
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified 
the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The 
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of 
this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

RESEARCH

Li et al. Genome Biology           (2025) 26:46  
https://doi.org/10.1186/s13059-025-03514-9

Genome Biology

Benchmarking single‑cell cross‑omics 
imputation methods for surface protein 
expression
Chen‑Yang Li1†, Yong‑Jia Hong1†, Bo Li1,2 and Xiao‑Fei Zhang1,2* 

Abstract 

Background:  Recent advances in single-cell multimodal omics sequencing have 
facilitated the simultaneous profiling of transcriptomes and surface proteomes 
within individual cells, offering insights into cellular functions and heterogeneity. How-
ever, the high costs and technical complexity of protocols like CITE-seq and REAP-seq 
constrain large-scale dataset generation. To overcome this limitation, surface protein 
data imputation methods have emerged to predict protein abundances from scRNA-
seq data.

Results:  We present a comprehensive benchmark of twelve state-of-the-art imputa-
tion methods across eleven datasets and six scenarios. Our analysis evaluates the meth-
ods’ accuracy, sensitivity to training data size, robustness across experiments, and usa-
bility in terms of running time, memory usage, popularity, and user-friendliness. With 
benchmark experiments in diverse scenarios and a comprehensive evaluation frame-
work of the results, our study offers valuable insights into the performance and applica-
bility of surface protein data imputation methods in single-cell omics research.

Conclusions:  Based on our results, Seurat v4 (PCA) and Seurat v3 (PCA) demonstrate 
exceptional performance, offering promising avenues for further research in single-cell 
omics.

Keywords:  Single-cell multimodal omics, Single-cell RNA-seq, Surface protein 
expression, Cross-omics imputation, Benchmark

Background
Recent advances in single-cell multimodal omics (scMulti-omics) sequencing have rev-
olutionized our ability to simultaneously profile multiple molecular layers within indi-
vidual cells, offering comprehensive insights into cellular functions and heterogeneity 
[1–4]. Protocols such as cellular indexing of transcriptomes and epitopes (CITE-seq) 
and RNA expression and protein sequencing assay (REAP-seq) enable the concurrent 
quantification of transcriptomes and surface proteomes within the same cell, effectively 
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bridging the gap between gene expression and protein functionality [5, 6]. These inte-
grated approaches have the potential to reveal cellular diversity that single-cell RNA 
sequencing (scRNA-seq) alone might overlook [7, 8].

While CITE-seq and REAP-seq represent groundbreaking technologies with immense 
potential, their prohibitive costs and intricate technical requirements, compared to 
scRNA-seq, present obstacles to the widespread generation of large-scale public data-
sets essential for unraveling the complexities of diverse tissues [9]. Given that genes are 
the blueprints for protein synthesis and that a correlation exists between transcriptomes 
and proteomes [10, 11], a promising solution is to leverage large reference datasets to 
learn the relationship between RNA and proteins. This relationship can then be used to 
predict protein abundances in cells measured only by scRNA-seq. Several recent studies 
have explored this possibility, leading to the development of various surface protein data 
imputation methods.

These imputation methods utilize datasets generated by CITE-seq or REAP-seq, 
which include both surface protein and gene expression data, as training data to develop 
machine learning models. These models are then used to predict surface protein expres-
sion in cells measured by scRNA-seq alone (test data). The imputation methods can be 
broadly categorized into three types: traditional machine learning-based methods and 
two types of deep learning-based methods. The first type of methods, including Seurat 
v3 (CCA) [12], Seurat v3 (PCA) [12], Seurat v4 (CCA) [13], and Seurat v4 (PCA) [13], 
first identify mutual nearest neighbors between training and test datasets in a shared 
low-dimensional space and then transfer surface protein data from the training data-
set to the test based on the identified mutual nearest neighbors. The other two types 
are both based on deep learning, differing in their network structures. The first type, 
including cTP-net [14], sciPENN [15], scMOG [16], and scMoGNN [17], employs deep 
neural networks to directly learn a mapping between transcriptomic and proteomic data 
from the training dataset, which is then used to make imputations for the test dataset. 
The second type, including TotalVI [18], Babel [19], moETM [20], and scMM [21], is 
based on an encoder-decoder framework. These methods first use an encoder to embed 
both transcriptomic and proteomic data into a joint latent representation, and then use a 
decoder to make predictions for the proteomic data.

Although these methods have demonstrated good performance in various scenarios, 
predicting protein expression from gene expression data remains challenging due to 
post-transcriptional and post-translational modifications, as well as differences in pro-
tein stability and localization [22–25]. Therefore, a comprehensive evaluation of these 
methods in practical applications is essential. In this study, we present an extensive 
benchmark of twelve state-of-the-art imputation methods using eleven CITE-seq and 
REAP-seq datasets across six distinct benchmark scenarios. We employ various accu-
racy measures to quantitatively evaluate the predicted values at both the protein and 
cell levels. Additionally, we assess the methods’ sensitivity to training data size, robust-
ness across experiments, and efficiency in terms of time and memory. We also assess 
their popularity based on the number of stars on their official GitHub repositories and 
evaluate their user-friendliness in terms of installation, code, and tutorial. Our findings 
indicate that Seurat-based methods, particularly Seurat v4 (PCA) and Seurat v3 (PCA), 
demonstrate superior accuracy and robustness across diverse experiments, showing 
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relative insensitivity to training data size. They are also highly efficient in terms of mem-
ory usage, widely popular with numerous stars on their GitHub repository, and provide 
high-quality installation guides, codes, and tutorials. However, they exhibit longer run-
ning times compared to some deep learning-based methods, which highlights scalability 
concerns and underscores the necessity for future enhancements to manage larger data-
sets effectively. Additionally, we offer a decision-tree-style guidance scheme that intui-
tively presents the recommended methods for specific scenarios based on benchmark 
evaluation results, facilitating more efficient selection of the most appropriate methods.

Results
Overview of the benchmark scheme

The overall pipeline of this benchmark study is illustrated in Fig. 1. In each experiment, 
we use one CITE-seq or REAP-seq dataset containing paired transcriptomic and pro-
teomic data as the training data. For the test data, we mask the proteomic data from 
another CITE-seq or REAP-seq dataset, retaining only the transcriptomic data to sim-
ulate scRNA-seq data, and then use various imputation methods to predict the corre-
sponding proteomic data (Fig. 1a).

To comprehensively evaluate the performance of these imputation methods, our 
benchmark includes twelve state-of-the-art methods: four Seurat-based methods (Seurat 
v3 (CCA), Seurat v3 (PCA), Seurat v4 (CCA), and Seurat v4 (PCA)), cTP-net, sciPENN, 
scMOG, scMoGNN, TotalVI, Babel, moETM, and scMM. These methods are catego-
rized based on their imputation strategies (Fig. 1b): imputing by mutual nearest neigh-
bors, imputing by learning a mapping between transcriptomic and proteomic data using 
deep learning, and imputing by learning a joint latent representation using an encoder-
decoder framework. To test the generalizability and robustness of these imputation 
methods, we use eleven datasets and conduct experiments under six distinct benchmark 
scenarios (Fig. 1b and Additional file 1: Tables S1, S2): (1) Random holdout: A dataset is 
randomly divided into training and test sets to address the case without technical or bio-
logical differences; (2) Different training data sizes: Evaluating performance with varying 
training data sizes to understand how training data size influences each method; (3) Dif-
ferent samples: Considering the scenario where the training and test datasets come from 
different samples; (4) Different tissues: Testing each method’s generalizability when pre-
dicting protein expression for cells from tissues different from those used in the training 
set; (5) Different clinical states: Assessing each method’s ability to transfer between data-
sets with biological variations; (6) Different protocols: Investigating performance when 
training and test datasets are derived from different sequencing protocols.

