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Abstract 

Gene context-essentiality assessment supports precision oncology opportunities. The 
variability of gene effects inference from loss-of-function screenings across models 
and technologies limits identifying robust hits. We propose a computational framework 
named PRODE that integrates gene effects with protein–protein interactions to gen-
erate neighborhood-informed essential (NIE) and neighborhood-informed context 
essential (NICE) scores. It outperforms the canonical gene effect approach in recover-
ing missed essential genes in shRNA screens and prioritizing context-essential hits 
from CRISPR-KO screens, as supported by in vitro validations. Applied to Her2 + breast 
cancer tumor samples, PRODE identifies oxidative phosphorylation genes as vulner-
abilities with prognostic value, highlighting new therapeutic opportunities.

Keywords: Essentiality, Context-essentiality, Gene effect, PPI, Cancer vulnerabilities, 
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Background
The identification of genes essential for cancer cell survival has been a major goal in can-
cer research, as they may unravel key biological processes of tumoral cells [1, 2] and rep-
resent putative therapeutic targets [3]. Genes that exhibit context-specific essentiality have 
a potentially high clinical impact, as they may lead to the development of cancer therapies 
tailored to treating tumors that display context-specific genotypes and are more selective 
[3, 4]. Synthetic lethality is an example of context-specific essentiality that manifests when a 
gene is essential for cell survival only in the presence of a functional mutation on a second 
gene (representing the context) [5, 6]. One of the most remarkable synthetic lethal (SL) rela-
tionships involves the gene PARP1 which turns essential in the context of BRCA1/2 gene 
mutations [7]. After this discovery, PARP1 pharmacological inhibitors demonstrated great 
clinical utility in treating tumors with specific DNA repair defects [8]. Moreover, besides 
the PARP1-BRCA1/2 relationship, SL interactions have emerged as valuable predictors of 
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patients’ clinical responses to targeted and immunotherapy treatments [9–11]. Beyond SL 
interactions, context-specific essential genes in cancer cells can also stem from more intri-
cate biological scenarios as, for instance, the essentiality of the WRN gene in the context of 
microsatellite unstable tumors [12], mitotic checkpoint genes in aneuploid cells [13], and 
IL-6R in chromosomal-unstable tumors [14].

Collections of loss of function (LoF) screens—based on shRNA (knock-down) or sgRNA 
(knock-out)—have become increasingly available in recent years thanks to projects such 
as DepMap [15], providing a valuable resource for studying essential and context-specific 
essential genes. Current methods for quantifying gene essentiality rely on the computation 
of gene effects as a measure of cell-fitness changes that occur after the LoF of each gene 
within the screening [16–19]. To identify context-essential genes, common approaches test 
for differential gene effects between two groups of cell-lines as part or not of the context of 
interest [20]. However, the joint analysis of gene effects computed from screens performed 
on different cell lines is complicated by biological and technical variation [21, 22], thus lim-
iting the ability to identify reproducible and robust context-specific essential genes [11, 23]. 
Additionally, different screening technologies, such as shRNA, sgRNA based, or using dif-
ferent guide RNAs libraries [24], have been shown to produce different estimates of gene 
essentiality [25, 26].

Reasoning that the LoF of a gene may result in cell fitness changes through the impair-
ment of the biological processes in which it takes part, we hypothesized that combining 
gene effects of genes that display direct protein–protein interactions (PPIs)—hence partici-
pate in common biological functions—may prove a robust indicator of gene essentiality (or 
context-essentiality). The use of PPIs alone or combined with other omics has been pre-
viously tested to predict gene effects or classify known essential genes [27–32]. However, 
despite PPIs being informative when predicting gene essentiality or shortlisting context-
specific essentiality [33–35], there is currently no method that systematically integrates 
gene effects at the PPI level.

With this goal, we developed PRODE (PPIs Recovery Of neighborhooD Essentiality), an 
analytical framework that interrogates directly interacting partners of each gene—partici-
pating in its first-level neighborhood—to (I) robustly quantify gene essentiality of screened 
models and (II) prioritize context-specific essential genes by comparing two populations of 
screened cell-lines. PRODE provides a novel approach that proved more robust than gene 
effects alone when identifying reference essential and context-essential genes. It also dem-
onstrates better discriminative power compared to alternative methodologies adapted to 
solve the same task [36–38]. We further applied PRODE for the prioritization of essential 
genes in the context of Her2 + breast cancer and recovered candidates with clinically rel-
evant implications displaying subtype-specific associations to patients’ survival and anti-
Her2 therapy response. We propose that PRODE’s integration of gene effects and PPIs 
has the potential to drive the design of therapeutic strategies for the targeted treatment of 
tumors.
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Results
PRODE integrates gene effects and protein–protein interactions (PPIs) to quantify gene 

essentiality and context‑specific essentiality

To quantify essentiality or context-specific essentiality of each gene across a group of 
cancer cell-line models, PRODE computes a neighborhood-informed essentiality (NIE) 
score and a neighborhood-informed context essentiality (NICE) score. While the pro-
cedures for calculating NIE and NICE scores are identical, the two derive from different 
types of input data. In particular, NIE scores are computed starting from gene effects of 
a screened model (or the average gene effects across models, representative of an essen-
tial-like signal). In contrast, NICE scores originate from differential gene effects between 
two groups of cell-line models (representative of a context-essential signal). For the NIE 
scores (Fig. 1a), PRODE starts by identifying the list of directly interacting partners of 
each gene, using a reference list of PPIs. Next, for each gene within the neighborhood, 
it retrieves its average gene effects previously turned into percentiles according to the 
complete screened gene list (low percentiles are linked to higher essentiality). To fur-
ther quantify the neighborhood-level essentiality, it applies the Robust Rank Aggrega-
tion (RRA) algorithm [39] and tests whether the percentiles of genes in the collected 
neighborhood are significantly skewed towards zero. For a given gene ( gi) , the final NIE 
score is computed as:

where uNSg i is the statistical significance of the neighborhood skew of gi (computed 
through the RRA algorithm and turned into percentile) and uGEgi is the gi percentile of 
average gene effect. In the case of NICE scores (Fig.  1b), PRODE computes differen-
tial gene effects by fitting a linear model for each gene comparing a subset of screened 
cell-lines part of the context of interest against a subset not part of that context. In this 
case, the RRA algorithm computes the statistical significance of skew of differential gene 
effects of each gene’s neighborhood and the final NICE scores are computed following 
the same procedure as NIE scores. To ensure interpretability and consistency with the 
original gene effects, NIE and NICE scores are logarithmically transformed, resulting in 
lower negative values indicative of stronger essentiality and context-specific essentiality 
for NIE and NICE, respectively.

