a novel (i.e. not present in the observed popu-
lation) 4-bp deletion within its 5’UTR region under the guidance of the AI-guide edit-
ing scheme. This edited-allele was experimentally validated to significantly increase 
ZmVTE4 gene expression and α-tocopherol content in kernels in vivo. Our work pro-
vides a quantitative estimate of the editing plasticity of each plant gene and provides a 
detailed and explicit roadmap to guide future gene editing experiments.

Fig. 1 Project overview. A Model architecture of Basenji2. The architecture of Basenji2 contains M 
convolution blocks and N dilated residual blocks in sequence. B Sequence-to-expression deep learning 
model with a long input. For each gene, genomic sequences were extracted 100-Kb upstream and 20-Kb 
downstream of its TSS. The Basenji2-long model successively contains seven convolution blocks (M = 7) 
and eleven dilated residual blocks (N = 11). C Model-based identification of CRE. For each genomic 
sequence, a deep interpretability method estimates a contribution score for each base and then obtains a 
contribution score vector of equal length as input. A peak-calling algorithm is used to identify candidate 
CREs from the vector. (D) Validation of candidate CREs. UMI-STARR-seq is used to measure the activities of 
model-identified candidate CREs. E Sequence-to-expression deep learning model with short input. For each 
gene, the proximal regulatory sequences were used as the input, including the promoter, 5’UTR, 3’UTR, and 
terminator sequences. The Basenji2-3K model successively contains seven convolution blocks (M = 7) and 
four dilated residual blocks (N = 4). F Theoretical guidance for gene editing. Editing plasticity estimates the 
expression changes of simulated deletions. Evolvability space estimates the expression changes of simulated 
single-nucleotide mutations and displays three distinct patterns. Both reflect the gene editing potential. 
G AI-guided precise editing scheme. Leveraging the tools of editing plasticity and evolvability space, AI 
designs precise editing schemes for genes with editing potential for precise regulation and crop genetic 
improvement with CRISPR-Cas9
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Results
Accurate prediction of gene expression from DNA sequence in multiple plant species

We first asked whether deep learning could accurately model the sequence-to-expression 
relationships in plants. For this purpose, we used an integrated gene expression dataset 
containing 421 RNA-seq datasets with the maximum expression level across multiple 
tissues as the prediction target (see the “Methods” section; Additional file 3: Table S1), 
which was used previously [8]. We adopted the model architecture of Basenji2 (Fig. 1A, 
Additional file 2: Fig S1), a top-performing framework for predicting transcriptional pro-
files in humans [10], for modeling long genomic sequence as input with an expectation 
of incorporating more regulatory elements. Using an independent test dataset (see the 
“Methods” section), prediction performance was evaluated via the Pearson correlation 
coefficients (PCC) between predicted and observed measurements across various input 
sequence lengths up to 140K-bp (Additional file 4: Supplementary Material 1).

Initially, we directly used the model architecture of Basenji2 as well as its original 
hyperparameters (Additional file 3: Table S2) [10] using the 10K-bp input data in maize 
(Additional file  4: Supplementary Material 1), and obtained a good prediction perfor-
mance with a PCC of 0.660 on the independent testing dataset, preliminarily demon-
strating the feasibility of prediction. To further improve prediction performance, we 
optimized an important hyperparameter of “Channel Number” (CM, other hyperpa-
rameters are mostly determined by CM) in Basenji2 [10] by using a 5-foldCV (five-fold 
cross-validation) on the training dataset, with all other hyperparameters retained. A 
small promotion of PCC on the independent testing dataset from 0.660 to 0.6776 was 
found in this optimization with the optimal CM of 720 (close to the original CM of 768 
[10]), which was fixed in all the following modelings in this study (Additional file  3: 
Table S2). Discussions on its advancement and comparison with other existing methods 
can be found in Additional file 2: Fig S2 and Additional file 4: Supplementary Material 1.

When involving longer inputs from 10K-bp to 140K-bp, prediction accuracy gradu-
ally increases and reaches an optimal at 120K-bp, 100K-bp upstream plus 20K-bp down-
stream of TSS (referred to Basenji2-long model), with a PCC of 0.733 (Fig. 1B and the 
blue curve in Fig.  2A). This demonstrates that complex regulation can be accurately 
captured within large genomic contexts. Different optimal lengths were also examined 
for the three other model plant species studied: rice (40K-bp), tomato (80K-bp), and 
Arabidopsis thaliana (5K-bp), and all achieved good prediction accuracy (PCC ranged 
between 0.641 and 0.816; Fig. 2A, Additional file 2: Fig S2).

Constructing a genome‑wide regulatory map with deep interpretability

We next asked which sequence elements within the entire genomic sequence input are 
important for high-precision prediction, given that the regions with high interpretative 
importance are likely to reflect key regulatory elements. For this task, model interpret-
ability is appropriate to prioritize important features during prediction and is essen-
tial in biological studies [13, 15]. We adopted a backpropagation-based interpretability 
method of input gradients [12, 13] and employed a peak-calling algorithm to form can-
didate CREs (see the “Methods” section; Fig.  1C, Additional file  2: Fig S3). A total of 
745,684 candidate CREs (594.7M) associated with 45,564 target genes were identified, 
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accounting for nearly 28.3% of the maize genome (Additional file  5: Supplementary 
Material 2). We repeated this analysis for all four plant species and provided freely avail-
able genome-wide CRE maps at [16].

As expected, most of the candidate CREs (50.4%) are in TSS-proximal regions 
between ± 10K-bp (Fig.  2B). Interestingly, distal regions also exhibit a considerable 
number of candidate CREs, being slightly enriched in the upstream 70K-bp to 60K-bp. 
This region exactly harbors well-known distal enhancers including Vgt1, which regu-
lates ZmRap2.7 located ∼70Kb downstream [17], and the enhancer derived from a TE 

Fig. 2 Genome-wide regulatory map and experimental validations. A Basenji2-long model prediction 
performance evaluated by Pearson correlation coefficient (PCC) across four plant species, using different 
DNA input lengths to select the optimal length based on independent test sets (N denotes its sample size). 
B Distance distribution of candidate CREs from the TSS of its target genes identified by the Basenji2-long 
model of maize. C Overlap proportions and enrichment fold of candidate CREs across five genomic 
components. D Reappearance rates of candidate CREs in three experimental datasets, comparing 
CRE-gene pairs with experimentally identified CREs (top), and tissue-specific candidate CREs identified 
by the omics-modified gradient × input contribution score (see the “Methods” section) (bottom panel). E 
Overlap analysis of candidate CREs with four types of QTLs. Red bars: number of overlapping CREs, green 
bars: proportion of QTLs overlapping with CREs. F Selection, synthesis, and UMI-STARR-seq screening of 
candidate CRE sequences in maize protoplasts. G Distribution of 21,152 CREs after sequencing, showing 
total sequences (forward and reverse orientations) in each group, corresponding to Fig. 2F. H CRE activities 
of synthesized candidate CRE sequences. A volcano plot of log2FC scores (i.e., CRE activity) against –
log10-transformed BH adjusted P-value from DESeq2 is shown. The CRE activity of a candidate CRE sequence 
(ID:7424) of Zm00001d005208 is highlighted. I Number and percentage of 8650 enhancers in five groups. 
J A representative enhancer validated for Zm00001d005208. The first panel shows the genomic positions 
of Zm00001d005208 and the enhancer (seq ID: 7424). The second panel displays the gradient × input 
contribution score from the Basenji2-long model, highlighting 14 candidate CREs (marked in orange at the 
peak summits). Subsequent panels show genomic tracks of chromatin interactions, RNA-seq, ATAC-seq, 
H3K27ac, and eQTLs for the region, with eQTL (chr2.s_163640429) within the candidate enhancer highlighted
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insertion for tb1, which is also located 60–70Kb upstream [18]. The fact that both distal 
enhancers were effectively identified in our analysis acts as a strong proof-of-concept of 
our approach (Additional file 2: Fig S4).

We next collected the reference intervals of six main components, including promoter 
(2K-bp upstream of TSS), exon, intron, 5’UTR, 3’UTR, and intergenic region, and inter-
sected the candidate CREs (total size of 594M) with the respective reference interval. 
Interestingly, although a large proportion of the candidate CREs (66.29%, 404.86M) were 
located in intergenic regions (Fig. 2C, Additional file 3: Table S3), they were significantly 
enriched in promoter (totally 63.54M, Enrichment fold = 14.82, p-value = 1.52E − 24), 
5’UTR (14.83M, Enrichment fold = 6.07, p-value = 1.16E − 4), and 3’UTR (13.83M, 
Enrichment fold = 3.36, p-value = 4.31E − 3) regions implying an important regulatory 
function of these regions.