After generating imputation values using different methods (Fig. 1c), we design a com-
prehensive framework to evaluate their performance (Fig.  1d). First, we evaluate the 
accuracy of methods using Pearson correlation coefficient (PCC) and root mean square 
error (RMSE). To provide an overall performance metric, we also introduce an average 
rank score (ARS) that combines the rank score values of methods based on PCC and 
RMSE. A higher ARS value indicates better accuracy performance across all metrics in 
the experiment. Second, we assess how the methods’ accuracy performance changes with 
varying training data sizes by running the methods on training sets of different sample 
sizes. This analysis helps to understand how the amount of training data influences the 
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Fig. 1  Overview of the benchmark framework. a The raw CITE-seq or REAP-seq datasets are preprocessed, 
with one dataset containing paired gene and protein expression matrices used as the training data, and 
the other dataset having its protein expression matrix masked, with only the gene expression matrix used 
to simulate scRNA-seq data, which serves as the test data. b Twelve state-of-the-art methods, categorized 
according to their imputation strategies, are evaluated using eleven datasets across six benchmark scenarios. 
c After training on the training data, the imputed protein expression matrix for the test data is generated 
through inference. d The benchmark results are assessed based on accuracy, sensitivity to training data size, 
robustness across experiments, and usability in terms of popularity, user-friendliness, running time, and 
memory usage
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methods’ accuracy performance. Third, we evaluate the robustness of methods across 
experiments by introducing a robustness composite score (RCS). This metric considers 
both the mean and standard deviation of the ARS values across different experiments. 
We primarily evaluate experiments demonstrating technical and biological differences 
that closely resemble those conducted in real-world applications. These experiments 
stem from scenarios involving different samples, tissues, clinical states, and protocols. 
A high RCS value indicates that a method not only performs well on average but also 
maintains consistent performance across all experiments with technical and biological 
differences. Accurate protein abundances across cells are crucial for tasks such as differ-
ential expression analysis and omics feature correlation analysis, while accurate protein 
abundances in individual cells are essential for tasks like cell clustering analysis and cell 
trajectory inference. Therefore, we assess the methods at both the protein and cell levels 
for the above evaluations to accommodate the varying requirements of different down-
stream tasks. Finally, we compare the methods in terms of usability metrics, including 
popularity (measured by the number of stars on their official GitHub repositories), user-
friendliness (measured by the quality of installation procedures, codes, and tutorials), 
running time, and memory usage.

Scenario 1: evaluating accuracy performance over random holdout

To evaluate the performance of different imputation methods, we begin with a straight-
forward scenario where the training and test datasets are randomly divided from the 
same dataset. We utilize three widely referenced datasets: CITE-PBMC-Stoeckius [5], 
CITE-CBMC-Stoeckius [5], and CITE-BMMC-Stuart [12], which have been extensively 
used in previous studies assessing surface protein expression imputation methods [12, 
14, 19, 21]. For each dataset, we randomly split the cells into two groups: a training data-
set comprising half of the cells and a test dataset with the remaining half. The training 
dataset is used to train the models, and the test dataset is used to evaluate their perfor-
mance. To account for variability in the dataset split, we repeat the experiment five times 
and present the results of each repetition using boxplots. Finally, in this scenario, we 
conduct a total of 15 experiments, consisting of three datasets, with five repeated experi-
ments for each dataset.

Figure 2a shows the median PCC of each method across proteins or cells in each rep-
licate experiment, while the corresponding results evaluated using RMSE are presented 
in Additional file 2: Fig. S1. Most methods exhibit stable performance across different 
replicates, except for moETM, which appears sensitive to the split between training and 
test datasets. Notably, moETM demonstrates superior and stable performance with 
the CITE-CBMC-Stoeckius dataset but exhibits considerable performance fluctuations 
with the other two datasets, suggesting that its performance may heavily depend on the 
underlying dataset. The performance of each method also varies across datasets and 
evaluation metrics, with no clear overall winner. To summarize these results, we calcu-
late the average of the 15 ARS values (from three datasets, five repetitions) at both the 
protein and cell levels. We find that cTP-net outperforms other methods at the protein 
level while achieving moderate performance at the cell level (Fig. 2b, c). Unlike cTP-net, 
which shows a preference for the protein level, Seurat v4 (PCA), Seurat v4 (CCA), and 
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Seurat v3 (PCA) demonstrate competitive performance at both the protein and cell lev-
els (Fig. 2b, c).

Scenario 2: evaluating accuracy performance over different training data sizes

We investigate the impact of training data size variations on the accuracy perfor-
mance of imputation methods. Using the CITE-PBMC-Stoeckius, CITE-CBMC-
Stoeckius, and CITE-BMMC-Stuart datasets, we first randomly split each dataset into 
training and test sets, following scenario 1. Subsequently, we down-sample the train-
ing dataset by removing cells at intervals of 10% from 0 to 90%, while keeping the 
test dataset constant. To address variability, we conduct five replicate experiments for 

Fig. 2  Comparison of PCC among methods over random holdout. a Boxplots for PCC of each method in 
experiments with the CITE-PBMC-Stoeckius, CITE-CBMC-Stoeckius, and CITE-BMMC-Stuart datasets. The 
boxplots display the median PCC of each method across proteins or cells in each replicate experiment. 
Center line: median; box limits: upper and lower quartiles; whiskers: 1.5 times interquartile range. b, c Barplots 
for ARS value of each method at the protein (b) and cell (c) levels. Data are presented as the average of the 15 
ARS values (from three datasets, five repetitions) across all experiments in this scenario. Methods are ordered 
according to their performance
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each dataset. In total, we conduct 150 experiments in this scenario, using three data-
sets and performing five repeated experiments for each dataset across ten different 
down-sampling rates.

Under each down-sampling rate, we first calculate the median PCC and RMSE 
across proteins or cells for each experiment, and then take the median of these val-
ues across five replicate experiments to obtain a robust performance measure, whose 
trends across different down-sampling rates are illustrated in Fig.  3a and Addi-
tional file  2: Fig. S2. As expected, imputation performance generally decreases as 
the training dataset size is reduced. Notably, methods such as Seurat v3 (CCA), Seu-
rat v4 (CCA), and Seurat v4 (PCA) show relative insensitivity to training data size 

Fig. 3  Comparison of PCC among methods over different training data sizes. a Line plots for PCC of each 
method as the down-sampling rate of the training dataset changes. The horizontal axis represents the 
down-sampling rate of the training dataset. The vertical axis represents the median PCC performance at the 
protein or cell level across five replicate experiments under each down-sampling rate. Each line represents a 
method. b, c Barplots for ARS value of each method at the protein (b) and cell (c) levels. Data are presented as 
the average of the 150 ARS values (from three datasets, five repetitions, and ten down-sampling rates) across 
all experiments in this scenario. Methods are ordered according to their performance
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variations, maintaining robust performance. In contrast, deep learning-based meth-
ods like scMM, scMOG, and moETM, which perform poorly initially, are more sensi-
tive to reductions in training data size. TotalVI also exhibits some sensitivity at the 
protein level. This sensitivity may be due to the larger training datasets required by 
deep learning models for optimal performance. To comprehensively rank the twelve 
imputation methods, we calculate the average of the 150 ARS values (from three data-
sets, five repetitions, and ten down-sampling rates) at both the protein and cell levels. 
cTP-net, Seurat v4 (PCA), and Seurat v4 (CCA) demonstrate the best performance 
across various down-sampling rates at the protein level (Fig.  3b). At the cell level, 
Seurat v4 (PCA), Seurat v4 (CCA), and Seurat v3 (PCA) outperform other methods 
(Fig. 3c).

Scenario 3: evaluating accuracy performance over different samples

In this scenario, we evaluate the performance of imputation methods when the training 
and test datasets originate from different samples, reflecting common real-world condi-
tions. We use three datasets: CITE-PBMC-Li [26, 27], CITE-SLN111-Gayoso [18], and 
CITE-SLN208-Gayoso [18]. The CITE-PBMC-Li dataset includes data from eight vol-
unteers measured before and after HIV vaccination. To eliminate potential batch dif-
ferences from biological variation, we use only pre-vaccination data. The volunteers 
are randomly assigned to two non-overlapping groups: group 1, consisting of four vol-
unteers, and group 2, comprising the remaining four. We conduct two complementary 
experiments, alternating between using one group as the training set and the other as 
the test set. To account for randomness, we repeat the group assignments five times 
and conduct the experiments for each random division. The CITE-SLN111-Gayoso and 
CITE-SLN208-Gayoso datasets contain data from the spleen and lymph node tissues 
of two mice. For each dataset, we perform two complementary experiments, alternat-
ing between using one mouse as the training set and the other as the test set. In total, 
14 experiments are conducted in this scenario. For the CITE-PBMC-Li dataset, two 
complementary experiments are performed with five repetitions, while for the CITE-
SLN111-Gayoso and CITE-SLN208-Gayoso datasets, two complementary experiments 
are conducted for each.

