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Abstract 

Cell-free DNA (cfDNA) is a rich source of biomarkers for various pathophysiological 
conditions. Preanalytical variables, such as the library preparation protocol or sequenc-
ing platform, are major confounders of cfDNA analysis. We present DAGIP, a novel data 
correction method that builds on optimal transport theory and deep learning, which 
explicitly corrects for the effect of such preanalytical variables and can infer technical 
biases. Our method improves cancer detection and copy number alteration analysis 
by alleviating the sources of variation that are not of biological origin. It also enhances 
fragmentomic analysis of cfDNA. DAGIP allows the integration of cohorts from different 
studies.

Background
Cell-free DNA (cfDNA) has been identified as a promising source of biomarkers for the 
detection of fetal aneuploidy [1, 2], transplant rejection [3], incipient tumors [4], auto-
immune disease [5], or inflammatory disease [6]. While cfDNA fragments in healthy 
individuals primarily originate from the apoptotic release of DNA from cells of hemat-
opoietic origin [7], these fragments can also be of tumoral origin in cancer patients. 
While most clinical applications of cfDNA in oncology focus on finding tumor muta-
tions (e.g., using a targeted panel of cancer driver variants) [8, 9], a lot of research has 
been carried out around the analysis of coverage and fragmentome profiles. The somatic 
copy number aberrations (CNAs) carried by the genome of cancerous cells are detect-
able by low-coverage whole-genome sequencing and downstream analysis of cover-
age profiles from cancer patients [10, 11]. Fragmentomic analysis of cfDNA offers the 
possibility to detect new sensitive biomarkers for cancer detection [12, 13], as cfDNA 
fragments mirror the chromatin accessibility, nucleosome positioning, and degrada-
tion pattern of their tissue of origin [14–17]. For this reason, CNA calling can be com-
plemented with fragmentation profile analysis based on fragment length, as well as 
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positional information [12, 18–20]. Circulating tumor-derived DNA (ctDNA) fragments 
have been found to be typically shorter [14, 21]. Moreover, cfDNA fragment end motifs 
are non-random, and their frequencies have been shown to be altered in cancer patients 
due to changes in fragmentation patterns [22]. Jagged end size was observed to be higher 
in cancer and fetal cfDNA [23]. Finally, all these different properties of cfDNA have been 
demonstrated to be related to the activities of the DFFB, DNASE1L3, and DNASE1 
endonucleases [24–26]. Beyond fragmentomics, methylation patterns are indicative of 
the tissue of origin, and methylation signatures have been exploited for sensitive cancer 
detection and tissue-of-origin identification [27]. Finally, recent work has been devoted 
toward integrating multiple properties of cfDNA within a single multimodal analysis 
approach, including variant calling, CNAs, methylation, and fragmentomic profiles, 
as well as other complementary sources of information such as nucleosome-depleted 
region (NDR) profiles [28] or fusion gene detection [29]. Because cfDNA can be col-
lected in a non- or minimally-invasive manner (e.g., blood draw), and as a result of the 
cost-effectiveness of shallow whole-genome sequencing, liquid biopsies are a valuable 
candidate for population-wide cancer screening [4, 7, 30] and diagnosis, and consider-
able research has been devoted to assessing their clinical utility [31].

However, the development of reliable models that are predictive of relevant clinical 
outcomes (e.g., diagnosis) remains challenging because of the limited number of avail-
able cases (especially for disorders with smaller incidence rate), the high dimensionality 
of cfDNA data, and the various sources of biases related to preanalytical settings. These 
latter biases mainly arise when protocol changes are introduced over time or between 
different centers. For example, the choice of blood collection tube might affect cfDNA 
concentrations and the prominence of leukocyte DNA in plasma samples [32, 33], which 
could in turn affect the detection of low-frequency variations originating from cancer-
ous cells. Other preanalytical factors include the delay before centrifugation, protocols 
for plasma separation, and plasma storage conditions [34]. For example, two-step cen-
trifugation reduces contamination by genomic DNA due to reduced white blood cell 
lysis, compared to one-step centrifugation [35]. Moreover, some DNA extraction plat-
forms, such as Maxwell and QIAsymphony, preferentially isolate short fragments over 
long ones [36]. The choice of library preparation kit directly affects the distribution of 
read counts, as the polymerase enzymes used in these kits have different levels of effi-
ciency in amplifying fragments with low vs. high GC-content [37]. For instance, some 
library preparation kits (e.g., Nextera XT) introduce a bias toward low-GC regions [38]. 
Multiplexed sequencing without suitable dual indexing can result in barcode swapping, 
and the swapping rates are sequencing platform-dependent (e.g., higher on HiSeqX or 
4000 compared to MiSeq) [39]. Index swapping mechanism is caused both by multiplex 
PCR and flow cell chemistry and is responsible for cross-contamination within the same 
pool [40]. Finally, the choice of sequencing instrument itself also plays a role. For exam-
ple, different GC-content bias profiles have been reported for Illumina MiSeq and Next-
Seq platforms, compared to PacBio or HiSeq [41].

The aforementioned preanalytical settings can affect the sequencing outcomes and 
potentially invalidate direct statistical analyses on the resulting data. Moreover, these 
distributional shifts [42] are not properly handled by classical machine learning algo-
rithms and are responsible for performance drops on test sets. Mitigating these biases 
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is therefore of utmost importance in strengthening biological signals and guarantee-
ing detection performance in independent cohorts. Such a task typically falls in the 
category of domain adaptation (DA) [43] problems in the machine learning literature. 
In DA settings, a statistical model is tested on data produced under different measure-
ment conditions (i.e., domains) than the ones on which the model has been trained, and 
specific algorithms are designed to account for these differences. When multiple source 
domains coexist, the problem is referred to as a domain generalization problem [44]. 
Previous work on DA includes the following. Domain adversarial learning [45] aims 
at constructing a common representation space for all domains and relies on gradi-
ent reversal for enforcing domains to be indistinguishable in that latent space [45, 46]. 
Domain separation networks [46] is a reconstruction-based method consisting in learn-
ing both common and domain-specific representations. On the other hand, Cycle-Con-
sistent Adversarial DA [47] reconstructs samples from the target domain using samples 
from the source domain as input. Adversarial methods have also been complemented 
with metric learning [48] and data synthesis in the target domain [49]. Discriminator-
free domain adversarial learning [50] works similarly but does not rely on a neural 
network classifier for predicting the variable of interest. Distance-based methods rely 
on Maximum Mean Discrepancy [51], Central Moment Discrepancy (CMD) [52], or 
higher-order moment matching [53] to encourage the moments of the empirical data 
distributions to coincide. Finally, other categories of DA methods include information-
theoretic DA [54] and optimal transport (OT) [55–58]. It should be noted that most 
existing DA methods use a latent space to represent the samples, which means that the 
debiased representation is not directly interpretable, which runs against the ubiquitous 
need for interpretability and explainability in human genetics [59]. A key motivation for 
our work is thus to design a DA method that adjusts cfDNA profiles in a transparently 
interpretable manner, by operating in the original space (i.e., without having recourse to 
a latent space as domain adversarial methods would) and preserving the quantiles in the 
original data (e.g., log-ratios, z-scores).

Previous work on the bias correction of copy-number profiles has mostly been 
directed toward GC-content and mappability bias correction [29, 60–64]. Distance 
learning and k-nearest neighbors have also been proposed [65] to correct coverage pro-
files. As opposed to previous work, the latter approach exploits information from the 
whole data set to correct each individual sample. dryclean [66] uses online robust 
principal component analysis (rPCA) to isolate foreground biological signals from back-
ground technical artifacts. Finally, similarly to dryclean, tangent and pseudo-tangent 
normalization [67] methods were proposed for reducing technical noise in coverage 
profiles and improving the detection of somatic CNAs.