PRODE robustly identifies essential genes and biological processes across different 

screening technologies

We assessed the performance and robustness of PRODE NIE scores in various settings. 
First, we investigated the ability of NIE scores to discriminate a set of 1028 common 
essential genes derived from previous publications as well as participating in essential 
biological processes (Fig. 2a; Additional file 2: Table S1; Methods) from 849 genes that 
are unexpressed or previously characterized as context-essential, expected to display 
low to no broad essentiality across cell-lines (Additional file 2: Table S1, [40]). Specifi-
cally, we applied PRODE to a collection of shortlisted cell line screening datasets (461 
knock-out and 388 knock-down screenings composing the sgRNA and shRNA datasets, 

NIEgi = log uNSg i × uGEgi
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respectively; Fig. 2a as described in Methods; Additional file 2: Table S2), and we com-
pared its performance to that of gene effects and other heuristics [36, 38] that integrate 
gene effects and PPIs. In particular, we examined neighborhood sum (NSUM) and 
neighborhood max (NMAX) [36] (Table 1), which consider the sum and maximum gene 

Fig. 1 PRODE integrates gene effects and protein–protein interactions (PPIs) to quantify 
neighborhood-informed gene essentiality and context-specific essentiality. a Workflow of essentiality 
quantification. PRODE operates as follows: 1. PRODE selects genes directly interacting with the gene of 
interest, leveraging PPI information. 2. Percentiles of gene effects are mapped onto the gene neighborhood. 
3. A score is computed by quantifying the statistical significance of the skew of the neighborhood towards 
low percentiles of gene effects, indicative of higher essentiality, combined with the gene effect of the gene 
under study (NIE scores). b Workflow for context-specific essentiality prioritization (NICE scores): PRODE 
further computes context-specific essentiality scores by mapping percentiles of differential gene effects 
onto the gene neighborhood. Differential effects are obtained by fitting a linear model for each gene within 
the screening library. The final NICE score is then obtained by combining the quantified significance of 
neighborhood skew and each gene’s differential effect
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Fig. 2 PRODE robustly identifies essential genes and biological processes across different screening datasets. 
a Diagram shows the collection of genes employed for the establishment of the reference essential genes 
set. b Barplots demonstrate the superior or similar performance—assessed through ROC AUC (left) and PR 
AUC (right) of PRODE compared to other approaches when classifying reference essential and non-essential 
gene lists using sgRNA (left) and shRNA (right) dependency scores. AUCs are reported along with 95th 
confidence interval (also in Additional file 1: Fig. S1a–b). c PRODE scores exhibit greater consistency 
(Spearman’s correlation coefficient on the y-axis) compared to average gene effects across all cell lines 
when subjected to increasing levels Gaussian of noise in the input dependency scores (x-axis). d PRODE 
demonstrates a higher correlation (Spearman’s correlation of 0.58) between sgRNA and shRNA-derived 
essentiality scores compared to alternative methods. e PRODE essentiality scores exhibit a higher Spearman’s 
correlation with coefficients of variation of gene expression across cell lines (d; 0.62 and 0.43, respectively, for 
sgRNA and shRNA dependency scores). Note: a positive correlation emerges when low NIE scores correspond 
to low coefficient of variation. f PRODE displays a higher correlation with genes conservation scores. For 
the ease of interpretation, a positive correlation results when highly conserved genes across species display 
lower NIE scores

Table 1 Overview of the different benchmarked methodologies

The Np-value (neighborhood p value) has been tested only for context-essentiality detection, as it requires a p value for 
each gene as input (Methods)

Gene effect PRODE NSUM NMAX RWR Np‑value

Use of PPIs No Yes Yes Yes Yes Yes

Use of direct 
neighbors

No Yes Yes Yes No Yes

Use of 
complete PPI 
network

No No No No Yes No

Type of PPI-
based metric 
used

– Skewness 
of scores 
mapped on 
neighbor-
hood

Sum of scores 
mapped on 
neighbor-
hood

Max. of scores 
mapped on 
neighbor-
hood

Diffused 
scores 
mapped 
across the 
network

Aggregated p 
values mapped 
on neighbor-
hood
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effects among the first-level neighborhood of each gene, focusing on directly interacting 
partners as PRODE. Additionally, we evaluated scores obtained through random walk 
with restart (RWR) [38], which diffuses gene effects across nodes in a protein–protein 
interaction network constructed from the collection of PPIs (Table 1). For each method-
ology, the obtained essentiality scores were normalized, controlling for the size of each 
neighborhood to avoid the ascertainment bias inherent in PPI collections (Methods). 
We tested the discrimination of essential vs. not essential genes in two different settings, 
considering the average gene effect across cell-lines (Fig. 2b) or gene effects profiles of 
each cancer cell-line separately (Additional file 1: Fig. S1a) as input. When computing 
NIE scores using gene knock-out effects (sgRNA dataset), PRODE exhibited a signifi-
cantly higher ROC AUC (Fig. 2b—left; p value <  10−5, DeLong’s test) compared to every 
other approach except for NSUM (p value = 0.11, DeLong’s test) and similar area under 
the precision-recall curve (PR AUC; Fig. 2b—right). Notably, when utilizing gene knock-
down effects (shRNA dataset) for the same task, PRODE outperformed every other 
methodology (p value <  10−7, DeLong’s test). When tested on each single cancer cell-
line (Additional file 1: Fig. S1a), we observed consistent results (p value < 0.001, paired 
Wilcoxon test) and noticed that NIE scores preserve tumor-type specific essentialities 
(Additional file 1: Fig. S1c). Compared to average gene effects in the absence of PPI infor-
mation, PRODE displayed a significant improvement when classifying genes involved in 
biological processes that are known to play pivotal essential roles in cell survival (Addi-
tional file 1: Fig. S1d; Additional file 2: Table S1; Methods, DeLong test p value <  10−3).

Notably, PRODE’s scores revealed consistent performance when making use of differ-
ent PPI collections and of decreased number of interactions (Additional file 1: Fig. S2a–c) 
while preserving cancer cell-lines unique identity (Additional file 1: Fig. S2d). Combining 
the neighborhood component with gene effects leads to better performances compared 
to the single components alone (Additional file 1: Fig. S3a, ROC AUC of 0.97 vs. 0.95 
and 0.87 for average gene effects alone or PRODE’s neighborhood component alone for 
sgRNA dataset and 0.94 vs. 0.87 and 0.92 for shRNA dataset). NIE scores demonstrated 
improved reproducibility when subjected to increasing levels of noise in the input gene 
effects at the cell-line level (Fig. 2c; average PRODE Spearman’s correlation = 0.85 and 
0.79, average gene effects correlation = 0.72 and 0.69 for sgRNA and shRNA-based 
screenings, respectively) and exhibited greater consistency than average gene effects 
across different screening technologies (Fig. 2d; Spearman’s correlation = 0.53 vs. 0.26). 
Furthermore, in line with the expectation that essential genes exhibit low variation in 
expression levels across different contexts, we observed higher Spearman’s correlations 
between NIE scores and the coefficient of variation of gene expression across the col-
lection of cell lines under study (0.60 and 0.39 for NIE scores within sgRNA and shRNA 
datasets respectively vs. 0.45 and 0.22 in the case of average gene effects). The lower the 
coefficient of variation, the lower the NIE scores (higher essentiality). As essential genes 
are more conserved across species compared to not-essential ones [2], we inspected the 
concordance of each computed essentiality measure with respect to gene-level conserva-
tion scores obtained from phylogenetic data across multiple species (Methods) with NIE 
scores resulting in the highest positive Spearman’s correlation (0.36 compared to average 
of 0.24 for sgRNA dataset; Table 2). Taken together, these results support the relevance 
of NIE scores when prioritizing essential genes across a collection of cancer-cell lines.
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NIE scores are robust across screening libraries and loss of function datasets