A comparison of the evaluation results from experiments involving different data-
sets reveals significant differences. In experiments involving the CITE-PBMC-Li 
dataset, moETM consistently achieves the best performance in protein-level evalu-
ation metrics (Fig.  4a and Additional file  2: Fig. S3a). However, no single method 
consistently outperforms others at the cell level, with TotalVI, Seurat v3 (PCA), and 
scMoGNN each demonstrating their respective strengths (Fig.  4a and Additional 
file 2: Fig. S3a). Boxplots in Additional file 2: Fig. S4 are based on the median evalua-
tion metric value across proteins or cells of each repetition, showing the performance 
of each method across different random divisions. We observe that most methods 
exhibit relatively stable performance, with the aforementioned methods consist-
ently maintaining their respective advantages. In the CITE-SLN111-Gayoso dataset, 
TotalVI and Seurat-based methods excel at the protein and cell levels, respectively 
(Fig. 4b and Additional file 2: Fig. S3b). In the CITE-SLN208-Gayoso dataset, TotalVI 
leads at both the protein level and for PCC at the cell level (Fig.  4c and Additional 
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file 2: Fig. S3c). To summarize, we evaluate the methods’ performance at the protein 
and cell levels by averaging the six ARS values (from three datasets, two complemen-
tary experiments per dataset). To account for the potential impact of varying numbers 
of experiments across datasets on the overall results, the ARS for the CITE-PBMC-Li: 
Group1→Group2 and CITE-PBMC-Li: Group2→Group1 experiments are calculated 
using the median evaluation metric values across five repetitions. moETM, TotalVI, 
and scMoGNN show superior performance at the protein level (Fig. 4d). Seurat-based 
methods consistently demonstrate superior performance when focusing on the accu-
racy of protein abundances at the cell level (Fig. 4e).

Scenario 4: evaluating accuracy performance over different tissues

We assess the performance of the methods when the training and test datasets are 
derived from different tissues. We utilize three datasets: CITE-BMMC-Stuart (bone 
marrow mononuclear cells), CITE-CBMC-Stoeckius (cord blood mononuclear cells), 
and CITE-PBMC-Stoeckius (peripheral blood mononuclear cells), each representing 
cells from distinct but related blood sources [28, 29]. Each of these datasets is paired 
with one another, resulting in six experiments where each dataset is alternately used as 
the training and test dataset.

Fig. 4  Comparison of quantitative evaluation metrics among methods over different samples. a–c Boxplots 
for PCC or RMSE of each method in the CITE-PBMC-Li: Group1→Group2 (a), CITE-SLN111-Gayoso: Mouse1→
Mouse2 (b), and CITE-SLN208-Gayoso: Mouse1→Mouse2 experiments (c). The boxplots display values 
calculated at the protein or cell level. In (a), the results represent all five repetitions of the experiment, with all 
values at the protein or cell level across these repetitions included in the boxplot, where each point indicates 
the evaluation metric value of a protein or cell from the five repetitions. Center line: median; box limits: upper 
and lower quartiles; whiskers: 1.5 times interquartile range. d, e Barplots for ARS value of each method at the 
protein (d) and cell (e) levels. Data are presented as the average of the six ARS values (from three datasets, 
two complementary experiments per dataset) across all experiments in this scenario. Methods are ordered 
according to their performance
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Summarizing the results of these six experiments (Fig.  5a), we observe variability 
in benchmark results across different assessment metrics. Specifically, for metrics at 
the protein level, Seurat-based methods generally lead in performance except in the 
BMMC→PBMC and CBMC→PBMC experiments, where scMoGNN and cTP-net 
outperform other methods, respectively. For PCC at the cell level, sciPENN shows 
superior performance, except in the CBMC→PBMC and PBMC→CBMC experi-
ments, where TotalVI and Seurat v4 (PCA) perform best, respectively. Seurat-based 
methods consistently demonstrate superior performance in RMSE at the cell level 
across all experiments. An interesting observation is that protein-level metrics are 
more sensitive to the direction of data migration. The leading methods achieve higher 
PCC values and lower RMSE values in the BMMC→CBMC and PBMC→CBMC 
experiments compared to their respective complementary experiments. To summa-
rize the results across all six experiments using average ARS values, Seurat v4 (PCA), 
Seurat v3 (PCA), and Seurat v3 (CCA) exhibit superior performance for protein-level 
metrics (Fig. 5b). Seurat v3 (PCA), Seurat v3 (CCA), and Seurat v4 (CCA) lead in per-
formance for cell-level metrics (Fig. 5c).

Fig. 5  Comparison of quantitative evaluation metrics among methods over different tissues. a Heatmaps 
for PCC or RMSE of each method in each experiment of this scenario. The horizontal axis represents each 
method and the vertical axis represents each experiment. The values are the median across all proteins or 
cells. b, c Barplots for ARS value of each method at the protein (b) and cell (c) levels. Data are presented as the 
average of the six ARS values across all experiments in this scenario. These methods are ordered according to 
their performance
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Scenario 5: evaluating accuracy performance over different clinical states

In this scenario, we assess the ability of the methods to transfer between datasets with 
biological variations. We use three datasets: CITE-PBMC-Haniffa [30], CITE-PBMC-
Sanger [31], and CITE-PBMC-Li. The first two datasets are related to COVID-19, while 
the last one pertains to human immunodeficiency virus (HIV). The CITE-PBMC-Han-
iffa dataset includes data from volunteers with varying illness severity, healthy volun-
teers, and patients with severe non-COVID-19 respiratory illnesses. We design two 
experiments: one using data from healthy volunteers to infer data from critical patients, 
and another using data from non-COVID-19 acute respiratory disease patients to infer 
data from asymptomatic individuals. For benchmarking, we randomly select five sam-
ples each from the healthy volunteer and critical patient groups due to their large data 
size. To minimize the influence of randomness on the benchmark results, we perform 
five repetitions of the experiment. The CITE-PBMC-Sanger dataset categorizes patients 
by treatment severity. We first use data from asymptomatic patients not requiring oxy-
gen therapy as the training dataset and data from symptomatic patients not requiring 
oxygen therapy as the test dataset. Next, we use data from symptomatic patients not 
requiring oxygen therapy as the training dataset and data from symptomatic patients 
requiring extracorporeal membrane oxygenation (ECMO) therapy as the test dataset. 
The CITE-PBMC-Li dataset includes data from eight volunteers before and after HIV 
vaccination. We design two experiments: one using pre-vaccination data (Day0) as the 
training set and data from the third day post-vaccination (Day3) as the test set, and the 
other using Day0 data as the training set and data from the seventh day post-vaccination 
(Day7) as the test set. In the CITE-PBMC-Li: Day0→Day3 experiment, we randomly 
select data from four volunteers before vaccination as the training set, and use data from 
the remaining four volunteers collected on the third day post-vaccination as the test set. 
The same experimental setup is also applied in the CITE-PBMC-Li: Day0→Day7 experi-
ment. To reduce the impact of randomness in training and test set partitioning on the 
benchmark results, we perform five repetitions for each experiment. In total, 18 experi-
ments are conducted. Among these, the experiments involving CITE-PBMC-Haniffa: 
Healthy→Critical, CITE-PBMC-Li: Day0→Day3, and CITE-PBMC-Li: Day0→Day7 are 
each repeated five times to account for sampling randomness.

Benchmark results for protein-level metrics indicate that moETM consistently 
achieves superior performance across all experiments (Fig. 6a–c and Additional file 2: 
Fig. S5). Notably, in the four COVID-19 experiments, moETM significantly surpasses 
other methods, while in the remaining two experiments, scMoGNN demonstrates per-
formance comparable to moETM. This trend remains consistent across repeated experi-
ments (Additional file 2: Fig. S6). In this scenario, characterized by significant technical 
differences and biological variations, cTP-net’s performance decreases significantly com-
pared to scenarios 1 and 2 (Figs.  2, 3, 6 and Additional file  2: Figs. S1, S2, S5), high-
lighting its limitations in handling batch differences without correction. For cell-level 
metrics, the results vary across experiments (Fig.  6a–c and Additional file  2: Fig. S5). 
No single method achieves the best performance in all experiments, and the rankings 
of methods vary considerably. Finally, we employ the ARS to assess the overall perfor-
mance of these methods in this scenario. To mitigate the impact of varying numbers 
of experiments on the evaluation results, for experiments with repetitions, the ARS is 
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calculated based on the median evaluation metric values across five repetitions. Overall, 
the top three methods by ARS at the protein level are moETM, Seurat v3 (PCA), and 
scMoGNN (Fig. 6d). At the cell level, the top three methods are Seurat v3 (PCA), Seurat 
v4 (PCA), and scMoGNN (Fig. 6e).

Scenario 6: evaluating accuracy performance over different protocols

We delve deeper into the performance of imputation methods in the scenario where 
training and test datasets originate from different sequencing protocols. Four datasets 
are utilized: CITE-PBMC10K-10X [32], CITE-PBMC5K-10X [33], CITE-PBMC-Stoeck-
ius, and REAP-PBMC-Peterson [6]. The primary distinction between the first two data-
sets lies in their sequencing depths [18]. For each pair of datasets, two experiments are 
conducted, alternating between using one dataset as the training dataset and the other 
as the test dataset. The latter two datasets differ in sequencing technologies. We also 
perform two experiments using these latter two datasets. Thus, a total of four experi-
ments are conducted in this scenario.