In this work, we focus on the bias correction of genome-wide copy-number profiles 
(i.e., coverage profiles [4]), as well as cfDNA fragmentomics modalities such as end 
motif frequencies or nucleosome positioning. Our method, coined DAGIP, builds on 
OT theory [68, 69], which is itself based on strong mathematical bases and allows to 
define a sample-to-sample relationship across wet-lab protocols in a highly interpret-
able manner, as samples can be corrected in the original data space (e.g., fragment 
size frequencies) directly. In summary, we aim at correcting samples from a source 
domain (a given wet-lab protocol) towards a target domain (a different protocol) to 
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enable more robust downstream analysis in the latter domain. As the ultimate goal is 
to go beyond the classical case–control setting and build models capable of accurately 
processing data from various sources, we hypothesized that bias correction is a good 
candidate to increase the effective size of available data sets through their fusion, and 
allow benefiting from the scalability of machine learning models for enhanced perfor-
mance. This flexibility would, among other things, reduce the need for laboratories 
to consistently build new reference sets, as well as enable high reusability of older 
samples or data collected in unrelated studies. In this work, we aim at reducing non-
biological variance and enhance cancer detection, while preserving the original bio-
logical signals (e.g., copy number aberrations) in each analyzed sample.

Results
In Table 1, we summarized the different data sets and preanalytical settings used in 
our study. Throughout the paper, we referred to domain as a wet-lab protocol or set 
of preanalytical settings. The terms domain and protocol were used interchangeably. 
Each data set included multiple domains and was dedicated to specific experiments 
or to the detection of a specific cancer type.

Our methods are illustrated in Fig.  1. Given two groups of sample-derived pro-
files (e.g., coverage profiles, fragment size profiles) from wet-lab protocols 2 and 1, 
structured as matrices X and Y, respectively, our bias correction approach (coined 
DAGIP) relies on a neural network model to explicitly estimate the bias of sample i 
from its profile Xi· (Fig. 1A). Ideally, the two groups should be matched and there-
fore be representative of the same population, and this population should be as large 
as possible to guarantee the reliability of the model. The method first computes 
pairwise distances between sample-derived profiles and solves the associated OT 
problem. The solution to this problem is referred to as the transport plan, defines 
sample-to-sample similarities, and is used to guide the direction of the correction 
function (Fig. 1B). The outputs of the algorithm are a corrected version of X denoted 
by X  , and a trained model which can be used to correct any new sample processed 
with protocol 2 independently, without the need to process matched samples with 
protocol 1 (Fig. 1C). Algorithmic details are provided in Methods section.

We used different methods to validate the relevance of bias correction. A direct 
and principled approach consists in processing technical replicates using different 
protocols and evaluating whether bias correction enables the identification of sam-
ple pairs. For this purpose, 64 ovarian carcinoma cases have been processed with 
different wet-lab settings (OV data set), as well as 563 pregnancy samples collected 
during routine Non-Invasive Prenatal Testing (NIPT data set). Next, we evaluated 
whether bias correction retains biological information from coverage profiles, by 
performing CNA analysis using ichorCNA in different settings and showing the 
concordance of called CNAs. Finally, we evaluated the overall relevance of bias cor-
rection through the enhancement in cancer detection. For this purpose, we devised 
a specific cross-validation scheme for machine learning, depicted later in Fig. 8A–B.



Page 5 of 30Passemiers et al. Genome Biology           (2025) 26:49  

Table 1 Summary of the data sets used in this study

Data set Condition/
setting

Domain Size Library 
preparation 
kit

Index type Paired-end? Sequencer

NIPT Pregnancy (kit 
validation)

D1,a
2× 66∗

66

66

TruSeq Nano TruSeq Nano No HiSeq 4000

D1,b Kapa Hyper-
Prep

Kapa dual No HiSeq 4000

Pregnancy 
(adapter 
validation)

D2,a
2× 179∗

{

179

179

Kapa Hyper-
Prep

IDT No HiSeq 4000

D2,b Kapa Hyper-
Prep

Kapa dual No HiSeq 4000

Pregnancy 
(sequencer 
validation)

D3,a
2× 45∗

{

45

45

Kapa Hyper-
Prep

Kapa dual No HiSeq 2000

D3,b Kapa Hyper-
Prep

Kapa dual No NovaSeq

D4,a
2× 45∗

{

45

45

Kapa Hyper-
Prep

Kapa dual No HiSeq 2500

D4,b Kapa Hyper-
Prep

Kapa dual No NovaSeq

D5,a
2× 93∗

{

93

93

Kapa Hyper-
Prep

Kapa dual No HiSeq 4000

D5,b Kapa Hyper-
Prep

IDT No NovaSeq

Pregnancy 
(chemistry 
validation)

D6,a
2× 135∗

{

135

135

Kapa Hyper-
Prep

IDT No NovaSeq (V1)

D6,b Kapa Hyper-
Prep

IDT No NovaSeq (V1.5)

HEMA Hodgkin 
lymphoma

D7 179 TruSeq ChIP - No HiSeq 
2000/2500

Diffuse large 
B-cell lym-
phoma

D7 37 TruSeq ChIP - No HiSeq 
2000/2500

Multiple 
myeloma

D7 22 TruSeq ChIP - No HiSeq 
2000/2500

Healthy D7 242 TruSeq ChIP - No HiSeq 
2000/2500

Healthy D8 257 TruSeq Nano - No HiSeq 
2000/2500

OV Ovarian carci-
noma

D9,a(L1) 223 KAPA Hyper-
Prep

IDT No HiSeq 4000

D9,b(L1) 32 KAPA Hyper-
Prep

- No HiSeq 4000

D9,c(L1) 1 KAPA Hyper-
Prep

- No HiSeq 2000

D9,b(L1)

2× 64∗











61

2

1

64

KAPA Hyper-
Prep

- No HiSeq 4000

D9,d(L1) KAPA Hyper-
Prep

- No NovaSeq V1

D9,c(L1) KAPA Hyper-
Prep

- No HiSeq 2000

Ovarian carci-
noma

D10(L2) KAPA DNA lib. 
prep.

- No HiSeq 2500

156 KAPA DNA lib. 
prep.

- No HiSeq 2500

Healthy D9,a(L1) 79 KAPA Hyper-
Prep

IDT No HiSeq 4000

Healthy D10(L2) 39 KAPA DNA lib. 
prep.

- No HiSeq 2500
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Optimal transport identifies related samples despite differences in preanalytical variables

The motivation for building our bias correction on optimal transport (OT) theory was 
based on its natural ability to learn a mapping between domains (i.e., sequencing pro-
tocols), called barycentric mapping. To demonstrate the large potential of OT for alle-
viating technical biases, we employed technical replicates produced with different 
sequencing protocols and investigated whether the replicate pairs could be re-identi-
fied. In Fig. 2A, we show the pairwise Bray-Curtis distances between coverage profiles 
derived from 66 samples prepared with both the TruSeq Nano and Kapa HyperPrep kits, 

Table 1 (continued)

Data set Condition/
setting

Domain Size Library 
preparation 
kit

Index type Paired-end? Sequencer

FRAG Breast cancer D11 51 NEBNext 
Enzymatic 
Methyl-seq

- Yes NovaSeq 6000

Healthy D11 74 NEBNext 
Enzymatic 
Methyl-seq

- Yes NovaSeq 6000

Healthy D12 57 KAPA Hyper-
Prep

IDT Yes NovaSeq 6000

Samples in sets marked with a “ ∗ ” have been processed twice, allowing quantitative assessment of the different biases 
caused by the changes of sequencing protocols. Index/adaptors marked with “-” are part of the indicated library preparation 
kit. Each wet-lab protocol is denoted by a distinct D symbol

Fig. 1 Illustrative summary of our methods. A Given two groups of cfDNA samples differing by the 
sequencing pipelines they have been through, a neural network model is trained to correct the samples from 
protocol 2 towards protocol 1, by matching the distribution of the two groups. B Inference of the model 
is guided by the solution to the optimal transport problem, defined by the pairwise distances between 
samples. The solution, called transport plan, assigns samples from protocol 2 to similar samples from protocol 
1. C Optionally, the model can be used after inference for correcting independent samples processed with 
protocol 2, without the need for matched samples processed with protocol 1. D Bias correction enables 
joint analysis of the two groups through better superimposition of the data distributions. E Summary of the 
validation procedures used to assess the reliability of bias correction
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Fig. 2 Identification of paired samples using distance matrices and transport plan. A Pairwise distances 
in the absence of bias correction (top left), after center-and-scale correction (top right), after dryclean 
normalization (bottom left), and after OT-based barycentric mapping (bottom right). A pair (x, y) was 
considered as correctly identified when the closest sample to x from the second protocol was y and the 
closest sample to y from the first protocol was x. B Accuracy for each pair of protocols, for which replicates 
were available (see Table 1)
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as well as after performing center-and-scale correction, dryclean normalization, and 
OT-based barycentric mapping.