To systematically evaluate the biological relevance of the distal CRE candidates 
identified in this study, we compared them with experimentally inferred distal regula-
tory elements from three independent maize studies: (a) Oka’s enhancer dataset that 
was classified with features of low DNA methylation, high chromatin accessibility, and 
H3K9ac enrichment [7]; (b) Li’s proximal–distal interactions (PDI) from H3K4me3-
ChIA-PET and H3K27ac-ChIA-PET [19]; (c) Peng’s PDI from RNAPII-ChIA-PET [20]. 
The PDI is commonly used to reflect enhancer-promoter-interactions. Generally, 59.72% 
(387/648) of Oka’s enhancers, 51.15% (2174 of 4254) of Li’s distal enhancer candidates, 
and 30.83% (2006/6514) of Peng’s distal regulatory elements were consistently identified 
in the present study (Fig. 2D, Additional file 3: Table S4, Additional file 5: Supplementary 
Material 2). In total, 6649 candidate distal elements were supported by at least one of 
these datasets. These results suggest that our model, trained only on DNA sequences, is 
effective in identifying distal CRE candidates.

We next propose to introduce tissue-specific epigenomic signals to mine tissue-spe-
cific candidate CREs. We collected available chromatin accessibility [7, 21], and DNA 
methylation data [22] and designed a modified score with a weighted sum of original 
contribution score, chromatin accessibility, and DNA methylation (see the “Meth-
ods” section) in order to identify tissue-specific distal elements (Additional file 6: Sup-
plementary Material 3). This approach led to the reappearance rates being increased 
from 51.1 to 62.59% (1111 of 1775 in leaf ) and 63.12% (1535 of 2432 in shoot), respec-
tively (Fig. 2D). For the other two datasets, the reappearance rates were also increased 
(Additional file 3: Table S5). This implies that the model has learnt some tissue-specific 
information, as the maximum gene expression often comes from the tissue where it spe-
cifically functions for most tissue-specific genes. This information was, moreover, fur-
ther enhanced with epigenomic data from the corresponding tissue.

Overlapping the candidate CREs with existing QTL information provides hints to their 

potential function

By examining the consistency between newly identified and existing epigenomic-inferred 
CREs [7, 17, 23, 24], we demonstrate that candidate CREs predominantly overlap with 
H3K9ac-marked distal enhancers, effectively replicating the majority of enhancers 
defined by H3K9ac epigenomic signals (Additional file  2: Fig S5A-B). To bridge these 
regulatory elements with functional traits, we next systematically investigated the 
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potential biological functions of the candidate CREs by overlapping them with existing 
QTLs mapped in a pan-Zea population including 721 pan-Zea individuals [25]. Surpris-
ingly, we observed that nearly half of the agronomic QTLs (13,987 of 33,679, or 41.53%) 
overlapped with the model-identified candidate CREs (Fig.  2E, Additional file  2: Fig 
S5C), supporting that many of the candidate CREs (7410, Additional file  3: Table  S7) 
might affect agronomic traits. We also observed a 26.7% overlap of eQTL (168,941 out 
of 632,930 eQTLs; Fig. 2E), further highlighting the potential regulating function of the 
overlapping CREs (27.8%, 40,585 out of 146,042 CREs). These results provide substan-
tial evidence for the involvement of a significant portion of candidate CREs in both trait 
variation and gene expression control, while implying that the remaining CREs that do 
not meet the standards of statistical testing might contribute in more subtle or context-
specific ways.

Validating the candidate CREs with UMI‑STARR‑seq

In addition to the accurate identification of functional CRE sequences, a reliable esti-
mation of their corresponding effects is essential for the prediction of gene expression. 
Here, we leveraged UMI-STARR-seq, a method that integrates unique molecular identi-
fiers (UMIs) with self-transcribing active regulatory region sequencing (STARR-seq) to 
quantify CRE activities on a large scale [26], enabling us to experimentally verify the pre-
dicted effect of CREs (Fig. 1D). A batch of 12,000 candidate CREs (of 200-bp each) were 
selected and synthesized, and their activities were assessed in duplicate in maize proto-
plasts (see the “Methods” section; Fig. 2F, Additional file 7: Supplementary Material 4). 
Specifically, these candidates consist of five groups: group 1 containing 2500 candidate 
CREs overlapping with enhancers previously identified by STARR-seq [21]; group 2 with 
2400 candidate CREs coinciding with existing PDIs [20]; group 3 with 3500 candidate 
CREs newly identified in this study consisting of 3000 distal (beyond 5K-bp from TSS) 
and 500 proximal (within 5K-bp of TSS) sequences with top contribution scores; group 
4 contains 3000 candidate CREs associated with 24 cloned maize genes influencing key 
phenotypes, identified by tiling each 1K-bp candidate CRE into five 200-bp windows; 
and group 5 including 600 external controls with zero-value activity in a previous study 
[21] (see Additional file 1: Supplementary Methods).

For each sequence, the plasmid library allowed insertion in either the forward or 
reverse orientation. These two orientations were treated as independent sequences to 
calculate separate activity values, resulting in ~ 24,000 sequences to be analyzed. Both 
unique RNA (cDNA) reads and DNA input reads were mapped to the reference set, 
and the CRE activity was calculated as log2(cDNA/input) for each orientation sepa-
rately using DEseq2 [27]. Out of the candidate CREs, 21,152 sequences with at least 
10 uniquely aligned DNA reads (accounting for both orientations) were included in 
the analysis (Fig. 2G). Among these, 8650 sequences (40.9%) exhibited enhancer activ-
ity (CRE activity > 0 and adjusted P-value ≤ 0.05, Fig. 2H). When we examined the dis-
tribution of enhancers across the five groups (Fig.  2I), Group 1 exhibited the highest 
proportion of active enhancers (53.7%, 2418 out of 4502), consistent with prior stud-
ies [21]. Group 2 followed with 39.0% (1651 out of 4,230), suggesting these enhancers 
may regulate expression through a chromatin interaction mechanism. Group 3 showed 
37.9% (2320 out of 6,128), representing a significant new finding in this study. Group 
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4, associated with important cloned maize genes, demonstrated 35.8% (1871 out of 
5224) active enhancers, which are critical for regulating gene expression. This implies 
that genetic manipulation of these elements using gene editing tools could have desired 
effects on both gene expression and agronomic traits.

To demonstrate the utility of our framework, we highlight a candidate enhancer 
(Fig. 2J; seq ID: 7424) targeting Zm00001d005208, encoding a NAC transcription factor, 
a family known for their roles in regulating plant development and stress responses [28]. 
The model identified 14 peaks, and we selected the 200-bp sequence with the highest 
contribution score (Sequence ID: 7424) within the 12th peak (Zm00001d005208-CRE-3), 
supported by PDI evidence, for inclusion in Group 2 for experimental validation. This 
candidate CRE exhibited an activity score of 1.81 (Fig.  2G) and is supported by mul-
tiple epigenomic evidences: (a) strong interaction with the Zm00001d005208 pro-
moter, as indicated by ChIA-PET RNAPII data, suggesting active transcriptional 
regulation; (b) localization in an open chromatin region (ATAC-seq); (c) marked by 
the enhancer-associated H3K27ac modification; and (d) supported by an expression 
QTL (chr2.s_163640429) in leaf tissue, linking it to expression variation. These findings 
underscore the enhancer’s potential to regulate Zm00001d005208 expression, showcas-
ing the strength of our framework in identifying key regulatory elements with high rel-
evance for crop improvement.

High‑resolution mapping of TSS‑proximal CREs

Above, we constructed a genome-wide regulatory map by identifying 745,684 candidate 
CREs, however, the resolution of these CREs is limited to 1K-bp which falls short of the 
precision needed for accurate regulation. Since the genomic sequence proximal to TSS 
can account for the majority of the explained variance (EV) of gene expression, we nar-
rowed our focus to the identification of TSS-proximal CREs with higher resolution in 
order to capture finer details within this critical region.

Different input combinations were tested (Additional file 3: Table S10) by evaluating 
the PCC and EV in relation to gene expression. The optimal configuration was found 
to be the 3K-bp input combination (Basenji2-3K-B73 model, Fig.  1E), with a PCC of 
0.676 which is slightly lower than the 0.733 of the Basenji2-long model (Additional file 2: 
Fig S7B, Additional file  3: Table  S10). This combination includes a 2K-bp promoter, 
300-bp 5’UTR, 500-bp 3’UTR and 200-bp downstream of the transcription termina-
tion site (TTS) (Additional file  1: Supplementary Methods; Fig.  3A, Additional file  2: 
Fig S7A), which aligns with a previous finding that the combination of these regulatory 
regions defines gene expression levels [29]. Based on the same sequence composition, 
we also trained the Basenji2-3K models for three other model plants (Additional file 3: 
Table S11).