Upon summarizing the results of these experiments (Fig. 7a), we observe that Seurat-
based methods consistently exhibit superior generalization capabilities across all experi-
ments. Their performance remains among the top regardless of the evaluation metrics 

Fig. 6  Comparison of quantitative evaluation metrics among methods over different clinical states. a–c 
Boxplots for PCC or RMSE of each method in the CITE-PBMC-Haniffa: Healthy→Critical (a), CITE-PBMC-Sanger: 
Asymptomatic→Symptomatic (b), and CITE-PBMC-Li: Day0→Day3 experiments (c). The boxplots display 
values calculated at the protein or cell level. In (a and c), the results represent all five repetitions of the 
experiments, with all values at the protein or cell level across these repetitions included in the boxplot, where 
each point indicates the evaluation metric value of a protein or cell from the five repetitions. Center line: 
median; box limits: upper and lower quartiles; whiskers: 1.5 times interquartile range. d, e Barplots for ARS 
value of each method at the protein (d) and cell (e) levels. Data are presented as the average of the six ARS 
values across all experiments in this scenario. These methods are ordered according to their performance
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employed. Seurat v4 generally outperforms Seurat v3, except in the CITE→REAP exper-
iment. Notably, comparing the outcomes of experiments with reciprocal training and 
test datasets unveils an intriguing finding: leveraging the REAP-PBMC-Peterson dataset 
as the training dataset yields superior imputation performance compared to using the 
CITE-PBMC-Stoeckius dataset. Based on the average ARS values across all four experi-
ments, Seurat v4 (PCA), Seurat v4 (CCA), and Seurat v3 (CCA) emerge as the top per-
formers for protein-level metrics (Fig. 7b). Conversely, for cell-level metrics, the leading 
methods are Seurat v4 (PCA), Seurat v4 (CCA), and Seurat v3 (PCA) (Fig. 7c).

Evaluating usability in terms of time and memory

We evaluate the usability of different imputation methods in terms of time and mem-
ory. Using a computational platform with a 16,896 KB L3 Cache, 48 CPU cores, and an 
NVIDIA Tesla V100 GPU, we conduct experiments on the CITE-BMMC-Stuart dataset. 
Following the settings from scenario 2, we use various training data rates (from 10 to 
100% in 10% intervals), where the training data rate is equivalent to 1 minus the down-
sampling rate in scenario 2. To reduce biases caused by fluctuations in the experimental 

Fig. 7  Comparison of quantitative evaluation metrics among methods over different protocols. a Heatmaps 
for PCC or RMSE of each method in each experiment of this scenario. The horizontal axis represents each 
method and the vertical axis represents each experiment. The values are the median across all proteins or 
cells. b, c Barplots for ARS value of each method at the protein (b) and cell (c) levels. Data are presented as the 
average of the four ARS values across all experiments in this scenario. These methods are ordered according 
to their performance
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environment and enhance the reliability and robustness of the evaluation results, we 
perform five repeated experiments for each training data rate.

From the running time trends shown in Fig. 8a, which is based on the medians of the 
repeated experiments, and the specific recorded values presented in Additional file  1: 
Table  S3, several patterns emerge. cTP-net requires significantly more time than the 
other methods, often exceeding 11 h, mainly due to its data denoising process with 
SAVER-X [34]. Other methods can be grouped into three categories based on their run-
ning times. TotalVI and scMOG have longer but relatively stable running times across 
different training data rates. In contrast, sciPENN, Babel, and moETM are the most 
time-efficient methods, completing tasks in under a minute. While their running times 
slightly increase with higher training data rates, they remain significantly faster than 
the other methods. The remaining methods show a clear increase in running time as 
the training data rate rises. Notably, Seurat v4 is slower than Seurat v3 at lower training 
data rates, likely due to its more complex preprocessing. However, as the training data 
rate increases, Seurat v3 becomes slower than Seurat v4, indicating greater sensitivity to 
training dataset size. Moreover, CCA is slower than PCA within Seurat. Additional file 1: 
Table S3 presents the detailed running times for each method across repeated experi-
ments. Although variability is observed in some repetitions, the fluctuations remain 
consistently within a reasonable range.

Regarding memory usage, as shown in Fig. 8b, which is based on the medians of the 
repeated experiments, and Additional file 1: Table S4, the methods can be divided into 
three groups. At higher training data rates, both scMOG and scMoGNN exceed 20 GB 
in memory usage, significantly surpassing the other methods, with scMoGNN show-
ing a more pronounced increase compared to scMOG. The excessive memory usage of 
scMOG and scMoGNN may be attributed to the pretraining mechanism and the incor-
poration of graph structures, respectively. cTP-net uses between 10 and 20 GB, with 

Fig. 8  Comparison of running time and memory usage among methods. a, b Line plots for running time 
(a) and memory usage (b) as the training data rate changes. The horizontal axis represents the training data 
rate. The vertical axis shows the running time in log10 minutes (a) or memory usage in GB (b). The values 
for running time and memory usage are based on the median of the five repetitions. Each line represents a 
method
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usage increasing as the training data rate rises, likely due to data denoising. The remain-
ing methods use less than 10 GB, with minor variations. Within Seurat, memory usage 
does not depend on the dimensionality reduction method but is slightly higher for Seu-
rat v4 than Seurat v3. Additional file 1: Table S4 records the detailed memory usage for 
each method across repeated experiments. The results show that memory usage exhibits 
less fluctuation than running time across repetitions.

Overall summary of benchmark results

We summarize the performance of these methods across four primary dimensions: 
accuracy, sensitivity to training data size, robustness across experiments, and usability. 
The accuracy of each scenario is defined as the mean average rank score (ARS) values 
of different experiments within that scenario, while the overall accuracy is evaluated 
by the mean ARS values across all scenarios. Sensitivity to training data size is assessed 
using two metrics: rank score of increments of accuracy performance, which quanti-
fies the variability of methods with changes in training data size, and average-increment 
composite score (AICS), which considers both the average performance of methods and 
their variability to training data size to reflect the effectiveness of models. This evalu-
ation is conducted in scenario 2. Robustness across experiments is evaluated by the 
robustness composite score (RCS), which is calculated based on the ARS values from all 
experiments with technical and biological differences, indicating the stability and com-
petitiveness of accuracy across these real-world-like experiments. These experiments are 
conducted on the scenarios of different samples, tissues, clinical states, and protocols, 
resembling experiments in real-world application scenarios. Both accuracy, sensitivity to 
training data size, and robustness across experiments are examined at both the protein 
and cell levels. Usability encompasses time, memory, and quality. For time and memory, 
we calculate both the mean and increment relative to the training data size using the 
results recorded in Fig. 8. These metrics provide insights into the efficiency of the meth-
ods and their variability to training data size, respectively. Quality is measured through 
popularity and user-friendliness. The popularity is represented by the number of stars on 
each method’s official GitHub repository (last updated on 15 December 2024). We score 
the user-friendliness of methods based on three aspects: installation, code, and tutorial. 
Each method starts with 5 points in each aspect, with points deducted for any identified 
issues. The user-friendliness score for each method is then calculated by summing the 
points across all three aspects. The overall benchmark results are summarized in Fig. 9 
and the accuracy evaluation results for specific scenarios are shown in Additional file 2: 
Fig. S7. Based on the results of our study, we draw several findings.

In terms of accuracy, we observe that at the protein level, benchmark results vary 
across scenarios. Notably, cTP-net tends to show superior performance primarily in 
scenarios without batch differences (Additional file  2: Fig. S7b, left), likely because it 
transfers networks learned in the training dataset to the test dataset without perform-
ing batch correction. Conversely, moETM and scMoGNN perform well in scenarios 
with batch differences (Additional file 2: Fig. S7b, left), highlighting the strengths of joint 
representations and graph neural networks in handling such complexities. Seurat-based 
methods consistently are the top three methods in all scenarios except for different sam-
ples (Additional file 2: Fig. S7b, left), with Seurat v4 (PCA) leading overall (Fig. 9b, left). 
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At the cell level, Seurat-based methods consistently show superior performance (Fig. 9b, 
right), utilizing mutual nearest neighbor cells to achieve accurate protein abundances 
in individual cells. Among these methods, PCA-based dimensionality reduction yields 
better results than CCA (Fig. 9b, right). Notably, in scenarios with biological variation 
embedded in batch differences, such as different clinical states, scMoGNN performs 
comparably to Seurat-based methods (Additional file  2: Fig. S7b, right), underscoring 
the advantages of higher-order topological relationships in complex batch differences.