Distance-based pairing (“Baseline”) correctly identified 13 pairs out of 66 (19.7% accu-
racy). On the other hand, the use of OT improved pairing accuracy up to 62.1% (41/66). 
We reported heatmaps for other protocols in Additional file  1: Figs. S1–S7. A major 
improvement in accuracy was observed for every setting, with values ranging from 
50% to 100%. In conclusion, OT has the ability to bypass technical biases when the two 
groups being compared are perfectly matched.

However, since OT alone cannot learn any explicit mapping between domains, it is as such 
incapable of processing new unseen samples. Therefore, additional algorithmic develop-
ments where needed to adapt OT to real-life settings (see Methods section). In the next sec-
tions, we compared our full method, DAGIP, with existing algorithms on various problems.

Technical biases can be accurately estimated and corrected in new unseen samples

While our method is capable of superimposing cohorts and learning a mapping between 
their respective sequencing protocols, there is no apriori guarantee that new unmatched 
profiles will be corrected in the right direction. To investigate this, we again considered 
the paired samples from Optimal transport identifies related samples despite differences 
in preanalytical variables  section. Since the problem can be phrased as a typical super-
vised regression problem, we performed a regular 5-fold cross-validation, where the model 

Fig. 3 Direct evaluation of bias correction approaches on coverage profiles using paired samples. A 
Illustration of the k-fold cross-validation procedure. B Sample pairing accuracy based on Bray-Curtis distance. 
C Coefficient of determination R2 used to measure proximity between paired samples across protocols. R2 
values lie in the [−∞, 1] range
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was built on 80% of the pairs and used to correct the 20% remaining samples from pro-
tocol 2 towards protocol 1, as depicted in Fig. 3A. To quantify the pairing accuracy after 
correction, we enumerated the pairs in which both profiles had the lowest distance across 
domains. Pairing accuracy has been reported for each method and protocol pair in Fig. 3B.

Pairing accuracy was the lowest when considering differences in library prepara-
tion kit (0.197 for the baseline). DAGIP systematically improved over the baseline and 
outperformed other methods in most settings. On average, DAGIP produced the best 
pairing accuracy (0.644), followed by center-and-scale (0.638), baseline (0.567), Map-
pingTransport (0.462), and dryclean (0.180). The observed improvement of DAGIP 
turned out to be significant for all alternative methods except center-and-scale ( p > 
0.005). Significance has been reported for each method and setting in Additional 
file 1: Fig. S8. Pairing was done based on closest Bray-Curtis distance between sam-
ples. Indeed, Bray-Curtis distance drastically improved over all other distance metrics 
(e.g., Euclidean, Manhattan), as shown in Additional file 1: Fig. S9. Also, dimensional-
ity reduction through PCA produced a major improvement in accuracy, as shown by 
the overall poor results on the whole coverage profiles (Additional file 1: Fig. S10).

In Fig. 3C, we also reported the proximity between coverage profiles across protocols, 
as measured by the coefficient of determination R2 . Performance evaluation (distance, 
accuracy, and R2 computations) was based on the first principal components that con-
tribute to 95% of the total variance, instead of the whole profiles. R2 was relatively high 
for the L1/L2 labs (ranging from 0.958 to 0.972), as the large CNAs exhibited by by few 
late-stage ovarian carcinoma cases contributed to most of the variance. For the remain-
ing protocols, results followed similar trend as for the pairing accuracy. On average, 
DAGIP produced the largest R2 coefficient (0.392), followed by center-and-scale (0.387), 
baseline (0.354), MappingTransport (0.334), and dryclean (0.299). The improvement 
of DAGIP proved to be significant over each contender (p < 0.005), as reported in Addi-
tional file 1: Fig. S8. Overall, performance remained quite low, which could be indicative 
of the difficulty of the problem and reminiscent of the capture randomness in shallow 
whole-genome sequencing. Indeed, the maximum achievable R2 score is theoretically 
bounded by a value that depends on the variance of technical replicates [70, 71].

Technical biases can be accurately removed from coverage and fragmentomic profiles

We next investigated whether DAGIP can help in superimposing data sets produced by 
different library preparation methods. We started our analyses with the FRAG data set, 
which contains healthy controls for which the libraries have been prepared with dras-
tically different kits: the KAPA HyperPrep and NEBNext Enzymatic Methyl-seq kits. 
The rationale for adding enzymatically converted libraries to the present study was not 
to perform methylation calling perse, but rather including samples with distinct frag-
mentomic patterns. In fact, while the KAPA HyperPrep kit clearly produced a non-
random end motif frequency profile, with 11 of the CCNN end motifs being among 
the most prominent ones (Fig.  4A), end motif frequencies from NEBNext Enzymatic 
Methyl-seq showed a slightly more uniform distribution, which aligns with the overall 
decreased mapping quality due to bwa-meth’s reference being a 3-letter genome [72] 
(Fig. 4B). NEBNext Enzymatic Methyl-seq kit also showed significantly increased pro-
portion of short fragments (Fig. 4C). The observed trend was more intricate for larger 
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fragments (>300 bp), as the proportion was decreased for enzymatically converted con-
trols compared to KAPA HyperPrep, but increased for breast cancer cases, which could 
be explained by non-apoptotic DNA release mechanisms and altered nuclease activ-
ity. More strikingly, nucleosome positioning scores were strongly decreased for NEB-
Next Enzymatic Methyl-seq, reflecting the lower mapping quality and therefore the 
lower consistency between these samples and the reference nucleosome map (Fig. 4D). 
Surprisingly, observed long (>166 bp) fragment ratios were observed as increased in 
breast cancer (Fig. 4E). While short (<151 bp) and longer (>220 bp) fragments are both 
reported as being more prominent in cancer [13, 29], a significant portion of these short 

Fig. 4 Fragmentomic analysis and t-SNE visualization of the FRAG data set. A 4-mer end motif frequencies of 
control samples from protocol D12 (KAPA HyperPrep kit, shown on the right panel). B End motif frequencies 
of control samples from protocol D11 (NEBNext Enzymatic Methyl-seq kit). C Fragment length frequencies, 
computed from the D11 breast cancer cohort, the D11 control group, and the D12 control group. y-axis 
is shown in log-scale. C Distribution of per-bin nucleosome positioning scores. For each 1 Mb bin, the 
nucleosome positioning scores have been averaged across all fragments having at least one of their ends 
falling in that bin. Densities were averaged across each of the three groups of samples. E Distributions of 
per-bin proportions of long fragments (>166 bp). Densities were averaged across each of the three groups of 
samples. F t-SNE visualization. Marker size is proportional to the cancer stage
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fragments have been filtered out due to their low mapping quality. In Fig. 4F, we show 
that these differences in fragmentomic patterns lead to the two control groups being 
perfectly segregated in t-SNE plots (“Baseline” panel). On the other hand, all three bias 
correction approaches (center-and-scale, MappingTransport, DAGIP) proved able to 
superimpose the control groups without any apparent discrepancy. For the HEMA and 
OV data sets, t-SNE plots based on coverage profiles are provided in Additional file 1: 
Figs. S11 and S12, respectively.

