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Abstract 

RNA modifications influence RNA function and fate, but detecting them in individual 
molecules remains challenging for most modifications. Here we present a novel meth‑
odology to generate training sets and build modification-aware basecalling models. 
Using this approach, we develop the m6ABasecaller, a basecalling model that pre‑
dicts m6A modifications from raw nanopore signals. We validate its accuracy in vitro 
and in vivo, revealing stable m6A modification stoichiometry across isoforms, m6A co-
occurrence within RNA molecules, and m6A-dependent effects on poly(A) tails. Finally, 
we demonstrate that our method generalizes to other RNA and DNA modifications, 
paving the path towards future efforts detecting other modifications.
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Background
RNA modifications, also referred to as epitranscriptomic modifications, are chemi-
cal alterations that occur on RNA molecules, influencing their fate and function. These 
modifications play critical roles in diverse biological processes, including cellular differ-
entiation [1–3], immune responses [4, 5], cancer progression [6, 7] and sex determina-
tion [8, 9]. At the molecular level, RNA modifications can regulate gene expression [10], 
modulate protein translation [11], impact RNA stability [12] and affect RNA-protein 
interactions [13].

To date, more than 170 different RNA modifications have been described [14]. These 
modifications can target all four RNA bases as well as the sugar moiety, and are found 
in all known RNA species, including ribosomal RNAs (rRNAs), messenger RNAs 
(mRNAs), transfer RNAs (tRNAs) and small non-coding RNAs (snRNAs). Among these, 
N6-methyladenosine (m6A), has garnered the most attention as the most abundant 
internal modification in eukaryotic mRNA [15, 16], as well as due to its dynamic nature 
across conditions and environmental stimuli [17]. The deposition of m6A modifications 
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is mediated by “writers”, which catalyse the addition of the methyl group [18, 19]. These 
modifications can be removed by “erasers” [20, 21], and recognized by “readers”, which 
selectively bind to the modified RNA [22–25]. The study of m6A dynamics and func-
tion has been significantly advanced by next-generation sequencing (NGS) technologies, 
which have facilitated transcriptome-wide mapping of m6A sites across different species, 
cell types and environmental conditions [26–32].

Nanopore direct RNA sequencing (DRS) has recently emerged as a promising alterna-
tive to NGS-based methods to comprehensively investigate the epitranscriptome [33–
36]. This technology relies on measuring fluctuations in current intensity as the RNA or 
DNA molecules pass through the nanopores. Unlike NGS approaches, nanopore DRS 
enables the generation of transcriptome-wide maps of RNA modifications at the isoform 
level [37], facilitates the simultaneous detection of multiple RNA modification types [38, 
39] and provides quantitative estimates of RNA modification levels at individual sites 
[40, 41]. As a result, this technology allows for the creation of transcriptome-wide epi-
transcriptomic maps with an unprecedented level of resolution, surpassing the capabil-
ity of short-read sequencing data.

In recent years, several studies have demonstrated the ability of nanopore DRS to 
detect a wide range of RNA modification types [42, 43], including m6A [44–51], pseu-
douridine [38, 52, 53] and inosine [54]. Two primary strategies have been mainly 
employed to identify RNA modifications in nanopore DRS data: (i) analysing current 
intensity and/or dwell time fluctuations [38, 49, 51]; and (ii) detecting modifications 
through the analysis of basecalling ‘errors’ [44, 55–58] (Fig. 1A). While both approaches 
have proven effective in detecting RNA modifications, they generally rely on compari-
sons with reference samples, such as those derived from knockout or knockdown condi-
tions targeting the RNA modification ‘writer’ enzyme of interest. This dependency of 
such ‘paired’ conditions limits the applicability of nanopore DRS to a relatively small 
range of biological contexts. To address this limitation, recent methods have been devel-
oped that circumvent the requirement for ‘paired’ conditions [49]. However, these meth-
ods typically provide their final predictions at per-site level.

An alternative strategy for transcriptome-wide RNA modification detection involves 
de novo basecalling of modifications directly from the raw nanopore signals. In this 
approach, the default RNA basecalling model is replaced with a modification-aware 
model (illustrated in Fig.  1A). For example, the m6A-aware basecalling model would 
predict five distinct bases –A, C, G, U and m6A– based on the current intensity infor-
mation. In contrast, the default RNA basecalling model limits its predictions to the 
canonical four bases – A, C, G, U.

Despite its potential, the development of modification-aware basecalling models has 
been hindered by significant challenges, primarily due to the scarcity of sufficient and 
high-quality ‘training data’ –datasets with high-confidence modification status labels. 
To develop a ‘successful’ basecalling model, it is essential for the model to distinguish 
between the modification(s) of interest and unmodified canonical bases. This requires 
training datasets in which the presence or absence of the RNA modification(s) at specific 
positions is known with certainty (i.e., the “ground truth”). However, knowing the ‘site’ 
alone is not sufficient; for effective training, it is critical to identify not only the positions 
of the modifications but also the specific reads in which the modification occurs. Such 
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precise labeling at the per-read level is necessary to properly train the model to recog-
nize RNA modifications in individual RNA molecules.

Here, we propose and validate a novel strategy for generating high-accuracy per-read 
predictions of modification status. Using this approach, we create ‘labelled’ datasets that 
can serve as ‘ground truth’ for training modification-aware models, and demonstrate that 
is applicable both to DNA and RNA molecules. We exemplify this approach by training 
the m6ABasecaller, which we demonstrate that it can predict m6A modifications de novo 
with single-read and with single-nucleotide resolution, achieving high accuracy and low 
false positive rates. We demonstrate that the m6ABasecaller can generate transcriptome-
wide maps of m6A modifications across datasets from various species and sequencing 
devices, in real-time as the reads are being sequenced, without requiring knockout or 
control conditions. Furthermore, we show that m6ABasecaller enables the collection of 

Fig. 1  Schematic overview of the approaches that can be used to identify RNA modifications from 
direct RNA sequencing (DRS) data. A Overview of the methods used to detect modified sites from DRS 
data. Commonly used softwares to detect RNA modifications rely on either: i) basecalling errors that are 
present in a wild type (WT) but not a knockout (KO)/control condition, or ii) altered current intensities 
when comparing WT and KO/control conditions. All these methods use default (modification-unaware) 
RNA basecalling models and require extensive post-processing after basecalling steps –mapping, 
resquiggling, feature extraction and statistical testing– to identify modified sites. The alternative option 
is to use a modification-aware RNA basecalling model that predicts modifications during the basecalling 
step, which provides m6A modification predictions with single nucleotide and single molecule resolution. 
B IGV visualisation of a BAM file where reads have been basecalled using the m6ABasecaller, allowing 
per-read analysis of m6A modifications in full-length reads. BAM files have m6A information encoded at 
per-read and per-nucleotide level in the form of modification probabilities. Colouring nucleotides based 
on their modification probability allows simple visualisation of m6A-modified sites (bright green) in a 
transcriptome-wide fashion. A ‘predicted m6A site’ is defined as a position that has at least 25 reads coverage 
and ≥ 5% modification stoichiometry (i.e., a minimum of 2 modified reads supporting that site). A nucleotide 
in a read is defined as ‘modified’ if the modification probability is equal or greater than 0.5 (shown as 
‘predicted m6A sites’) at the bottom of the IGV snapshot
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m6A modification information at the isoform level, provides reproducible and accurate 
estimates of m6A modification stoichiometry, With this resolution, we can characterize 
the m6A modification co-occurrence within individual reads, and characterise the rela-
tionship between m6A presence and poly(A) tail lengths, among other features (Fig. 1B). 
Finally, we demonstrate that our approach is adaptable to other types of RNA and DNA 
modifications, applicable across diverse species, and compatible with updated RNA004 
chemistries. Overall, this work provides a novel framework for generating high-quality 
labelled training datasets and for training modification-aware base-calling models for 
an expanded range of modifications. This advancement enables the direct and simulta-
neous analysis of multiple post-transcriptional regulatory layers within individual RNA 
molecules.

Results
Training an m6A‑aware RNA basecalling model using synthetic constructs

Methods to detect RNA modifications in DRS datasets have typically relied on the 
identification of increased base-calling ‘errors’ and/or altered current intensities at the 
RNA modified sites. Whilst these approaches have proven useful to detect diverse types 
of RNA modifications [38, 44–54, 59, 60], they suffer from important caveats: (i) they 
require extensive manipulation and pre-processing of the signal data before being able 
to detect RNA modifications (basecalling, mapping, feature extraction, aggregation of 
features per-site, resquiggling and/or statistical testing) [61], ii) they suffer from stoi-
chiometry biases (unmodified reads are preferentially resquiggled) [38]; iii) they require 
minimum coverage of ∼30–50 reads to detect a site as modified [59]; iv) they often 
require a minimum modification stoichiometry (~ 10–20%) to detect a site as modified 
[59], and (v) they often suffer from significant numbers of false positives [59].

