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Abstract 

Eukaryotic cells are highly structured and composed of multiple membrane-bound 
and membraneless organelles. Subcellular RNA localization is a critical regulator of RNA 
function, influencing various biological processes. At any given moment, RNAs must 
accurately navigate the three-dimensional subcellular environment to ensure proper 
localization and function, governed by numerous factors, including splicing, RNA stabil-
ity, modifications, and localizing sequences. Aberrant RNA localization can contribute 
to the development of numerous diseases. Here, we explore diverse RNA localization 
mechanisms and summarize advancements in methods for determining subcellular 
RNA localization, highlighting imaging techniques transforming our ability to study 
RNA dynamics at the single-molecule level.
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Introduction
The localization of an RNA within the cell is integral to its functionality. In eukaryotic 
cells, a significant portion of messenger RNAs (mRNAs) are subcellularly localized 
during development and in homeostasis [1, 2]. While mRNAs are typically enriched in 
the cytoplasm for translation (with exceptions), long noncoding RNAs (lncRNAs) are 
distributed throughout the cell, predominantly localizing to the nucleus. This diverse 
subcellular localization enables lncRNAs to be involved in nearly all aspects of gene 
expression regulation, including genome organization, nuclear architecture, transcrip-
tion, RNA processing, translation, and mRNA turnover [3]. In recent years, remarkable 
technological advancements have revealed exciting concepts of RNA regulation, bring-
ing spatiotemporal RNA regulation to the forefront. Importantly, disruptions in RNA 
localization can cause or contribute to disease. For instance, the expansion of CTG tri-
nucleotide repeats in the 3′ untranslated region (UTR) of DMPK causes nuclear reten-
tion of its RNA, leading to myotonic dystrophy [4]. Similarly, mutations in RNA-binding 
proteins (RBPs) involved in RNA metabolism impair RNA localization in neurons, con-
tributing to diseases such as amyotrophic lateral sclerosis (ALS), fragile X syndrome, and 
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spinal muscular atrophy [5–8]. Therefore, understanding the principles governing RNA 
localization is of great importance. Yet, despite significant progress, much remains to be 
uncovered about the mechanisms underlying RNA localization, the specific transcripts 
influenced by these processes, and their overall impact.

Here, we summarize the mechanisms of subcellular RNA localization regulation and 
provide a deeper focus on the emerging role of intron retention (IR). We discuss how 
single-molecule RNA imaging techniques continue to shape our understanding of RNA 
localization, highlighting the critical roles that sophisticated mechanisms play in guiding 
RNA molecules to specific subcellular destinations. We use several well-characterized 
mRNAs and lncRNAs to illustrate how the interplay between splicing outcomes, RNA 
localization signals, RBPs, RNA stability/decay, and cellular architecture regulates spa-
tiotemporal RNA availability, which can be dynamically modulated during the cell cycle 
and in response to stimuli or stress.

Eukaryotic cells are highly structured
Eukaryotic cells are highly compartmentalized, with the nucleus and cytoplasm as 
principal compartments. This compartmentalization is facilitated by the nuclear enve-
lope, which enables regulatory mechanisms specific to eukaryotic cells. For instance, 
in prokaryotes, mRNAs are translated concurrently with their transcription, while 
in eukaryotes, nuclear/cytoplasmic separation allows mRNAs to undergo processing 
before being exported [9]. The nucleus and the cytoplasm are further compartmental-
ized into specialized membrane-bound and membraneless organelles (Fig.  1). Mem-
braneless organelles form without a surrounding membrane through a process known 
as biomolecular condensation, driven by multivalent protein–protein, RNA–protein, 
and/or RNA-RNA interactions, leading to phase separation of its components [10, 11]. 
The nucleus contains multiple membraneless structures, rich in proteins and noncod-
ing RNAs, termed nuclear bodies, which provide compartments for diverse processes, 
including gene expression regulation, RNA processing, assembly of ribonucleoprotein 
(RNP) complexes, and the sequestration and modification of proteins [12, 13]. The best-
described nuclear bodies include the nucleolus, perinucleolar bodies, Cajal bodies, 
nuclear speckles, paraspeckles, and polycomb bodies. Each nuclear body is character-
ized by its unique set or class of RNAs. For instance, Cajal bodies contain diverse pro-
teins and RNAs crucial for the assembly, modification, and maturation of small nuclear 
and small nucleolar RNPs (snRNPs and snoRNPs) [14]. Paraspeckles assemble around 
the lncRNA NEAT1, which acts as a scaffold to recruit proteins through RNA–pro-
tein interactions. Within paraspeckles, NEAT1 is highly structured: its 5′ and 3′ ends 
localize to the paraspeckle shell, while its central region is situated in the core [15]. Par-
aspeckles form at the NEAT1 transcription site, typically near nuclear speckles, and have 
been implicated in nuclear RNA retention [16]. Nuclear speckles are dynamic structures 
enriched in pre-mRNA splicing regulators, including uridine-rich small nuclear RNA–
protein complexes, serine/arginine-rich splicing factors (SRSFs), and lncRNA MALAT1, 
implicated in RNA splicing, mRNA quality control, and nuclear RNA retention [17–20]. 
Increased proximity of genes to nuclear speckles affects co-transcriptional splicing 
efficiency due to increased spliceosome concentrations and spliceosome binding [21]. 
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Polycomb bodies are enriched in Polycomb group proteins and are considered gene 
repression centers, often near pericentromeric heterochromatin [22].