We next applied the Basenji2-3K-B73 model to identify TSS-proximal CREs using 
another interpretability method of “Occlusion” (see the “Methods” section) to com-
pute the base contribution score for each gene in order to increase the resolution. 
As a general demonstration, the mean (purple curve) and variance (purple shade) of 
the contribution score at each base across all 37,979 genes are presented in Fig. 3A. 
The results showed the promoter and 5’ UTR play critical roles in regulating gene 
expression, which might contribute to the maintenance or enhancement of expression 
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levels. Using cluster analysis with the K-Medoids method [30] and the silhouette coef-
ficient as the optimization criterion, all genes were grouped into five distinct clusters 
(Additional file 2: Fig S8), exhibiting varying patterns of contribution scores (Fig. 3A). 
Cluster 1 (12,608 genes) and 2 (13,599 genes) have normal expression pattern with 

Fig. 3 Estimation of editing plasticity using the TSS-proximal model. A Base contribution scores from 
the Basenji2-3K model and gene cluster analysis. The input regulatory sequence (3K-bp) includes 2K-bp 
promoter, 300-bp 5’UTR, 500-bp 3’UTR and 200-bp terminator. The middle panel shows the mean (purple 
curve) and variance (purple shade) of the contribution scores across 37,979 genes. The bottom panel 
illustrates mean and variance values for each gene cluster. Genes were grouped into five clusters using 
K-medoids, revealing distinct regulatory patterns linked to expression levels and tissue specificity. This 
clustering approach helps identify gene groups with similar regulatory behaviors, providing insights into their 
functional roles in biological processes. B Expression and tissue specificity of clusters, showing maximum 
TPM (top) and Tau values (bottom). C Prediction performance for natural variations across NAM inbred lines 
per pan-gene, highlighting ZmFCP1. D Comparison of prediction performance between the Basenji2-3K 
B73 and Basenji2-3K-NAM models across NAM inbred lines. E Performance of single-line models versus 
the pan-genome-trained Basenji2-3K-NAM model evaluated on independent test sets. F High-resolution 
analysis of the TSS-proximal region of ZmFCP1. Occlusion contribution scores identified candidate CREs 
(with orange/blue color at the summit of each peak) within 2K-bp upstream and 300 bp downstream of 
the TSS (top panel). Peaks were selected as candidate regions for gene editing based on their occlusion 
contribution scores, which reflect the impact of perturbing these regions on gene expression. Three in silico 
editing schemes are presented (bottom panel). G Editing plasticity of ZmFCP1. The x-axis represents the 
three simulated scenarios when calculating editing plasticity: single peak deletion, combinatorial deletion of 
multiple peaks, and point mutation. The y-axis shows the predicted expression levels of simulated sequences. 
Predicted expression ranges are shown below the x-axis. H Interaction effects between CREs. Red dots 
indicate increased expression, blue dots indicate decreased expression, and Δ represents the deviation from 
wild-type expression
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positive contribution in the promoter and 5’UTR, and negative contribution in the 
3’UTR and terminator, correlating with relatively high expressions (Fig. 3B). Clusters 
3 (5,194 genes), 4 (1,294 genes) and 5 (4,904 genes) show distinct patterns: clusters 3 
and 4 are associated with high negative contributions, while cluster 5 has a high posi-
tive contribution in both TSS-proximal and TTS-proximal regions, leading to low 
(for cluster 3 and 4) or high (for cluster 5) expression levels. We further investigated 
the tissue-specific expression levels of the five clusters with the Tau metric to assess 
the tissue specificity of expression [31], where higher Tau values indicate more signifi-
cant expression variability across different tissues. We found that genes from cluster 
1 and 2 are likely housekeeping genes (displaying relatively low Tau values, Fig. 3B), 
while cluster 5 mainly contains tissue-specific genes.

The model can accurately predict expression change of natural variation

To demonstrate whether the Basenji2-3K-B73 model can computationally simulate the 
promoter editing events and predict their effects, we took the ZmFCP1 gene, which acts 
in the CLAVATA-WUSCHEL feedback pathway, as an example, and five mutant alleles 
were obtained by CRISPR-Cas9 in the previous study [3]. The predicted expression on 
these five edited promoter alleles from our model showed high agreement (PCC = 0.88) 
with the actual experimental expression (Additional file 2: Fig S9). Another two exam-
ples of tomato SlCLV3 gene [4, 32, 33] and rice IPA1 gene [5] were also demonstrated 
(Additional file 2: Figs S10-11).

We next asked whether the Basenji2-3K-B73 model can accurately predict expression 
alteration of natural variation. For this purpose, we employed a pan-genome dataset 
(with full genome sequence and transcriptome data) from the 22 founders of the maize 
NAM (Nested Association Mapping) population [34], representing a wide breadth 
of maize genetic diversity. We first examined the consistency between predicted and 
observed expression of ZmFCP1 across the 22 lines of the NAM population and found a 
low PCC of 0.38 (Fig. 3C), with the average PCC for all measured genes being only 0.011 
(Fig. 3D).

With the expectation that integrating population-level genetic variation may improve 
the ability to predict gene expression across individuals, an enhanced model (Basenji2-
3K-NAM) was trained by incorporating the 22 maize genomes (see the “Methods” sec-
tion). This bolstered our training samples from 30,764 to 687,545 genes (Additional 
file 3: Table S12) and improved the PCC from a range of 0.5–0.6 to 0.79–0.84 (Fig. 3E, 
Additional file 3: Table S16). In terms of advantages, the Basenji2-3K-NAM model has 
a greater generalization ability by significantly promoting the predictability of natu-
ral variation for most (12,412/14,890 ≈ 83.36%) of the maize pan-genes annotated in 
all NAM lines (Fig.  3C, D) [35]. Furthermore, the Basenji2-3K-NAM model also has 
higher predictability for structural variants (SVs). For example, considering the expres-
sion of the GL15 gene (encoding an AP2-like TF that promotes juvenile leaf transi-
tion of juvenile leaf and represses adult leaf in maize) [36] in 10 maize lines, the PCC 
of prediction jumped from 0.16 with the original Basenji2-3K-B73 model to 0.75 with 
the NAM-enhanced model (Additional file 2: Fig S13B). Systematic comparison across 
NAM inbred lines for 10,303 genes with SVs also showed a significant outperformance 
of the Basenji2-3K-NAM model (Additional file 2: Fig S13D). Interestingly, this is also 
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the case for the majority of cloned genes controlling agronomic traits (Additional file 2: 
Fig S13E). Pan-genome-based training in rice additionally supports its benefit (Addi-
tional file 2: Fig S14).

To evaluate the model’s generalization and transferability, we performed transfer 
learning on wheat (Triticum aestivum) and cotton (Gossypium hirsutum) (Additional 
file 2: Fig S15). We collected annotated genomes and corresponding RNA-seq datasets 
for both species and applied eight pre-trained models, including single-genome and 
pan-genome models for maize, rice, tomato, and Arabidopsis. The results demonstrated 
that the models exhibited moderate transferability to wheat, with Pearson correlation 
coefficients (PCC) ranging from 0.004 to 0.35, where the maize pan-genome model 
achieved the highest PCC of ~ 0.35. In contrast, the models showed almost no transfera-
bility to cotton, with PCC values close to zero. Notably, pan-genome models consistently 
outperformed single-material models in transferability. These findings suggest that pan-
genome models are particularly effective for species with complex genomes like wheat, 
though further optimization through fine-tuning or species-specific re-training may be 
necessary for challenging cases such as cotton.

These results underscore the substantial improvements in prediction accuracy and 
model predictability, robustness, and transferability achieved by training with diverse 
genetic data.

In silico editing scheme can evaluate editing effects across the full profile of promoter 

variants

Encouraged by the high predictive accuracy for natural variation, we next aimed to use 
the Basenji2-3K-NAM model to assess novel variation that can be created by gene edit-
ing. This is particularly significant since it will enable us to assess the potential effects 
of any editing event on gene expression beyond the limited scope of natural variation. 
We propose the term ‘editing plasticity’ as a measure of the expression change potential 
of a given promoter variant created by in silico gene editing. The occlusion score from 
the Basenji2-3K-NAM model helped to identify a total of 377,385 proximal CREs (3.7M) 
with high-resolution (10-bp) associated with some 35,179 annotated genes (Additional 
file 8: Supplementary Material 5). Taking the ZmFCP1 gene for demonstration purposes 
again, nine peaks with significant expression impact were identified in its promoter and 
5’ UTR (Fig. 3F, Additional file 3: Table S17). In silico deletion of these peaks followed by 
Basenji2-3K-NAM model predictions revealed that deletion of a single peak only slightly 
alters ZmFCP1 expression (Fig. 3G). Although the range of the observed changes (0.51) 
is comparable to that of seen with in silico point mutation (0.69), individual peaks con-
tribute minimally to ZmFCP1 expression.