To overcome these limitations, here we sought to build a modification-aware base-
calling model that would predict m6A modifications de novo from raw FAST5 reads, 
with single-nucleotide and single-molecule resolution (Fig.  1A). To this end, we first 
employed synthetic RNA ‘curlcake’ constructs [44] to train a basecalling model, which 
contain RNA modifications in all possible 5-mer contexts. More specifically, we used 
curlcakes that were either 100% m6A-modified (all As had been replaced for m6A) or 0% 
modified as ‘training sets’. Our results showed that curlcake-trained m6A-aware base-
calling model correctly reported modified A nucleotides as m6A, and unmodified bases 
as A, when tested with fully unmodified or fully modified reads (Additional File 1: Fig-
ure S1A), with very high per-read and per-site accuracy and very low false positive and 
false negative rates. However, when tested on partially modified reads that were not fully 
modified at all sites (only some As had been replaced for m6A, see Methods) we noticed 
that this model predicted all As in a given read ‘chunk’ as being either unmodified or 
modified (Additional File 1: Figure S1A). These results suggest that a basecalling model 
trained with fully modified (100%) and unmodified (0%) synthetic reads learns to pre-
dict whether signal ‘chunks’ (long stretches of RNA), rather than bases, originate from 
modified or unmodified reads. Consequently, these models cannot predict whether a 
single position is modified or not, which is the typical biological scenario. Moreover, we 
noticed that a model trained solely on synthetic reads (curlcakes) didn’t have the ability 
to basecall native reads from human, mouse or yeast (data not shown), likely due to the 
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lack of biological sequence complexity of the curlcake sequences, despite covering all 
5-mers [62].

In order to obtain a model that would be applicable to transcriptome-wide scenarios, 
we then opted to train a new model with m6A-modified and unmodified curlcake RNA 
molecules, but this time also adding unmodified yeast and mouse reads from respec-
tive m6A mutants (see Additional File 2: Table S1 for a full list of trained models used in 
this work). This model was able to basecall reads across the yeast transcriptome, solving 
the limitation of the previous model in terms of covering sufficient sequence complex-
ity, but similarly to the previous model, it predicted all As in a given read chunk being as 
all modified or all unmodified (Additional File 1: Figure S1B). Thus, we concluded that 
synthetically-generated 100%-modified in vitro transcribed datasets were not adequate 
for training modification-aware basecalling models, because such models learnt to pre-
dict whether all or none bases were modified in a given ‘chunk’.

Generation of high‑confidence in vivo per‑read labelled data to train RNA basecalling 

models

We then reasoned that a better approach to train a modification-aware RNA basecall-
ing model would be to use in vivo data, with and without the modification of interest. A 
major limitation to use in vivo data to train basecalling models, however, is the lack of 
per-read modification information to adequately ‘label’ the training set at per-read level 
as either ‘modified’ or ‘unmodified’. In other words, in in vivo datasets, we don’t know 
a priori which reads and positions in the wild type condition are modified and which 
ones are unmodified, due to the substoichiometric nature of RNA modifications in vivo 
(Additional File 1: Figure S2).

To overcome this limitation, we hypothesized that we could use bioinformatic pre-
dictions to ‘label’ the wild type reads, which could then be used to train the model. To 
this end, we developed NanoRMS2, a new software that can produce high-confidence 
per-read labels of modification status, to then use as training sets for a basecaller. 
NanoRMS2 builds upon NanoRMS [38], and relies on the extraction of raw signal fea-
tures (signal intensity, dwell time and trace) to capture differences between modified and 
unmodified bases (Fig. 2A, upper panel). Briefly, NanoRMS2 requires two samples: (i) a 
sample in which the modification of interest is present, although not necessarily at high 
stoichiometries (e.g., a wild type sample); and ii) a sample in which the modification of 
interest is not found, or its levels are very low (e.g., a knockout sample, a knockdown 
sample or an in  vitro transcribed transcriptome [63, 64]). NanoRMS2 then extracts 9 
features for every base and from every read, namely: (i) signal intensity (SI), (ii) Mod-
ification Probability (MP), (iii) Dwell-Time at the position 0 (DT), (iv) Dwell-Time 10 
bases upstream (DT10), (v) Trace values for the reference nucleotide (TR) and (vi-ix) 
Trace values all canonical bases (TA, TC, TG and TT, for A, C, G and T/U, respectively). 
Then, it aggregates the features by k-mer, and assesses which k-mers are significantly 
different between the two given conditions (e.g. wild type and knockout/control condi-
tion) using a Kolmogorov-Smirnov (KS)-test (Fig. 2A, middle panel). For each significant 
k-mer, NanoRMS2 splits all reads equally into training and testing sets, trains a classifier 
(Gradient Boosting) and predicts modified/unmodified reads in the training set (Train-
ing #1).
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A key difference that distinguishes NanoRMS2 from other softwares that train clas-
sifiers based on nanopore signal-related features, such as NanoRMS [38], is that it does 
not keep these predictions as ‘final’, but rather, it only retains the ‘high confidence’ pre-
dictions, treating the rest as ‘unknown’. It then performs a semi-supervised learning step 
(Label Propagation) to predict the labels of the ‘unknown’ reads (Training #2). Finally, it 
trains a second classifier (Gradient Boosting) using a re-labelled training set (Training 
#3), and this trained classifier is the one that will be finally used to predict modified/

Fig. 2  Methodology to obtain a training dataset with high-confidence RNA modification status 
labels, implemented in NanoRMS2, used to train a modification-aware basecalling model. A Schematic 
representation of steps performed to obtain high-confidence labels based on the modification status of all 
reads included in the training dataset. First, a set of 9 features are retrieved for every base from every read. 
Then, the features are aggregated for each 7-mer from the entire genome/transcriptome (balancing the 
number of reads between the two samples and across the reference positions). Significant 7-mers are then 
identified by KS-test for the two most informative features. Reads are labelled as modified or unmodified for 
each significant 7-mer using 50% of data (training set) in 3-step procedure as follows: i) Gradient Boosting 
classifier is trained assuming all KO reads as unmodified and all WT reads as modified and predicting all reads 
from training set either as modified or unmodified; ii) reads with low confidence prediction are marked as 
unknown, and label propagation (with KNN kernel) is used to label them; and iii) final (Gradient Boosting) 
classifier is trained with labelled training data and all reads from the test data are predicted as unmodified 
or modified. All these steps are performed by the NanoRMS2 software. B Using the high confidence labels 
obtained using the procedure depicted in panel A, a modification-aware basecalling model can be trained 
with reads labelled as modified or unmodified, in a 2-step procedure: i) in a first step, only unmodified reads 
are used to train a canonical basecaller, ii) in a second step, this model is refined to call also modified bases. 
The second training step can be restricted to specific k-mers that are reported by NanoRMS2 
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unmodified nucleotides in each individual read from the testing set (Fig.  2A, lower 
panel). NanoRMS2 repeats this procedure for each k-mer.

Modification‑unaware basecalling models trained with synthetic reads improve feature 

separation between modified and unmodified reads

The choice of datasets that are used to train a base-calling model greatly affects the qual-
ity of the trained models; similarly, the features extracted from modified and unmodified 
datasets, also strongly affect the performance of the trained models, as not all features 
capture equally well modification information across k-mers. In this regard, previous 
works have shown that Trace (TR) –the modification probability emitted by the base-
caller– is one of the features that best separates modified and unmodified reads, com-
pared to other features such as Signal Intensity (SI) and Dwell Time (DT), at least in the 
case of pseudouridylation (Y) and 2’-O-methylation (Nm) [38]. However, whether this 
observation holds true in the case of m6A modifications is unknown.

To address this question, we examined how Trace, Signal Intensity and Dwell Time 
separated m6A-modified and unmodified reads. Surprisingly, Trace (TR) did not sepa-
rate these two populations well (Additional File 1: Figure S3A). We hypothesised that 
this observation could be caused by the fact that m6A modifications were present in the 
native RNA molecules that were used to train the ‘default’ canonical RNA basecalling 
model (Fig.  1A). In this scenario, the model would have learnt to predict m6A modi-
fications as unmodified As, consequently leading to poor differences in Trace scores 
between m6A-modified and unmodified reads. Notably, we found this to be also true in 
the case of 5mC and 6mA DNA modifications (Additional File 1: Figure S3B).