To numerically quantify the quality of bias correction on the FRAG, HEMA, and OV 
data sets, we first performed statistical testing between the two control groups after cor-
rection (see Methods section). In Fig. 5A, the resulting p values were compared against 
theoretical p  values using Q-Q plots. The estimation procedure for theoretical p  val-
ues is described in Indirect evaluation methods section. Theoretical p values reflect the 
desired situation (null hypothesis), namely the absence of bias between the two control 
groups. In the FRAG data set, end motif frequencies, fragment size profiles, and long 
fragment ratio profiles all resulted in mean absolute errors close to the 0.5 limit (Fig. 5B) 
and produced Q-Q curves above the diagonal (Fig. 5A), showing the strong discrepancy 
between the KAPA and NEBNext control groups. On the other hand, the center-and-
scale approach systematically produced curves above the diagonal, which is reminiscent 

Fig. 5 Correction of the healthy samples from the OV, HEMA, and FRAG data sets. A Q-Q plot of p values 
comparing two control groups after correction. Each “empirical” p value was derived from a two-sample 
(two-sided) Kolmogorov-Smirnov test on a particular feature (e.g., 1 Mb bin, end motif ). The background 
distribution of “theoretical” p values was estimated by permutation (see Methods section). B Mean absolute 
error between theoretical and observed p values. Results have not been reported for dryclean on the 
FRAG data set, as this correction method is only applicable to coverage profiles. EMF, end motif frequencies; 
FSP, fragment size profiles; LFRP, long fragment ratio profiles; NPSP, nucleosome positioning score profiles
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of overfitting issues. While our approach DAGIP often over-corrected the samples as 
well, it produced the lowest mean absolute error on average (0.144), followed by center-
and-scale (0.178), dryclean (0.182), MappingTransport (0.323), and finally the base-
line (0.432). In conclusion, our method is less likely to under- or over-correct the data on 
average compared to other methods.

DAGIP preserves copy number aberrations across protocols

As we are fully aware of the overfitting risks associated with any domain adaptation 
(DA) approach, we evaluated whether the corrected CNA profiles were consistent with 
the original data by verifying whether somatic CNAs were conserved. For this purpose, 
CNAs were called from ovarian carcinoma cases (OV data set) using the ichorCNA 
v0.2.0 R package (details in Additional file 1: Section 1), and their consistency across 
different settings was assessed. As shown in Table 1, the two labs contributing to the OV 
data set (denoted by L1 and L2 ) have 64 shared samples, which could again be used for 
validation. Instead of repeating the 5-fold cross-validation performed in Technical biases 
can be accurately estimated and corrected in new unseen samples section, we first built 
each of the bias correction model on the L1 controls and L2 ovarian carcinoma cases 
excluding the paired samples, to mimic the real-life scenario where paired samples are 
not necessarily available for inference. Next, each model was applied on the 64 paired 
ovarian carcinoma samples, and ichorCNA was run under various circumstances. In a 
first stage, we assessed the conservation of information carried in cancer cases by com-
paring the runs (1) and (2) illustrated in Fig. 6A. We refer to this evaluation method as 
intra-domain consistency assessment. However, this evaluation alone is not sufficient to 
ensure that CNA calling is compatible with protocol L1 . Therefore, we also compared 
the CNA detection results between runs (3) and (4) (Fig. 6A) to evaluate whether the 64 
cancer cases had similar copy number profiles in both domains. We refer to this eval-
uation approach as cross-domain consistency assessment. Results for both evaluation 
approaches were reported in Figs. 6 and 7.

In Fig. 6B–F, we represented copy number congruity using circular heatmaps, where 
the inner and outer sections correspond to intra-domain and cross-domain consisten-
cies, respectively. The baseline had perfect intra-domain congruity, as can be observed 
from the entirely white inner area, and as can be expected given the absence of data 
correction. All bias correction methods, excluding DAGIP, had at least 20% of inconsist-
encies in their copy number profiles. dryclean caused the most changes, with 46,3% 
of inconsistencies. These disruptions are shown in violet (increase in copy number) and 
green (decrease). Interestingly, they often extend to chromosome arms or even entire 
chromosomes, which is directly explained by detected CNAs being of large size, and sug-
gests that ichorCNA privileges changes in copy numbers over changes in segmentation. 
All methods, including the baseline, produced at least 30% of cross-domain inconsisten-
cies, as shown in red (increase in copy number) and blue (decrease). Samples with lower 
estimated tumor fractions did not necessarily produce more mismatches, as shown by 
the low correlation between accuracy and tumor fraction in Fig. 6G (0.206 Pearson cor-
relation; p = 0.101). When running ichorCNA without panel of normals (in a refer-
ence-free fashion), correlation remained non-significant (0.209 Pearson correlation; p = 
0.097). Finally, we report strong cross-domain consistency in tumor fraction estimation 
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(0.876 Pearson correlation, p = 2.83e−21), as shown in Fig.  6H. When removing the 
panel of normals, a significance gain could be observed (0.933 Pearson correlation, p = 
3.13e−29), suggesting that the use of a control group introduces some variability in the 
present setting.

Apart from copy number profiles, we compared the other parameters estimated by 
ichorCNA, including the log-ratios used as input to its hidden Markov model, the 
estimated tumor fractions, tumor ploidies, cellular prevalences, and proportions of 
subclonal CNAs. Additionally, we computed the segment overlap score SOV_REFINE 
[73] to quantify the matching of segments in copy number profiles. Both intra-domain 
and cross-domain results have been compiled at the top of Fig.  7. DAGIP was com-
pared with contenders using a one-sided t-tests and p values were reported at the bot-
tom of Fig. 7. As expected, the baseline had perfect intra-domain consistency due to the 
absence of data alteration (top of Fig. 7). DAGIP ranked second with an average score 
of 0.755, followed by center-and-scale (0.547), MappingTransport (−1.918), and dry-
clean (−3.502). Improvements of copy number profiles were significant for DAGIP 
over center-and-scale, MappingTransport, and dryclean (p < 0.001). This applies also 

Fig. 6 Consistency of CNA calling across protocols for 64 pairs of ovarian carcinoma coverage profiles. A 
Illustration of the 4 settings in which ichorCNA was successively run. First validation approach, which we 
term intra-domain consistency, consisted in comparing CNAs between settings (1) and (2). Second approach, 
coined cross-domain consistency, was based on the comparison between settings (3) and (4) instead. B–F 
Differences in estimated copy number profiles between settings (1) and (2) (inner section), and differences 
between settings (3) and (4) (outer section). Red/violet corresponds to an increase in estimated copy number 
after correction, while blue/green corresponds to a decrease. Color white corresponds to an exact copy 
number match. The meaning of white is the consistency of copy numbers. Comparison was made on the 
estimated copy numbers (discrete values); therefore, no thresholding was required. G Relationship between 
tumor fraction estimated by ichorCNA (TF) and copy number cross-domain consistency for DAGIP. 
H Cross-domain consistency in tumor fraction estimation (DAGIP)
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to the raw log-ratio profiles (p ≤ 0.002) and tumor ploidy estimates (p < 0.001). In terms 
of cross-domain consistency, DAGIP improves over all methods (0.273), followed by 
center-and-scale (0.166), the baseline (0.084), MappingTransport (−2.190), and dry-
clean (−5.095). However, these performance gains were not significant for any of the 
ichorCNA results or parameters, except for dryclean, where DAGIP outperforms it 
in terms of copy number and log-ratio profiles consistencies, SOV_REFINE scores, and 
tumor ploidy consistencies. Finally, we added the figures generated by ichorCNA in 
Additional file: Figs. S13–S17 for 5 different cases.