We next examine the effect of peak combination (Com-) on gene expression (Figs. 1F 
and 3F). As expected, deletion of multiple peaks together can induce drastic changes in 
predicted expressions (such as Com-1 and Com-2 of ZmFCP1) with a notably expanded 
range from 0.51 to 1.76 (Fig. 3G). We defined this range of expression alterations as EP. 
We hypothesize that the broader predicted expression range and variability in combi-
nation deletions may result from interactions between regulatory elements as investi-
gated in [33]. We further analyzed the relationships between peaks by examining the 
effects of both individual and combined peak deletions. Our findings indicate that the 
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interactions between peaks are not necessarily additive (peak 2 + 4 in Fig. 3H), but also 
include synergistic effects (peak 3 + 6 in Fig. 3H). Thus, our model helps to unravel the 
hidden complexity among regulatory elements, providing valuable insights to achieve 
desired expression outcomes. Beyond this specific example, we next estimated the in 
silico editing plasticity of each gene in maize and the other three plant species, which 
would be helpful in assessing the consequences of promoter editing (Fig. 4A, Additional 
file 9: Supplementary Material 6).

EP is associated with gene evolvability

We next investigated the biological implications of EP. By assessing the EP of maize 
genes, we found that most of them exhibit an EP range of 0 to 7 (Fig. 4A). Focusing on 
genes at the extremes—those with an EP less than 1 (6th percentile) and those with an 
EP larger than 4 (92nd percentile), we discovered that genes having larger EPs tend to 
have higher tissue specificity (Fig. 4B). This suggests a potential association between EP 
and gene expression variability across tissues.

To further explore the possible connection between EP and gene evolvability, which 
takes the concept of “evolvability space” to visualize the spatial structure in gene expres-
sion prediction through in silico mutagenesis [37], we adapted the Basenji2-3K-NAM 

Fig. 4 Editing plasticity is associated with gene evolvability. A Distribution of editing plasticity of all genes in 
B73 reference genome. Some important genes are highlighted. B Tissue-specific expression pattern for two 
types of genes with extreme EP values. Tau values of the genes are shown to measure the tissue specificity 
of expression. C The evolvability space of Zea mays. Evolvability vectors for the 3-Kbp regulatory sequences 
of each gene are projected onto the evolvability space. Expression change patterns (colored curve) of three 
archetypes are demonstrated. D Expression patterns of three groups in the evolvability space. The maximum 
TPM values (left panel) and the natural expression fluctuation across 255 maize inbred lines for three groups 
(middle panel) are demonstrated. EP values of genes in three groups (right panel) are shown. Student’s t test 
P values are presented. *P < 0.05, **P < 0.01, ***P < 0.001. E Landscape of editing plasticity in the evolvability 
space. Evolvability vectors (points) are projected onto the evolvability space and are colored by editing 
plasticity
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model to construct an evolvability space for all maize genes (see the “Methods” sec-
tion; Fig. 4C, Additional file 2: Fig S16, Additional file 2: Figs S17-19 for other species). 
Within this space, we identified genes nearest to three anchor points—maxima, min-
ima, and malleable—and calculated their average evolutionary vectors (Fig. 4C). Genes 
at the minima are more likely to exhibit expression increases after mutations (blue 
curve in Fig. 4C), whereas maxima genes are more prone to show expression decreases 
after mutation (red curve in Fig. 4C). Malleable genes have the potential for significant 
expression changes in both directions (green curve in Fig. 4C). Examination of the maxi-
mum expression (measured in transcript per million, TPM) of the three groups revealed 
that the maxima, minima, and malleable genes correspond to the highest, lowest, and 
intermediate levels, respectively (Fig. 4D). This pattern raises a link between gene evolv-
ability and gene expression abundance.

We next wanted to explore if the malleable genes also exhibit greater expression vari-
ability in natural population. Utilizing another independent dataset of transcriptomes 
from seven tissues across 255 diverse maize lines [38], we observed that malleable genes 
do indeed demonstrate higher expression fluctuations (fluctuation, calculated as the 
difference between maximum and minimum expression values of this gene across 255 
lines, with expression values taken as the maximum across multiple tissues of each line) 
(Fig. 4D). This supports the notion that, in addition to the gene expression level, gene 
evolvability is also associated with expression variability within the population. Interest-
ingly, malleable genes additionally displayed significantly higher EP, a trend consistent 
with their natural expression fluctuations (Fig. 4D), reinforcing the association between 
EP and gene evolvability. By mapping EP values onto the maize evolvability space, we 
found that genes with larger EP values tend to be closer to the “malleable” anchor point 
(Fig. 4E). In conclusion, our analyses suggest that EP may serve as a useful indicator of 
gene evolvability, which could potentially be applied for pre-screening genes to assess 
their responsiveness to editing interventions. Specifically, the characteristics of the mal-
leable genes include intermediate expression and increased EP and expression fluctua-
tion, suggesting a potentially greater impact from promoter editing.

AI‑guided promoter editing for ZmVTE4 gene enhancement

We next sought to assess the application of editing plasticity to guide a promoter 
editing experiment in the ZmVTE4 gene (Fig. 1G), which is crucial for α-tocopherol 
variation and thereby associated with vitamin E activity [14]. Promoting ZmVTE4 
expression in conjunction with increasing α-tocopherol content in maize, a primary 
source of vitamin E for humans, is an important goal. In the KN5585 maize line [39], 
we first used in silico EP to predict the outcomes of promoter editing. Analysis iden-
tified ten peaks indicative of regulatory importance (Additional file 3: Table S18), all 
residing in the region spanning TSS − 200 to + 200bp (Fig.  5A). Our in silico dele-
tions of each individual peak revealed that removal of peaks 4, 7, and 9 could increase 
ZmVTE4 expression (Fig.  5B), with removal of peak 4 (TSS + 12 to + 21) present-
ing the highest negative contribution (Fig.  5A), potentially increasing expression by 
nearly 10% (Fig. 5B, Additional file 3: Table S18). By contrast, the removal of peaks 3, 
6, and 10 could be critical for reducing expression (Additional file 3: Table S18). Fur-
ther analysis of combined peak deletions showed that the maximum in silico EP value 
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(achieved by removing seven peaks: peaks 1, 2, 4, 5, 6, 9, and 10, termed Com-max) 
was comparable to the effect of deletion of peak 4 alone. This suggests that targeting 
peak 4 could be an optimal editing strategy for promoting ZmVTE4 expression.

Guided by the in silico EP analysis, we conducted gene editing experiments (with 
13 sgRNAs) to target the promoter and 5’UTR regions of ZmVTE4 (Fig. 5C), includ-
ing regions predicted by our model to affect gene expression. Five edited alleles were 
identified and designated vte4-cr1 to vte4-cr5 (Fig. 5C, Additional file 10: Supplemen-
tary Material 7). We tested these edited alleles against the Basenji2-3K-NAM model 
to predict changes in gene expression. The model showed no change for three alleles 
(vte4-cr1, 2, 3), but predicted increased gene expression for vte4-cr4 and decreased 
for vte4-cr5 compared to the WT (Additional file  11: Supplementary Material 8). 
These predictions were confirmed by LUC activities of the edited alleles in maize pro-
toplasts (Fig. 5C, Additional file 11: Supplementary Material 8). As the co-occurrence 
of the 82-bp deletion and 4-bp deletion in the vte4-cr4 allele, we further isolated the 
effect of each individual deletion on the observed increase in expression. We con-
structed two promoter variants with only a 4-bp deletion or an 82-bp deletion respec-
tively and tested their LUC activities. The 4-bp deletion promoter variant showed a 
similar trend to the vte4-cr4, consistent with our predicted results (Fig. 5D). However, 
the 82-bp deletion promoter variant has no significant improvement (the third line in 