In terms of sensitivity to training data size, we find that at the protein level, cTP-net, 
Seurat v4 (PCA), and Seurat v4 (CCA) are the most effective (Fig. 9c, left). In Seurat-
based methods, PCA-based dimensionality reduction exhibits greater variability to 
training data size compared to CCA (Fig. 9c, left). At the cell level, the most effective 
methods are Seurat v4 (PCA), Seurat v4 (CCA), and Seurat v3 (PCA) (Fig.  9c, right). 
Among these, Seurat v4 (PCA) consistently demonstrates excellent performance across 
various training dataset sizes (Fig. 9c, right). In contrast, the performance of the remain-
ing two methods exhibits relatively greater variability to training data size (Fig. 9c, right). 
Further analysis of the AICS evaluation results under varying ωai settings indicates that 
the results remain relatively stable when ωai exceeds 0.5, especially for the top-perform-
ing methods (Additional file 1: Tables S5, S6). The aforementioned evaluation results can 
assist users in considering the training data size when selecting methods.

Fig. 9  Overall summary of benchmark results for the methods. a Names of the twelve methods and 
their primary programming languages. Methods are categorized into three main classes based on their 
imputation strategies. b Evaluation of accuracy using mean ARS values across different scenarios. Methods 
are compared based on the mean ARS values, with better performance indicating more accurate imputation 
performance. Longer rectangular bars and lighter colors denote better performance. c Sensitivity analysis 
of accuracy performance to training data size using the rank score of increments and AICS. Methods are 
compared based on these criteria, with better performance indicating less variability to training data size or 
greater effectiveness. Longer rectangular bars and lighter colors denote better performance. d Robustness 
assessment across experiments with technical and biological differences using RCS. Methods are compared 
based on the RCS values, with better performance indicating more robust imputation performance. 
Longer rectangular bars and lighter colors denote better performance. e Usability evaluation in terms of 
time, memory, and quality. Time and memory are assessed using data from Fig. 8, with better performance 
indicating greater efficiency or less variability to training data size. Quality is evaluated based on popularity 
and user-friendliness, with better performance indicating more popular or user-friendly methods. Longer 
rectangular bars and lighter colors denote better performance. In each evaluation, the top three methods are 
marked with stars: three stars for the best-performing method, two stars for the second-best, and one star for 
the third
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In experiments with technical and biological differences, at the protein level, methods 
such as Seurat v4 (PCA) and Seurat v3 (PCA), which achieve excellent accuracy, also 
tend to be relatively robust (Fig. 9d, left and Additional file 2: Fig. S7b, left). However, 
exceptions exist, such as moETM, which exhibits high accuracy only in the scenarios of 
different samples and clinical states, resulting in less robust performance across all sce-
narios (Fig. 9d, left and Additional file 2: Fig. S7b, left). At the cell level, Seurat v3 (PCA), 
Seurat v3 (CCA), and Seurat v4 (PCA) outperform other methods and also consistently 
demonstrate superior accuracy across most scenarios (Fig.  9d, right and Additional 
file  2: Fig. S7b, right). Notably, while Seurat v4 (CCA) slightly outperforms Seurat v3 
(CCA) in accuracy evaluations, it is less competitive in robustness assessments (Fig. 9d, 
right and Additional file 2: Fig. S7b, right). Further analysis of the RCS evaluation results 
under different ωms settings reveals that when ωms is greater than 0.5, the RCS evaluation 
results remain relatively stable, particularly for the top-performing methods (Additional 
file 1: Tables S7, S8). The robustness assessment results in experiments closely resem-
bling real-world scenarios can serve as a supplementary guide for users when selecting 
methods for specific scenarios.

Regarding usability, we first evaluate efficiency based on running time and memory 
usage. We find that cTP-net and scMoGNN, despite high accuracy, are less efficient in 
terms of time and memory (Fig. 9e, left and middle and Additional file 1: Tables S3, S4). 
Conversely, among the methods with relatively excellent accuracy performance, moETM 
is the most time-efficient and exhibits the least variability to training data size (Fig. 9e, 
left and Additional file 1: Table S3). Seurat-based methods are the most memory-effi-
cient and show the less variability to training data size (Fig. 9e, middle and Additional 
file 1: Table S4). However, they have longer running times compared to some deep learn-
ing-based methods, and the running time increases significantly with the growth of the 
training data size. Regarding popularity, Seurat-based methods dominate, likely due to 
Seurat’s multifunctional suite for single-cell data analyses (Fig. 9e, right and Additional 
file 1: Table S9). In terms of user-friendliness, the Seurat-based methods are also lead-
ing, followed by TotalVI and sciPENN (Fig. 9e, right, Additional file 1: Table S10). These 
three methods consistently achieve high scores across the aspects of installation, code, 
and tutorial, whereas other methods exhibit more issues in one or more of these aspects.

Upon comprehensive evaluation, Seurat-based methods, particularly Seurat v4 (PCA) 
and Seurat v3 (PCA), emerge as the most favorable options, demonstrating superior 
accuracy and robustness across diverse experiments, and showing relative insensitiv-
ity to training data size. Their ability to handle various sources of single-cell data effec-
tively, while maintaining memory efficiency and user-friendly features, makes them top 
choices for the surface protein expression imputation task. However, they exhibit longer 
running times compared to some deep learning-based methods, highlighting scalability 
concerns and underscoring the necessity for future enhancements to effectively manage 
larger datasets.

Decision‑tree‑style guidance scheme for method selection

Furthermore, we provide users scenario-specific method recommendations in the form of a 
decision tree (Fig. 10). This concise and intuitive scheme is designed to help users in identi-
fying the most suitable methods for each specific scenario. Each branch of the decision tree 
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represents a distinct experimental scenario evaluated in our study. For each scenario, we 
recommend three methods based on ARS evaluation results for both the protein and cell 
levels (as described in Additional file 2: Fig. S7), catering to diverse downstream experimen-
tal needs.

As shown in our overall evaluation results (Fig. 9), Seurat v4 (PCA) and Seurat v3 (PCA) 
are the recommended methods in most scenarios. However, exceptions exist in certain 
cases, highlighting that some methods perform better in specific scenarios, thus expand-
ing the range of choices available to users. For example, when prioritizing protein-level 
accuracy, cTP-net is the most recommended method in scenario without batch differences. 
In scenario with different samples, moETM, TotalVI, and scMoGNN are recommended, 
while in scenario with different clinical states, moETM and scMoGNN are similarly pre-
ferred. When prioritizing cell-level accuracy, we also recommend scMoGNN in scenario 
involving different clinical states. In addition to the scenario-based method selection guid-
ance scheme, we also provide a summary table in Additional file 1: Table S11, outlining the 
imputation strategy, strengths, weaknesses, and recommended application scenarios of 
each method, to help users better understand the differences between the methods.

Discussion
The emergence of CITE-seq and REAP-seq technologies has revolutionized our under-
standing of cellular heterogeneity by enabling simultaneous profiling of gene expression 
and surface protein expression at the single-cell level. However, widespread adoption of 

Fig. 10  Decision-tree-style guidance scheme for method selection in each scenario. Each branch represents 
a distinct experimental scenario in our study and is further divided into protein-level and cell-level analyses. 
For both levels, we recommend the top three performing methods for each scenario based on the evaluation 
results of ARS, providing tailored, scenario-specific guidance for method selection. From top to bottom, the 
results correspond to scenario 1, scenario 3, scenario 4, scenario 5, and scenario 6, respectively
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these technologies is hampered by technical challenges and high costs, leading to the 
limited availability of publicly accessible datasets for studying complex tissues. Leverag-
ing machine learning methods to impute surface proteomic data from transcriptomic 
data presents a promising solution to this challenge, enabling the acquisition of paired 
multimodal datasets for comprehensive analysis. Despite the development of various 
computational methods for surface protein data imputation, a comprehensive evalua-
tion of their performance remains elusive. In this benchmark study, we bridge this gap 
by assessing twelve state-of-the-art imputation methods across accuracy, sensitivity to 
training data size, robustness across experiments, and usability.

Our findings unveil several key insights. Seurat-based methods, particularly Seurat 
v4 (PCA) and Seurat v3 (PCA), consistently exhibit competitive performance at both 
protein and cell levels (Fig. 9b and Additional file 2: Fig. S7b). In contrast, while other 
methods may excel at one level, their performance tends to falter at the other, with vary-
ing outcomes across different scenarios (Additional file  2: Fig. S7b). Sensitivity analy-
sis reveals that Seurat-based methods are relatively insensitive to variations in training 
data size (Figs.  2, 9c), whereas other deep learning-based methods, such as scMM, 
scMOG, TotalVI, and moETM, display higher sensitivity to reductions in training data 
size (Figs. 2, 9c). Additionally, Seurat-based methods, particularly Seurat v4 (PCA) and 
Seurat v3 (PCA), demonstrate robustness across different experiments with technical 
and biological differences (Fig. 9d). Furthermore, efficiency analysis highlights moETM 
and Seurat-based methods as the most efficient and least variable options for time and 
memory, respectively, among the methods with relatively excellent accuracy perfor-
mance (Figs. 8, 9e and Additional file 1: Tables S3, S4), making them appealing choices 
for practical applications. Overall, our findings underscore the exceptional performance 
of Seurat-based methods, particularly Seurat v4 (PCA) and Seurat v3 (PCA), across mul-
tiple metrics, coupled with their popularity and user-friendly features.