To qualify PRODE performance, we performed a set of experiments in additional set-
tings. For instance, in the setting of different knock-out screenings performed using 
different libraries, therefore prone to batch effects, with the expectation that the inte-
gration of PPI would ameliorate those effects. We therefore applied PRODE on knock-
out and knock-down screens performed on a common set of cancer cell-lines (14 for 
sgRNA, 226 for shRNA datasets) using different libraries (DEPMAP, SCORE—sgRNA 
[41]; ACHILLE [15], DRIVE—shRNA [42]) and processed with identical tools (CERES 
for sgRNAs and DEMETER for shRNAs). We ran PRODE on a single cell-line level, and 
we observed how the average correlation between PRODE scores across different data-
sets was significantly higher compared to the one of gene effects alone (average 0.82 vs. 
0.62, p value < 2e − 16, paired Wilcoxon test; an example for a cancer cell-line reported 
Fig.  3a). PRODE scores displayed also higher average performance (ROC AUC = 0.97 
vs. 0.93 for sgRNAs—top; 0.92 vs. 0.81 for shRNAs—bottom) when classifying reference 
essential vs. not essential genes (Fig. 3b) and, importantly, it preserved cancer cell-lines 
specific signal, as demonstrated by the significantly higher correlation between matched 
cancer cell-lines compared to unmatched ones, preserving a similar trend to the use of 
gene effects alone (Additional file 1: Fig. S3b).

Next, we challenged the robustness of the PRODE results investigating how NIE 
scores could be robust to screenings performed with reduced library sizes, as a small 
number of guides targeting a gene could lead to imprecise gene effect estimates [43]. 
Taking advantage of a collection of four different screens derived from DeWeirdt et al. 
[44] (Methods), we systematically subsampled the number of guide RNAs targeting each 
gene across four different cancer cell lines (Fig.  3c). Compared to the computation of 
gene effects alone, gene effects weighted by neighborhood effects (i.e., NIE scores) dem-
onstrated greater consistency (Fig. 3c—top panel, average PCC 0.96 vs. 0.91) as well as 
better discrimination ability between reference essential and not essential scores (aver-
age ROC AUC 0.97 vs. 0.92).

Taken together, we believe that these results highlight the benefits of using PPIs—
weighted gene effects, as they lead to more robust and consistent essentiality scores in 
challenging contexts (e.g., small library size).

Neighborhood essentiality uncovers functionally redundant essential genes

PRODE evaluates essentiality by analyzing the local neighborhood of each gene within 
a PPI network, capturing the influence of immediate interaction partners. However, this 
approach may encounter challenges with functionally redundant genes—such as those 
in multi-protein complexes (e.g., the SWI/SNF complex)—where neighboring genes can 
compensate for the loss of one another, masking the essentiality of individual compo-
nents [45]. To address this, we focused on functionally redundant essential paralogs, 
constructing a benchmark dataset of paralog pairs known to exhibit essentiality only 
when co-deleted (e.g., Parrish et  al. [46], Anvar et  al. [47], Additional file  2: Table  S7, 
Methods). By comparing PRODE’s NIE scores to average gene effects, we observed that 
NIE scores significantly outperformed gene effects in identifying functionally redundant 
essential genes (Fig. 3d–e, Wilcoxon p < 0.001), with AUCs of 0.88 and 0.74 versus 0.7 
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and 0.6, respectively. Further analysis revealed that essential paralogs displayed a higher 
fraction of interactions with reference essential genes (10% and 14% vs. 3% and 5% in 
Parrish and Anvar datasets; Wilcoxon p < 0.0001), suggesting that local PPI interactions 
enhance PRODE’s ability to detect compensatory relationships, thereby capturing subtle 
but critical functional roles. In line with this result, we also observed that top essential 

Fig. 3 PRODE performance across loss of function datasets and libraries. a Scatterplots depicting the 
correlation between gene effects (on the left) or NIE scores (right) computed across different loss of function 
datasets (sgRNA on top, shRNA bottom) on T47D cancer cell-line. Correlations among datasets generated 
with different libraries are higher (0.84 and 0.75 vs. 0.63 and 0.45) upon PRODE’s integration of PPIs into 
gene scores (CERES scores for sgRNA, DEMETER scores for shRNA datasets). b ROC curves of PRODE vs. gene 
effects across the four datasets considered for the analysis. PRODE displays greater average AUCs (average 
0.97 and 0.92 vs. 0.93 and 0.81) across cancer cell-lines screened in both datasets. c. Line plot of PCC (top) 
between runs of PRODE (gold) or gene effects (pink) while reducing the number of guides targeting each 
gene (x-axis) across sgRNA of four different cancer cell-lines. The line plot on the bottom displays AUC values 
when classifying essential vs. not essential genes. d Performances of PRODE NIE scores compared to the use 
of average gene effects when classifying paralog essential vs. not essential genes derived from two major 
multiplexed knock-out screens (Parrish et al.; Anvar et al.). PRODE’s NIE scores show greater discrimination 
between essential vs. not essential paralogs (p < 0.001 in both datasets) compared to gene effects (p < 0.001 
only in Anvar et al.). e ROC AUCs indicate greater discrimination power of PRODE compared to average gene 
effects to identify essential paralog genes, which single knock out is buffered by their counterpart
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paralogs, according to PRODE, displayed a significantly greater gain in essentiality upon 
co-deletion than their single knock-out (Additional file 1: Fig. S4a–b).