Fig. 5 AI-guided promoter editing for ZmVTE4. A The editing scheme of the ZmVTE4 promoter. A total of 10 
peaks were identified as the candidate CREs within the region of 2-Kbp upstream and 200-bp downstream 
of the TSS of ZmVTE4 (top panel). An interpretability method of in silico tiling deletion (see the “Methods” 
section) was employed to highlight potential regulatory regions and proposed a candidate functional locus, 
the deletion of which could increase ZmVTE4 expression level (12 ~ 21-bp downstream of the TSS, grey shade 
and red arrow). B Editing plasticity of ZmVTE4. The model simulated the predicted expression changes on 
deletion with a single peak and deletion with each combination of all peaks. The number of deleted peaks 
(x-axis) and predicted expression levels (y-axis) are demonstrated. C Experimental editing results for AI-guided 
editing scheme of ZmVTE4 promoter. The left panel shows five promoter-edited alleles of ZmVTE4. The right 
panel shows relative predicted expression levels, LUC activities, ZmVTE4 expression levels, and α-tocopherol 
contents of WT and five edited alleles. Repeated experimental results about LUC activities, ZmVTE4 expression 
levels, and α-tocopherol contents in the right panel are significantly higher (vte4-cr4 allele) or lower (vte4-cr5 
allele) compared to WT, determined by two-sided Student’s t test at P < 0.05. D Luciferase activity validation of 
the vte4-cr4 allele. The schematic diagrams of the ZmVTE4 constructs (left), relative predicted expression, and 
relative LUC activity are displayed (right). LUC, firefly luciferase; REN, Renilla luciferase
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Fig. 5D). Therefore, the critical region leading to increased activity in the vte4-cr4 is 
the 4-bp deletion (located in peak 4) rather than the 82-bp deletion.

We then measured ZmVTE4 expression and α-tocopherol content in maize using 
RT-qPCR and UPLC (ultra-performance liquid chromatography). ZmVTE4 expression 
and α-tocopherol contents in kernels displayed a high correlation among the mutants, 
while the vte4-cr4 allele displaying both significantly increased ZmVTE4 expression and 
α-tocopherol levels (Fig.  5C). In summary, our “AI-guided editing scheme” effectively 
identified and validated the influence of specific genomic regions, demonstrating the 
utility of the strategy in streamlining gene editing approaches.

Discussion
Precise regulatory control is essential in modern plant breeding. Genetic manipulation 
of CREs offers the potential for such regulation, but often suffers from limited knowl-
edge of a high-resolution regulatory map of CREs and no effective assessment of the 
editing potential of each gene. An AI-based expression prediction model promises to be 
a useful tool to overcome these difficulties.

Here, we performed an above proof-of-concept exploration of genome-wide CRE 
identification and AI-guided editing scheme. We constructed a genome-wide regulatory 
map of CREs, part of which was validated with UMI-STARR-seq. More importantly, we 
proposed the new concept of “editing plasticity” to theoretically analyze and estimate the 
editing effect of every possible promoter variant. The core tool that enables us to achieve 
this is an accurate expression prediction model, which displays stable and robust perfor-
mance across multiple plant species, and which is essential for the implementation of 
a series of large-scale editing simulation experiments. This confirms the adage: “preci-
sion in prediction begets precision in engineering.” In principle, this AI-based strategy 
could be applied to the high-throughput study of any other intermediate omics datasets, 
including those for open chromatin and metabolite abundances.

Another significant contribution of the current study is the innovative integration of 
evolvability space and editing plasticity. The evolvability space, colored by EP value, pro-
vides a clear navigation map for promoter editing experiments for any gene from the 
four plant species studied here. The EP value provides a theoretical estimate of the maxi-
mum effect of the edited variants, and the AI-guided precise editing scheme provides 
a systematic editing plan to achieve the given goal. We believe that this new tool will 
greatly accelerate the plant breeding process by facilitating the fine-tuning expression of 
target genes by gene editing.

Finally, looking to the future, we discuss some potential applications of the current 
study for synthetic biology. We found that a critical 4-bp deletion of the vte4-cr4 allele 
is responsible for upregulating ZmVTE4 expression, yet this never appeared in the pro-
moter sequence of the pan-Zea population (721 individuals), demonstrating that it is 
not a natural variant which has occurred during evolution and was newly created by the 
gene editing experiment. Notably, the 247-bp deletion in vte4-cr5 spans several peaks, 
resulting in a significant reduction in gene expression, suggesting higher-order cis-
regulatory interactions between these peaks (peaks 2–7, termed Com-2–7). Although 
the model captured additive and synergistic effects between regulatory elements in 
ZmFCP1, it struggled to resolve more complex interactions including some higher-order 
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cis-regulatory interactions and showed limited accuracy in predicting gene editing out-
comes in rice and tomato (Additional file 3: Table S10-11). CRISPR editing is a powerful 
tool for validating the model’s predictions on individual peaks and their combinations. 
However, precise deletion of a single peak at 10-bp resolution remains technically chal-
lenging, limiting experimental verification with the same resolution as the model predic-
tion. This also implies that the synthesis of new DNA fragments, which do not exist in 
nature, has a broader sequence space to meet the demands of precise regulation of plant 
breeding. We believe that both the accurate prediction model and the evolvability space 
colored with EP will be very helpful for primary screening of massive synthetic DNA 
libraries, and that this will be a critical step in future synthetic biology activities.

Our study highlights the potential of AI-guided precise gene editing for improving 
crop traits, yet translating computational predictions into practical applications remains 
challenging due to environmental variability. While our current model effectively identi-
fies CREs, it does not account for environmental influences. To address this, we propose 
a systematic framework integrating computational predictions with experimental valida-
tion in a cyclical process for the future works. This involves (i) utilizing RNA-seq data 
from over 500 accessions across five geographically diverse regions in China to identify 
environmentally responsive genes; (ii) applying our in silico prediction model to iden-
tify CREs in their promoter regions; (iii) using light as a model environmental factor 
to establish a light-response experimental platform and employing Massively Parallel 
Reporter Assays (MPRA) to validate and quantify light-responsive CREs; and (iv) build-
ing a predictive model based on MPRA data to estimate CRE activity, enabling the pre-
cise selection of CREs that drive desirable traits in specific environments. By iteratively 
refining the model with experimental results, we aim to enhance its accuracy and reli-
ability, providing actionable insights for breeding crops with stable performance under 
diverse environmental stresses. This approach integrates computational predictions with 
practical breeding, contributing to agricultural sustainability in changing environments.

In addition, although our model incorporates expression data from multiple tissues, it 
currently relies on maximum expression across tissues, limiting its ability to identify tis-
sue-specific CREs. A promising direction would be to predict gene expression separately 
for each tissue, potentially using multi-task or multi-label modeling approaches. Recent 
advances in machine-guided approaches have demonstrated the feasibility of designing 
tissue-specific CREs [ref NATURE], which could significantly enhance our framework’s 
utility for crops with complex regulatory patterns and enable precise tissue-targeted 
gene expression designs.

Addressing these challenges is essential for improving the applicability and accuracy 
of AI-guided editing schemes. With continued integration of environmental and tissue-
specific data, we anticipate that this framework will evolve into a more powerful tool for 
crop improvement and precision breeding.

Conclusions
Deciphering the roles of transcriptional cis-regulatory elements and their regulatory 
mechanisms in gene expression is pivotal for achieving targeted modulation of gene 
activity and associated phenotypic traits. Here, we present an AI-driven approach to 
precisely modulating gene expression by identifying CREs in plants and quantitatively 
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estimating their effects. Through two deep learning models, we effectively predicted 
the functional roles of CREs: one incorporating distal elements with higher predictive 
power, and the other focusing on the proximal region to offer high-resolution CRE pre-
dictions. A large number of these CREs were verified for enhancer activity in vitro using 
UMI-STARR-seq, providing valuable resources for plant breeding and synthetic biology.

A notable finding of our work is the identification of a small functional region, typically 
overlooked by conventional genetic approaches due to a lack of natural variation. With 
the AI-guided editing scheme, we successfully engineered novel variants beyond natural 
variability using gene editing tools, thereby enabling precise control of gene expression.

Overall, our research provides both innovative tools and deeper insights into the 
molecular mechanisms governing gene expression regulation, while simultaneously 
laying a strong foundation for the precise genetic improvement of crop traits and the 
advancement of synthetic biology. Moving forward, we seek to extend the application of 
this methodology to other crops and more complex environmental conditions, further 
advancing innovation in agriculture and biotechnology.

Methods
Data preprocessing

Input sequences of the Basenji2‑long model

For Z. mays, B73 reference genome of RefGen_v4 and annotation files were downloaded 
from https:// downl oad. maize gdb. org/ Zm- B73- REFER ENCE- GRAME NE-4. 0/. For each 
gene, we extracted the genomic DNA sequence upstream and downstream of TSS from 
the reference genome with continuously increasing length from 10  K-bp to 140  K-bp 
(Additional file  4: Supplementary Material 1). Considering the double-stranded DNA, 
sequences from negative strand were reverse-complemented. In this way, we obtained 
the genomic sequences for 45,564 genes and then transformed them into one-hot 
encoded format. For the other three species, O. sativa, S. lycopersicum, and A. thaliana, 
we extracted genomic DNA sequences as above from their reference genomes according 
to Additional file 3: Table S1.