While the results presented in this study are based on datasets with available surface 
protein ground truth for performance evaluation, we also conduct exploratory analyses 
on scenarios lacking ground truth. In the absence of ground truth, evaluating the valid-
ity of the imputed protein expression presents a challenge. To address this, we examine 
whether the clustering structure of cells is preserved between the transcriptomic and 
imputed proteomic data. In extensive experiments conducted without ground truth, we 
evaluate the consistency between the clustering derived from imputed proteomic data 
and transcriptomic data using the Adjusted Rand Index (ARI) (see Additional file 2: Sup-
plementary note 1 for details). The findings reveal that Seurat-based methods consist-
ently achieve high clustering concordance across the majority of datasets, while other 
methods exhibit greater variability in performance, indicating a lack of stability (Addi-
tional file 2: Figs. S8–S22). In the absence of surface protein ground truth, the validation 
results are consistent with those from the previous benchmark results, further under-
scoring the effectiveness of Seurat-based methods.

However, we also note that Seurat-based methods, particularly those relying on Seu-
rat v4, tend to exhibit longer running times compared to some deep learning-based 
methods, such as moETM (Figs.  8b, 9e, left and Additional file  1: Table  S3). Further-
more, their running time increment relative to training data size is also comparatively 
larger (Figs. 8b, 9e, left and Additional file 1: Table S3), indicating potential scalability 
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challenges with larger datasets. As datasets continue to grow exponentially, reach-
ing sizes of millions or even larger, the feasibility of using Seurat-based methods may 
become limited. Therefore, there is an urgent need to enhance these methods to effec-
tively handle large datasets [35]. Additionally, the relatively less competitive performance 
of deep learning-based methods may partly result from insufficiently large training 
datasets. Addressing this limitation could involve developing more efficient and effec-
tive deep learning-based methods through pretraining and fine-tuning. For instance, 
pretraining on large-scale scRNA-seq data using self-supervised learning, followed by 
fine-tuning using paired data generated from CITE-seq and REAP-seq, could be a viable 
approach. One potential avenue is to adapt large language models like scGPT [36] and 
Geneformer [37], pretrained on extensive scRNA-seq data, to predict surface protein 
expression based on gene expression data.

Conclusions
In this study, we comprehensively evaluate twelve state-of-the-art imputation methods 
for surface protein expression, emphasizing accuracy, sensitivity to training data size, 
robustness across experiments, and usability. Seurat-based methods, particularly Seurat 
v4 (PCA) and Seurat v3 (PCA), stand out as the best performers, demonstrating com-
petitive accuracy and robustness across experiments, and showing relative insensitiv-
ity to training dataset size, with memory-efficient and user-friendly features. However, 
these methods exhibit longer running times compared to certain deep learning-based 
approaches, highlighting scalability concerns and underscoring the necessity for future 
enhancements to manage larger datasets effectively.

Methods
Dataset collection and quality control

In this study, we employ eleven publicly available datasets for our benchmark analysis, 
each meticulously selected from reputable sources to ensure reliability and relevance. 
In addition, we select transcriptomic data of human peripheral blood mononuclear cells 
generated by seven different single-cell and single-nucleus RNA-sequencing (scRNA-seq 
and snRNA-seq) technologies from a systematic study to evaluate the imputation per-
formance of methods in the absence of surface protein ground truth [38] (see Additional 
file 2: Supplementary note 2 for details about the datasets). The datasets are named fol-
lowing a standardized convention that includes the sequencing technologies, tissues, and 
authors involved. These datasets encompass CITE-PBMC-Stoeckius [5], CITE-CBMC-
Stoeckius [5], CITE-BMMC-Stuart [12], CITE-PBMC-Li [26, 27], CITE-SLN111-Gayoso 
[18], CITE-SLN208-Gayoso [18], CITE-PBMC-Haniffa [30], CITE-PBMC-Sanger [31], 
CITE-PBMC10K-10X [32], CITE-PBMC5K-10X [33], REAP-PBMC-Peterson [6], CEL-
PBMC-Ding [38], Drop-PBMC-Ding [38], inDrops-PBMC-Ding [38], SeqWell-PBMC-
Ding [38], Smart-PBMC-Ding [38], 10xV2-PBMC-Ding [38], and 10xV3-PBMC-Ding 
[38].

For the CITE-PBMC-Stoeckius and CITE-CBMC-Stoeckius datasets, which are gen-
erated from species-mixing experiments, we isolate human cells by filtering the data-
sets to include only those with more than 90% of UMI counts mapped to human genes 
[5]. Subsequently, we remove low-quality genes (fewer than 10 counts across all cells) 
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and low-quality cells (fewer than 200 genes detected) [14]. These criteria are adopted 
from the original article and cTP-net [5, 14]. For the CITE-SLN111-Gayoso and CITE-
SLN208-Gayoso datasets, which have isotype control antibodies and hashtag antibodies 
in their panels, we remove these antibodies in accordance with the original article [18]. 
Quality control procedures for the REAP-PBMC-Peterson dataset adhere to the criteria 
outlined in the original article and cTP-net [6, 14]. Initially, we filter out cells with high 
mitochondrial gene expression (more than 20% counts from mitochondrial genes) and 
fewer than 250 genes detected [6]. This is followed by the exclusion of low-quality genes 
(fewer than 10 counts across all cells) [14]. For scRNA-seq and snRNA-seq datasets, we 
filter out low-quality genes within each experimental batch (see Additional file 2: Sup-
plementary note 2), defined as those with fewer than 5 counts across all cells in the CEL-
PBMC-Ding, SeqWell-PBMC-Ding (Experiment2), and Smart-PBMC-Ding datasets, 
or fewer than 10 in other datasets. For the remaining datasets, we utilize preprocessed 
data provided directly by the authors, ensuring consistency and reliability in our analy-
sis. Detailed summaries of the datasets after quality control are presented in Additional 
file 1: Table S1.

Method implementing details

Seurat [12, 13]. We follow the tutorial on https://​satij​alab.​org/​seurat/​artic​les/​multi​
modal_​refer​ence_​mappi​ng. This tutorial is based on Seurat v4, with the preprocess-
ing part for gene expression data using the SCTransform function. We also conduct 
experiments using the preprocessing steps described in the Seurat v3 paper [12]. When 
performing dimensionality reduction of the gene expression data, both canonical cor-
relation analysis (CCA) and principal component analysis (PCA) are recommended [12]. 
We consider these two cases when conducting our experiments. We set the reduction 
parameter to cca or pcaproject in the FindTransferAnchors function. We use the Trans-
ferData function to transfer the surface protein data from the training dataset to the 
test dataset. We use the default settings for all other parameters. These four different 
methods are named Seurat v3 (CCA), Seurat v3 (PCA), Seurat v4 (CCA), and Seurat v4 
(PCA).

cTP-net [14]. cTP-net consists of two steps. First, it uses SAVER-X to denoise the raw 
gene expression data and then predicts surface protein expression using the proposed 
cTP-net model. We follow the guidelines on the GitHub repository of SAVER-X (https://​
github.​com/​jings​huw/​SAVERX) for denoising the raw gene expression data [34]. After 
that, we use the code from https://​github.​com/​zhouz​ilu/​cTPnet/​blob/​master/​extda​ta/​
train​ing_​05152​020.​py to learn the prediction model. We use the default settings for all 
parameters.

sciPENN [15]. We follow the tutorial provided on the GitHub repository of sciPENN: 
https://​github.​com/​jlakk​is/​sciPE​NN. For experiments containing batch information 
within the training and test datasets, we pass the batch key information to the param-
eters train_batchkeys and test_batchkey of the sciPENN_API. We use the default settings 
for all other parameters.