We then reasoned that a canonical basecalling model –which predicts unmodified 
bases– trained only with unmodified RNA bases should show increased Trace differ-
ences between A and m6A nucleosides. To this end, we trained a modification-unaware 
‘canonical’ RNA basecalling model using in vitro transcribed RNA –which is devoid of 
modifications– as training data (‘IVT model’) (see Additional File 2: Table S1). Similarly, 
we trained a canonical DNA basecalling model using PCR-amplified DNA as train-
ing data (‘PCR model’). We found that both these models maximised the difference in 
Trace features between unmodified and modified bases, while not affecting other fea-
tures such as Signal Intensity, for both RNA (Additional File 1: Figure S3C,D) and DNA 
(Additional File 1: Figure S3E,F), thus improving the binning of modified and unmodi-
fied reads, and confirming our hypothesis that the default RNA and DNA basecalling 
models have incorrectly ‘learnt’ to predict an m6A modification as and ‘A’. Therefore, our 
results showed that Trace is a strong feature separating m6A-modified and unmodified 
reads, but base-calling models trained with datasets devoid of the RNA modifications 
(e.g. in vitro transcriptomes) must be used to obtain Trace features that will strongly dif-
ferentiate the two populations.

m6A‑modification‑aware models can be trained using in silico‑’labelled’ in vivo data

We then proceeded to train an m6A modification-aware basecalling model. To this end, 
NanoRMS2 was used to extract features from publicly available DRS datasets (HEK293T 
wild type and METTL3 KO), which had been previously base-called using our in-house 
trained canonical ‘IVT-model’ (Additional File 2: Table S1) to maximise Trace differences 
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between m6A-modified and unmodified reads (Additional File 1: Figure S3). NanoRMS2 
was then used to obtain the final set of high-confidence m6A-modified and unmodified 
reads, (Fig. 2A), which were in turn used to train an m6A-modification aware basecalling 
model, which we refer to as ‘m6ABasecaller’ (Fig. 2B, see also Additional File 2: Table S1). 
Thus, the m6ABasecaller is capable of base-calling 5 different bases (A, C, G, U and m6A) 
in individual reads, completely de novo, with single nucleotide resolution, without the 
need of paired conditions, without the need of minimum coverage per site, and with-
out the need of minimum stoichiometry per-site (Fig.  1B), thus offering the possibil-
ity to study the function and dynamics of m6A modifications in individual native RNA 
molecules.

A key feature of the method presented here is that the model is trained with biologi-
cal data, previously ‘labelled’ as “modified” or “unmodified” using in silico approaches 
(in this case, using labels predicted by NanoRMS2). This approach has several key 
advantages relative to training using synthetic sequences: firstly, we do not pre-bias 
our training to specific k-mers (e.g. DRACH)[65]; rather the sequence context is found 
by NanoRMS2 and is then used to train the model. Secondly, this approach does not 
require the motif to be known, thus making the method applicable to virtually any DNA/
RNA modification of interest –the method actually reveals the motif, even if unknown–. 
Thirdly, the method is not limited to RNA/DNA modifications that can be chemically 
synthesised, as the method is trained with naturally existing RNA/DNA modifications 
that are present in native molecules. On the other hand, the trained basecalling model 
will in turn also show some key advantages, including: i) the model will be able to accu-
rately recognize the RNA modification of interest in the biological context of interest; 
ii) the modification detection occurs truly “de novo”, during the basecalling step (which 
can be performed even during sequencing, if ‘live basecalling’ option is enabled); iii) the 
detection of each modification is performed independently from other reads, and thus is 
not affected by the read coverage at that given position; iv) no post-processing is needed 
to identify modifications, reducing the computational burden typically associated with 
modification analysis (e.g., ‘feature extraction’ or ‘resquiggling’ steps).

m6ABasecaller predicts m6A modifications with high accuracy and low false positive rates

We then proceeded to benchmark the m6ABasecaller with synthetic m6A-modified data-
sets, in which the ground truth is known. We should note that in our method, each base 
is basecalled with an associated modification probability value (modProb, see Methods), 
and a high modification probability will indicate that the base in question is modified 
(m6A-modified in the case of m6ABasecaller). To determine the optimal modification 
probability threshold at which a base should be considered as ‘modified’, we examined 
the distribution of modification probabilities in fully unmodified (0% m6A-modified) 
and fully m6A-modified (100%) ‘curlcake’ [44] sequenced using DRS (Additional File 1: 
Figure S4A). Our results showed that the median modification probabilities of unmodi-
fied (median modProb = 0.0) and m6A-modified (median modProb = 0.7) bases were 
significantly distinct, thus allowing us to accurately identify whether a nucleotide of a 
specific read is modified or not by using a specific modProb threshold.

We then examined whether similar results would be observed in biological con-
texts. To this end, we examined the distribution of modification probabilities in 
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transcriptome-wide in  vitro transcribed (IVT) samples (“in vitro transcriptomes” [64, 
66]), in two independent replicates (see Additional File 2: Table S2). IVT samples (Addi-
tional File 1: Figure S4B) constitute essential controls for methods that are meant to be 
applied transcriptome-wide, as they will reveal whether a given method will predict high 
numbers of false positives in in vivo contexts [66], which is typically a major problem in 
the field of RNA modifications, leading to controversies on whether a given modifica-
tion is present in a specific population of RNAs or not [67–71]. Using the criteria of the 
Youlden Index, we determined that modProb = 0.1 is the ‘optimal’ threshold that max-
imised True Positives (TPs) while minimising the number of False Positives (FPs) (Addi-
tional File 1: Figure S4C). We should note that this threshold can be varied depending 
on whether the user wants to be more or less conservative with regards to the number 
of False Positives. For example, higher thresholds (e.g., modProb = 0.5) can be chosen to 
reduce the number of false positives. Notably, using this threshold, m6ABasecaller only 
predicted 15 replicable m6A sites in “in vitro transcriptomes”, which corresponds to a 
False Positive Rate (FPR) of 0.0012% (Additional File 2: Table S3).

Finally, we examined how the choice of modProb threshold affected per-site m6A 
modification stoichiometry predictions. To this end, we used in silico mixtures of modi-
fied and unmodified reads to achieve different stoichiometry ranges (0%, 25%, 50%, 75% 
and 100%), and stoichiometry was calculated using different modProb thresholds (0.5, 
0.1 and 0.01) (Additional File 1: Figure S4D). The m6ABasecaller showed very good cor-
relation between observed and expected stoichiometries for all modProb thresholds, 
being 0.1 the optimal threshold in terms of balance of FP and TP, as previously noted.

m6ABasecaller accurately predicts m6A modifications in individual reads both in vitro 

and in vivo

We examined the performance of the m6ABasecaller in synthetic ‘curlcake’ constructs 
that were either unmodified (0% m6A) or fully modified (100% m6A) [72]. Our results 
showed that m6ABasecaller predicted m6A sites in biologically relevant DRACH 
sequence contexts with high accuracy and reproducibility (Fig. 3A, see also Additional 
File 1: Figure S5), and with very low amounts of false positives (only 0.3-0.5% were pre-
dicted as modified in the same exact sequence context and sites in the unmodified curl-
cake control sequences).

We then examined the performance of the m6ABasecaller in in  vivo datasets. To 
this end, we ran the m6ABasecaller on publicly available HEK293T wild type (WT) 
DRS datasets, as well as on HEK293T METTL3 knockout (KO) and in IVT whole 
transcriptome human DRS datasets as negative controls (Fig. 3A, right panel, see also 
Additional File 2: Table S2 for full list of DRS datasets used in this work). The m6ABase-
caller (modProb > 0.5) predicted 6,664 (rep1, 1.2 M reads) and 1,625 (rep2, 400 K reads) 
m6A-modified sites in the HEK293T WT samples, with a median per-site modifica-
tion stoichiometry of 15.6% and 15.1%, respectively (Fig. 3B, see also Additional File 2: 
Table S4). We observed a sharp decrease in the m6A modification levels upon METTL3 
KO on the same set of sites, which showed a median per-site modification frequency of 
2.8% (rep1) and 2.9% (rep2), respectively (Fig. 3B). This decrease in stoichiometry was 
even more evident in IVT samples, with median modification frequency per-site of 0.0% 
(rep1) and 0.0% (rep2) suggesting that METTL3 KO samples are not completely devoid 
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of m6A modifications in their mRNAs, in agreement with recent works [73]. The esti-
mated median m6A modification frequency in vivo was not significantly affected by the 
modification probability threshold of choice (0.5 or 0.1), neither in WT HEK293T cells 