PRODE recovers essential genes missed by shRNA technology

After assessing the robustness of NIE scores across different screening technologies, we 
sought to test the ability of PRODE to detect essential genes otherwise missed by knock-
down (shRNA) LoF screenings compared to knock-out based (sgRNA) screens (Fig. 4a). 
Previous studies have reported lower detection rates of essential genes in shRNA screen-
ings compared to sgRNA screenings [48], primarily attributed to the presence of off-
target effects [26, 49–51] and lower consistency between cell-lines [49]. To validate our 
findings and provide experimental evidence, we focused on the LoF data available for 
a bladder cancer cell line part of the DepMap collection that we recently tested for the 
investigation of new treatment opportunities in bladder cancer [52], the HT1197. Start-
ing from a list of 939 common essential genes (present in both sgRNA and shRNA data-
sets, Fig. 2a) and by introducing data-driven thresholds on gene effects (Additional file 1: 
Fig. S5a; Methods), we observed that the sgRNA and shRNA screenings performed on 
HT1197 jointly identified 840 out of 939 genes as essential (89%) of which 198 (21%) 
were identified by sgRNA technology only (Fig.  4b). Notably, NIE scores computed 

Fig. 4 PRODE rescues HT1197 cancer cell-line essential genes undetected by gene knock-down effects. 
a Analysis workflow. By analyzing the shRNA dataset, PRODE rescues essential genes otherwise missed by 
gene knock-down effects alone (top). Three genes are further tested through in vitro viability experiments 
(bottom). b Venn diagrams displaying the number of reference essential genes identified by gene effects 
within sgRNA and shRNA datasets. c Violin plots showing significantly lower NIE scores derived from 
knock-down (shRNA) data (Wilcoxon test p value < 2e − 12) of essential genes identified only by gene 
knock-out effects (sgRNA) compared to non-expressed genes. d Scatterplot highlighting the distribution 
of three genes tested with further in vitro experiments comparing shRNA-based gene effects (x-axis) and 
shRNA-derived NIE scores (y-axis). e The density plot shows the number of PPIs with the reference essential 
genes. RIOK1 and DIS3, which were deemed as essential-like by PRODE, display a higher number of PPIs 
compared to CINP. f Experimental evidence of RIOK1, DIS3, and CINP essentiality in the HT1197 cell line is 
demonstrated through crystal violet experiments (left). Barplots illustrate the quantification of relative cell 
population abundance in each crystal violet experiment (right)
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through the integration of HT1197 shRNA gene effects and PPIs nominated 83 (41%) 
of the 198 essential genes previously missed. Importantly, even if the remaining unde-
tected essential genes did not pass the pre-computed threshold to call for an essential 
event, we observed that their NIE score distribution was significantly lower compared 
to the one of unexpressed genes, expected to be non-essential (Fig. 4c). To experimen-
tally validate the performance of PRODE, we selected three representative genes from 
the reference essential gene list; RIOK1 (RIO kinase 1), which displayed an essential-
like signal with and without PPIs integration; CINP (cyclin dependent kinase 2 inter-
acting protein), deemed not-essential by both approaches; and DIS3 (exosome complex 
exonuclease RRP44), a gene recovered by PRODE but missed by standard shRNA gene 
effects (Fig. 4d). Interestingly, DIS3 and RIOK1 exhibited a higher number of PPIs with 
the set of reference essential genes (Fig.  4e), suggesting their involvement in essential 
gene processes. Further inspection among their directly interacting partners revealed an 
enrichment for ribosomal genes (Additional file 1: Fig. S6c–d). To experimentally verify 
PRODE predictions, HT1197 cells were transduced with inducible lentiviral vectors car-
rying two different shRNA constructs targeting the gene of interest and a non-targeting 
shRNA to be used as control (shNT); all vectors had a puromycin resistance cassette 
that allowed positive selection to ensure homogeneous lentiviral integration. Cells were 
then seeded in equal numbers to evaluate in  vitro viability after 7–14  days of induc-
tion of shRNA expression. Crystal violet assay confirmed the predictions of PRODE, as 
the induced downregulation of DIS3 and RIOK1 through shRNA guides resulted in a 
reduction in cell viability higher than 50%, while the reduction of expression of CINP 
did not induce noticeable fitness changes in the HT1197 cell-line (Fig. 4f–g; Additional 
file 1: Fig. S7; Additional file 2: Table S3). These validations suggest that NIE scores may 
recover essential genes missed by genome-wide screens, as exemplified by the DIS3 
gene. Indeed, despite the DIS3 average shRNA gene effect being compatible with a non-
essential gene, ad hoc silencing through viability assays revealed its essentiality. To gain a 
more comprehensive overview of the essential genes nominated by PRODE and missed 
by gene effects alone, we selected a set of 179 genes displaying essential-like NIE scores 
in both sgRNA and shRNA datasets (Additional file 1: Fig. S8a). Notably, the composed 
set showed significant enrichment for RNA-splicing genes (Additional file 1: Fig. S8b) an 
essential process for cell survival [53].

PRODE recovers experimentally derived synthetic lethal context‑essential genes

Assessing the performance of a computational tool designed to detect context-essential 
relationships is a non-trivial task due to the lack of consensus reference sets. To address 
this challenge comprehensively, we constructed three different test sets, each contain-
ing gene pairs expected to show a SL interaction with varying degrees of evidence. The 
datasets consisted of context-essential gene pairs derived from isogenic sgRNA screen-
ings (n = 115), double-KO sgRNA screenings (n = 498) as well as pairs collected in an 
external database (SLdb; n = 82) prioritized for their experimental evidence [54] (Addi-
tional file  2: Table  S4). To provide robust negative controls, we included context-gene 
pairs where the gene is expected to be non-essential and, therefore, hypothesized to 
show no differential essentiality between cell-lines part or not of the context of interest 
(Methods). We first tested the detection of context essentialities in each cell-lines lineage 
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(requiring the number of per-group screened cell lines higher or equal 3) and then 
averaged the scores. Across all three tested scenarios, PRODE NICE scores displayed 
higher areas under the precision and recall curves (for the three datasets respectively, 
PR AUCs 0.8, 0.78, 0.8 versus the average of other approaches 0.71, 0.7, 0.71, Fig. 5a–b, 
Additional file  1: Fig. S9a, Table  3). Moreover, when computing ROC curves, PRODE 
resulted in higher ROC AUCs compared to other methodologies (PRODE ROC AUCs: 
0.68, 0.65, 0.71 for three datasets compared to an average of 0.57, 0.56, and 0.59 for the 
other approaches respectively; DeLong’s test p value < 0.05, Fig. 5d–f, Table 3). Further-
more, as context-essential relationships may be lineage-specific [55], we investigated the 
ability of PRODE to recover context-essential interactions nominated by the isogenic 
screenings while performing a lineage-matched analysis (Methods, Fig. 5c). On top of 
significantly higher average ROC AUCs when discriminating top vs. bottom 100 con-
text-essential genes nominated in each isogenic screen (Additional file 1: Fig. S9b), NICE 

Fig. 5 PRODE performance on reference synthetic lethality datasets. a Compared to other methodologies, 
PRODE displays higher ROC AUC (top) and PR AUC (bottom) when classifying reference synthetic lethal (SL) 
interactions from a collection of isogenic CRISPR-KO screens. b PRODE shows higher ROC AUC (top) and PR 
AUC (bottom) compared to other approaches on SL interactions derived from double KO experiments. c 
Collection of the 13 isogenic KO screens used for lineage-matched analysis across five different lineages. d 
Fractions of hits identified among the top 100 by PRODE and differential gene effects obtained from each 
isogenic screen. PRODE displays significant overall fractions (paired Wilcoxon test p value < 0.05)
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scores prioritized the 22% of the top 100 candidate genes nominated by each experi-
ment among its top 10% of hits. This fraction was significantly higher compared to that 
of differential gene effects (Fig. 5d, paired Wilcoxon test, p value <  10−5). Moreover, as 
DNA-damage gene sets are expected to enrich among the top candidates when prioritiz-
ing context-essential genes in the presence of PARP1 loss, NICE scores displayed simi-
lar enrichment compared to the results emerging from the isogenic-screens and higher 
enrichment compared to differential gene effects (Additional file  1: Fig. S9c). Overall, 
these results suggest that PRODE’s NICE scores may recover context-essential genes 
when analyzing collections of publicly available LoF screenings data.