DAGIP disentangles cancer signals from non-biological sources of variation

We further tested the applicability of our method to the detection of hematological 
cancer and investigated whether data correction preserves the signals of interest (e.g., 
somatic CNAs, fragmentation patterns). For this purpose, we trained simple machine 
learning models on the HEMA, OV, and FRAG data sets using the scikit-learn [74] 
Python library. For the HEMA data set, the samples whose libraries have been prepared 

Fig. 7 Quantitative assessment of CNA calling consistency on the paired samples from the OV data set. (Top) 
Intra-domain and cross-domains consistency assessment of the ichorCNA results and parameters inferred 
on the 64 paired samples from ovarian carcinoma cases. (Bottom) Significance of DAGIP’s improvement over 
each method measured by t-test p values
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with the TruSeq ChIP Library Preparation Kit (Illumina), including 242 controls and 
238 hematological cases, correspond to protocol D7 in Fig.  8A, while the 257 TruSeq 
Nano samples correspond to protocol D8 . No cancer case was available from protocol 
D8 . The FRAG data set was used similarly, as the libraries prepared with the NEBNext 
Enzymatic Methyl-Seq kit (51 breast cancer cases and 74 female controls) and the KAPA 
HyperPrep kits (57 female controls) correspond to protocols D11 and D12 in the illustra-
tion, respectively. For the OV data set, where cases and controls are available from both 
labels, validation was performed as illustrated in Fig. 8B instead. More details about the 
validation scheme can be found in Indirect evaluation methods section. Hematological 
cancer and ovarian carcinoma detection was based on the (corrected) coverage profiles, 

Fig. 8 Cancer detection performance assessment. A Depiction of the cross-validation scheme used on the 
HEMA and FRAG data sets. B Illustration of the cross-validation scheme used on the OV data set. C Receiver 
operating characteristic curve of each correction method on each data set, using a non-linear support vector 
machine as cancer detector. “Baseline” refers to the cancer detection performance without prior domain 
adaptation. dryclean was not applied on BRCA as the method was specifically designed for coverage 
profiles. HL, Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; MM, multiple myeloma; OV, ovarian 
carcinoma; BRCA, breast cancer
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without any dimensionality reduction. However, each 1 Mb bin was first centered and 
scaled using the median and inter-quartile range (IQR), as normalization is required 
by most machine learning models. This preprocessing step was only performed for 
the computational experiment presented in this section. For the FRAG data set, breast 
cancer detection was based on the combination of all four fragmentomic modalities 
considered in this work, namely fragment size profiles, end motif frequencies, nucleo-
some positioning score profiles, and long fragment ratio profiles. The 4 data matrices 
were simply combined into a larger one, which was fed as input to the machine learning 
model. This approach is referred to as “multimodal” in Fig. 8C. The 64 paired samples 
from ovarian carcinoma cases were ensured to not be split across training and validation 
sets to avoid any contamination. Similarly, sequencing batches were treated similarly, to 
avoid batch effects from contaminating the validation set. More details about the valida-
tion scheme can be found in Indirect evaluation methods section. Hematological cancer 
and ovarian carcinoma detection was based on the (corrected) coverage profiles, with-
out any dimensionality reduction.

In Fig. 8C, we show the ROC curves of each bias correction method on each use case 
(i.e., cancer type). Most methods improved over the baseline for hematological cancer 
and breast cancer detection, therefore highlighting the importance of matching data dis-
tributions when training a machine learning model on a mix of samples derived from 
different protocols. However, dryclean systematically led to random performance 
using a support vector machine ( ∼0.5 AUROC), and rather low average AUROC and 
MCC scores as shown in Additional file 1: Fig. S18A–C, suggesting that dryclean is 
actually filtering out more information than just technical noise. All methods performed 
poorly on the OV data set. When averaging across the 5 cancer types, center-and-scale 
produced the highest AUROC (0.862), followed by DAGIP (0.854), MappingTransport 
(0.846), KMM (0.703), the baseline (0.659), and dryclean (0.589). We also reported 
the MCC for each data set in Additional file 1: Fig. S18C, as this metric is robust against 
control/case ratio imbalances. While MappingTransport produced AUROC scores simi-
lar to center-and-scale and DAGIP, the method performed comparatively worse in terms 
of MCC, which is reminiscent of a suboptimal supervised model calibration (the opti-
mal prediction cutoff is not centered around 0.5). This hypothesis is also supported by 
the overfitting previously observed in Fig. 5A. On average, DAGIP produced the highest 
MCC (0.473), followed by center-and-scale (0.460), MappingTransport (0.366), KMM 
(0.207), the baseline (0.141), and finally dryclean (0.086). While the MCC confidence 
intervals of center-and-scale and DAGIP overlapped, the improvement of DAGIP over 
center-and-scale across all pathologies was significant (p = 1.2e−4, Additional file 1: Fig. 
S18D). Sensitivity, specificity, MCC, AUROC, and AUPR have been reported for each 
bias correction method, pathology, and machine learning model in Additional file  1: 
Tables S1–S3.

Discussion
Summary of the results

In Fig. 9, we summarized the results presented throughout the paper. Among the dif-
ferent methods present in the benchmark, our method DAGIP produced the best 
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results according to most of the evaluation metrics. The baseline method produced 
maximal intra-domain CNA calling consistency on the OV data set as expected due to 
the absence of domain adaptation (DA), and center-and-scale produced the best can-
cer detection models according to AUROC. In fact, center-and-scale ranked second for 
many of the evaluation metrics, which underlines the reliability of simple approaches 
compared to more sophisticated ones. While dryclean indeed filtered some of the 
technical sources of variation as reflected for example by the increase in accuracy for 
the identification of paired samples across protocols (baseline: 0.223; dryclean: 0.282) 
or the increase in proximity of the latter measured by R2 (baseline: 0.455; dryclean: 
0.468), it appears that much of the biological signal has been discarded as well (AUROC: 
0.589; MCC: 0.086).

Beyond pure bias removal performance, average resource consumption has been 
added to Fig.  9 as well. Most methods had relatively low computational cost, except 
MappingTransport which had higher memory requirements (269 Mb on average) and 
dryclean which was orders of magnitude slower (3737 s per run on average, ∼ 5× 
more than DAGIP). Both MappingTransport and DAGIP rely on the computation of 
a transport plan, which has a complexity that is quadratic in the number of available 
samples. Therefore, these two methods are less scalable than other approaches and may 
encounter considerably longer running times on large data sets (e.g., 10,000 samples 
from each protocol). Regardless, all methods are scalable with respect to the number 
of features (e.g., fragment length frequencies), meaning that doubling their number will 
only double computational costs.

Study limitations and clinical validation

A major limitation of proposed solution is reminiscent of DA in general: there is no 
guarantee that the function learned by the bias correction algorithm accurately reflects 
the mechanisms of PCR amplification or sequencing. Indeed, the superimposition of the 
sample groups enforced by the method may be purely artificial when the two groups 
are unrelated. On the other hand, we devised several protection mechanisms to miti-
gate over-correction when no meaningful bias signal can be found in the data. None-
theless, it is crucial that practitioners are aware of any confounder that could introduce 
biological discrepancy between the two groups being supplied to the tool. When cancer 

Fig. 9 Summary of the results. By design, kernel mean matching could only be applied to the cancer 
detection problem. Performance metrics have been averaged across data sets. R2 , coefficient of 
determination; AUROC, area under the receiver operating characteristic curve; MCC, Matthews correlation 
coefficient
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cases are used to train DAGIP, they should ideally be of the same sub-type. Following the 
same idea, control samples should preferably be matched for age, biological sex, or any 
other relevant covariate. Ideally, the same biological samples should be sequenced under 
both protocols to discard any biological confounder. However, our experiments with 
ichorCNA showed that these requirements are not compulsory for improving consist-
ency over the baseline. Similarly, the performance gains observed for supervised cancer 
detection compared to the baseline show that DAGIP can still converge to a meaningful 
solution without perfect matching of the controls.

Among the four different performance evaluation methods presented in our work, 
only the direct methods are deemed appropriate for clinical validation of DAGIP, which 
requires paired profiles originating from the same biological samples.