Fig. 3  m6ABasecaller predicts m6A in synthetic and native RNA molecules, and shows strong overlap 
with predicted m6A sites using orthogonal methods. A In the left panel, IGV snapshot of individual reads 
base-called with m6ABasecaller. The reads are centered at a known m6A site, both for synthetic m6A-modified 
curlcake reads (‘MOD’, upper panel) and their unmodified counterpart (UNM, lower panel). In the right 
panel, reads mapping to human RNF7 gene are shown, in HEK293T WT and METTL3 KO samples, as well as 
for reads from in vitro transcribed (IVT) human samples. Each row represents a distinct RNA read, and each 
base from each read has been coloured according to its modification probability. See also Additional File 1: 
Figure S5 for additional IGV snapshots. B Boxplot of per-site m6A frequencies in two independent replicates 
of: (i) HEK293T WT, (ii) HEK293T METTL3 KO and (iii) IVT human transcriptome. Only m6A sites detected in 
WT (≥ 5% m6A modification frequency) and with at least 25 reads of coverage in all replicates have been 
included in this analysis (N = 877). The horizontal dashed line indicates the 5% threshold for a site to be 
identified as “m6A-modified”. C Metagene plot depicting the distribution of m6A sites detected in HEK293T 
WT samples (N = 1270). In the upper left corner, the motif obtained with MEME analysing 20 nt sequence 
context of all replicable sites in HEK293T WT (N = 1270) is shown. See also Additional File 1: Figure S6A,B for 
metagene plots in additional species. D Replicability of m6A modification frequency in sites with modification 
frequency greater or equal than 5% and minimum of 25 reads of coverage in both HEK293T WT replicates 
(Spearman’s ρ = 0.82). Dashed vertical and horizontal lines depict the 5% threshold applied to a m6A site to 
be called. Both axes are log10 scaled. (E) Scatterplot comparing per-site m6A frequencies in modified sites 
identified in HEK293T cells in WT and upon METTL3 KO (left panel), and in WT compared to IVT control (right 
panel). Dashed vertical and horizontal lines depict the 5% threshold applied to a m6A site to be called. Both 
axes are log10 scaled. F Overlap between m6A sites detected by m6ABasecaller in HEK293T cells and m6A sites 
predicted using Illumina-based orthogonal methods (m6ACE-seq, miCLIP and GLORI-seq) in HEK293T cells. To 
provide a comparison across all methods that is independent of sequencing coverage, the set of predicted 
m6A sites by each orthogonal method was reduced to those m6A sites for which there was a sufficient 
coverage in the nanopore DRS dataset, i.e., only m6A sites with minimum of 25 reads coverage in the DRS 
dataset were included in the comparative analysis. G Comparison of m6A sites predicted by m.6ABasecaller 
and those predicted by other nanopore-based methods (xPore and m6Anet), ran on the same set of reads 
from HEK293T cells (pooled 2 replicates, see Additional File 2: Table S3)
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nor METTL3 KO cells (Additional File 2: Table S3, see also Additional File 2: Table S6 
for predicted per-site m6A modification stoichiometries).

m6ABasecaller predicts m6A sites and their stoichiometry levels in diverse species 

with high replicability and low false positive rates

We then assessed the performance of the algorithm on different species, includ-
ing human (HEK293T cells), mouse (mES cells) and zebrafish (4 h-post-fertilization 
embryos). The m6ABasecaller predicted 7,922, 8,511 and 8,711 m6A-modified sites in 
human (see Additional File 2: Table  S5), mouse (listed in Additional File 2: Table  S7) 
and zebrafish (listed in Additional File 2: Table S8) datasets, respectively (see also Addi-
tional File 2: Table  S3). The predicted m6A sites were largely located around the stop 
codon and 3’UTR region, and corresponded to DRACH motifs, in all 3 species exam-
ined (Fig.  3C, see also Additional File 1: Figure S6A,B), in agreement with previous 
works using orthogonal methodologies to map m6A modifications [26, 27, 74]. Of note, 
we observed that the metagene distribution of m6A sites did not present a 5’UTR peak 
that is sometimes observed when using orthogonal antibody-based methods, which has 
been reported to be caused by cross-reactivity of the anti-m6A antibodies with m6Am 
modifications [75]. In this regard, the m6ABasecaller is trained to recognise bases that 
change upon METTL3 KO, and consequently, it is not susceptible to confounding m6A 
with m6Am.

We then examined whether the m6A sites predicted by the m6ABasecaller were repli-
cable in independent biological replicates that were independently sequenced, in both 
mouse and human samples, both qualitatively and quantitatively. Our analyses showed 
that the overlap of m6A-modified sites predicted by the m6ABasecaller across biological 
replicates was very high (83–89% overlap, see Additional File 1: Figure S6C,D). Simi-
larly, the per-site predicted modification stoichiometry was highly replicable across bio-
logical replicates (Spearman’s ρ = 0.82–0.87, see Fig. 3D and Additional File 1: S5E). We 
should note that the correlation of m6A modification frequencies across biological repli-
cates improved with increased sequencing coverage, as well as when only m6A sites with 
higher read coverage were included in the analysis (Additional File 1: Figure S6F).

To further validate the m6ABasecaller, we examined whether knockout (KO) of 
METTL3 or METTL14 led to a loss of m6A sites identified in the WT samples. Com-
parative analysis of WT and METTL3 KO samples revealed that 7,369 (98%) and 4,114 
(89%) m6A sites showed decreased m6A frequencies upon METTL3 KO in HEK293T 
and mES cells, respectively (Fig. 3E, see also Additional File 1: Figure S7A,B). Moreo-
ver, the median per-site m6A frequency decreased from 15.1–15.6% to 2.8–2.9% upon 
METTL3 KO in HEK293T cells (Additional File 1: Figure S7C, see also Additional File 2: 
Table S4) and from 16.4–18.8% to 4.7–7.8% upon METTL3 and METTL14 KO, respec-
tively, in mES cells (Additional File 1: Figure S7D, see also Additional File 2: Table S4).

m6A sites predicted by m6ABasecaller are largely supported by orthogonal methods

We then assessed whether the m6A sites predicted by m6ABasecaller were also identi-
fied using orthogonal methods such as GLORI-seq [29], miCLIP [30] and m6ACE-seq 
[45]. To this end, we examined the overlap between m6A sites predicted by m6ABase-
caller in HEK293T cells and those predicted by other orthogonal techniques in the 
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same cell line. Only m6A sites for which we had sufficient coverage (> 25 reads cover-
age) in the HEK293T DRS dataset were kept for downstream comparisons: 37,749 sites 
for GLORI-seq, 17,226 sites for miCLIP, and 8,869 sites for m6ACE-seq (Additional 
File 2: Table  S9, see also Methods). These sites were then compared to the 7,922 sites 
detected by m6ABasecaller. Our analyses revealed that 91% of m6A sites predicted by 
the m6ABasecaller were also predicted by one or more orthogonal methods (Fig.  3F). 
More specifically, 89% of the sites identified by m6ABasecaller were also identified by 
GLORI-seq (Additional File 1: Figure S8A). We then examined the correlation between 
the stoichiometries predicted by the two methods (GLORI-Score vs predicted stoichi-
ometry by m6ABasecaller) in replicable sites (N = 2023), finding a strong correlation 
(Spearman’s ρ = 0.73, p < 2.2 e−16) (Additional File 1: Figure S8B). A more modest over-
lap was observed with miCLIP (47%) and m6ACE-seq (25%), respectively (Additional 
File 1: Figure S8C,D). We should note, however, that the overlap of sites between Illu-
mina methods themselves was also low, with only 7.6% of predicted m6A sites detected 
by all 3 Illumina-based methods (Additional File 1: Figure S8E, see also Additional File 2: 
Table S10).

Lastly, we examined the overlap between m6A sites predicted by m6ABasecaller and 
those predicted by other Nanopore tools, namely xPore [45] and m6Anet [49], on the 
same publicly available HEK293T DRS datasets [45]. Our results showed that only 
14% and 22% of the sites detected by m6ABasecaller were also identified using xPore 
and m6Anet, respectively (Fig. 3G). However, m6Anet predicted fewer predicted m6A 
sites (3,058) compared to m6ABasecaller (7,922), possibly due to a minimum modifica-
tion stoichiometry that is required by this method to identify a site as ‘modified’ (see 
next section). Notably, 58% of the sites predicted by m6Anet were also predicted by 
m6ABasecaller.

m6ABasecaller shows accurate stoichiometry prediction even at low stoichiometries

We proceeded to evaluate the performance of m6ABasecaller at predicting m6A modifi-
cations at low modification frequencies (i.e., lower than 20%). Indeed, our work suggests 
that the median m6A modification frequency of human samples is ~ 15% (Fig.  3B, see 
also Additional File 2: Table S3), which is lower than any of the initial synthetic mixes at 
varying stoichiometries tested (Additional File 1: Figure S4D, minimum tested was 25%). 
Of note, several methods for detecting RNA modifications in DRS datasets are known 
to under-perform at stoichiometries below 20% [42, 44, 51, 56, 76], which paradoxically, 
seems to be the scenario of in vivo m6A-modified sites in human and mouse mRNAs, at 
least for the cell lines and samples examined in this work.