Output of maximum gene expression for the Basenji2‑long model and the Basenji2‑3K‑B73 

model

We employed an integrated gene expression dataset containing 421 RNA-seq datasets 
initially curated by [8]. To process each RNA-seq dataset, we downloaded it using Fast-
erq-dump (https:// hpc. nih. gov/ apps/ srato olkit. html) from the NCBI SRA (see the web-
site of https:// github. com/ liuli fenyf/ plant CRE to find the list of SRA used here). Sickle 
(https:// github. com/ najos hi/ sickle) was then used for quality-trimming and checking. 
The cleaned reads were aligned to the maize B73 RefGen_v4 reference using HISAT2 
[40]. The aligned read counts were normalized to TPM using Stringtie [41]. Forty out 
of 421 RNA-seq datasets exhibiting abnormal in read count and TPM calculations for 
some genes were removed, because of alternative splicing and multi-mapping reads of 
these genes. The TPM values of remaining 381 RNA-seq datasets were log2-scaled, and 
the maximum value for each gene across all experiments was regarded as its expression 
level. For other model plant species, we took an identical set of processing steps. The 
datasets and their corresponding TPM values can be found at [16].

https://download.maizegdb.org/Zm-B73-REFERENCE-GRAMENE-4.0/
https://hpc.nih.gov/apps/sratoolkit.html
https://github.com/liulifenyf/plantCRE
https://github.com/najoshi/sickle
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Splitting the training and testing datasets

To verify the generalizability of the trained model, we used train_test_split function 
from sklearn to randomly partition the genes, with 90% (41,007 genes) for training and 
10% (4557 genes) for independent testing.

Model architecture

We adopted the Basenji2 model based on its proven success in human and mouse stud-
ies [10]. The classic Basenji2 model consists of seven convolutional blocks, followed by a 
number of dilated convolutional blocks, the count of which is automatically determined 
by the length of the input sequence, and a final convolutional layer. A notable hyperpa-
rameter of channel number (CM) [10] determines the structure of the Basenji2 model. 
For the convolutional block, let Ci, i = 1, · · · , 7 be the filter number of the ith convolu-
tional block, then Ci can be computed as:

For the dilated convolution blocks, each block has a filter count equal to CM, and the 
dilation rate Di, i = 1, · · · , 11 can be computed as:

where round means non-integer values must be taken as the nearest even number. 
The last dilated convolution block will produce a feature map matrix, which will be fur-
ther fed into a convolution block (without maxpooling) containing 2× CM filters with 
a width of 1 to summarize all its information, setting the dropout probability to 0.05 to 
prevent overfitting. Finally, we employed a 1D convolution layer with 1 filter for dimen-
sionality reduction. The output was then flattened and was inputted to a dense layer with 
1 neuron for making final predictions (Additional file 2: Fig S1).

Training and hyperparameter optimization

We performed a fivefold-CV on the training set to optimize the Basenji2 model, with 
a particular emphasis on the CM hyperparameter. We tested four channel configura-
tions: 360, 540, 720, and 900 with a fivefold-CV. After determining the optimal CM, we 
fixed this parameter and then proceeded to optimize the input length, using genomic 
sequence from 10K-bp to 140K-bp (Additional file 4: Supplementary Material 1, Addi-
tional file 3: Table S2). To assess the variance of the model, we conducted three inde-
pendent runs using different splitting of the training and testing dataset (Additional 
file 4: Supplementary Material 1).

For training details, we initialized weights using He Normal [42] and regularized them 
using  L2 norm. The loss function is optimized using the Adam optimizer [43]. In the first 
three epochs, we set the learning rate as 0.001 and then set it as 0.00001 for the following 

C1 = 0.375× CM

Ci = 1.17759× Ci−1, i = 2, · · · , 7

{
D1 = 1

Di = round(1.5× Di−1), i = 2, · · · , 11
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epochs. We minimized the loss on a batch size of 32 and performed an early stop of 
three consecutive epochs. The relevant operations during model training were imple-
mented using python3 using Keras2 with a Tensorflow2 backend.

We adopted the similar strategy to build models for three other model plant species 
(Additional file 2: Fig S2). We also compared Basenji2 with the other two mainstream 
models named Xpresso [11] and ExpResNet [44].

Deep interpretability methods

To investigate the importance of different features among all input features during the 
model prediction, we adopted the following four interpretation methods of deep learn-
ing to quantify the importance of each base of an input sequence.

Gradient‑based method

The gradient × input method is one of the gradient-based methods, and it estimates 
contribution scores using the back-propagation procedure through the network [12]. 
Specifically, given a one-hot encoded input sequence, we first calculated the gradient 
vector and then employed an element-wise product between the gradient vector and the 
input. Subsequently, we took an average of contribution scores on four types of bases. 
Finally, we obtained a contribution score for each base with the same length as the input 
sequence.

Occlusion

The occlusion method is a perturbation-based interpretation method of deep learn-
ing [45]. Specifically, given a one-hot encoded input sequence, Occlusion scanned it 
with a sliding window of length l and stride s and then replaced the one-hot encoding 
within the sliding window with zero values (N = [0,0,0,0]). Finally, Occlusion measured 
the changes in the model predictions before and after the perturbation on the input to 
reflect the impact of the perturbed region on the output. The contribution score based 
on Occlusion is defined as:

Y  and YOccluded denote the model prediction for the original input sequence and the 
perturbed sequence respectively. Finally, we obtained a contribution score for each base 
with the same length as the input sequence.

In silico mutagenesis

To measure the expression change on every possible point mutation, a widely used 
interpretability method called “in silico mutagenesis” [46] was adopted. Specifically, this 
method mutates the current nucleotide into the other three nucleotides at each base and 
then measures the prediction change between before and after point mutation.

In silico tiling deletion

To assess the influence of larger stretches of the input sequence on predicted expres-
sion, we employed an interpretability method called “in silico tiling deletion” [47]. Dif-
ferent from in silico mutagenesis, in silico tiling deletion removes a small sliding window 

Contribution score = (Y − Y0ccluded)/Y
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with an overlapping stride from the input sequence, and then computes the prediction 
change between before and after removal.

CRE identification by peak calling algorithm

CRE identification of the Basenji2‑long model

To identify CREs for each gene, we here developed a peak-calling algorithm based on 
the base contribution score. We selected a threshold t, by taking the qth percentile of the 
scores. Bases with scores higher than t were further examined for neighboring scores 
whether larger than t. This was done by computing the sum of scores within a window 
of length w around given base and filtering for bases with mean values exceeding t. The 
selected bases were kept, while the other base scores were set to 0. We then used the 
"find_peaks" function in SciPy [48] to identify the highest peak summit within a window 
length of d. These peak summits, along with ± width-bp genomic fragments, constituted 
the candidate CREs. The flowchart of the peak-calling algorithm is shown in detail in 
Additional file 2: Fig S3. Additionally, we used the FIMO [49] tool to scan the identified 
peaks to discover potential binding sites of transcription factors.

Tissue‑specific CRE identification with omics data of the Basenji2‑long model

For tissue-specific CRE-gene pair identification, we proposed an omics-modified contri-
bution score modified by epigenetic patterns including chromatin accessibility and DNA 
methylation. The omics-modified contribution score was computed using a weighted sum 
formula: modified score = 0.9 × abs (gradient × input) + 0.05 × Cscore-0.05 × Mscore. 
Cscore and Mscore respectively denote the chromatin accessibility and CG methylation 
of each base in different tissues.

Validation of the candidate CREs

Selection of candidate CRE sequences for validation

We selected 12,000 sequences with a length of 200-bp from 745,684 candidate CREs 
(1K-bp) for synthesis and measured their activities using UMI-STARR-seq. We used a 
window size of 200-bp with a step size of 1 to scan for the contribution scores of 1K-bp 
long CREs, and selected the 200-bp long sequence with the maximum value of the sum 
of contribution score (see Additional file 1: Supplementary Methods).

UMI‑STARR‑seq library cloning

To perform STARR-seq in maize protoplasts, a screening vector was constructed by 
incorporating a CaMV 35S minimal promoter (− 50 to + 5 bp), a cat-1 intron, a GFP 
coding sequence and a ccdB-containing sequence into pMD18-T vector (Takara, catalog 
no. 6011), showed in Additional file 7: Supplementary Material 4.