scMOG [16]. We use the code available at https://​github.​com/​GaoLa​bXDU/​
scMOG/​blob/​main/​scMOG_​code/​bin/​train_​prote​in.​py to train the model, and then 
utilize the code from https://​github.​com/​GaoLa​bXDU/​scMOG/​blob/​main/​scMOG_​

https://satijalab.org/seurat/articles/multimodal_reference_mapping
https://satijalab.org/seurat/articles/multimodal_reference_mapping
https://github.com/jingshuw/SAVERX
https://github.com/jingshuw/SAVERX
https://github.com/zhouzilu/cTPnet/blob/master/extdata/training_05152020.py
https://github.com/zhouzilu/cTPnet/blob/master/extdata/training_05152020.py
https://github.com/jlakkis/sciPENN
https://github.com/GaoLabXDU/scMOG/blob/main/scMOG_code/bin/train_protein.py
https://github.com/GaoLabXDU/scMOG/blob/main/scMOG_code/bin/train_protein.py
https://github.com/GaoLabXDU/scMOG/blob/main/scMOG_code/bin/predict-protein.py
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code/​bin/​predi​ct-​prote​in.​py for imputing the test dataset. All parameters are set to 
their default values.

scMoGNN [17]. We follow the tutorial available at https://​github.​com/​openp​roble​
ms-​bio/​neuri​ps2021-​noteb​ooks/​blob/​main/​noteb​ooks/​templ​ates/​NeurI​PS_​CITE_​
GEX_​analy​sis.​ipynb to preprocess the data [39]. Subsequently, we utilize the code 
from https://​github.​com/​Omics​ML/​dance/​blob/​main/​examp​les/​multi_​modal​ity/​predi​
ct_​modal​ity/​scmog​cn.​py [40] for imputing surface protein expression. When deal-
ing with experiments containing batch information within the training and test data-
sets, we set the parameter no_batch_features to False. Otherwise, we set it to True. All 
other parameters are kept at their default settings.

TotalVI [18]. We follow the tutorial provided on the scvi-tools website: https://​
docs.​scvi-​tools.​org/​en/​stable/​tutor​ials/​noteb​ooks/​multi​modal/​cite_​scrna_​integ​
ration_​w_​total​VI.​html [41]. For experiments containing batch information within 
the training and test datasets, we pass the batch key information to the parameter 
batch_key in both the sc.pp.highly_variable_genes and scvi.model.TOTALVI.setup_
anndata functions. Following the solution provided on https://​github.​com/​scver​
se/​scvi-​tools/​issues/​1281, in some experiments conducted in scenario 2, we adjust 
the parameter lr to 4 × 10−4 in the model.train function. These experiments include 
replicate experiments 1, 3, and 4 under the down-sampling rate of 90%, replicate 
experiments 3, 4, and 5 under the down-sampling rate of 80%, replicate experiment 
4 under the down-sampling rate of 50% in the CITE-BMMC-Stuart dataset, and 
all replicate experiments under the down-sampling rate of 0% in the CITE-PBMC-
Stoeckius dataset. All other parameters are set to their default values.

Babel [19]. We follow the preprocessing steps in the original paper [19]. Subse-
quently, we follow the tutorial on https://​github.​com/​Omics​ML/​dance-​tutor​ials/​
blob/​main/​dance_​tutor​ial.​ipynb to learn the prediction model [40]. When the down-
sampling rate of the CITE-PBMC-Stoeckius and CITE-CBMC-Stoeckius datasets is 
90% in scenario 2, or when the training data rate of these two datasets is 10% in the 
“Evaluating usability in terms of time and memory” section, we adjust the parameter 
batchsize to 32. All other parameters are kept at their default settings.

moETM [20]. We utilize the code from https://​github.​com/​manqi​zhou/​moETM/​
blob/​main/​datal​oader.​py to preprocess the data. Subsequently, we use the code from 
https://​github.​com/​manqi​zhou/​moETM/​blob/​main/​main_​cross_​predi​ction_​rna_​
prote​in.​py for imputations. For experiments containing batch information within the 
training and test datasets, we incorporate this batch key information as additional 
inputs. All other parameters are kept at their default settings.

scMM [21]. We implement scMM using the code from https://​github.​com/​Omics​
ML/​dance/​blob/​main/​examp​les/​multi_​modal​ity/​predi​ct_​modal​ity/​scmm.​py [40]. Fol-
lowing the solution provided at https://​github.​com/​scver​se/​scanpy/​issues/​1504, when 
the down-sampling rate of the CITE-PBMC-Stoeckius datasets is 90% in scenario 2, 
or the training data rate of this dataset is 10% in the “Evaluating usability in terms of 
time and memory” section, we set the parameter span to 0.5 in the sc.pp.highly_vari-
able_genes to select the highly variable genes. All other parameters are kept at their 
default settings.

https://github.com/GaoLabXDU/scMOG/blob/main/scMOG_code/bin/predict-protein.py
https://github.com/openproblems-bio/neurips2021-notebooks/blob/main/notebooks/templates/NeurIPS_CITE_GEX_analysis.ipynb
https://github.com/openproblems-bio/neurips2021-notebooks/blob/main/notebooks/templates/NeurIPS_CITE_GEX_analysis.ipynb
https://github.com/openproblems-bio/neurips2021-notebooks/blob/main/notebooks/templates/NeurIPS_CITE_GEX_analysis.ipynb
https://github.com/OmicsML/dance/blob/main/examples/multi_modality/predict_modality/scmogcn.py
https://github.com/OmicsML/dance/blob/main/examples/multi_modality/predict_modality/scmogcn.py
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/multimodal/cite_scrna_integration_w_totalVI.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/multimodal/cite_scrna_integration_w_totalVI.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/multimodal/cite_scrna_integration_w_totalVI.html
https://github.com/scverse/scvi-tools/issues/1281
https://github.com/scverse/scvi-tools/issues/1281
https://github.com/OmicsML/dance-tutorials/blob/main/dance_tutorial.ipynb
https://github.com/OmicsML/dance-tutorials/blob/main/dance_tutorial.ipynb
https://github.com/manqizhou/moETM/blob/main/dataloader.py
https://github.com/manqizhou/moETM/blob/main/dataloader.py
https://github.com/manqizhou/moETM/blob/main/main_cross_prediction_rna_protein.py
https://github.com/manqizhou/moETM/blob/main/main_cross_prediction_rna_protein.py
https://github.com/OmicsML/dance/blob/main/examples/multi_modality/predict_modality/scmm.py
https://github.com/OmicsML/dance/blob/main/examples/multi_modality/predict_modality/scmm.py
https://github.com/scverse/scanpy/issues/1504
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Benchmark metrics

Metrics for evaluating accuracy of methods

We devise a comprehensive assessment framework to quantitatively evaluate the 
accuracy performance of methods, encompassing three pivotal metrics: Pearson cor-
relation coefficient (PCC), root mean square error (RMSE), and average rank score 
(ARS).

PCC. PCC (Pearson correlation coefficient) gauges the degree of correlation between 
the predicted values and the ground truth. At the protein level, it is calculated as:

where Ŷip and Yip represent the predicted and true expressions of protein p in cell i, 
respectively. Similarly, µ̂p and µp denote the mean predicted and true expressions across 
all cells for protein p respectively, with N denoting the total number of cells. Addition-
ally, we evaluate the correlation at the cell level, denoted as ri , which is calculated as:

where µ̂i and µi represent the mean predicted and true expressions across all proteins 
for cell i respectively, and P represents the total number of proteins.

RMSE. RMSE (root mean square error) quantifies the absolute difference in numerical 
magnitude between the predicted values and the ground truth. At the protein level, we 
initially standardize the predicted and true expressions using Z-score transformation for 
comparability. RMSE for protein p is then defined as:

where Ŷ ′

ip and Y ′

ip represent the Z-score standardized predicted and true expressions of 
protein p in cell i, respectively. We also compute RMSE at the cell level after performing 
ℓ2 normalization across proteins for each cell, which is defined as:

where Ŷ ′′

ip and Y ′′

ip represent the ℓ2 normalized predicted and true expressions of protein 
p in cell i, respectively.

ARS. We introduce ARS (average rank score) to conduct a comprehensive evaluation of 
methods, incorporating the aforementioned metrics. In each experiment, we calculate the 
four metrics for methods (PCC and RMSE values calculated respectively at the protein and 
cell levels), and rank the methods accordingly based on the median values of these metrics, 
where a method with better performance is assigned a higher rank score value. Given the 
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rank scores based on PCC (denoted as PCC_RS) and RMSE (denoted as RMSE_RS), we 
define the ARS as follows:

Specifically, based on the rank scores PCC_RSprotein and RMSE_RSprotein at the protein 
level, we can obtain the ARS at the protein level as follows:

Similarly, we can obtain the ARS at the cell level as follows:

where PCC_RScell and RMSE_RScell are the rank scores of methods for PCC and RMSE 
metrics at the cell level, respectively. A higher ARS value indicates better accuracy per-
formance across all metrics in the experiment.