Extending the tool to other data modalities

While our computational experiments were based on coverage and fragmentomic pro-
files, our tool remains largely applicable to other modalities or any tabular biological 
data. First, our DAGIP Python package allows the user to define a custom manifold. For 
example, methylation ratios can be constrained to lie in the [0, 1] range by defining f and 
f −1 as the sigmoid and logit functions, respectively. Next, the user can define their own 
dissimilarity metric (e.g., Minkowski distance), which will only be used for solving the 
OT problem. The domains can also be grouped according to the hierarchical structure 
of the data set. For example, when samples share different clinical characteristics, they 
can be grouped according to these annotations and prevent incompatible samples from 
being matched during OT solving (e.g., cancer cases are only mapped to cancer cases). 
Finally, there are many hyper-parameters that can be tuned based on the dataset size to 
balance under- and overfitting risks.

Conclusions
In this study, we developed a novel bias correction algorithm for whole-genome cfDNA 
sequencing data, coined DAGIP, and showcased its applicability to different data modal-
ities such as somatic  CNA or fragmentomic profiles. More importantly, we demon-
strated that joint analysis of samples derived from different sequencing pipelines not 
only remains possible, but can be enhanced by domain adaptation, an under-discussed 
solution to a ubiquitous problem in the field. Moreover, we proposed complemen-
tary evaluation approaches to assess the quality of bias correction and highlighted the 
improvements of DAGIP over existing methods. These findings open new avenues for 
the development of cfDNA-based cancer detection pipelines using data sets collected in 
different centers or using different wet-lab protocols.

Methods
Clinical data

We evaluated our method on four in-house data sets, each used for a different purpose. 
The peculiarities of each data set have been summarized in Table 1.

Blood samples were collected either into Streck cfDNA BCT or Roche Cell-Free DNA 
Collection Tubes. cfDNA was extracted using either the QIAamp Circulating Nucleic 



Page 19 of 30Passemiers et al. Genome Biology           (2025) 26:49  

Acid Kit (Qiagen) or the Maxwell automated protocol. Samples from the NIPT, HEMA, 
and OV data sets were pooled by batches of ∼ 20 for multiplex sequencing using all lanes 
of Illumina flow cells. Each pool was sequenced either on the Illumina HiSeq 2000, 
HiSeq 2500, HiSeq 4000, or NovaSeq 6000 platform, single-end 1 ×  36 bp, 1 ×  50 bp, 
paired-end 2 × 50 bp, or 2 × 150 bp.

The first data set consists of 563 validation samples collected in the context of Non-
Invasive Prenatal Testing (NIPT) [75] and processed twice each with different protocols. 
These paired samples are divided in 6 validation groups, each used to quantify the dis-
tributional shift introduced by the change of one preanalytical variable. The libraries of 
66 biological samples have been prepared with either the TruSeq Nano DNA Sample 
Preparation Kit (Illumina) or the KAPA HyperPrep Kit (Roche) with Kapa Dual indexed 
adapters. One hundred seventy-nine samples have been prepared with either Integrated 
DNA Technologies (IDT) indexes or KAPA Dual indexed adapters. Forty-five samples 
have been processed either by the HiSeq 2000 or NovaSeq platform, 45 by the HiSeq 
2500 or NovaSeq platform, 93 by the HiSeq 4000 or NovaSeq platform, and 135 by a 
NovaSeq platform with either V1 or V1.5 chemistry. In total, this results in 2× 563 
paired samples. Samples went through whole-genome low-pass sequencing at 0.1× cov-
erage. We refer to this first data set as NIPT for short.

Our second data set (HEMA) focuses on hematological malignancies and is com-
posed of 179 cases of Hodgkin lymphoma (HL), 37 cases of diffuse large B-cell 
lymphoma (DLBCL), and 22 cases of multiple myeloma (MM), as well as 499 con-
trols from a previous study [76]. HL cases included 10 stage I, 145 stage II, 9 stage 
III, and 15 stage IV cases (mean age: 32, 55% of female). DLBCL cases included 
1 stage I, 5 stage II, 7 stage III, 8 stage IV, and 16 unknown stages (mean age: 59, 
60% of females). Finally, MM cases comprised 3 stage I, 7 stage II, 7 stage III, and 5 
unknown stages (mean age: 67, 36% of females). The libraries of 242 out of the 499 
controls (mean age: 69, 63% of females) have been prepared with the same kit as the 
hematological cancer cases, namely the TruSeq ChIP Library Preparation Kit (Illu-
mina) [4, 77]. The TruSeq ChIP sample library preparation protocol was performed 
with the cfDNA extracted using cfDNA extraction kits, but not using chromatin 
immunoprecipitated DNA. The remaining 257 controls have been prepared with the 
TruSeq Nano kit. The majority of the samples had a 0.1–0.2× coverage. The num-
ber of mapped reads are reported in Additional file  1: Fig. S19. The TruSeq ChIP 
samples have been used previously in [16] for the validation of a supervised cancer 
detection approach at low-coverage.

We also analyzed female controls and ovarian carcinoma (OV) cases sequenced by 
us ( L1 ) and/or by a different team ( L2) [78]. In L1 , 330 and 79 samples were collected 
from OV cases and controls, respectively. In L2 , 220 and 39 samples were collected, 
respectively. Among these, 64 OV samples are technical replicates, as they were 
sequenced by both L1 and L2 . OV samples were not derived from cancer patients 
with overt clinical disease, but rather the presence of a suspicious malignancy based 
on imaging. We refer to this third data set as OV. Protocols vary in multiple ways. 
As an example, all of the samples in L1 (see Table 1) have been processed with HiSeq 
2500, while all samples from lab L2 have been sequenced by an instrument that dif-
fered from HiSeq 2500. Samples from L1 and L2 have been prepared with the KAPA 
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HyperPrep and KAPA DNA library preparation kits, respectively. Ovarian carci-
noma samples from lab L2 have been manually extracted with the QIAamp Circulat-
ing Nucleic Acid kit. Let us note that samples from L1 belong to multiple domains, 
since all samples have not been processed with the same sequencer, but split across 
HiSeq 2000, HiSeq 4000, and NovaSeq V1. Despite the heterogeneity caused by the 
presence of multiple sequencers, we artificially grouped the samples in order to sim-
plify the comparison between laboratories but also better reflect the heterogeneity 
and hierarchical bias structure expected to be encountered in real-life situations. 
Distributions of total sequencing depths are shown for protocol D7 and labs L1 , L2 in 
Additional file 1: Fig. S19.

Finally, we included a paired-end sequencing data set (FRAG) which we used for 
fragmentomics analysis. D11 protocol was applied on 74 female controls (mean age: 
71) and 51 breast cancer cases (mean age: 57). Breast cancer cases included 7 ductal 
in situ carcinomas, 22 stage I, 11 stage II, 7 stage III, and 4 stage IV cases. In D11 , 
DNA was extracted with the Maxwell kit and processed with the NEBNext Enzy-
matic Methyl-seq kit (New England Biolabs, Ipswich, MA, USA). Sequencing was 
carried out on a NovaSeq 6000 S4 flowcell at 15× average depth and with a read size 
of 150 bp. In D12 , libraries from 57 female controls were prepared using the KAPA 
HyperPrep kit with IDT adaptor ligation, and their sequencing was carried out on 
the NovaSeq 6000 platform, with a read size of 50 bp. Samples were downsampled 
in silico to a target depth of 0.16× , both to stabilize the variance across samples and 
to demonstrate the applicability of our methods to low-coverage settings. Downsam-
pling was performed with no regard to the fragment size.