The nucleolus is the largest observable nuclear structure, forming around the nucle-
olar organizer regions on the short arms of acrocentric chromosomes and primarily 
serving as the site of ribosomal RNA transcription and biogenesis of pre-ribosomal par-
ticles [23]. The periphery of the nucleolus acts as a hub for transcriptionally inactive, 
repeat-rich regions, and pericentromeric heterochromatin [24]. Several structures can 
form adjacent to the nucleolus, often in association with stress or cancerous conditions, 
though their functions remain relatively unknown. These include the perinucleolar com-
partment (PNC), SAM68 nuclear body (SNB), and TNBL body (TNB) [25–29]. The PNC 
is enriched in RBPs and RNA polymerase III RNAs [25, 30, 31]. Its prevalence positively 
correlates with the metastatic capacity of various cancer types and has been proposed as 
a tumor diagnostic marker [32]. The formation of PNC is driven by the lncRNA PNCTR, 
which originates from ribosomal intragenic spacers on the short arms of acrocentric 
chromosomes and sequesters PTBP1, a regulator of alternative splicing [29]. SNBs con-
tain members of signal transduction and activation of RNA (STAR) family of proteins, 
including SAM68, and primarily appear in cancer cells [26, 27]. TNBs, which form adja-
cent to SNBs, are driven by the primate-specific lncRNA TNBL transcribed from NBL2 
macrosatellites in the pericentromeric regions of the short arms of acrocentric chromo-
somes in cancer [28]. Another primate-specific nuclear body is the nuclear stress body 
(nSB), which is often found near the nucleolus or nuclear lamina and forms in response 

Fig. 1 Eukaryotic cells contain diverse membraneless organelles. Examples of constitutively present and 
cancer- or stress-induced nuclear and cytoplasmic membraneless organelles, along with several of their 
characteristic RNAs and proteins. STR, short tandem repeats. Objects are not drawn to scale and do not 
represent all molecular constituents of the organelles
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to thermal and chemical stress due to the transcription of highly repetitive satellite III 
(HSATIII) lncRNAs and the aggregation of heat shock factor 1 (HSF1) [33–35]. nSBs act 
as a conditional platform for SRSF phosphorylation, promoting rapid adaptation of gene 
expression via IR following heat shock [36]. nSBs also sequester SAM68 and have been 
termed stress-induced SNBs [37]. A common theme among these perinucleolar com-
partments is their formation around tandem repeat-derived lncRNAs under stress or 
pathological conditions where these repeats are aberrantly expressed. They appear to be 
involved in splicing regulation, with the repetitive nature of these RNAs likely enhancing 
their ability to act as scaffolds.

The cytoplasm contains diverse compartments that spatiotemporally control post-
transcriptional processes. These include membrane-bound organelles, such as the mito-
chondria, and those specialized in protein synthesis, sorting, and trafficking, such as 
the endoplasmic reticulum (ER) and Golgi apparatus [38, 39]. Cytosolic membraneless 
organelles include those that are constitutively present in cells, such as cytosolic pro-
cessing bodies (P-bodies) and TIS granules, and those that emerge during stress, such 
as stress granules (SGs) [40–44]. TIS granules, enriched with TIS11B and membrane 
protein-encoding mRNAs with AU-rich elements in 3′ UTRs, intertwine with the rough 
ER and facilitate protein–protein interactions and co-translational assembly of protein 
complexes [41, 44]. P-bodies are formed by the co-assembly of translationally inac-
tive mRNAs bound to various RBPs, including translation inhibition components and 
mRNA degradation components [45–48]. Similarly, SGs are assemblies of non-translat-
ing mRNAs and RBPs that form under stress when translation initiation is impaired, and 
they are thought to regulate stress response and post-transcriptional gene expression 
regulation [40].

RNAs are dynamically localized
Subcellular RNA localization serves diverse functions in eukaryotic cells, including reg-
ulating the timing, location, and levels of protein synthesis, shaping cellular organiza-
tion, and influencing RNA functions. Nearly 40  years ago, poly(A)+ RNA and β-actin 
mRNA were discovered to asymmetrically localize within ascidian eggs and embryos 
[49]. Many mRNAs were quickly found to have a nonrandom distribution within Xen-
opus and Drosophila oocytes, as well as differentiated somatic cells, and to colocalize 
with their encoded proteins [50–53]. This established intracellular mRNA transport as 
a potential mechanism to produce proteins at specific sites. With more sensitive and 
high-throughput approaches the number of localized mRNAs has drastically increased, 
revealing a global association between RNA localization, cellular architecture, and 
protein localization and function [1]. Screening 2314 transcripts expressed during 
Drosophila embryogenesis via high-throughput RNA FISH revealed that 71% exhibit 
developmentally-regulated subcellular distribution patterns [1]. Subcellularly, mRNAs 
display various patterns, including apicobasal gradients, tightly localized clusters, cell 
membrane associations, and enrichment at spindle poles, centrosomes, astral microtu-
bules, and mitotic spindles. Some transcripts were predominantly nuclear, either local-
ized perinuclearly or uniformly distributed.

Subcellular RNA localization is important for highly polarized cells, such as oocytes, 
migrating cells, and neurons. In many organisms, the establishment of the embryonic 
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axis and cell fate depend on the asymmetric distribution of maternal RNAs within the 
developing oocyte [54]. For example, oskar mRNA, which encodes the posterior deter-
minant Oskar protein in Drosophila, is actively transported to the posterior of the 
oocyte along a polarized microtubule network [55–57]. Importantly, oskar is kept trans-
lationally repressed before reaching the destination to prevent unlocalized Oskar protein 
production [56, 58–60]. In neurons, RNA localization to dendrites and axons enables 
local, often activity-dependent translation, supporting neuronal homeostasis, synaptic 
plasticity, and the autonomous function of neurites far from the cell body [52, 61–65]. 
Even in non-polarized cells, many mRNAs encoding non-membrane proteins are parti-
tioned between the ER, TIS granules, and the cytosol [44]. TIS granule-enriched mRNAs 
typically encode low-abundance proteins, including transcription factors, whereas ER-
enriched mRNAs encode large, highly-expressed proteins.