Metrics for evaluating the influences of training data size variations

In evaluating the influences of training data size variations on methods’ accuracy perfor-
mance, running time, and memory usage, we introduce the mean to evaluate methods in 
terms of average accuracy or efficiency, and the increment to assess methods in terms of 
variability. Additionally, in assessing the influences on methods’ accuracy performance, 
i.e., the sensitivity of methods to training data size, we propose the average-increment 
composite score (AICS) as a comprehensive measure that considers both average accu-
racy and variability to reflect the effectiveness of methods.

Means of accuracy performance. We introduce means of accuracy performance to 
assess the average accuracy of methods across all training data sizes. In dataset d from 
scenario 2, for each down-sampling rate π (where π ranges from 0 to 90% in increments 
of 10%), PCCd

protein(π) and RMSEdprotein(π) represent the median PCC and RMSE values 
across five replicate experiments at the protein level, respectively. The means of accuracy 
performance based on PCC and RMSE are defined as:

Similarly, for the median PCC and RMSE values across five replicate experiments at 
the cell level, we can calculate the mean values in dataset d from scenario 2, denoted as:
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A higher mean value based on PCC or a lower mean value based on RMSE indicates 
better performance in terms of PCC or RMSE across all training data sizes in dataset d.

Means of running time and memory usage. The means of running time ( ̄T  ) and 
memory usage ( M̄ ) evaluate efficiency across all training data rates. For each rate θ 
(where θ is equivalent to 1 minus the down-sampling rate π in scenario 2, ranging from 
10 to 100% in increments of 10%), T (θ) and M(θ) represent the running time and mem-
ory usage, respectively. The means of running time and memory usage are computed as:

A lower mean value indicates more efficiency in terms of time or memory.
Increments of accuracy performance. We introduce increments of accuracy perfor-

mance to assess the variability of methods to training data size in terms of accuracy. In 
dataset d from scenario 2, �PCCd

protein
 and �RMSEdprotein

 represent the increments based on 

PCC and RMSE, respectively. They are defined as the sum of the absolute differences 
over all adjacent down-sampling rates:

where π ′ and π ′
− 10 are the down-sampling rates, and π ′

∈ {10%, 20%, . . . , 90%} . Simi-
larly, we calculate the increment values at the cell level as:

A lower increment value indicates less variability of accuracy performance in terms of 
PCC or RMSE to training data size in dataset d.

Increments of running time and memory usage. The increments of running time 
( �time ) and memory usage ( �memory ) measure the variability of methods to training data 
rate in terms of time and memory. They are defined as the sum of the absolute differ-
ences over all adjacent training data rates:

(12)T̄ =

1

10

∑

θ

T (θ)

(13)M̄ =

1

10

∑

θ

M(θ)

(14)�PCCd
protein

=

∑

π ′

∣

∣

∣
PCCd

protein

(

π ′
− 10

)

− PCCd
protein

(

π ′
)

∣

∣

∣

(15)�RMSEdprotein
=

∑

π ′

∣

∣

∣
RMSEdprotein

(

π ′
)

− RMSEdprotein
(

π ′
− 10

)

∣

∣

∣

(16)�PCCd
cell

=

∑

π ′

∣

∣

∣
PCCd

cell

(

π ′
− 10

)

− PCCd
cell

(

π ′
)

∣

∣

∣

(17)�RMSEdcell
=

∑

π ′

∣

∣

∣
RMSEdcell

(

π ′
)

− RMSEdcell
(

π ′
− 10

)

∣

∣

∣

(18)�time =

∑

θ ′

∣

∣T
(

θ ′
)

− T
(

θ ′ − 10
)∣

∣



Page 26 of 30Li et al. Genome Biology           (2025) 26:46 

where θ ′ and θ ′ − 10 are the training data rates, and θ ′ ∈ {20%, 30%, . . . , 100%} . A 
lower increment value indicates less variability to training data size in terms of time or 
memory.

Rank score of means of accuracy performance. To consolidate the means of accu-
racy performance based on PCC and RMSE, as well as the results for different datasets 
in scenario 2, we introduce the rank score of means of accuracy performance. Firstly, at 
the protein level, for the dataset d in scenario 2, we rank the methods accordingly based 
on the PCCd

protein and RMSE
d
protein , where a method with better performance is assigned 

a higher rank score value, denoted as PCC_RSmean
proteind

 and RMSE_RSmean
proteind

 , respectively. 
Subsequently, we can obtain the ARS based on these rank scores. Next, we average the 
ARS values across all datasets in this scenario, denoted as arsmean

protein , which is defined as:

where d represents the datasets used in scenario 2: CITE-PBMC-Stoeckius, 
CITE-CBMC-Stoeckius, and CITE-BMMC-Stuart, and |D| denotes the total number of 
datasets, equal to 3 here. Similarly, we calculate the mean of ARS values across all data-
sets in this scenario at the cell level:

where PCC_RSmean
cell d

 and RMSE_RSmean
cell d

 are the rank scores of PCCd
cell and RMSE

d
cell , 

respectively. Finally, we rank the methods accordingly based on the arsmean
protein and 

arsmean
cell  , where a method with higher ARS value is assigned a higher rank score value, 

to obtain the rank scores of means of accuracy performance, which are denoted as 
MEAN_RSprotein and MEAN_RScell , respectively. A higher rank score of means value 
indicates better average accuracy performance across all training data sizes and datasets 
in scenario 2.

Rank score of increments of accuracy performance. Similarly, we introduce the 
rank score of increments of accuracy performance to consolidate the increments based 
on PCC and RMSE across different datasets in scenario 2. Firstly, at the protein level, for 
the dataset d in scenario 2, we rank the methods accordingly based on the �PCCd

protein
 and 

�RMSEdprotein
 , where a method with lower increments is assigned a higher rank score value, 

denoted as PCC_RS�proteind and RMSE_RS�proteind
 , respectively. Subsequently, we can 

obtain the ARS based on these rank scores. Next, we average the ARS values across all 
datasets in this scenario, denoted as ars�protein , which is defined as:

Similarly, we calculate the mean of ARS values across all datasets in this scenario at the 
cell level:
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where PCC_RS�celld and RMSE_RS�celld are the rank scores of �PCCd
cell

 and �RMSEdcell
 , 

respectively. Finally, we rank the methods accordingly based on the ars�protein and ars�cell , 
where a method with higher ARS value is assigned a higher rank score value, to obtain 
the rank scores of increments of accuracy performance, which are denoted as �_RSprotein 
and �_RScell , respectively. A higher rank score of increments value indicates less varia-
bility to training data size in terms of accuracy over all datasets in scenario 2.

AICS. To comprehensively assess the sensitivity of methods to training data size, we 
introduce AICS (average-increment composite score). This metric evaluates sensitivity 
by not only focusing on the variability of accuracy performance, but also considering the 
average accuracy performance, and is defined as the weighted sum of the rank scores of 
means and increments of accuracy performance:

where MEAN_RSprotein and �_RSprotein are the rank scores of means and increments 
of accuracy performance at the protein level, respectively. MEAN_RScell and �_RScell 
are the rank scores of means and increments of accuracy performance at the cell level, 
respectively. ωai is a weight to balance the rank scores of means and increments values, 
and is recommended to be greater than 0.5, with a default setting of 0.8 (see Additional 
file 1: Tables S5, S6 for evaluation results under different ωai settings ranging from 0 to 1 
in steps of 0.1). A higher AICS value indicates more effectiveness across all training data 
sizes and datasets in scenario 2.

Metrics for evaluating robustness of methods

The robustness composite score (RCS) is employed to assess the robustness of methods’ 
accuracy across experiments with technical and biological differences, which is calcu-
lated based on the ARS values from all such experiments, thereby indicating the robust-
ness of accuracy under real-world-like conditions.

RCS. We introduce RCS (robustness composite score) to evaluate the robustness of 
ARS values of methods across different experiments with technical and biological differ-
ences. We calculate the mean and standard deviation of ARS values of methods across 
all these experiments and rank them accordingly. A method with a higher mean value or 
lower standard deviation value is assigned a higher rank score value. At the protein level, 
RCS is defined as:

where ARS_RSmean
protein and ARS_RSstdprotein denote the rank scores for the mean and stand-

ard deviation at the protein level, respectively. Similarly, we can calculate RCS at the cell 
level:
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where ARS_RSmean
cell  and ARS_RSstdcell denote the rank scores for the mean and standard 

deviation at the cell level, respectively. ωms is a weight to balance the rank scores of mean 
and standard deviation values, and is recommended to be greater than 0.5, with a default 
setting of 0.8 (see Additional file 1: Tables S7, S8 for evaluation results under different 
ωms settings ranging from 0 to 1 in steps of 0.1). Note that, based on the definition of 
RCS, the robustness in this study is a comprehensive concept that considers both the 
stability and competitiveness of the methods. A higher RCS value indicates more robust-
ness across different experiments with technical and biological differences.
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