PRODE identifies OXPHOS genes as context‑essential in HER2 + breast cancer

Context-specific essential relationships are of high clinical relevance as they may trans-
late into novel therapies and reveal uncharted biomarkers. To investigate the transla-
tional potential of context-specific essential genes prioritized by PRODE, we focused on 
Her2 + breast cancer, an aggressive molecular subtype [56] characterized by the ampli-
fication of the gene ERBB2 which encodes for the Her2 protein (Fig. 6a) and compared 
the top 100 candidates prioritized by NICE scores, with the ones nominated by differen-
tial gene effects. Among the genes nominated by both approaches, we found candidates 
that have been previously reported to be involved in the same pathways as ERBB2, as 
well as genes associated with resistance to anti-Her2 therapy (Additional file 1: Fig. S10a; 
Additional file  2: Table  S5). Interestingly, by focusing on 56 genes uniquely identified 
by PRODE and not by differential gene effects, we quantified a significant enrichment 
for genes involved in oxidative phosphorylation (OXPHOS genes) (Fig. 6d; Additional 
file 2: Table S6). By further inspection, we noticed that PRODE scored 32% (29 out of 
97) of all OXPHOS genes within its 56 private-genes hits, a significantly higher pro-
portion compared to differential gene effects (5%, proportion test p value =  10−6). 
Intriguingly, we also observed a trend for significantly higher expression of OXPHOS 
in HER2 + TCGA patient tumors compared to other molecular subtypes (Fig. 6e; HER2 
vs. others p value < 0.05, Wilcoxon test), supporting the relevance of OXPHOS within 
the HER2 + tumors. To explore the clinical implications of the OXPHOS genes nomi-
nated among the PRODE private calls, we investigated their association with overall sur-
vival in the TCGA breast cancer cohort and tested whether the interaction between the 
Her2 + subtype and the expression of OXPHOS genes might be associated with different 
survival outcomes. The 29 OXPHOS genes analyzed exhibited significantly lower hazard 
ratios compared to randomly sampled genes (Wilcoxon test p value =  10−4, Additional 
file 1: Fig. S10b—eight showed a trend for a significant negative association; p value < 0.1) 
suggesting that low expression of OXPHOS genes is associated with better overall sur-
vival exclusively within Her2 + patients supporting their potential as critical players in 
Her2 + tumor fitness. Strikingly, when averaging the expression of the OXPHOS genes 
identified by PRODE, we noticed a better overall survival in Her2 + patients (log rank 
test p = 0.017, Fig.  6g) in the presence of low OXPHOS expression, but no significant 
association was found when jointly tested in the other subtypes, highlighting their 
context-specific clinical relevance. To delve into the clinical implications of OXPHOS 
gene expression in response to therapy, we evaluated five cohorts of Her2 + breast can-
cer patients treated with trastuzumab, a monoclonal antibody that targets and inhibits 



Page 15 of 26Cantore et al. Genome Biology           (2025) 26:42  

the Her2 protein. Despite that Her2 amplification sensitizes to Her2 inhibitors, patients’ 
responses to drugs such as trastuzumab have been reported to vary significantly and 
be largely dependent on the expression levels of Her2 itself, even if characterized by 
genomic amplification. Our analysis revealed that low expression levels of the 29 inves-
tigated OXPHOS genes display an average association with better clinical response, 
independent of the expression of Her2 itself (Fig. 6h–i). This finding suggests that the 
OXPHOS genes may serve as putative biomarkers for sensitivity to Her2-targeted 
therapy.

Discussion
In recent years, the availability of publicly accessible collections of LoF screening 
data, such as the one generated by the DepMap project, revolutionized the study of 
essential and context-essential genes. However, the migration from shRNA-based 
screenings to sgRNA-based ones and the use of different screening libraries and 

Fig. 6 PRODE prioritizes essential genes in Her2 + breast cancer. a Schematic of the analysis workflow. 
Differential gene effects and PRODE prioritize context-essential genes in the Her2 + breast cancer molecular 
subtype. The clinical relevance of the resulting top candidates is investigated through gene expression 
association analysis with patients’ prognosis and sensitivity to anti-Her2 treatment. b Venn diagram showing 
the number of overlapping hits between differential gene effects and PRODE. c Barplot depicting top 
enriched terms in PRODE private hits. d Gene activity coefficient (Methods) of OXPHOS genes in each 
subtype. e Kaplan–Meier curves demonstrate a significant association of average OXPHOS expression 
level with patient overall survival in Her2 + (left, Kaplan–Meier’s curves test), compared to other subtypes. 
f Heatmap showing coefficients of association between OXPHOS gene expression and patient’s response 
to trastuzumab. Negative coefficients reflect the low expression of OXPHOS in responders, independently 
of ERBB2 expression. g Density plots show that the average association coefficient of OXPHOs genes is 
significantly lower than those obtained with random gene sets (empirical p value < = 0.05) in four out of five 
datasets
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technologies has led to challenges in achieving reproducible results. Investigating 
the context-specific nature of gene essentiality has proven particularly complicated, 
limiting the translation of context-essential relationships into clinical applications 
[23]. This work presents PRODE, a novel analysis framework that provides robust 
insights into gene and context-specific essentiality. By leveraging the knowledge that 
essential genes participating in PPIs share common biological functions, display high 
interconnectivity, and cluster together, PRODE computes NIE and NICE scores that 
capture gene-level signals and incorporate information from gene neighborhoods, 
resulting in robust and reliable predictions of essential genes and context-specific 
essential relationships. The robustness of PRODE NIE scores is demonstrated by its 
ability to discriminate reference essential genes from non-essential ones effectively 
both on average and on a per-cell-line basis. Essential genes identified by PRODE dis-
play independently assessed biological properties, such as higher conservation scores 
across species and stable expression levels, further validating the accuracy of the pre-
dictions. The essential candidates identified by PRODE and not by gene effects display 
properties expected to be a primer of essentiality, such as enrichment for vital bio-
logical pathways (e.g., ribosome, splicing) and a greater number of interactions with 
synthetic lethal genes (Additional file  1: Fig. S5b–c, [57]). Remarkably, by weight-
ing gene effects through local neighborhood signals, PRODE scores demonstrated 
robustness across LoF datasets from diverse sources and knockout libraries (Fig. 3a, 
[41]). PRODE also proved resilient to downscaled screening data, maintaining stable 
performance and consistency even when the number of guide RNAs per gene was 
reduced to one. Taken together, these results highlight PRODE as a reliable tool for 
analyzing screening data under challenging technical conditions.