Transporting mRNAs instead of proteins has numerous potential benefits [66]. Local-
ized translation lowers transport costs since multiple proteins can be generated from 
a single messenger, and it ensures proper protein function by spatially restricting their 
synthesis and preventing ectopic protein activity. Compartmentalized translation cre-
ates unique environments that facilitate protein interaction partner selection during 
synthesis, integration into complex structures, and response to signals. For example, 
most of the human mitochondrial proteins are encoded by the nuclear genome. After 
transcription, their mRNAs localize to the outer mitochondrial membrane for transla-
tion and the proteins are co-translationally imported into mitochondria [67, 68]. Local-
ized translation of cytoskeleton regulators facilitates local cytoskeletal formation, cell 
polarization, and directed cell movement [66]. mRNA translation in TIS granules allows 
co-translational complex assembly [41, 44].

RNA localization can regulate translation levels. For instance, condition-dependent 
mitochondrial mRNA localization during respiratory conditions enhances protein syn-
thesis in yeast [69]. The partitioning of mRNAs between the cytosol and the ER influ-
ences translation efficiency, with ER-localized mRNAs exhibiting higher ribosome 
loading [70]. Conversely, subcellular RNA compartmentalization can inhibit protein 
synthesis by sequestering the mRNA from the translation machinery. For example, dur-
ing the antiviral response, the mCAT2 gene produces CTN-RNA that accumulates in 
paraspeckles [71]. Its long 3′ UTR, containing inverted repeats subjected to adenosine-
to-inosine editing, is cleaved upon stress, leading to export to the cytoplasm and trans-
lation. Nuclear RNA retention can also be regulated by IR, which occurs when one or 
more introns remain in an otherwise fully processed RNA, which will be discussed in 
the final section. Collectively, mRNA localization appears to be tightly regulated by the 
necessity for its encoded protein.

In contrast to mRNAs, whose localization is primarily dictated by the need for effi-
cient protein synthesis, lncRNAs act directly through their RNA, making localization 
critical to their function. LncRNAs are remarkably versatile, found in nearly any subcel-
lular compartment, and participate in a wide-array of cellular functions. They share sim-
ilar sequence features with mRNAs and undergo comparable processing steps, including 
transcription by RNA polymerase II, 7-methyl guanosine capping, splicing, and polyade-
nylation [72–74]. However, lncRNAs differ in key aspects. They are generally less abun-
dant, less efficiently spliced, and predominantly nuclear, often associated with chromatin 
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at the transcription site and functioning in cis [74–76]. Some lncRNAs can be exported 
to the cytoplasm or localized in both compartments, where they engage in diverse non-
coding functions [3, 77]. Moreover, certain lncRNAs undergo re-localization in response 
to cellular changes. For instance, MALAT1 is exported to the cytoplasm of differenti-
ating neurons, where it functions as a coding RNA to regulate synaptic activity [78]. 
Similarly, other lncRNAs with validated nuclear RNA-based functions were shown to 
produce proteins [79], highlighting the localization-mediated functional versatility of 
lncRNAs.

In summary, the eukaryotic cell is exceedingly complex, providing the cartography for 
diverse and distinct processes regulating chromatin architecture, transcription, RNA 
processing, translation, protein synthesis and degradation, complex assembly, cellular 
metabolism, and signal transduction. RNAs must navigate this landscape to localize cor-
rectly, which can in turn impact their post-transcriptional regulation and function.

Methods to study subcellular RNA localization
Understanding the principles regulating RNA localization is crucial for elucidating RNA 
function. Therefore, techniques that identify subcellular RNA localization are essential 
for advancing RNA biology and have significantly improved in recent years, mainly due 
to advances in imaging technology.

Biochemical methods exploit the distinct physicochemical properties of cellular com-
partments, allowing their separation and RNA content analysis by RNA sequencing. 
These approaches enabled the mapping of RNA localization for a variety of subcellular 
compartments. For instance, fractionating the cell to cytoplasmic, nuclear soluble, and 
chromatin fractions has been widely used to determine differences in RNA localization 
between these compartments. This has been particularly valuable in lncRNA research, 
revealing that lncRNAs are mainly nuclear and chromatin-bound, and suggesting their 
roles in gene expression regulation through chromatin association or by acting in trans 
within the nucleoplasm or cytoplasm [36, 73, 80]. A recently developed method, LoRNA, 
determines cell-wide subcellular RNA localization by sorting subcellular components 
based on density, quantifying RNA abundance across density fractions, and leveraging 
localization-specific RNA correlation patterns to map the subcellular localization of the 
transcriptome [81]. Despite their advantages, biochemical methods have limitations: 
some compartments cannot be biochemically fractionated (such as the nuclear pore), 
they do not eliminate contaminants from other compartments, and they provide relative 
RNA quantity ratios.

Proximity labeling techniques have significantly enhanced the detection of RNA 
enrichment in specific subcellular compartments, particularly those not separated well 
with biochemical methods. APEX-RIP uses APEX (engineered ascorbate peroxidase)-
catalyzed proximity biotinylation of endogenous proteins within a few nanometers, 
mild formaldehyde protein-RNA crosslinking, RNA immunoprecipitation (RIP), and 
sequencing [82]. APEX-RIP was applied to a variety of subcellular compartments and 
worked well for membrane-enclosed organelles, but performed poorly for non-enclosed 
regions, such as the cytosolic face of the ER. APEX-seq addressed these limitations by 
directly labeling RNA with APEX, eliminating the need for formaldehyde crosslink-
ing [68]. APEX-seq generated a nanometer-resolution spatial map of endogenous RNA 
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localization at nine subcellular locations. It revealed distinct paths of RNA localization 
to mitochondria, a radial organization  of the nuclear transcriptome, and associations 
between the localization of mRNAs and the proteins they encode. PL-CLIP (proxim-
ity labeling-crosslinking immunoprecipitation) combines TurboID [83], a biotin ligase 
that biotinylates adjacent proteins without peroxide, thereby lowering toxicity, and UV-
induced RNA–protein crosslinking [84]. Conjugating TurboID to the postsynaptic pro-
tein PSD95 enabled activation-dependent isolation and analysis of dendritic mRNAs and 
their associated proteins.