Data preprocessing

Single-end reads were first aligned to the reference genome hg38 using the Burrows-
Wheeler aligner [79]. Then, read duplicates were removed using the picard Mark-
Duplicates command with default parameters [80] and remaining ones were 
recalibrated with the Genome Analysis Toolkit [81]. Reads flagged with secondary or 
supplementary alignment were discarded. No further filtering was employed. Only the 
22 autosomes were considered for analysis. Reads were first counted in predefined bins 
of size 10 kb and smoothed by a running average of size 101 bins. Next, we removed 
the bins with mappability < 0.8 [63] or falling in blacklisted regions from an in-house 
curated list [77]. Ten-kilobyte bin counts were then summed into larger bins of size 1 
Mb. Next, counts were normalized by dividing the whole profile by the median, to cor-
rect for the sequencing depth. Finally, We performed GC-correction on coverage profiles 
by dividing the normalized read counts by their Locally Weighted Scatterplot Smooth-
ing (LOWESS) estimate [82], using 30% of the data points (bins) to predict the cover-
age. LOWESS [82] and LOESS [83] mostly differ by their implementation and build on 
the same underlying model. We used the Python package statsmodels (v0.12.2) 
[84] to implement LOWESS correction. A visual and quantitative assessment of GC bias 
is available for the HEMA data set in Additional file 1: Figs. S20–S21, and performance 
comparison of LOWESS’s Python and LOESS’s R implementations is provided in Addi-
tional file 1: Fig. S22.
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For the FRAG data set, paired reads were first aligned to the reference using bwa-
meth [72] and marked for duplicates using Picard. Only reads mapped in proper pairs 
were considered. Reads with mapq value below 60 or containing unknown bases within 
the 5′ 4-mer end motif were discarded. We extracted four types of fragmentomic fea-
tures, which we refer to as fragment size profiles, end motif frequencies, genome-wide 
size profiles, and genome-wide nucleosome positioning profiles. Fragment size profiles 
were obtained by counting the insert sizes of read pairs in the 40–499 bp range. End 
motif frequencies were based on the frequency of each 4-mer (e.g., AATC) on the 5′ end 
of each fragment. Genome-wide size profiles were obtained by computing the propor-
tion of long (>166 bp) fragments in each 1 Mb bin. Finally, genome-wide nucleosome 
positioning profiles consist in the average fragment positioning score in each 1 Mb bin, 
with respect to a reference nucleosome map. We used the most comprehensive nucleo-
some peak file (GSE71378_CA01) from [15] (GEO accession number: GSE71378) as 
reference. More details about nucleosome positioning scoring are given in Additional 
file 1: Section 2.

Given two groups of samples, the group requiring correction (source domain) is 
denoted by X, while the other is denoted by Y. Both X and Y are matrices with the same 
number of columns.

Alternative approaches included in the benchmark

We benchmarked our method against several approaches from different disciplines. The 
baseline approach simply corresponds to the absence of bias correction (besides GC-
correction). The simplest bias correction approach was based on robust standardiza-
tion, where the first group was re-centered and re-scaled to constrain it to have the same 
medians and inter-quartile ranges (IQR) as in the second group:

where µ(X·k) is the median value of variable k and σ(X·k) is the IQR. The median and 
IQR have been used in place of the mean and standard deviation for robustness against 
outliers. We referred to this method as center-and-scale standardization throughout the 
manuscript. We also included MappingTransport [56, 57], a method also building on OT 
theory, but based on a drastically different mapping. We ran the POT [56] implementa-
tion of MappingTransport with default hyper-parameters, which is a linear model with 
regularization term eta=0.001. We also considered an instance-based DA approach 
called kernel mean matching (KMM) [85], which does not directly correct the data, but 
reweights the samples in the source domain to better match the two empirical distri-
butions. Because this algorithm does not perform any bias correction per se and must 
be coupled with machine learning, we included it in the benchmark only for cancer 
detection, where supervised models were used. Finally, we included dryclean [66], a 
method specifically designed for disentangling biological and technical noise in cover-
age profiles using rPCA. Given that dryclean was specifically designed for coverage 
profiles, we did not apply it on the FRAG data set, which consists of other data modali-
ties. Contrary to other methods, dryclean required correcting both source and target 

(1)Xik =
Xik − µ(X·k)

σ (X·k)
σ (Y·k)+ µ(Y·k),
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domains, using a panel of controls from each domain, respectively. The algorithm was 
run with default hyper-parameters on the Hg38 reference genome and using 4 cores.

Proposed method

In this section, we describe the modeling and algorithmic details behind DAGIP, the 
proposed bias correction method.

Optimal transport

Our goal is to minimize the statistical dissimilarity between two groups. Given the mul-
tivariate nature of the problem and the strong mathematical foundations behind optimal 
transport (OT), we propose to use the Wasserstein distance to quantify the discrepancy 
between protocols.

The general principle of OT is to match two probability distributions by transporting 
the probability mass of one distribution onto the other with minimal effort (least trave-
led distances), hence the name optimal transport. Since the number of available samples 
is finite, OT here consists in finding a discrete probabilistic mapping (called the trans-
port plan) of the source data onto the target data, where the mapping of a source sam-
ple to a target sample bears some associated cost. We consider thus two data matrices 
X ∈ R

n×q
+  and Y ∈ R

m×q
+  , as illustrated by the data matrices in Fig. 1A, where n and m 

are the sample sizes of each domain and q is the number of predefined bins. As sam-
ples are all assumed to be of equal importance, we choose uniform probabilistic weights 
νi = 1/n, ∀i and µj = 1/m, ∀j to define a probability distribution on these discrete sam-
ples. The cost of transportation is defined by a distance metric δ , where δ(Xi·,Yj·) is the 
distance between samples i and j.

The Wasserstein distance is defined, in its discrete form, by

where we chose p = 2, and δ to be the Euclidean distance for mathematical convenience. 
The matrix Ŵ , usually referred to as the transport plan and depicted in Fig. 1B, contains 
the amount of probability mass transferred from samples from the source domain to the 
target domain through optimal transport. In particular, Ŵij is the probability mass trans-
ferred from point i in the source domain to point j in the target domain.

In order to make our approach scalable, we seek to turn this OT problem into a regres-
sion problem, where X̂  is defined as the target value for X. This target  is refered to as 
barycentric mapping in the OT literature, and defined as the projection of X that min-
imizes Wasserstein distance. When p = 2,  and δ is the Euclidean distance, then there 
exists a closed-form solution for X̂ , and it is given by X̂ = 1

mŴY  . However, because the 

(2)

Wp(C) = minŴ

(

n
∑

i=1

m
∑

j=1

δ(Xi·,Yj·)
pŴij

)1/p

s.t.
m
∑

j=1

Ŵij = νi, ∀i,

n
∑

i=1

Ŵij = µj , ∀j,

Ŵij ≥ 0, ∀i, j,
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corrected samples X̂ lie in the convex hull of Y, their total variance is at most equal to 
the total variance of Y, potentially lower than the original variance of X. To account for 
this variance reduction, we correct the barycentric mapping as such:

where µ(X̂·k) and σ(X̂·k) are respectively the median and IQR of column X̂·k , and σ(X·k) 
is the IQR of X·k . Squared IQR is used in place of the variance for robustness against 
outliers.

Enforcing the data to lie on a user‑defined manifold

Matrices X and Y are assumed to have a problem-specific structure, or lie on some 
matrix manifold. For coverage profiles, the manifold is the set of matrices with median-
normalized and GC-corrected rows. For end motif frequencies, it is the multinomial 
manifold, encompassing the matrices with positive elements and having their rows sum-
ming up to one. X and Y are assumed to satisfy these problem-specific constraints before 
DA. We assume that a differentiable mapping f exists and can map any matrix to the 
desired manifold. We also assume that the reverse mapping f −1 exists. For instance, 
the logarithm can be used to approximate the inverse of the softmax operation (since 
f (f −1(X)) = X when each row of X already sums up to one). Similarly, the logit function 
reverses the sigmoid activation function. Mathematical details about the choice of f are 
provided in Additional file 1: Section 3.1.

Minimizing Wasserstein distance by tuning X  directly could lead to severe overfit-
ting. Instead, we guide the correction by enforcing the algorithm to explicitly learn a bias 
function g from the data, and adapt the samples as such:

We implemented function g as a problem-specific neural architecture, comprising a 
bias vector, a multi-layer perceptron (MLP) and a sample-wise bias estimator. The MLP 
had 2 hidden layers with Parametric ReLU (PReLU) activation function and a Layer-
Norm layer before each activation. We also added a LayerNorm layer before the first 
fully connected layer. In summary, function g can be decomposed as such:

where b is the bias vector, MLP the multi-layer perceptron parameterized by � , and 
SWB the sample-wise bias estimator module parameterized by a vector c. The model 
was implemented with PyTorch [86] and trained with the Adam optimizer [87], which 
requires f to be a differentiable function. More details about neural network architecture, 
hyper-parameters, and choices of f functions can be found in Additional file 1: Section 3.