Given the recent focus on functionally redundant gene pairs, such as paralogs (see 
[46, 47, 58, 59]), we found that evaluating essentiality within the context of a gene’s 
local neighborhood, rather than as an isolated property, improves the identification 
of essential buffering genes (Fig. 3d–e). Beyond paralogs, functional redundancy may 
more broadly characterize protein complexes composed of multiple genes. Recogniz-
ing this as a potential limitation of the current PRODE implementation, we foresee 
future updates allowing signal aggregation across entire protein complexes, treating 
them as cohesive functional units rather than isolated gene components.

Furthermore, PRODE’s efficacy in rescuing genes missed by shRNA-based gene 
effects highlights its value in detecting essential genes by leveraging information 
linked to the gene’s biological function rather than solely relying on the screening 
signal, limited by the technology in use. In the context-essentiality analysis, PRODE 
outperforms alternative methodologies and successfully identifies experimentally 
derived context-essential genes from isogenic cell lines and double knockout screen-
ings. When comparing gene effects distributions between two groups of cell lines, 
PRODE consistently outperforms differential gene effects, reinforcing its superiority 
in detecting context-essential relationships. With ad hoc LoF screenings (e.g., in iso-
genic settings), NICE scores proved to be a better choice in prioritizing novel findings 
for further validation than differential gene effects, as PRODE identifies a higher frac-
tion of hits derived from isogenic experiments at the lineage level. Our results sug-
gest that the use of standard approaches for hit prioritization of in-house experiments 
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(such as by leveraging differential gene effects computed on publicly available collec-
tions of screens) may result in the loss of potentially relevant context-specific essen-
tial genes.

While PRODE demonstrates improved performances over the use of gene effects 
alone, there are potential limitations to consider. As with any method leveraging PPI 
data, the reliability of PRODE’s predictions may be influenced by the quality and cover-
age of the available PPI networks [60]. Encouragingly, PRODE’s scores remained highly 
consistent across multiple PPI collections, showing robustness to variations in input 
interactions while effectively preserving cell-line specificity (Additional file 1: Figs. S2–
S3). Notably, when we assessed the use of gene regulatory networks (GRNs) in place of 
PPIs, we observed a reduction in performance (Additional file 1: Fig. S12). This finding 
underscores the unique utility of PPIs in gene essentiality studies, as essential genes not 
only interact more frequently among themselves but also tend to cluster more closely 
than non-essential genes (groups of essential genes vs. randomly sampled gene sets, Wil-
coxon test p value < 0.0001). To further enhance confidence in PRODE’s predictions, the 
implemented tool now includes an option to incorporate PPI weights, allowing users to 
calculate a confidence interval for NIE and NICE scores based on the reliability of each 
interaction (Additional file 1: Fig. S13b–c).

When applied to a clinically relevant scenario like Her2 + breast cancer tumors, 
PRODE recapitulated top hits prioritized by differential gene effects and nominated 
novel candidates otherwise undetected. Indeed, the expression of OXPHOS genes dis-
played key features of high clinical relevance, such as their link to patient overall sur-
vival in Her2 + tumors only and their role as biomarkers associated with sensitivity to 
treatment. Interestingly, the relevance of OXPHOS genes in breast cancer has recently 
been independently highlighted in a metastatic setting field [50, 51], and Her2 + tumors 
were also demonstrated to display sensitivity to a potent OXPHOS inhibitor [61]. While 
systematic experimental validations are needed to further confirm the role of OXPHOS 
genes in the context of Her2 + breast cancer tumors, this analysis represents proof of the 
potential clinical impact of context-essential genes prioritized by PRODE and otherwise 
missed by standard analysis workflows.

Conclusions
In this work, we introduced PRODE, an analytical framework that integrates gene effects 
of directly interacting partners of a gene and computes neighborhood-informed esti-
mates of essentiality and context-essentiality by integrating gene effects data and PPIs.

Methods
Data collection and curation

Gene effects and cell lines molecular data used in this manuscript were downloaded from 
DepMap (https:// depmap. org/ portal/). Gene knock-out effects derived from sgRNA 
screening were computed by Chronos tool [17] while shRNA-derived gene knock-down 
effects were generated through DEMETER tool [15] and both datasets downloaded as 
part of the 22Q1 DepMap release. Starting from the collections of all screened models, 
we retained only the ones with matched expression data, annotation for microsatellite 
instability, and cell-culture type information for a total of 461 for the sgRNA dataset and 

https://depmap.org/portal/
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388 cell lines for the shRNA dataset. DEPMAP, SCORE (CERES processed), ACHILLE, 
and DRIVE (DEMETER processed) datasets were downloaded from the DepMap data 
portal (https:// depmap. org/ portal/ data_ page/? tab= custo mDown loads). The collection 
of human PPIs was downloaded from the STRING version 11 (https:// string- db. org/, 
[27]), HUMANNET [62], and BIOGRID (preserving only human interactions [63]) data-
bases. As we used STRING throughout the majority of our analysis, except when per-
forming comparisons across PPIs (Additional file 1: Fig. S3), only the interactions that 
displayed a score higher or equal to 400 were used in the analysis allowing to preserve 
a high fraction of genes present within the gene effects datasets (95%; Additional file 1: 
Fig. S11) while improving the quality of connections compared to the lack of any thresh-
old. Phylogenetic conservation scores across 1627 species were obtained from Nair 
et al. [64]. As each score consists of a sequence similarity between a human gene and its 
homologs in each of the species [64], the final used score was computed as the average 
conservation scores across all the species. The final measure was multiplied by − 1, so 
that low negative scores correspond to higher conservation and may be directly com-
pared to NIE scores expecting higher essentiality of conserved genes. Datasets of double 
knock out of paralog pairs were derived from Parrish et al. [46] and Anvar et al. [47]. 
Briefly, to create Parrish et  al. dataset, we first considered only those gene pairs with 
expected double KO effect greater than 0 both in PC9 and Hela cell-lines, then, divided 
them into positive and negative controls according to their genetic interaction flag (GI 
flag). For Anvar et al., we selected as negative controls those gene pairs with expected 
and observed double knock-out effects greater than 0.1 and used as positive controls the 
reference essential paralogs (n = 18). The TCGA-BRCA expression dataset used within 
the analysis of Her2 + context-specific dependencies was downloaded from recount3 
[65] along with patients’ clinical data. GEO datasets of patients treated with trastuzumab 
were downloaded from Dinstag et al. [9].