Proximity-labeling methods are restricted to analyzing a single subcellular compart-
ment at a time, thereby limiting their ability to provide a comprehensive view of RNA 
localization. Therefore, multiple experiments must be combined to achieve a thorough 
understanding of RNA localization. Furthermore, they do not provide single-molecule 
resolution. To this end, single-molecule RNA fluorescence in situ hybridization (smRNA 
FISH) emerged as the leading technique for precise and reproducible imaging of RNA 
localization in single cells [85, 86]. Compared to traditional RNA FISH, which uses a 
longer DNA, cDNA, or RNA probe, smRNA FISH uses multiple (typically up to 48) 
single-fluorescently labeled oligonucleotides tiled across an RNA of interest [86–88]. 
smFISH benefits from a substantial signal-to-noise ratio since each oligonucleotide has 
one fluorescent label. Thus, their off-target hybridization lacks detectable fluorescent 
signal compared to tilling across their target. smRNA FISH can be combined with super-
resolution microscopy techniques, including Stochastic Optical Reconstruction Micros-
copy (STORM) or Stimulated Emission Depletion (STED) microscopy [89–91]. This is 
particularly useful for studying the localization of RNAs accumulating at high density 
or for visualizing RNA–protein interactions [92, 93]. For example, STORM revealed 
between 50 and 100 Xist foci on the inactive X chromosome, contrary to the wide-coat-
ing mechanism suggested by conventional microscopy [93]. Similarly, STED revealed 
that TNBs are composed of dozens of TNBL molecules [28, 92]. However, smRNA FISH 
has several limitations. A minimum length of the RNA is required to hybridize a suf-
ficient number of probes, limiting the pool of RNAs that can be visualized. It requires 
fixed cells, which is a significant drawback since RNA localization is inherently dynamic. 
Consequently, smRNA FISH is unable to provide insights into the temporal aspects of 
subcellular RNA distribution, leaving many questions about RNA localization dynamics 
unanswered. Furthermore, fixation and permeabilization alter the subcellular architec-
ture [94].

To overcome these limitations, various live-cell RNA imaging approaches have been 
developed. The MS2-based system and its variations are the current gold standard for 
live-cell RNA imaging. The MS2 system involves inserting MS2 loops into the RNA of 
interest, which are then detected with the fluorescently tagged MS2 coat protein [95, 
96]. Another widely used system, PP7, operates similarly by utilizing PP7 loops and its 
corresponding coat protein, enabling dual-color imaging and the development of tools 
such as single-molecule mRNA turnover biosensors [97, 98]. However, long MS2/PP7 
arrays can interfere with local regulatory elements, RNA localization, or function. As an 
alternative, endogenous RNA dynamics can be imaged using molecular beacons (MBs), 
which consist of a target-complementary sequence, a fluorophore, and a quencher in a 
stem-loop structure, emitting fluorescence only when bound to their target [99]. MBs 
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were used to visualize various localized mRNAs [100–102]. However, MBs have limita-
tions, including off-target binding, degradation-induced fluorescence, targeting acces-
sible sites, affecting RNA function/localization, sensitivity, and delivery. Other less 
intrusive methods are under development, such as live-cell RNA imaging techniques 
based on catalytically-inactive Cas13, which have been successfully applied to RNAs 
localized in granules or with repeated sequences, such as NEAT1, SatIII, MUC4, and 
GCN4 [103]. However, achieving single-molecule resolution remains a challenge.

Due to the restricted availability of non-overlapping fluorophores, smRNA FISH can 
visualize only a limited number of RNAs simultaneously. To image multiple targets, 
high-throughput imaging techniques were developed, such as sequential RNA FISH 
(seqFISH) and multiplexed error-robust FISH (MERFISH) [104–108]. These approaches 
use optical barcoding through sequential rounds of readout probe hybridization, imag-
ing, stripping, and re-probing. This is achieved by adapting the primary probe sequence, 
which is not fluorescently tagged, to include a target-complementary region and 
branches for binding of fluorescently  tagged readout probes. They represent the best 
choice for high-throughput RNA mapping due to their unparalleled comprehensive-
ness and resolution. High-throughput imaging technologies can be coupled with DNA 
FISH and/or immunofluorescence, enabling the visualization of RNA and protein and/
or nuclear architecture simultaneously [109, 110]. However, their adoption is techni-
cally demanding, requiring a sophisticated setup and expertise for effective incorpora-
tion. Another limitation is optical crowding and the requirement for non-overlapping 
signals from individual RNAs for accurate quantification, limiting RNAs that can be 
targeted. MERFISH addresses the density problem with sample expansion, which physi-
cally stretches the sample to increase the distance between RNA molecules [111], while 
seqFISH + detects fewer RNAs during each imaging round [112]. Alternative imaging-
based subcellular RNA profiling techniques leverage in situ sequencing (ISS). Here, RNA 
is reverse transcribed, targeted by padlock probes that are subsequently amplified by a 
rolling circle amplification reaction and sequenced in situ [113]. Multiple variations of 
the ISS method have been introduced, including hybridization-based ISS (HybISS) and 
untargeted techniques such as fluorescence in  situ sequencing (FISSEQ) and ExSeq (a 
combination of FISSEQ with expansion microscopy) [114–117]. These techniques offer 
the added advantage of detecting shorter RNAs. However, rolling circle amplification 
reduces single-molecule resolution, a key strength of MERFISH/seqFISH, and ISS-based 
techniques are equally technically demanding.