Two hundred thirty-eight-mer oligonucleotide libraries, consisting of two Tn5 mosaic 
ends in inverted orientation at both ends and a forward CRE sequence in the center, 
were synthesized by Twist Bioscience for library cloning. Fragments were amplified fol-
lowing Twist oligo pool amplification guidelines. Two PCR reactions (95°C for 3 min 
(min); followed by 14 cycles of 98°C for 20 s (s), 55°C for 15 s, 72°C for 15 s; ended with 
72°C for 1 min) with 10 ng Twist oligo pool as template were performed, using KAPA 2X 
HiFi HotStart ReadyMix Kit (Roche, catalog no. KK2602) and a single primer (referred 
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as lib cloning primer in Additional file 7: Supplementary Material 4). The two PCR reac-
tions were pooled and purified with 1X VAHTS DNA Clean Beads (Vazyme, catalog no. 
N411-01).

The STARR-seq plasmid was double-digested with the restriction enzymes SacI and 
KpnI and the upper band was gel-purified. The sticky ends of the linearized plasmid 
were blunted by incubation with Large (Klenow) Fragment (New England Biolabs, cata-
log no. M0210S), followed by DNA column purification. The oligonucleotide libraries 
and the vector were assembled using the NEBuilder HiFi DNA Assembly Master mix 
(New England Biolabs, catalog no. E2621S) in a total of five 20 μL reactions. The reac-
tions were pooled, column-purified, and eluted in 10 μL of ultrapure water.

Five aliquots (20 μL each) of MegaX DH10B T1 Electrocompetent Cell (Invitro-
gen, catalog no. C640003) were transformed with 1.5 μL DNA each, according to the 
manufacturer’s instructions. Five transformation reactions were pooled, transferred 
to 1 L LB-Amp medium, and incubated. Bacterial cultures were harvested at OD600 
1.2–1.5. The plasmid libraries were extracted using GoldHi EndoFree Plasmid Maxi 
Kit Plus (CWBIO, catalog no. CW2113M) and the purified product was dissolved in 
ultrapure water to a concentration exceeding 1 μg/μl. The vector containing the CaMV 
35S enhancer insertion, which served as a positive control, was constructed separately. 
Plasmids with the 35S enhancer inserted in both forward and reverse orientations were 
generated using the aforementioned method. Subsequently, 100 mL of bacterial cultures 
were cultivated for the extraction of the positive control plasmid. Positive controls were 
added at an appropriate ratio of 1:10,000 to the sequence-synthesized plasmid libraries.

Protoplast isolation and transient transformation

Protoplasts from second leaves of maize etiolated seedlings were isolated and trans-
fected as described previously [23] with minimal modification. For transfection, 80 µg of 
plasmid DNA was mixed with 1 mL of protoplasts (at a concentration of 1 ×  106 cells per 
mL) in a 14 mL round-bottom tube containing 1 mL of PEG-CaCl2 solution. Each rep-
licate transfected roughly 2 million protoplasts. The transfected protoplasts were incu-
bated at 25°C in the dark for 16 h. This experiment was conducted using four biological 
replicates, each executed at different times (Additional file 2: Fig S6).

RNA and DNA isolation from transfected protoplasts

Two biological replicates of protoplasts were divided into two halves and subsequently 
pelleted to separately extract RNA and DNA. Total RNA was extracted from each biolog-
ical replicate using TRIzol plus RNA purification kit (Invitrogen, catalog no. 1218355), 
while DNA was extracted using EasyPure plasmid miniPrep kit (TransGen Biotech, cata-
log no. EM101-02) and the CTAB method. Additionally, RNA and DNA from the other 
two biological replicates were extracted simultaneously using Allprep RNA/DNA kit 
(Aidlab, catalog no. RN29), which is shown in Additional file 7: Supplementary Material 
4. The DNA re-isolated from transfected protoplast as STARR-seq input.

The polyA + RNA was isolated from 70 µg total RNA of each biological replicate using 
Dynabeads mRNA purification kit (Invitrogen, catalog no. 61006) and eluted with 30 
µL 10 mM Tris–HCl (pH 7.5) buffer, and subjected to the treatment of TURBO DNase 
(Ambion, catalog no. AM2238) at 37°C for 30 min. Each replicate was purified using 
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1.8X VAHTS RNA clean beads (Vazyme, catalog no. N412-01) to inactivate TURBO 
DNase and eluted the RNA in 45 µL nuclease-free water.

First‑strand reporter cDNA synthesis and second strand synthesis

UMI-STARR-seq was performed as described previously [26, 50]. Each biological rep-
licate of first-strand cDNA synthesis was performed with SuperScript IV first-strand 
synthesis system (Invitrogen, catalog no. 18091050) using a reporter transcript-spe-
cific reverse transcription (RT) primer (5’-TAA TCA TCG CAA GAC CGG CAA CAG -3’, 
referred as NOS rev primer in Additional file 7: Supplementary Material 4) and 350 ng 
polyA + RNA in every reaction. Each replicate performs 3 reactions for RT reactions 
and 1 reaction for minus RT control (replace SuperScript IV reverse transcriptase with 
nuclease-free water). Three RT reactions in each replicate were pooled and 0.2 μL of 
RNase A (Thermo Scientific, catalog no. EN0531) was added per RT reaction or minus 
RT reaction followed by magnetic bead-based purification (1.8X DNA clean beads) and 
was eluted in 12 μL per RT (or minus RT) reaction. Each replicate of second DNA strand 
of the reporter cDNA was synthesized by a linear PCR reaction (98°C for 1 min; 61°C 
for 30 s, 72°C for 1 min) without amplification using KAPA 2X HiFi HotStart ReadyMix 
Kit and a cat-1 intron-spanning forward primer (referred as junction fw primer in Addi-
tional file  7: Supplementary Material 4) followed by magnetic bead-based purification 
(1.4X DNA clean beads) and was eluted in 11 μL per RT (or minus RT) reaction.

Unique molecular identifier (UMI) introduction

Each biological replicate of resulting double-strand reporter cDNA (including 3 RT 
reactions and 1 minus RT reaction), 100 ng of DNA isolated using a plasmid miniPrep 
kit per reaction (2 reactions), 400 ng of DNA per reaction (2 reactions) isolated using the 
CTAB method or Allprep RNA/DNA kit, and 100 ng of sequence-synthesized plasmid 
libraries without protoplast transformation per reaction (2 reactions) were synthesized 
through a linear PCR reaction (98°C for 1 min; 65°C for 30 s, 72°C for 1 min) without 
amplification using a KAPA 2X HiFi HotStart ReadyMix Kit and a modified Illumina i7 
index primer containing 10 random nucleotides at the position of the Illumina i7 index 
(referred as P7-UMI primer in Additional file  7: Supplementary Material 4). Reporter 
DNA was purified using 1.4X DNA clean beads and was eluted in 20 μL per reaction.

Amplification of cDNA and input DNA library

Each UMI-introduced reporter cDNA obtained was amplified for Illumina sequencing 
by a 2-step nested PCR strategy. In the first PCR (98°C for 45 s; followed by 16 cycles of 
98 °C for 20 s, 65C for 30 s, 72°C for 1 min, and then 72°C for 2 min), cDNA was ampli-
fied with KAPA 2X HiFi HotStart ReadyMix Kit and two primers, junction fw primer, 
and P7-junction rev primer (Additional file 7: Supplementary Material 4).

All PCR products from each replicate, except for the minus RT reactions, were pooled 
and purified using 0.8X DNA clean beads. The purified PCR products were then divided 
into two equal portions to serve as templates for the second PCR (98°C for 45 s; followed 
by 7–9 cycles of 98 °C for 20 s, 65C for 30 s, 72°C for 30 s, and then 72°C for 2 min) with 
KAPA 2X HiFi HotStart ReadyMix Kit, Illumina i5 primer, and P7-SeqReady rev primer 
(Additional file 7: Supplementary Material 4). Each UMI-introduced plasmid DNA was 
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divided into two equal portions for use as templates and amplified with KAPA 2X HiFi 
HotStart ReadyMix Kit, Illumina i5 primer and P7-SeqReady rev primer (Additional 
file  7: Supplementary Material 4). Except for the minus RT reaction, the two halves 
of each replicate were indexed with different Illumina i5 primers. PCR products were 
purified using 1X DNA clean beads, then size-selected using 0.5X and 0.3X DNA clean 
beads, and eluted in 10 μL per reaction.