To this end, we generated new synthetic mixes with known m6A modification stoi-
chiometries by subsampling different proportions of reads from the 100% and 0% 
m6A-modified ‘curlcakes’, generating datasets that contained 0%, 6.25%, 12.5%, 25%, 
50% and 100% m6A-modification stoichiometries (datasets available for reproducibility 
purposes, see Methods). We then analyzed the synthetic mixtures using both m6ABase-
caller and m6Anet, and compared the accuracy and performance of the two methods 
at GGACU motifs (N = 14), DRACH motifs (N = 194) and KGACY motifs (DRACH 
motifs without any other A in the 5-mer except for the central one, N = 44), using the 0% 
m6A-modified dataset as a means to determine the number of false positives. Firstly, we 
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examined the ability of each method to identify sites as ‘modified’, even at low stoichio-
metries. Our results revealed that, while both softwares showed low numbers of false 
positives (0 in the case of m6ABasecaller and 1 in the case of m6Anet, see Additional 
File 2: Table S11), m6ABasecaller outperformed m6Anet in terms of sensitivity (Addi-
tional File 1: Figure S9A, see also Additional File 2: Table  S11) for all stoichiometries 
and sequence contexts tested, except for one (100% m6A-modified, KGACY context, see 
Additional File 2: Table S11). Overall, our results show that from a per-site perspective, 
m6ABasecaller was more specific, sensitive and accurate than m6Anet for almost all stoi-
chiometries and sequence contexts analysed (Additional File 2: Table S11).

We then examined the accuracy of stoichiometry prediction for m6ABasecaller and 
m6Anet using the same synthetic mixes. In the case of m6ABasecaller, modification stoi-
chiometry was defined as the number of reads that showed modProb > 0.1, whereas in 
the case of m6Anet, modification stoichiometry was defined as the mod_ratio that is 
reported per-site by the algorithm. We should note that m6Anet did not report any sites 
at stoichiometries lower than 50% (Additional File 1: Figure S9A,B). Thus, to make the 
results comparable, we chose to include the mod_ratio for all sites, for each modifica-
tion stoichiometry. We observed that m6Anet overestimated the modification frequency 
for 6.25%, 12.5% and 25% stoichiometry datasets, reaching a better accuracy at higher 
stoichiometries (Additional File 1: Figure S9C,D). We reasoned that this might explain 
the stringent threshold that m6Anet uses to define a site as ‘modified’, which appears to 
come at the expense of not reporting low-stoichiometry sites, which are often the bio-
logical scenario, and also would explain the ~ twofold decrease in the number of reported 
m6A sites, compared to m6ABasecaller, when analyzing the same DRS dataset (Fig. 3G). 
On the contrary, m6ABasecaller did not show any false positives nor false negatives, but 
showed slight underestimation of modification stoichiometry at higher stoichiometries 
(Additional File 1: Figure S9C,D). Overall, our results showed that m6ABasecaller is both 
more accurate and sensitive at calling m6A sites and at predicting frequency at lower sto-
ichiometries, which are more similar to those that are also found in biological samples.

Finally, to further validate our predicted global modification stoichiometries, we exam-
ined if the overall predicted m6A abundances predicted by the m6ABasecaller would be 
consistent with the previously reported values, obtained with orthogonal techniques 
[77]. To this end, we calculated the %m6A/A in both human (HEK293T) and mouse 
(mESC) samples, finding that m6ABasecaller predicted an m6A/A values of ~ 0.2% (Addi-
tional File 2: Table S12). Notably, these values are in a similar range to those previously 
reported m6A/A ratios estimated using LC–MS/MS (0.15–0.6%, according to different 
studies, and reviewed in [77].

m6ABasecaller recapitulates modification stoichiometry variations upon STM2457 

treatment

We then assessed the ability of the m6ABasecaller to capture variations in m6A modi-
fication frequencies in biological samples in a quantitative manner. To this end, we 
sequenced polyA-selected RNA from mESC treated with increasing concentrations 
of STM2457 (0, 2, 10 and 20 µM), a well-characterised inhibitor of METTL3 [78]. 
Our analysis revealed that the m6A modification frequency observed transcriptome-
wide progressively decreased with increasing concentrations of the inhibitor (Fig. 4A). 
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Indeed, untreated samples showed 15.2–16.7% median m6A modification frequency, and 
decreased to 13.0–13.6%, 7.5–7.1% and 4.7–5.1% upon 2, 10 and 20 µM of STM2457 
treatment, respectively (Fig.  4B-D, see also Additional File 2: Table  S4). Notably, the 
per-site m6A modification stoichiometry values were highly replicable across biologi-
cal replicates (Additional File 1: Figure S10A,B), with predicted m6A sites matching 
the DRACH motif (Additional File 1: Figure S10C), mostly located in the stop codon 
and 3’UTR regions of coding transcripts (Additional File 1: Figure S10D), in agreement 
with previous reports [26, 27, 74]. Overall, our results show that the m6ABasecaller can 
robustly identify quantitative changes in m6A modification stoichiometry in a tran-
scriptome-wide fashion and in a replicable manner, in addition to qualitative changes 
transcriptome-wide.

m6ABasecaller reveals incomplete loss of m6A in inducible METTL3 KO systems

To further validate the m6ABasecaller, we generated an inducible METTL3 KO cell 
line by introducing 2 LoxP sequences upstream of the METTL3 exon 2 and down-
stream of the METTL3 exon 4 –as described in [79]– into a mER-Cre-mER mESC 
line, which constitutively expresses Cre recombinase fused to a mER domain, induc-
ing its translocation to the nucleus upon tamoxifen treatment, thus making the 
knockout system tamoxifen-inducible (Fig.  4E, see also Methods). To determine the 
duration of tamoxifen treatment required to observe a complete loss of METTL3 pro-
tein, mESC were treated with tamoxifen for 1, 3, 6 and 14 days, and METTL3 protein 

(See figure on next page.)
Fig. 4  m6ABasecaller accurately predicts m6A modification frequencies transcriptome-wide. A Density 
plots of m6A modification frequencies in mESC samples treated with different concentrations of STM2457 
inhibitor (0, 2, 10 and 20uM). Results are shown for two independent biological replicates. Dashed vertical 
lines indicate the median m6A frequency of each sample. B Boxplot of the Distribution of the m6A frequency 
at different concentrations of STM2457 in sites with more than 25 reads of coverage in all replicates of all 
conditions (N = 81). C Scatterplots depicting the per-site m6A modification frequency in untreated samples 
(CTR) relative to STM2457-treated samples (2 µM, upper panel; 10 µM, middle panel; 20 µM upper panel). A 
gradient from light to dark blue shows the increase in density of data points in the plot. Dashed diagonal 
black line indicates the x = y line in frequencies. Grey vertical and horizontal dashed lines indicate the 5% 
m6A frequency threshold used to identify a site as ‘m6A-modified’. Axes are log-scaled. D IGV snapshot 
depicting the decrease of m6A modified reads with increasing concentration of STM2457. The number of 
reads containing bright green (high probability of m6A) diminishes with the increase of STM2457 dosage. 
The purple dots represent base insertions. E On the left side, a scheme depicting the generation of 
tamoxifen-inducible METTL3 KO mESC cell lines is shown. On the right, a Western Blot image depicting the 
loss of METTL3 upon tamoxifen treatment for 6 days (2 replicates) and 14 days (2 replicates), compared to 
MetOH-treated cells (CTR) for 6 and 14 days, respectively. GAPDH was used as loading control. F,G In the 
left panels, density plot distribution of the m6A frequency in the pooled replicates of mES cells treated with 
tamoxifen (KO) for 6 days (F, N = 57 sites) or 14 days (G, N = 213 sites), compared to those treated with MetOH 
(CTR). In the right panels, scatterplots depicting the modification frequency at m6A sites detected in the 
pooled control samples (CTR) compared to the corresponding frequency in pooled samples treated with 
tamoxifen for 6 days (F) or for 14 days (G). A gradient from light to dark blue shows the increase in density of 
data points in the plot. Dashed diagonal black line indicates the x = y line in frequencies. Grey vertical and 
horizontal dashed lines indicate the 5% m6A frequency threshold used to identify a site as ‘m6A-modified’. 
Axes are log-scaled. For F and G, a pseudocount of 0.001 was added to all values to allow logarithmic scaling 
of the values. H Quantification of m6A levels in polyA + RNA from mESC cells treated with tamoxifen for 6 
days or 14 days. m6A/A is computed as the ratio of m6A area vs A area in LC–MS/MS results. 6-day and 14-day 
tamoxifen treatment led to a ~ 15X and 90X reduction in m6A levels compared to untreated control samples, 
respectively (I) IGV snapshot depicting the decrease of m6A modified reads with increasing duration of 
tamoxifen treatment. The number of reads containing bright green (high probability of m6A) diminishes with 
the METTL3 inhibition and longer tamoxifen exposure
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levels were quantified using Western Blotting, showing that 6 and 14 days –but not 
1 or 3 days– of tamoxifen treatment led to a complete loss of METTL3 protein in all 
examined clones (Fig. 4E). Thus, all subsequent analyses were performed using 6-day 
tamoxifen-treated (which we refer to as ‘METTL3 KO’) or vehicle-treated (‘CTR’) 
mES cells.