Although transcriptome-wide imaging approaches are efficient in capturing spatial 
RNA profiles, they lack the temporal resolution. Recently developed temporally resolved 
in situ sequencing and mapping (TEMPOMap) integrates metabolic RNA labeling and 
3D in  situ  RNA sequencing to spatiotemporally track subcellular RNA kinetics [118]. 
TEMPOMap revealed differential regulation of RNA kinetics among functionally dif-
ferent genes. However, it is technically challenging to implement in routine laboratory 
work.

Overall, even though subcellular RNA dynamics are critical determinants of RNA 
function and cellular processes, their thorough characterization remains challenging. 
The method of choice will depend on the ultimate scope of the analysis. Integrating 
complementary techniques could provide a more comprehensive understanding of RNA 
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localization and dynamics. smRNA FISH remains the gold standard due to its resolu-
tion, sensitivity, and unique ability to reveal detailed aspects of subcellular RNA locali-
zation. It shows whether RNA forms condensates/clusters, localizes in cis, or is widely 
distributed, as well as the number of molecules at each location. These observations are 
crucial for interpreting RNA function, especially for lncRNAs, which will be discussed 
next. Continued technological improvements are necessary to capture the complexity of 
RNA behavior within the cell and, consequently, to understand the regulatory networks 
governing cellular functions. The tremendous advancements in RNA imaging and track-
ing hold promise that soon we might be able to capture two key aspects of RNA biol-
ogy, RNA localization, and dynamics, with a similar ease as we perform gene expression 
analyses.

Understanding lncRNAs through imaging
Since lncRNAs exert their functions through the RNA, imaging techniques have been 
instrumental in elucidating lncRNA biology. They enable the visualization of RNA distri-
bution throughout the cell cycle, determination of RNA localization relative to transcrip-
tion and target sites, mapping of distribution patterns within the cell, and assessment of 
their splicing status. As an illustrative example, the exact mechanism of Xist in deacti-
vating the female X chromosome was elucidated using RNA FISH, which demonstrated 
that Xist covers the inactive X chromosome on the same chromosome [119, 120]. RNA 
FISH has been applied to nearly all well-defined lncRNAs. Extensive smRNA imaging of 
61 lncRNAs revealed a variety of localization patterns and provided new insights into 
lncRNA functions, including abundant focal nuclear localization; dispersed nuclear 
localization with or without foci; nuclear and cytoplasmic distribution; and exclusive 
cytoplasmic localization [77]. Visualization during the cell cycle revealed that most 
nuclear, chromatin-bound lncRNAs are released to the cytosol upon nuclear envelope 
breakdown and the onset of mitosis, suggesting they establish their role in chromatin de 
novo following cell division [28, 77]. Since tissues and cell cultures contain cells with het-
erogeneous expression profiles, smRNA FISH allows studying lncRNAs and their target 
genes at the single-cell level, providing indispensable insights compared to bulk assays. 
For instance, bulk RNA-seq indicated a positive correlation of expression between bxd 
lncRNA and its target Ubx, whereas smRNA FISH showed that their expression is mutu-
ally exclusive across cells, highlighting the repressive role of bdx [121].

RNA FISH enabled the discovery of a specific class of nuclear RNAs called architec-
tural RNAs (arcRNAs), which define subnuclear compartments. For instance, SATIII 
lncRNAs were found to specifically accumulate in nSBs under stress conditions, 
MALAT1 and NEAT1 were found to accumulate in distinct nuclear regions tightly asso-
ciated with nuclear speckles, and TNBL to form perinucleolar clusters in cancer cells 
[17, 28, 35]. Since then, numerous lncRNAs have been found to accumulate in nuclear 
compartments, which was crucial in defining the functions of many of these compart-
ments [122].

smRNA FISH facilitates the characterization of lncRNA mechanisms by identify-
ing both their site of origin and their final destination through co-staining against their 
intronic regions, which are present only at active transcription sites if the intron is effi-
ciently spliced [123]. This allows to determine whether the RNA undergoes processing 
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at the transcription site and transport of the mature transcript to its functional loca-
tion in trans, or whether the RNA remains and functions in cis. Furthermore, targeting 
probes to both exon and intron regions enables the visualization of the splicing status of 
individual transcripts and their subcellular localization, with retained introns detected 
through exon–intron overlap outside transcription sites. This approach was instrumen-
tal in revealing that numerous mRNAs and lncRNAs are retained in the nucleus in an 
intron-retained (IR-) form. More recently, the distinction between mRNAs and lncR-
NAs has become increasingly blurred by the discoveries of lncRNAs with protein-cod-
ing potential [79, 124]. In this context, smRNA FISH has been particularly valuable in 
revealing lncRNAs with coding capacity, as demonstrated for lncRNA MALAT1 [78].

In summary, subcellular lncRNA dynamics have an essential role in gene expression 
regulation. smRNA FISH has significantly advanced our understanding of how locali-
zation governs lncRNA functions, underscoring the importance of spatial regulation in 
RNA biology.

RNA localization mechanisms
RNA localization is essential for its function, which necessitates identifying the sequence 
features that can predict RNA localization and function, similar to how protein func-
tion is inferred from its sequence. Despite significant progress, the complexities of RNA 
localization regulation have hindered the development of a unified model. RNA locali-
zation occurs through diverse mechanisms, including RNA–protein, RNA-RNA, and 
RNA–DNA interactions, often involving sequence-encoded localization signals or zip 
codes. Zip codes are predominantly found in the 3′ UTR, though not exclusively, and 
vary in length and complexity, ranging from short to long and from singular to multiple 
interacting sequences. Often, the secondary RNA structure consisting of stem-loops is 
more critical than the primary sequence for interactions with RBPs or other RNAs [125].