The outputs of our algorithm is a matrix X  , which we interpret as the surrogate of X in 
the target domain, and a trained neural network g, which can be used for correcting any 
new sample using Eq. 4.

(3)X̂k ← µ(X̂·k)+

∑q
k=1

σ(X·k)
2

∑q
k=1

σ(X̂·k)
2

(

X̂ik − µ(X̂·k)

)

,

(4)X = f (f −1(X)+ g(X)).

(5)g(Xi·) = b+MLP�(Xi·)+ SWBc(Xi·),
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Regularization functions

While the Wasserstein distance is often supplemented with a regularization term based 
on the entropy of Ŵ [88], we noticed that entropic regularization tends to reduce the 
variance of the adapted samples, ultimately collapsing them onto their centroid. This is 
not a desirable property because in actual high-dimensional and noisy data, the curse of 
dimensionality will naturally keep data points distant from each other. This creates an 
obstacle to the idea of mapping a source sample to the “closest” target samples. There-
fore, we do not regularize Wasserstein distance based on entropy, nor on Laplacian reg-
ularization [58]. Instead, we propose a more conservative approach where the deviations 
of the samples from some reference (i.e., the median) should be preserved throughout 
the whole adaptation process.

The regularization function is defined as follows:

where µ(X·k) is the median over column k of X, and σ is the IQR. This regularization 
function is meant to preserve the quantiles (akin to the z-scores) across the two domains 
after correcting and merging them.

Additionally, we further regularized our model by adding a L2 penalty term, defined as 
the sum of squares of all neural network parameters contained in �.

Univariate Wasserstein distance

The different methodological choices made so far do not directly constrain the marginal 
distributions to be similar across domains. Indeed, the median of the barycentric map-
ping is unlikely to be exactly equal to the median of the target domain, and the same 
applies to the IQR. Therefore, we added another loss term to the objective function, 
based on univariate Wasserstein distance. Under normality assumption, this metric 
has a closed form, in which we again replaced the mean and standard deviation by the 
median and IQR:

Objective function

The total objective function L is composed of the different loss and regularization terms 
described so far:

where the first term is the IQR-adjusted Wasserstein distance, �·�22 is the L2 norm, and 
(�1, �2, �3) are hyper-parameters. This function is optimized using the Adam optimizer 
as described in Additional file 1: Section 3.3.

(6)R(X ) =
1

2nq

n
∑

i=1

q
∑

k=1

(

Xik − µ(X·k))

σ (X·k)
−

Xik − µ(Y·k))

σ (Y·k)

)2

,

(7)uk(X·k ,X·k) = (µ(X·k)− µ(X·k))
2 + σ(X·k)

2 + σ(X·k)
2 − 2σ(X·k)σ (X·k).

(8)

L(b, c,�) =
1

nq

n
∑

i=1

q
∑

k=1

1

σ(Y·k)

(

Xik − X̂ik

)2

+ �1R(X )2 + �2

∑

θ∈�

�θ�22 + �3
1

q

q
∑

k=1

uk(X·k ,X·k),
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Benchmarking and performance assessment

We propose four different evaluation approaches to quantify the relevance of each 
bias correction method. They can be categorized as either direct or indirect methods, 
depending on whether or not technical replicates are used across protocols. Indeed, the 
availability of paired samples from two different protocols enables direct quantification 
of the bias separating the two domains and is crucial for clinical validation.

Most of our computational experiments required fitting each bias correction model 
on a subset of the data (“training set”) and then applying the model on an independ-
ent subset (“validation set”). Therefore, each benchmarked method required a training 
phase where only a fraction of the samples were used. For center-and-scale, we simply 
computed the median µ and IQR σ on the training set. The implementations of KMM 
and MatchingTransport both offered fit and transform methods, allowing to sepa-
rate the training and bias correction phases. For the sake of user-friendliness, our imple-
mentation of DAGIP implements the same methods as well. Let us note that for each 
aforementioned algorithm, only the samples of the source domain undergo bias correc-
tion. Because dryclean is not a DA method but a standardization tool, it required cor-
rection of all samples from all protocols. Therefore, we standardized each sample from a 
given domain using a panel of normals (i.e., controls) made of all controls available in the 
training set for that domain.

Direct evaluation approaches

Pairing of the replicates when both groups contain the same biological samples For the 
groups in which biological samples have been sequenced twice in the NIPT and OV data 
sets (marked with “ ∗ ” in Table 1), we applied our correction algorithm and computed 
accuracy, measured as the fraction of pairs (x, y) for which y is the closest profile to x 
in the target domain and x is the closest profile to y in the source domain. We used the 
Bray-Curtis distance as defined in the SciPy Python package [89] to determine the 
proximity between samples:

To alleviate the underdetermination introduced by the high-dimensionality of the 
data, Bray-Curtis distance was measured on the first principal components (PCs) that 
explain 95% of the total variance. The number of selected PCs has been reported for 
each setting in Additional file 1: Fig. S23. The purpose of this dimensionality reduction 
is to remove the inherent noise present in the data. Additionally, we reported the coef-
ficient of determination denoted by R2 , which reflects the amount of variance explained 
by the correction. A R2 = 1 score highlights a perfect superimposition of paired sam-
ples, while a negative R2 score reflects a situation worse than simply predicting the mean 
of the target domain. Significance of the R2 differences was assessed by a z-test [90].

Consistency of copy number aberration analysis We next assessed the ability of the dif-
ferent methods to ensure the consistency across protocols. In particular, we performed 
CNA calling on the 64 paired samples from ovarian carcinoma cases (OV data set) and 

(9)BC =

∑q
k=1

|xk − yk |
∑q

k=1
|xk + yk |

.
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assessed the consistency of the results across different settings. The four different set-
tings were depicted in Fig. 6A.

Indirect evaluation methods

Cancer detection based on supervised learning We trained three binary classifiers, 
namely logistic regressions, random forests, and kernel support vector machines using 
the scikit-learn [74] Python package. Machine learning models were trained on 
the features described in Data preprocessing section (e.g., 1 Mb bins, end motif frequen-
cies) directly, without any dimensionality reduction (e.g., PCA) or feature selection. 
We employed a problem-specific variant of the k-fold cross-validation scheme that we 
describe in Additional file 1: Section 4.2.1.

The cancer detection performance of each supervised model was quantified based on 
widely used metrics such as the area under the receiver operating characteristic curve 
(AUROC). We also added Matthews correlation coefficient (MCC) to deal with the 
cases/controls ratio imbalance. MCC was calculated using the default prediction cutoff 
(0.5), therefore penalizing machine learning models that are improperly calibrated due 
to distributional shifts between the training and validation sets.

To reduce fluctuations related to the random splitting of sample groups during k-fold 
as well as the randomness introduced by each bias correction method, we repeated 
the whole procedure 30 times and averaged the results. However, cross-validation was 
repeated only 3 times for dryclean due to excessive computation time. Finally, we 
reported the confidence intervals for MCC and AUROC and performed t-tests to assess 
the significance of the results. Statistical testing involving dryclean was based on 
an independent samples t-test instead of a paired t-test due to the missing 27 repeats. 
Results were considered significant when p < 0.005.

Assessing bias correction quality from p-value distributions We made p  value Q-Q 
plots to detect over- or underfitting issues in the benchmarked methods, as described 
in Additional file 1: Section 4.2. Depending on the position of the curve relative to the 
diagonal in the Q-Q plots, it is possible to visualize whether the data has been over-
corrected or under-corrected, indicated by observed p values that exceed or fall below 
the theoretical p values, respectively. Finally, to numerically quantify the quality of the 
correction, we calculated the mean absolute error between theoretical and observed 
p values.
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