We then sequenced METTL3 KO and CTR mESC cells in biological duplicates 
using nanopore DRS (Additional File 1: Figure S11A), and predicted m6A-modified 
sites in individual reads using m6ABasecaller. To our surprise, we only observed a 
modest reduction in the median m6A modification frequencies when comparing CTR 
(~ 13% median m6A frequency) and METTL3 KO samples (~ 10.5% median m6A fre-
quency) (Fig. 4F, see also Additional File 2: Table S3), Moreover, only 41% of m6A sites 
identified in CTR samples (n = 231) disappeared upon tamoxifen treatment –i.e., fell 
below the 5% modification frequency threshold– despite these conditions leading to a 
complete loss of METTL3 protein (Fig. 4E).

Puzzled by these results, we hypothesised that the loss of METTL3 might not 
lead to an immediate loss of m6A modifications in mRNA molecules, and that our 
observations could be explained by the presence of m6A modifications that were pre-
viously deposited in mRNAs that have not yet been degraded. We reasoned that if 

Fig. 4  (See legend on previous page.)
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this were the case, the 14-day tamoxifen-treated samples should show significantly 
less m6A than the 6-day tamoxifen-treated cells. To test this, we sequenced polyA-
selected RNA from 14-day tamoxifen-treated and matched CTR mESC cells in bio-
logical duplicates (Additional File 1: Figure S11B) and analysed the DRS data using 
m6ABasecaller, using same settings and parameters than previously employed for 
6-day treated/untreated samples. Notably, this time we observed a drastic reduc-
tion in the median m6A modification frequencies when comparing untreated (~ 18% 
median m6A frequency) and 14-day tamoxifen-treated samples (~ 1.7% median m6A 
frequency) (Fig.  4G, see also Additional File 2: Table  S4). Indeed, 91% of m6A sites 
identified in CTR samples (n = 1,106) falling below the 5% modification frequency 
detection threshold upon tamoxifen treatment. Thus, our results support the hypoth-
esis that there is a delay between the loss of METTL3 protein and the loss of m6A in 
mRNAs.

To further validate the results obtained using m6ABasecaller, we examined the m6A 
modification levels in polyA-selected RNAs from 6- and 14-days tamoxifen-treated 
samples using Liquid Chromatography coupled to Mass Spectrometry (LC–MS/MS) 
[80]. This analysis revealed a 14-fold decrease in m6A levels in 6-day tamoxifen-treated 
samples, compared to CTR untreated samples (Fig.  4H). This difference was further 
increased upon extending the tamoxifen treatment; 14-day tamoxifen-treated showed a 
90-fold decrease in m6A levels, compared to 14-day CTR untreated samples. We should 
note that the fold-change observed in LC–MS/MS was higher than in nanopore DRS, 
possibly due to different biases in the two technologies, such as the number of rounds of 
polyA selection and/or purity of the polyA selected material (data not shown). Despite 
the differences in absolute m6A levels measured by the two platforms, the relative m6A 
differences measured by LC–MS/MS overall support our model, further confirming 
that inducible METTL3 knockout systems require very long treatments to fully deplete 
the system from m6A modifications, and are in agreement with the results observed by 
m6ABasecaller, demonstrating that while m6A levels globally decrease upon induced 
METTL3 protein loss, absence of METTL3 protein does not guarantee absence of m6A 
in mRNAs, as some m6A-modified mRNAs seem to require additional time to disappear 
(Fig. 4I).

Per‑read analysis reveals direct correlation between m6A, polyA tailing and splicing

A major strength of the m6ABasecaller, compared to Illumina-based methods and other 
nanopore-based methods that do not have per-read resolution, is that in addition to 
providing m6A modification information at single nucleotide and single molecule reso-
lution, it allows direct correlation between the presence of m6A and other post-tran-
scriptional features that can be identified and/or measured in the same RNA molecules, 
such as polyadenylation or splicing. Indeed, m6ABasecaller allows investigating ques-
tions such as: i) whether m6A modifications co-occur simultaneously in the same read 
or are mutually exclusive (‘m6A co-occurrence’); ii) whether the presence of m6A affects 
polyA tail lengths; and iii) whether m6A modifications are (un)equally deposited across 
isoforms of a same gene (Fig. 5A).

To address these questions, we processed publicly available DRS runs from HepG2 
polyA-selected RNA, generated by the Singapore consortium [81]. These runs included 
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more than 13 million reads (Additional File 2: Table S2), thus making it possible to per-
form per-isoform m6A analyses on this dataset. The m6ABasecaller identified a total of 
28,846 m6A sites (listed in Additional File 2: Table S13) in the pooled set of 13 million 

Fig. 5  Analysis of m6A modifications at per-read level. A Schematic overview of the distinct layers of 
information that can be studied with per-read resolution. B Distribution of polyA tail lengths in reads 
containing at least 1 m6A site (orange) and reads without m6A (grey). Dashed line indicates the median polyA 
tail length of each group. All reads for which tailfindr gave a prediction of tail length > = 10 nt were included 
in the analysis (N = 1.224.173 reads; median polyA tail length: 75nt for no_m6A; 90nt for m6A-containing 
reads). See also Additional File 1: Figure S11 for density plots using subsets of reads for each bin. C 
Distribution of the distance between each m6A modification and the closest boundary of an exon (orange), 
compared to the distribution of the same distance calculated for a random subset of DRACH motifs in the 
same genes (purple). The x axis is log10-scaled. D IGV snapshot of reads mapping to FAM32A gene. Bases have 
been coloured according to modification probability, showing that this gene contains two m6A modifications 
at positions chr19:16,191,317 and chr19:16,191,375, depicted with bright green colour. Reads have been 
binned depending on whether they contain one m6A modified site (chr19:16,191,317), the other m6A 
modified site (chr19:16,191,375), or both sites modified. The observed and expected co-occurrence values, 
given the individual per-site m6A modification frequencies, are also shown. Reads that had both positions 
unmodified are not shown. E Distribution of number of standard deviations (NSD) values, which quantifies 
the co-occurrence of pairs of m6A sites (N = 1,101) in HepG2 cells is shown in red. As a control, a random 
distribution generated with the same amount of data points and the same standard deviation, centered 
in 0, is also shown. F For each pair of m6A sites (N = 1,101) analysed, the number of standard deviations 
(NSD) is plotted against the genomic distance (log10-scaled) between the two sites. Each dot represents a 
pair of m6A sites. Spearman correlation is shown. G IGV snapshot depicting the modification frequency at 
position chr6:33,201,287 in both isoforms (SLC39A7-201 and SLC39A7-204) from gene SLC39A7. Modification 
frequency at per-isoform level is shown. H Scatterplot depicting the correlation of m6A frequencies at 
per-isoform level. Grey vertical and horizontal dashed lines indicate the 5% m6A frequency threshold used to 
identify a site as ‘m6A-modified’. Axes are log-scaled. I One-sided volcano plot depicting isoform-specific m6A 
modification patterns. In the y axis, the mean absolute difference in ‘m6A modification frequencies across 2 
isoforms (N = 167 comparisons) in two replicates is shown. To increase the statistical power of the analysis as 
well as the number genes for which isoform-specific m6A analysis was possible, all HepG2 MinION reads were 
pooled as one replicate (N = 4,741,372 reads, see Additional File 2: Table S2). HepG2 reads from a PromethION 
run were used as a second replicate (N = 6,200,572). Only reads unambiguously assigned to a given isoform 
were kept for the analysis
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HepG2 reads. Mapped reads were then filtered to retain only full-length reads that were 
uniquely assigned to one isoform, which were subsequently used for per-isoform m6A 
analyses detailed below.

We then examined whether the presence of m6A in mRNAs globally affected polyA 
tail lengths. To this end, RNA molecules were binned into two groups: (i) those with 
one or more m6A modifications, and (ii) those without m6A modifications. We com-
pared the polyA tail length distributions of the two groups, finding that m6A-containing 
mRNA molecules showed significantly longer polyA tail lengths (median pA tail 
length = 90nt) than their unmodified mRNA counterparts (median polyA tail length: 
75nt) (n = 1.224.173 reads, Mann-Whitney-Wilcoxon test p < 2.2e−16, Fig. 5B). Notably, 
this difference was significant also when limiting the analysis to genes that contained 
m6A sites (N = 442,126 reads, median polyA tail length: 84nt for no_m6A, 90nt for 
m6A, Mann–Whitney-Wilcoxon test p < 2.2e−16, Additional File 1: Figure S12A). To 
ensure that this analysis was not biased by reads from a few highly expressed genes, 
we also examined the per-gene median polyA tail length of m6A-modified reads and of 
unmodified reads, such that each gene contributes equally, finding that the differences 
between the two populations were more modest, but still significant (n = 1507 genes, 
median polyA tail length: 89nt for no_m6A, 92nt for m6A, Mann-Whitney-Wilcoxon 
test p < 0.05, Additional File 1: Figure S12B).