One of the first identified RNA zip codes was a 54-nucleotide sequence in the 3′ UTR 
of β-actin mRNA, initially discovered in fibroblasts [126]. Subsequent studies showed 
that this zip code is recognized by the RBP ZBP1, which orchestrates β-actin mRNA 
transport while maintaining it translationally inert. Upon reaching its destination, ZBP1 
phosphorylation by Src kinase triggers its release, enabling β-actin synthesis and spa-
tially-restricted actin filament formation [127]. Numerous studies have since identified 
RNA localization elements, including single or multiple stem-loops in oskar, bicoid, 
gurken, and ASH1 mRNAs, among others [57, 128–133]. However, their systematic 
identification remains challenging due to the inherent complexity of RNA localization 
regulation, as discussed above, involving diverse processes, including active transport, 
transport inhibition, nuclear retention, diffusion, local anchoring, and localization-spe-
cific RNA stability or decay (Fig. 2) [125, 133].

Recent studies employed massively parallel reporter assays (MPRAs) using fragments 
(75–260-nt) tiled across the 3′ UTR of neurite-localized mRNAs for high-throughput 
identification of RNA localization elements [134–136]. These studies identified new 
RNA zip codes, including (AU)n motifs, let-7 binding sites, and A/G-rich sequences. 
However, localization elements were found in a fraction of tested mRNAs, highlight-
ing the complexity of RNA localization regulation and the limitations of MPRA in 
capturing longer or distributed elements. Differential RNA stability, influenced by 
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cis-acting stabilizing or destabilizing elements that recruit trans-acting proteins, can 
play an important role in regulating RNA localization. For example, asymmetric RNA 
localization between neurites and stroma is driven in large part by differential stabil-
ity, primarily due to the depletion of mRNA-destabilizing elements in mRNAs localized 
to neurites [137]. Several elements can regulate RNA stability. The 5′ terminal oligopy-
rimidine tracts in the 5′ UTR serve as stabilizing elements [138]. In contrast, post-tran-
scriptional N6-methyladenosine modifications typically act as destabilizing elements and 
trigger RNA decay [139, 140]. AU-rich elements in 3′ UTRs can stabilize or destabilize 
RNA depending on the bound RBPs [141]. Codon optimality also affects RNA stability; 
transcripts with optimal codon sequences have faster translation elongation and longer 
half-lives, whereas those with suboptimal codons have slower translation rates and are 
more rapidly degraded [142–145]. Subcytoplasmic compartmentalization of mRNAs 
encoding non-membrane proteins into TIS granules, the ER, or the cytosol correlates 
with a combinatorial code based on total mRNA length, coding sequence exon length, 
and 3′ UTR-bound RBPs [44].

RNA localization can occur through passive diffusion and mRNA anchoring to spe-
cific subcellular sites [146, 147]. However, many RNAs rely on active transport, which 
is facilitated by zip code-interacting RBPs that associate with cytoskeletal motor pro-
teins or adaptor proteins, enabling directed movement of RNA along cytoskeletal fila-
ments to distal sites within the cell [55–57, 148–150]. Notably, mRNAs often travel 

Fig. 2 Examples of the distinct mechanisms by which subcellular RNA localization can be established. A RNA 
can be retained in the nucleus, for instance, by associating with nuclear bodies (e.g., nuclear speckles like 
MALAT1), retention of introns (exons in black, spliced intron in green, retained intron in red), or RNA:dsDNA 
triplex interactions. B Differential RNA stability and decay at various subcellular locations can influence 
RNA localization. This may be affected by stabilizing elements (e.g., 5′ terminal oligopyrimidine tracts (5′ 
TOP), optimal codons) or destabilizing elements (e.g.,  m6A modifications, suboptimal codons). For RNAs 
containing AU-rich elements (ARE), stability and decay depend on the associated RBPs. C RNA can be actively 
transported along cytoskeletal filaments by motor proteins, either independently or by “hitchhiking” on 
membrane-bound organelles such as lysosomes. D RNA localization can also be achieved through diffusion 
and subsequent local anchoring or entrapment, facilitated by interactions with specific cellular components
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packaged into RNP complexes or RNA granules, which act as dynamic hubs for RNA 
transport and regulation [147, 151–154]. Intriguingly, RNA granules can “hitch-hike” 
on membrane-bound organelles such as lysosomes, which are themselves coupled to 
motor proteins, for long-distance transport [155].

Although RNA–protein interactions are the most studied mechanism regulat-
ing RNA localization, intermolecular RNA-RNA interactions also play a significant 
role [148, 156]. For instance, protein-free RNA can self-assemble in  vitro [10], and 
SGs have a bias toward longer RNAs, attributed to non-specific RNA-RNA inter-
actions [157]. Specific interactions also contribute to RNA transport. Two well-
described examples include oskar [158, 159] and bicoid mRNAs [160] where RNA 
granules, which are essential for mRNA transport, form via kissing-loop interaction 
that promotes dimerization or multimerization of RNAs. While the extent to which 
RNA-RNA interactions influence localization remains to be fully determined, it is 
hypothesized that they are common in areas with high local RNA concentrations, e.g., 
NEAT1-driven paraspeckle formation, and modulated by ribosome and RBP binding, 
underscoring the complexity of RNA localization regulation.