Illumina sequencing

Next-generation sequencing was performed at Shanghai Personal Biotechnology Co.,Ltd 
on an Illumina NovaSeq X Plus platform, following the manufacturer’s protocol, using 
standard Illumina i5 indexes as well as UMIs at the i7 index.

UMI‑STARR‑seq data analysis

For sequence orientation, our plasmid libraries contain two 19 bp Tn5 mosaic ends in 
inverted orientation at both ends of the synthetic fragments (Additional file  7: Sup-
plementary Material 4), allowing for insertion in either forward or reverse orientation. 
Here, we treated the orientations as independent sequences and calculated separate 
activity values for each, resulting in a pool of 24,000 sequences to be analyzed. We 
adopted the process in [47]. First, we mapped DNA input reads and cDNA reads to a 
reference file composed of 12,000 sequences using Bowtie2. We retained only the reads 
with MAPQ > 30, correct length, and with no mismatches. We collapsed both DNA and 
RNA reads by UMIs. Then we retained sequences with more than 10 reads in both rep-
licates and added one read pseudocount to sequences with zero RNA counts. Then we 
calculated CRE activity for each sequence by the log2 fold-change over input based on 
all replicates using DESeq2. We defined the sequences with CRE activity greater than 0 
and with adjusted p-value less than or equal to 0.05 as enhancers. Additional file 2: Fig 
S6 shows the consistency of the four replicates for both input (Additional file 2: Fig S6A) 
and cDNA (Additional file 2: Fig S6B), demonstrating the consistency and reliability of 
the experimental data.

Metric of Tau for expression tissue specificity

To measure the expression tissue specificity of a gene, we adopted a recommended met-
ric [31], called Tau, which is defined as:

xi is  expression of the gene in tissue i , n is the number of tissues. We computed the 
expression tissue specificity for each gene across 381 RNA-seq experiments (https:// 
github. com/ liuli fenyf/ plant- basen ji2).

Constructing the evolvability space in maize

We generally followed the preprocessing pipeline described in a prior study [37]. The 
process of constructing an evolvability space in the current study is described as follows:

τ =

∑
n

i

(
1− x̂i

)

n− 1
; x̂i =

xi

max (xi)1 ≤ i ≤ n

https://github.com/liulifenyf/plant-basenji2
https://github.com/liulifenyf/plant-basenji2
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(1) Based on the Basenji2-3K-NAM model, we performed in silico mutagenesis on the 
3K-bp regulatory sequence of each gene and sorted the prediction results to obtain 
a monotonically increasing vector D with length 9000, which was named the evolv-
ability vector of this gene.

(2) We perform archetypal analysis on evolvability vectors of all genes with AANet 
[51]. AAnet accepts the evolvability vector (with dimension of 9000) as input, 
which is fully connected to the first encode layer. The encoder consists of five fully 
connected layers, with node numbers [1024, 512, 256, 128, 64], while the decoder 
architecture mirrors the encoder’s structure with reverse order of five fully con-
nected layers [64, 128, 256, 512, 1024]. Between encoder and decoder, there is a 
latent lay containing two nodes of latent variables, which were directly used to be 
the first two dimensions of archetypal triplets. The third dimension of archetypal 
triplets is calculated as one minus the sum of the first two dimensions. Conse-
quently, the output of decoder with dimension of 1024 was then fully connected 
to the last layer, which gets the final output with dimension of 9000 (the restored 
evolvability vectors having dimension of 9000 with the same shape as the input). 
The AAnet autoencoder was trained using a learning rate of 1e − 4, a batch size of 
1024, and 10,000 batches.

(3) With the archetypal analysis, AAnet would get three anchor points (archetypal tri-
plets) in the latent layer. We then used three anchor points with dimension of 9000 
to perform t-SNE analysis and obtained the transformer matrix. The 2D t-SNE rep-
resentations of the three anchor points were first generated and demonstrated in 
Additional file 2: Fig S16. After that, the evolvability vector of each gene was pro-
cessed with the same encoder and t-SNE transformer matrix, and was also drawn 
as a point in Additional file 2: Fig S16. The evolvability space was successfully con-
structed when all genes were drawn. Finally, we colored all genes with their editing 
plasticity values. For three other model plant species, we adopted the same strategy 
with their own Basenji2-3K pan-genome model (Additional file 2: Figs S17-19).

CRISPR‑Cas9 editing experiment on ZmVTE4

Cis‑regulatory region editing of maize ZmVTE4 by CRISPR‑Cas9

CRISPR-Cas9 technology was employed to induce mutations in the promoter and 5’ 
UTR regulatory regions of ZmVTE4 (Zmc00020a023893). The sgRNAs were designed 
based on the KN5585 genome using CRISPR-P (http:// crispr. hzau. edu. cn/ CRISP R2/) 
[52] with predictions from in silico EP (Additional file  3: Table  S18). Subsequently, 
sgRNA arrays were synthesized, cloned into pCPBZmUbi-hspCas9, and transformed 
into KN5585 with Agrobacterium tumefaciens EHA105 (Weimi Biotechnology) [39, 53]. 
Genomic edits were screened through PCR-amplifying and Sanger sequencing of the 
target regions. The guide RNA sequences for ZmVTE4 and primers for ZmVTE4 allele 
genotyping are listed in Additional file 11: Supplementary Material 8.

Gene expression analysis

For the promoter-edited alleles of ZmVTE4, designated as vte4-cr1 to vte4-cr5, 
homozygous edited plants and their wild type controls were selected from segregating 

http://crispr.hzau.edu.cn/CRISPR2/
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populations. Mature leaves were collected and stored in liquid nitrogen with 8–10 plants 
for each biological replicates. Subsequently, approximate 0.1 g of maize leaf tissue was 
used to extract total RNA using Quick RNA Isolation Kit (Huayueyang Biotechnol-
ogy CO., LTD. Beijing, China). A reverse transcription reaction was performed by the 
cDNA Synthesis SuperMix (TransGen Biotech), and expression levels were assessed 
through real-time fluorescence quantitative PCR with SYBR Green Master Mix (Vazyme 
Biotech) on a CFX96 Real-Time System. Each set of experiments was conducted three 
times, and the maize ACTIN gene (Zm00001d010159) was served as the internal con-
trol. The primers utilized for quantitative real-time PCR are listed in Additional file 11: 
Supplementary Material 8.

LUC activity assay

To assess the promoter activity of ZmVTE4 edited alleles, a dual-LUC transient expres-
sion assay was conducted in maize protoplasts. Approximately 1.7 K-bp cis-regulatory 
region, including promoter and 5’UTR sequences of ZmVTE4, were amplified from WT 
and vte4-cr1 to vte4-cr5 respectively. These promoter sequences were then cloned into 
upstream of the mpCaMV of pGreen II 0800-LUC vector to generate the reporter con-
structs. Mesophyll protoplasts were isolated from the leaves of 10-day-old etiolated B73 
seedlings. Subsequently, the prepared plasmids were transformed into the isolated mes-
ophyll protoplasts using polyethylene glycol-mediated transformation [54]. After 16 h of 
dark cultivation, firefly LUC and REN activities were measured using the Dual-Lucif-
erase Reporter Assay System (Promega, Madison, WI, USA) following the manufactur-
er’s instructions. Each LUC activity experiment comprised three biological replicates, 
with each replicate having three technical replicates. Relative LUC activity was calcu-
lated by normalizing the firefly LUC activity to the Renilla LUC activity. The primers for 
amplifying the ZmVTE4 cis-regulatory sequences of WT and vte4-cr1 to vte4-cr5 are 
listed in Additional file 11: Supplementary Material 8.

Tocopherol content measurement

Fresh mature leaves from both WT and these editing lines were harvested, promptly 
frozen in liquid nitrogen, and stored at − 80 ℃. Subsequently, according to the previ-
ously described method with minor modifications [14], tocopherols from a 0.1-g frozen 
sample were extracted and quantified using an ultra-performance liquid chromatogra-
phy (UPLC) from the Waters Corporation (Milford, MA), employing a reverse-phase 
BEH C18 column (1.7 µm particle, 2.1 × 100 mm). The mobile phase consisted of 100% 
methanol containing 0.05% triethylamine (TEA) and 0.0028% butylated hydroxytoluene 
(BHT). The flow rate was 0.4 mL/min. Three tocopherol components, DT, GT, and AT, 
were measured. The ratio of AT to total tocopherol content, which was obtained by sum-
ming the three forms of tocopherol, was calculated and designated as the final pheno-
type of WT and editing lines. The three standards were sourced from the Sigma-Aldrich 
Company (St. Louis, MO). Both standards and samples were dissolved in the mobile 
phase. And absorbance detection at 295 nm was performed using a photo-diode array 
detector.
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