Recent works have provided evidence for m6A being excluded from exon junctions 
[82–85]. Thus, we wondered whether the same trend would be observed in DRS data-
sets analysed with m6ABasecaller, as they provide both isoform and m6A information 
for each RNA molecule sequenced. To this end, we computed the distance between each 
m6A site (n = 6,612 sites, those that could be unequivocally assigned to a single tran-
script), to the closest exon start or end. As a control, the distance between randomly-
selected DRACH motifs and the closest exon start or end was also computed (see 
Methods). Our analysis revealed that the distance between m6A sites and the closest exon 
boundary was significantly higher (median = 274 nt) than the one expected by chance in 
randomly chosen DRACH motifs (median = 95 nt) (p-value = 1.97e−12, see also Fig. 5C), 
in agreement with previous observations [82–84] using orthogonal methods.

m6A modifications are preferentially deposited on the same mRNA molecule

mRNA molecules are typically substochiometrically modified, implying that not all mol-
ecules mapping to a given m6A site are m6A-modified. Whether m6A modifications are 
preferentially deposited in a subset of mRNA molecules (‘hyper-modified RNAs’) or 
uniformly placed across molecules is largely unknown, mainly due to our inability to 
map m6A modifications in individual RNA molecules. Here we exploited the single mol-
ecule resolution feature of the m6ABasecaller to address this question. To this end, we 
first extracted m6A information from full-length RNA reads that could be unambigu-
ously assigned to a given mRNA isoform (see Methods). For each pair of m6A-modified 
sites present in a given isoform, we computed the ‘expected co-occurrence’ by multiply-
ing the m6A modification frequencies of each of the two m6A-modified sites (n = 1,101 
pairs of m6A sites in the HepG2 dataset). Then, we compared this value to the ‘observed 
co-occurrence’ (Fig. 5D, see also Additional File 1: Figure S13A), which we defined as 
the proportion of molecules that have both m6A sites modified. Finally, for each pair of 
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m6A sites, we calculated the number of standard deviations (NSD) that the ‘observed co-
occurrence’ deviated from the expected co-occurrence (see Methods). Therefore, pairs 
of sites with NSD > 0 co-occur more frequently than expected, whereas m6A pairs with 
NSD < 0 are preferentially deposited in distinct RNA molecules.

We examined the distribution of NSD values for all pairs of m6A sites transcriptome-
wide, finding that the distribution of NSD values was slightly shifted towards positive 
values (Fig.  5E). To assess whether this shift was significant, we compared this distri-
bution to a random distribution with same sample size and variance, but mean value 
of 0, finding that the two distributions were significantly different (Mann-Whitney, 
p = 3.20e−20). We also examined the correlation between co-occurence of m6A sites 
and the genomic distance between the set of m6A pairs analyzed, finding no positive 
correlation (Spearman’s ρ = −0.161) (Fig. 5F). Thus, our results suggest that m6A modi-
fications preferentially co-occur in the same RNA molecules, independently of the dis-
tance between the two sites, implying that the deposition of an m6A modification in a 
given mRNA molecule is more likely to occur on mRNA molecules with a previous m6A 
modification.

m6A stoichiometry does not largely vary across isoforms

We then wondered whether m6A modification stoichiometries of a given m6A site 
were similar or distinct across isoforms, as we could eyeball some genes that appar-
ently showed different m6A modification stoichiometries across isoforms (Fig.  5G). 
To address this question systematically and in a transcriptome-wide fashion, we used 
high-coverage HepG2 human datasets (Additional File 2: Table S4). Firstly, we examined 
whether per-isoform m6A stoichiometries were replicable across independent biologi-
cal replicates, finding an overall Spearman’s correlation of 0.83 between biological rep-
licates sequenced in different flowcells (Fig. 5H, see also Methods). We then examined 
whether the modification stoichiometry of m6A sites varied consistently across isoforms. 
To this end, we analysed the variation in isoform-specific modification stoichiometry of 
m6A sites that showed a minimum per-isoform coverage of 40 reads in both replicates 
(n = 167 sites). Analysis of differential modification levels revealed only modest differ-
ences in m6A modification stoichiometries across isoforms (Fig. 5I), suggesting that 
m6A stoichiometry is in general not isoform-specific. Indeed, most of the identified m6A 
changes across isoforms were not replicable across biological replicates, suggesting that 
the initial variations observed across isoforms were caused by random sampling differ-
ences. The only site that we found to be significant was found in the EDF1 gene, which 
showed a replicable 20% stoichiometry difference between two isoforms (Additional File 
1: Figure S13B). Notably, the lowest m6A frequency was found in the isoform that had a 
splicing site ~ 20nt downstream from the m6A-modified site.

Finally, we explored whether the variability of m6A frequency between isoforms would 
correlate with the distance between the m6A site and the exon junctions and/or polyade-
nylation sites, finding a modest negative correlation that was not significant (Spearman’s 
ρ = −0.12, p = 0.12, Additional File 1: Figure S14A). When splitting the sites into “vary-
ing” (mean frequency difference > = 5%) and non-varying sites, we observed that varying 
sites were slightly closer to the exon boundary than non-varying sites, but this difference 
was not statistically significant (Mann-Whitney-Wilcoxon test p = 0.6581).
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Applicability of NanoRMS2 method beyond m6A RNA modifications

As discussed earlier in this work, the per-read ‘labels’ used for training the m6ABase-
caller were generated through predictions made by NanoRMS2 on both wild type and 
METTL3 knockout samples, but this method is applicable to samples devoid of any 
modification of interest. Thus, the proposed method described in this work is only not 
applicable for training models that can predict m6A RNA modifications, but can be 
extended to any RNA or DNA modification of interest, using as input both native (modi-
fied) reads and unmodified reads.

To demonstrate the extended applicability of the method, here we employed 
NanoRMS2 to predict high-accuracy labels that can be in turn used to train a basecaller 
for predicting m5C and m6A DNA modifications. To this end, we ran NanoRMS2 on E. 
coli native (modified) and PCR-amplified (unmodified) DNA datasets. NanoRMS2 pre-
dicted modifications in 2 different sequence contexts: CCWGG (which is the motif for 
the m5C Dcm writer) and GATC (which is the motif for the m6A Dam writer) (Additional 
File 1: Figure S15A). Similarly, we then ran NanoRMS2 on H. sapiens NA12878 native 
and PCR-amplified DNA [86], in which NanoRMS2 identified as top-ranked ‘motif ’ 
the CpG sequence context, which is the known motif for DNA m5C in eukaryotes, the 
most abundant DNA modification type (Additional File 1: Figure S15B). Finally, we ran 
NanoRMS2 on S. cerevisiae WT and ΔIme4 samples, which predicted GGACA context 
as the most frequent to be m6A-modified (as previously reported in literature for Ime4 
[87]) (Additional File 1: Figure S15C), demonstrating that the GGACT-enriched motif 
of m6ABasecaller-predicted m6A sites in human and mouse is not inherent to a bias of 
the algorithm, but reflecting the natural biological variability in terms of preferences in 
motifs in one species or another one. Finally, we also examined whether METTL14 KO 
might show a different preference in terms of motifs compared to METTL3 knockout, 
finding that the captured motif by NanoRMS2 is largely GGACT-enriched, suggesting 
that METTL14 is not showing significant differences in terms of motif binding prefer-
ences compared to METTL3 (Additional File 1: Figure S15D), in agreement with previ-
ous works [19].

Applicability to new RNA004 chemistries

In the past few months, RNA004 DRS chemistries have been made available, with prom-
ising preliminary results pointing to increased basecalling accuracies and sequencing 
yields, compared to previous RNA002 chemistries. The new chemistry does not only 
come with the deprecation of RNA002 chemistries, but also of key softwares and bioin-
formatic pipelines that were routinely used by the scientific community to analyse DRS 
datasets, including the basecalling algorithm Guppy, the resquiggling algorithms Tombo 
(https://​github.​com/​nanop​orete​ch/​tombo) and Nanopolish (https://​github.​com/​jts/​
nanop​olish), the demultiplexing tool DeePlexiCon [88] and several NextFlow workflows 
for DRS data analysis, such as MasterOfPores (https://​github.​com/​bioco​recrg/​master_​
of_​pores) and nf-core nanoseq (https://​github.​com/​nf-​core/​nanos​eq). Notably, with the 
deprecation of these tools, all RNA modification detection tools developed to date have 
also became deprecated, as each of them relied on one or more of these softwares men-
tioned above.

https://github.com/nanoporetech/tombo
https://github.com/jts/nanopolish
https://github.com/jts/nanopolish
https://github.com/biocorecrg/master_of_pores
https://github.com/biocorecrg/master_of_pores
https://github.com/nf-core/nanoseq
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With the release of the RNA004 chemistry, ONT made available several modification-
aware base-caling models for the newer chemistry, similar to the m6ABasecaller pre-
sented in this work. While these models are highly promising, they are so far limited to 
very few RNA modifications (m6A, m5C, Ψ and inosine), they have not been peer-reviewed 
or benchmarked by the community in terms of false positives and/or false negatives, and 
their ability to detect modifications when other RNA modifications are nearby remains 
unexplored. Moreover, it is unlikely that ONT will release trained base-calling models for 
minority RNA modifications, such as those that are exclusively present in rRNAs, tRNAs or 
viral RNAs, or for non-natural modifications, such as those typically incorporated in RNA 
aptamers, despite being highly relevant to diverse research fields. Therefore, even with the 
appearance of ONT base-calling models, there is a great need to have alternative methods 
to detect RNA modifications in DRS datasets sequenced with RNA004 chemistries.