The predominant nuclear localization of lncRNAs has sparked significant interest in 
uncovering the factors that regulate their nuclear retention, yielding detailed mecha-
nistic insights into specific lncRNAs. The lack of translation in most cases allows for a 
more flexible arrangement of localization signals. For instance, a pentamer sequence 
AGCCC was shown to drive the nuclear retention of the lncRNA BORG [161]. Two 
longer regions on opposite sides of MALAT1 lncRNA were identified to regulate 
MALAT1 nuclear retention and its association with nuclear speckles through interac-
tions with nuclear speckle components [162]. The middle domain of NEAT1 is essen-
tial for paraspeckle assembly by facilitating the recruitment of paraspeckle proteins 
[163]. RNA–DNA interactions, such as those seen in triple-helix forming lncRNAs 
in cis or in trans, also contribute to nuclear retention by anchoring RNAs to specific 
sites, thereby coupling RNA function with DNA loci [164, 165]. Despite the advances 
made with individual RNAs, no general features can explain the widespread nuclear 
retention observed in lncRNAs and certain mRNAs. Transposon-derived sequences 
further contribute to nuclear RNA retention [166]. Lubelsky and Ulitsky screened 
libraries of fragments tiled across 37 nuclear lncRNAs and mRNAs and identified a 
42-nucleotide, Alu-derived, cytosine‐rich (C-rich) sequence driving nuclear RNA 
retention through interaction with HNRNPK, designated SIRLOIN (SINE-derived 
nuclear RNA localization) [167]. Similarly, Shukla and colleagues identified a C-rich 
motif over-represented in many nuclear-enriched regions using a MPRA on 38 lncR-
NAs [168]. In both studies, these sequences were sufficient to promote nuclear reten-
tion of otherwise cytoplasmic RNAs. However, such elements are absent from some 
highly nuclear lncRNAs, such as XIST or NEAT1, showing that nuclear RNA reten-
tion is influenced by more than one pathway.

Several machine learning and computational models have been developed to glob-
ally predict RNA localization from its sequence. deepLncRNA [169] and lncLocator 
[170] predict nuclear or cytoplasmic localization of lncRNAs, while RNATracker pre-
dicts the localization of mRNAs to the nucleus, cytosol, or membrane [171]. RNA‐
GPS is based on a comprehensive subcellular RNA localization dataset achieved with 
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APEX-seq [68, 172] and indicates that splicing and IR are strong predictors of subcel-
lular RNA localization, as previously suggested [173] and further discussed in the fol-
lowing section.

IR as a modulator of subcellular RNA localization
Splicing and mRNA export are functionally coupled. Splicing enhances the efficiency of 
mRNA export, and in some cases, splicing is essential for correct RNA localization in 
the cytoplasm [174, 175]. IR can regulate the transcriptome through multiple mecha-
nisms, including RNA stability, premature stop codons, and subcellular localization. For 
a long time, IR was considered transcriptional noise, leading to RNA degradation [176]. 
However, multiple genome-wide and RNA-specific approaches have highlighted the rel-
evance of IR in transcriptome regulation. A significant portion of mRNAs and lncRNAs 
have high retention of one or more introns, while other introns in the same transcript 
are efficiently spliced [76, 177–179]. Notably, lncRNAs show higher IR levels compared 
to mRNAs [74, 76, 177, 178, 180]. IR profiles vary between cell types, suggesting cell-
type-specific functionalities, and can be modulated by intracellular or extracellular sig-
nals, and the cell cycle stage [76, 177, 178, 181, 182]. Boutz and colleagues analyzed IR 
in mouse embryonic stem cells (mESCs) and proposed two distinct classes of introns 
within processed transcripts [178]. Detained introns remain in the RNA in the nucleus 
until a splicing cue prompts their removal, enabling RNA export and translation. In 
contrast, retained introns are never spliced out. Transcripts with retained introns can 
be exported to the cytoplasm and translated or targeted for nonsense-mediated decay. 
However, distinguishing between transiently detained and stably retained introns is 
challenging. For simplicity, we will refer to introns present in processed transcripts as 
retained.

In mammals, IR is highly prevalent and can inactivate transcripts that are less needed 
or not required [177, 183]. This selective inactivation is essential for cellular homeostasis 
and for fine-tuning gene expression in response to developmental cues and environmen-
tal changes. Aberrant IR associates with various cancers, where it can contribute to tran-
scriptome diversification and inactivation of tumor suppressor genes through premature 
stop codons [184, 185]. The assembly of nSBs promotes IR in a subset of transcripts dur-
ing thermal stress recovery, thereby allowing for rapid adaptation of gene expression 
after heat shock [36]. This highlights the dual role of IR in both normal cellular functions 
and disease processes, underscoring its complexity and importance in gene expression 
regulation.

The presence of retained introns has important functional implications for the RNA. 
Frequently, IR-transcripts are not exported to the cytoplasm, acting as a translational 
buffer and keeping mRNAs in a repressed but poised state [76, 177, 178, 186] (Fig. 3A, 
B). For instance, PTBP1-mediated IR in the 5′ UTR of transcriptional regulator YY2 
induces its translational suppression in mESCs, thereby regulating self-renewal and lin-
eage commitment [187]. Transcripts encoding the SR protein kinase Clk1 accumulate 
in the nucleus with two unspliced introns, which are spliced out in response to heat or 
osmotic shock, and when Clk kinase activity is inhibited [188]. Inhibition of Clk activ-
ity affects IR in other transcripts, such as those that code for SR proteins or proteins 
involved in RNA processing [178]. In quiescent mouse muscle stem cells, high IR affects 
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approximately 1200 transcripts involved in RNA splicing, translation, cell cycle, and lin-
eage commitment. Among them is Myod1, a myogenic factor, whose IR keeps the RNA 
nuclear until Dek protein initiates intron removal, prompting quiescence exit [179]. 
TERT RNA, which encodes the catalytic subunit of the telomerase complex that elon-
gates telomeres, has two retained introns and predominantly localizes in the nucleus [76, 
189]. This indicates that RNA localization mechanisms regulate telomere homeostasis. 
These introns are spliced out during mitosis, suggesting that spliced TERT mRNA is 
inherited during cell division. Differential IR can regulate RNA localization and function 
in a species-specific manner, thereby influencing evolutionary changes in RNA func-
tion. For example, in human and murine ESCs, the lncRNA orthologs hFAST and mFast 
exhibit distinct localization and function. hFAST regulates Wnt signaling in the cyto-
plasm of hESCs, while mFast, influenced by the splicing inhibitor PPIE, remains nuclear 
and inactive in mESCs due to IR [181].