PRODE method outline

PRODE computes neighborhood-informed essentiality and context-essentiality esti-
mates starting from a single (or multiple) profile (s) of gene effects and a list of PPIs as 
input, with gene effects being a measure of cell-fitness changes after a gene-induced LoF 
(knock-out or knock-down). A lower (negative) gene effect points to an essential gene, 
which LoF causes a severe reduction in cell-viability. Both PRODE scores combine, for 
each gene, neighborhood and gene level signal.

NIE scores

Starting from a matrix GEn×m of gene effects composed by n genes and m cell-lines, 
PRODE first converts the input gene effects profile (or average gene effects in case 
of multiple profiles) into percentilesUGE = {ug1 , ...,ugi , ..,ugn} ∈ [0,1) . To quantify the 
neighborhood-level essentiality for a genegi , PRODE retrieves its directly interact-
ing partners from the input reference PPIs along with the corresponding percentiles 
Ugi ∈ UGE with the length of Ugi being the size ofgi ’s neighborhood. Then, by lever-
aging the Robust Rank Aggregation (RRA) algorithm, PRODE quantifies the skew-
ness of the obtained percentiles towards 0. The expectation is that a neighborhood 

https://depmap.org/portal/data_page/?tab=customDownloads
https://string-db.org/
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populated by essential genes displays positive skewness and low percentiles. Briefly, 
the RRA algorithm computes a score representative of the neighborhood skewness as:

where s is the total number of genes of gi ’s neighborhood, and βk ,s is the probability, 
computed through a beta distribution, of observing at least k over s genes with lower 
or equal percentiles than the one of the kth gene. Since ρ is dependent on the size of 
each gene’s neighborhood, PRODE computes ρ′ as an empirical p value according to a 
background distribution obtained through random shuffling of average gene effects per-
centiles and maintaining the neighborhood size of each gene gi . In order to cut com-
putational costs related to the computation of the background distributions, these are 
pre-computed and approximated by fitting a set of Weibull’s distributions. The final NIE 
score is computed as:

where uρ′i is the percentile of ρ′
i of gi ’s neighborhood.

NICE scores

In order to assess neighborhood-informed context essentiality, PRODE implements a 
procedure similar to the NIE scores except for the type of data integrated with PPIs. 
Context-specific essentiality is computed by comparing two groups of collections of 
gene effects, in a case–control fashion. Considering a matrix GEn×m composed by n 
genes and m cell-lines, PRODE computes differential gene effects for each gene of the 
matrix by fitting a linear model of the form:

where gei is the vector of gene effects of a genegi , group is a binary vector being 0 for cell 
lines part of the control population, and M being the matrix of putative confounding fac-
tors included in the analysis. In this case, the percentiles UGE = {ug1 , ...,ugi , ..,ugn} ∈ [0,1) 
computed to assess neighborhood and gene-level context-essentiality signal are obtained 
from the vector β̂  of the rescaled coefficients β1 for every gene included in the experi-
ments. Before combining neighborhood and gene-level signals, we exclude from the 
overall gene lists those that display an average gene effect higher or equal to 0 in the 
control population. This is supported by the observation that positive gene effects are 
linked to a fitness improvement after gene depletion and, when compared to gene effects 
within the case population, they may result in differential signals even if their depletion 
does not cause any relevant fitness reduction within the case population. When PPI 
weights are present, PRODE allows for the computation of confidence intervals (CIs) 
around the NIE and NICE scores. To do so, it runs over the input PPI collection multiple 
times. In each run, it removes interactions with the lowest scores, progressively refin-
ing the input PPI collection by retaining only the top-scoring interactions at increasingly 
stringent levels. This approach allows to compute CIs on a user-specified level (default 
being 95th) and the NIE scores result as the average scores across the iterations.

ρ(Ugi) = mink=1,...,s(βk ,s(Ugi))

NIEgi = log(uρ′i × ugi)

gei ∼ β0,i + β1,igroup+ β2,iM
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Validation datasets and performance assessment

Essentiality—validation datasets

In order to assess the performance of PRODE when distinguishing between essential and 
not essential genes, we established validation datasets composed of 991 positive control 
genes and 665 negative controls for sgRNA and 976 and 724 for shRNA (with respec-
tively 939 and 540 positive and negative controls present in both sgRNA and shRNA; 
Additional file 2: Table S1). Negative control genes were selected as in Vinceti et al. [40] 
by including genes that show a lack of expression across cell lines—average expression 
of 0—as well as genes that previously displayed associations with specific contexts (only 
in this case, cell-lines expression data used consisted in the CMP dataset used by Vinceti 
et al. [40]). As positive controls, we shortlisted a diverse collection of genes expected to 
be essential for cell survival as (1) already identified by three independent works that 
analyzed loss of functions screens [3, 4, 66] and (2) part of biological processes essential 
for cell survival such as spliceosomal, proteasomal, ribosomal genes and genes partici-
pating in DNA replication retrieved from KEGG and GSEA databases.

Essentiality—performance assessment

We compared the performance of PRODE to the one of the average gene effects, as 
well as other heuristics that combine signal of genes part of the same local neighbor-
hood, named as NSUM (neighborhood sum), NMAX (neighborhood max), and RWR 
(random walk with restart). In the case of NSUM and NMAX, we took inspiration from 
MUFFINN, a previously published tool designed for the identification of cancer driver 
genes based on mutational frequencies. MUFFINN comes with two modules (sum and 
max), which compute, respectively, scores capturing the sum and maximum mutational 
frequencies within a gene local neighborhood. Adapted to our problem, we maintained 
their scoring system, adapting it to gene effects data (i.e., gene effects were first mul-
tiplied by − 1, so that higher value indicated more essential genes, similarly to higher 
mutational frequencies in the original tools). To account for neighborhood size and for 
a direct comparison with PRODE, we turned each score into an empirical p value by 
computing a background distribution of  10^4 data points through random shuffling of 
the average gene effects. Similarly, in the case of random walk with restart [38], we com-
puted the background distributions with  10^3 random iterations. To compute a data-
driven threshold and perform a discrete call for an essential or not-essential gene, we 
identified the NIE score or the average gene effect corresponding to the maximal sen-
sitivity and specificity when classifying essential and not-essential genes. We observed 
slightly different thresholds for sgRNA and shRNA datasets. In the case of PRODE, 
genes that showed NIE scores < − 4.14 and − 3.48 for sgRNA and shRNA datasets were 
deemed as essential, while we used − 0.43 and − 0.22 for average gene effects, respec-
tively (Additional file 1: Fig. S2).

Context‑essentiality—validation datasets

As context-specific essential gene sets, we collected context-gene pairs from differ-
ent data sources, including experimentally and literature-derived sets. These pairs 
are formed by a context (i.e., the presence of a loss of function or gain of function 
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mutation) and a gene, expected to display essential-like behavior in that particular 
context. We assembled three validation sets spanning context-gene pairs from (1) 
a collection of 11 different isogenic loss-of-function screenings performed in three 
different research works [44, 58, 67] and in-house, (2) a collection of six double 
KO screenings across five works [59, 68–71], and (3) a collection of SL interactions 
retrieved from SLdb database. For the first dataset, we included the top 10 hits as 
positive controls for each isogenic screen performed. Notably, we re-analyzed each 
single screening following a consistent workflow, as described by DeWeirdt et al. [44]. 
Among the isogenic screenings performed, we also included a previously unpublished 
in-house screening performed on the HT1197 urinary-tract cell-line. The experiment 
was performed in an isogenic setting by performing a KO screen on a wild-type clone 
and on a clone engineered with a bi-allelic knock out of CDKN2A, CDKN2B, and 
MTAP genes (3KO clone), part of the 9p21.3 genomic locus. Similar to the isogenic 
dataset, the double KO dataset was populated by the top 100 hits identified in each 
of the screenings produced in four research works. Finally, we composed the SLdb 
dataset by retaining only gene pairs that presented experimental-based evidence and 
kept only those gene-context pair in which gene A (the context) was annotated as a 
tumor suppressor gene according to a list of known tumor suppressors downloaded 
from OncoKB database [72]. In each of the datasets, we included negative controls by 
keeping the same context of positive controls and adding, as partners, lowly expressed 
genes (average gene expression < 0.01 quantile) expected to display no-essentiality in 
different contexts.

Context essentiality performance assessment

Similar to the essentiality performance assessment, we compared the NICE scores 
computed by PRODE to the ones of other methodologies. Importantly, whenever pos-
sible, for each analysis, we included MSI and cell culture type as covariates. In this 
case, we included an additional heuristic, Np-value (neighborhood p value). Similarly 
to MUFFINN, we computed Np-value scores by adapting a previously published meth-
odology, NetSig [37], originally designed for the identification of cancer driver genes. 
Within our framework, Np-value computes the context-essentiality score by aggregating 
p values from the first-level neighborhood of each gene. p values are obtained from the 
linear model fit for each gene. To assess the performance of each tool, we performed 
an analysis at lineage-level and computed context-essentiality scores when a sufficient 
number of cell-line models was available (at least 3 cell-lines displaying the context 
modification and 3 cell-lines being wild-type). While in the case of isogenic screens and 
double KO screens datasets, we stratified cell-lines based on the expression level of the 
gene(s) part of the context (z-score < − 1.5 for loss of function, − 0.5 < z-score < 0.5 for 
control cell-lines), in the case of SLdb validation dataset we leveraged genomic informa-
tion. Cell lines carrying a LoF of the tumor suppressor gene defined as the context were 
identified when displaying (1) z-scored expression < − 1.5 or (2) copy-number = 0 or (3) 
presence of a deleterious point mutation, annotated as loss-of-function by OncoKB. The 
final score used to compute precision, recall, and AUCs resulted as the averaged context-
essentiality scores of each tool across tested lineages.
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Gene silencing and crystal violet assays

For gene specific silencing, we used GPP Web Portal (http:// porta ls. broad insti tute. 
org/ gpp/ public/) to design two shRNA per target gene to be cloned into a doxycycline 
inducible lentiviral vector. To produce the vectors, lenti pLKO.1 puro back-bones with 
the cloned shRNA were co-transfected into HEK293T cells with the packaging plasmids 
pVSVg, and psPAX2. HT1197 cells were transduced with filtered viral media plus poly-
brene 5 μg/mL and then selected by puromycin exposure. Cells were seeded in the pres-
ence of doxycycline in 24 well plates at a concentration of 5000 cells/well to perform a 
proliferation assay at day 7 and 14. Cells were fixed with 4% formaldehyde and stained 
with a crystal violet 0.1% solution (w/v). After rinsing, 10% acetic acid solution was 
introduced to release the crystal violet from the cells of every well, and the absorbance 
was read at 595 nm for a semi-quantitation.

Genome‑wide CRISPR screening on HT1197 cell‑line

We performed a genome-wide CRISPR screening with the Gecko v2 library, a 2-vec-
tor library system [73] that consists of over 120,000 unique gRNAs for gene knock-out 
human genome (6 sgRNAs per gene, 4 sgRNAs per miRNA, 1000 control sgRNAs non-
targeting). The library was expanded in-house; full library representation post expansion 
was verified by NGS (loss of 64 sgRNA on 123,411 and Gini index of 0.10). To make len-
tivirus, lentiCRISPR backbones with sgRNA cloned were co-transfected into HEK293T 
cells with the packaging plasmids pVSVg and psPAX2. Culture supernatant was titrated 
as described in [74]. Since an m.o.i. of 0.3 is critical to maximize the integration of 1 
sgRNA per cell, transduction efficiency experiments were performed on HT1197, with 
increasing volumes of virus. A HT1197 WT clone and a 3KO clone (already expressing 
Cas9) were transduced with the GecKo v2 library, selected with puromycin for 6 days, 
and then cultured for 28 days (34 days post infection) equivalent to 13 replication cycles. 
A library coverage of 300 × per sgRNA was maintained at every step. Genomic DNA 
was extracted from the equivalent of 40 million cells at day 6 and 34 post transduction. 
A two-round PCR was performed for the amplification of the genome integrated sgRNA 
sequences and the addition of multiplexing barcodes for NGS sequencing.

Assessment of clinical relevance of OXPHOS genes within HER2 + breast cancer tumors

We investigated the clinical relevance of the OXPHOS genes identified by PRODE in 
two different ways. First, following a similar procedure as previous works [9–11], we fit-
ted, for each gene, a multivariate Cox regression model including a multiplicative term 
between two binary variables encoding (1) the low/high average of OXPHOS (stratified 
according to the median) and (2) the presence of the HER2 + subtype. We also included 
covariates such as age and genomic instability index. The rationale behind the analysis 
is that low expression of an essential gene in the context of Her2 + tumors may result in 
lower tumoral fitness and, therefore, linked to better patient survival. A negative hazard 
ratio reported in Additional file  1: Fig. S10b reflects a worse survival of patients with 
HER2 + tumors and high OXPHOS gene expression. Kaplan–Meier curves in Fig.  6e 
were obtained by averaging the expression of 29 OXPHOS genes in each patient. Finally, 
we evaluated the association of each OXPHOS gene expression to the response to trastu-
zumab inhibitor across 5 patients’ cohorts. In order to do that, the response to treatment 

http://portals.broadinstitute.org/gpp/public/
http://portals.broadinstitute.org/gpp/public/
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was binarized as in the original publications, as explained in [9]. To test the association 
between patients’ response and gene expression depicted in Fig.  6f, we fitted logistic 
regression models, including the expression of each OXPHOS gene and the expression 
of ERBB2 as a covariate. Before model fitting, expression levels were log-transformed 
and z-scored across patients.
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