Within the nucleus, IR-RNAs associate with distinct compartments. Using APEX-seq, 
Barutcu and colleagues demonstrated that IR-transcripts predominantly associate with 
nuclear speckles and the nuclear lamina [182]. Notably, lamina and nuclear speckles are 
linked with functionally distinct IR-RNAs, partly attributed to intron features (Fig. 3C). 
However, the precise localization of IR-RNAs relative to nuclear speckles remains unde-
termined, limited by the resolution of APEX-seq.

Apart from sequestering the RNA in the nucleus and rendering it translationally 
inert, in some exciting cases, the long intronic sequences provide compartment-specific 
structural and binding regions that enable IR-RNAs to exert additional functionalities 
compared to their spliced counterparts (Fig.  3C). These additional properties include 
protein- and chromatin-binding regions, regulation of gene expression in trans, and 
the generation of nuclear bodies. For example, the lncRNA locus Charme produces an 
IR-isoform (pCharme) bound to chromatin that plays important roles in myogenesis by 
controlling the 3D proximity of myogenic domains [190]. On the other hand, the spliced, 
cytoplasmic isoform (mCharme) has no evident in  vitro functional roles in myogen-
esis. pCharme retains intron 1, which facilitates the formation of nuclear condensates 

Fig. 3 IR regulates subcellular RNA localization. A IR occurs when one or more introns remain in a fully 
processed and polyadenylated RNA, frequently resulting in nuclear retention of the RNA. B IR can regulate 
RNA function in various ways, such as keeping the RNA translationally inert in the nucleus or providing novel 
functional regions, among other mechanisms. The temporal regulation of IR and RNA export can affect RNA 
function and shape its nuclear/cytoplasmic balance. C IR-transcripts are associated with specific nuclear 
compartments [182]. For instance, IR-RNAs enriched at the nuclear lamina are linked to ncRNA processing, 
microtubule organization, and chromosome organization, whereas nuclear speckle-enriched IR-RNAs are 
involved in RNA processing, cell cycle regulation, and translation
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through interaction with PTBP1 and MATR3. Similarly, the evolutionarily conserved 
lncRNA TUG1, located in both the nucleus and the cytoplasm, has non-coding and 
potentially coding functions [76, 77, 191]. Nuclear TUG1 retains two introns, whereas 
cytoplasmic TUG1 is fully spliced, indicating that distinct isoforms from the same locus 
have different subcellular localizations and functions [76, 191].

While most IR-RNAs are nuclear, some localize to the cytoplasm and may  interact 
with translation machinery [192–196]. Intriguingly, retained introns can regulate the 
localization of the IR-RNA to dendrites, mediated by Staufen2 [197, 198]. In ALS, an 
aberrant IR program results in a subset of cytoplasmically localized IR-RNAs that can 
bind ALS-associated proteins, contributing to a mislocalization-prone environment for 
these RBPs [199, 200].

In summary, IR is a widespread mechanism of gene expression regulation, with the 
potential to not only regulate translation but also to contribute to the diversification of 
RNA function and provide novel functions specific to distinct cellular compartments. 
Nevertheless, despite global and target-specific approaches, we lack a consensus under-
standing of which, why, or precisely when, transcripts are regulated by IR.

Conclusions
RNA localization, a critical determinant of RNA functionality, is frequently overlooked. 
Advanced RNA imaging has greatly enhanced our understanding of spatiotemporal 
RNA dynamics at single-cell and single-molecule levels, setting a crucial foundation 
for lncRNA biology. However, observing RNA at a specific subcellular location does 
not necessarily imply a functional role, as it represents only  a temporal snapshot. A 
major limitation is the scarcity of methodologies to visualize RNA’s dynamic nature, 
coupled with the technical and expensive nature of existing high-throughput imaging 
approaches. These limitations leave gaps in understanding RNA localization regulation, 
timing, kinetics, and functions. The lack of known localization elements in most tran-
scripts and the challenges in understanding their consequences hinder the discovery of 
the pathophysiological impacts of aberrant RNA localization. Integrating existing RNA 
localization data with accessible databases, such as the genome browser, would provide 
immediate access to subcellular RNA localization, and significantly advance the field.

It is important to note that distinct localization mechanisms apply to different groups 
of RNAs, each with specific roles and regulatory processes. In this context, emerging 
evidence suggests that IR-RNAs are uniquely regulated, potentially through distinct 
mechanisms or functions, with some examples discussed here. The complete spectrum 
of mechanisms regulating IR-RNAs, including the temporal, spatial, and functional 
aspects, remains to be elucidated. The retained intron may allow IR-RNAs to play non-
coding roles in genome regulation, such as targeting genomic regions in trans, influenc-
ing higher-order genome architecture or scaffolding. IR-RNAs might collectively play a 
role in shaping nuclear architecture; their association with nuclear speckles may regulate 
speckle formation, shape, and/or size. The field of RNA localization is poised for excit-
ing advancements, which will illuminate these still obscure aspects of gene expression 
regulation.
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