To address this gap, we re-established the NanoRMS2 pipeline to make it compatible with 
the RNA004 chemistry. Key variations compared to our original pipeline include the use 
remora as a new resquiggling software (replacing tombo, https://​github.​com/​nanop​orete​
ch/​remora), and bonito as basecalling software (replacing guppy, https://​github.​com/​nanop​
orete​ch/​bonito). Of note, dorado was not chosen as basecalling software as it does not 
report ‘trace’ as feature, which we found was one of the top-performing features to differen-
tiate modified and unmodified bases in our models, also in RNA004 chemistry (Additional 
File 1: Figure S16), as shown for RNA002 (Additional File 1: Figure S3).

To examine the accuracy of our adapted pipeline, we generated a new batch of ‘curlcake’ 
constructs [44], which were sequenced with the new RNA004 chemistry (Additional File 1: 
Figure S17). We reasoned that including both RNA modifications for which ONT modifi-
cation-aware base-calling models are available (m6A, m5C and Ψ) and for which they are 
unavailable (ac4C, m1Ψ, hm5C and m5U) would maximise the use of the sequences by future 
researchers interested in retraining their own models and algorithms. Our results showed 
that this approach accurately distinguished modified from unmodified sequences in dis-
tinct 7-mers, for each of the 7 RNA modification types examined, with Receiver Operating 
Characteristic (ROC) Area Under the Curve (AUC) values ranging from 0.88 to 0.97 when 
using fast basecalling models, and 0.92 to 0.98 when using high accuracy (hac) basecalling 
models (Additional File 1: Figures S18 and S19). As a comparison, we examined whether 
this method would be applicable to older RNA002 chemistries, and whether the perfor-
mance would be similar. Our results show that this pipeline yields similar performance 
in RNA002 chemistries, with ROC AUC values ranging from 0.87 to 0.98 for hac model, 
and 0.84 to 0.98 for fast model (Additional File 1: Figure S20). Overall, our work provides a 
promising proof-of-concept on the use of remora + bonito as alternatives to extract features 
(signal intensity, dwell time, trace) that can in turn be used to train novel RNA modification 
base-callers and updated RNA modification prediction algorithms compatible with latest 
RNA004 chemistries.

Discussion
Nanopore sequencing technologies are revolutionising the fields of genomics and tran-
scriptomics. Despite their potential to improve the precision, quality and complexity of 
existing DNA and RNA modification maps, long-read sequencing methodologies have 
still not been adopted as a mainstream sequencing technology. A major obstacle for 

https://github.com/nanoporetech/remora
https://github.com/nanoporetech/remora
https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/bonito
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their widespread adoption stems from the lack of modification-aware base-calling algo-
rithms that will work for any given sequence context [89, 90].

To adequately study the role, function and dynamics of RNA modifications, technolo-
gies that can sequence RNA molecules in ways that preserve the native modifications 
are sorely needed, as well as algorithms that can identify them with single nucleotide 
and single molecule resolution. A major challenge to achieve this, however, has been 
to obtain high-quality and diverse ‘training sets’ for multiple modifications, and across 
diverse sequence contexts [89, 90]. Indeed, most RNA modifications cannot be synthe-
sised chemically or enzymatically to provide such training standards. Thus, the genera-
tion of standards for all modifications is a major challenge in training nanopore or any 
other technology heavily relying on computational methods to map DNA or RNA modi-
fications accurately [89].

In the last few years, several works have successfully shown that m6A RNA modifica-
tions –as well as other RNA modifications– can be detected using nanopore sequencing 
[39, 44–48, 51, 56, 58, 59, 65, 91, 92]. However, most methods developed so far often lack 
single molecule resolution (providing m6A predictions at per-site level), require com-
putationally-intensive steps such as resquiggling, require the analysis of aggregated per-
read information (so per-read predictions are not fully independent from other reads, 
and are affected by sequencing depth and per-site coverage), and/or have relatively high 
false positive and false negative rates [50, 93]. Here we address these limitations with 
the development of a modification-aware basecalling model, the m6ABasecaller (Fig. 1), 
which can produce m6A predictions in individual reads during the basecalling step, thus 
allowing us to address questions regarding the mechanism of m6A deposition in mRNAs 
at an unprecedented resolution, such as deciphering the interplay between m6A modi-
fications and polyA tail lengths (Fig. 5A,B), learning the rules of m6A deposition within 
same reads (Fig. 5D-F) with regards to intron-exon junctions (Fig. 5C) and across iso-
forms (Fig. 5G).

Modification-aware basecalling models, such as the m6ABasecaller, show several key 
advantages compared to previous methods to detect modifications in DRS datasets, 
including those previously reported to achieve single-molecule resolution. Firstly, per-
read predictions of m6A modified bases are fully independent from the rest of reads; by 
contrast, other single-read m6A detection methods require several reads to perform a 
statistical test that is needed for their final per-read predictions [38, 91]. Secondly, modi-
fications are predicted de novo as the read is being sequenced, during the basecalling 
step, thus allowing potential coupling of m6A detection with other ‘live basecalling’ fea-
tures, such as adaptive sampling’ [94–96] in the near future. Thirdly, they do not require 
a control sample (knockout or unmodified) to perform its predictions, nor a minimum 
sequencing coverage to predict a nucleotide as m6A-modified; the prediction is per-
formed per-read and per-nucleotide, independently of other reads, m6A sites, or data-
sets. Fourthly, modifications are detected at the basecalling step, thus skipping all the 
heavy GPU/CPU computational efforts (resquiggling, feature extraction, statistical anal-
yses, and/or additional post-processing) typically associated with the detection of m6A 
RNA modifications in nanopore DRS datasets [38, 39, 51, 65, 91]. Finally, the method 
will not be restricted to detecting RNA modifications in a specific subset of k-mers, nor 
requires prior knowledge of the motif; rather, it will predict RNA modifications in the 
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biological contexts in which the RNA modification is naturally found, as these were the 
ones used to train the model.

A key feature of this work, in addition to the m6ABasecaller per se, is that it provides a 
novel approach for generating high-quality training sets that can be used to train mod-
els for other RNA modifications. Specifically, we propose a novel solution to generate 
training sets to train basecalling algorithms that consists in using biologically-derived 
data filtered to keep only high confidence modification labels (after multiple training 
rounds) to train the final basecalling model (Fig.  2). We show that these ‘high quality 
labels’ are improved when using features extracted from data that was previously base-
called with “modification-unaware” (IVT/PCR) models (Additional File 1: Figure S3). 
Once the basecalling model is trained using these ‘high-confidence’ labelled reads, 
sequencing data from any condition can be basecalled, and modifications will be pre-
dicted for each read and nucleotide. In this work we demonstrate the applicability of this 
approach, NanoRMS2, to generate high confidence labels to train an m6A-aware base-
calling model, but the same approach is in principle applicable for any given RNA or 
DNA modification. To illustrate this, we demonstrate how our approach can be used 
to accurately label and train models to basecall bacterial m5C modifications (GGWCC 
contexts), bacterial m6A modifications (GATC contexts) and human m5C modifications 
(CpG contexts) (Additional File 1: Figure S15), demonstrating its potential use by future 
users to extended lists of RNA and/or DNA modifications.

To our surprise, we find that basecalling models trained with synthetic RNAs show 
poor performance in  vivo (Additional File 1: Figure S1) this is true even if the syn-
thetic molecules cover all possible 5-mers, such as in the case of the ‘curlcakes’ [44]. We 
hypothesise that the ‘chunks’ used by the neural network to make its predictions are 
longer than 5-mers, and therefore, the training data lacks sufficient sequence complex-
ity. Consequently, these models suffer from two issues: i) they basecall poorly sequence 
contexts that were not present in the training set, and ii) they incorrectly predict reads 
‘chunks’ to be fully modified or fully unmodified. One possible solution would be the use 
of synthetic molecules in which the modification of interest would be surrounded by 
randomised sequenced contexts,. However, we should note that these approaches will be 
limited by the chemical availability of the modification of interest in the form of phos-
phoramidite for solid-phase synthesis.

We should note that the m6ABasecaller was trained on human DRS datasets (see 
Methods). While we demonstrate that the m6ABasecaller performs well in other species 
such as mouse and zebrafish (Fig. 4 and Additional File 1: S4-5), its performance will not 
be optimal in species that have m6A modifications in very distinct sequence contexts 
than those present in human (DRACH). Indeed, the model will be unable to recognize 
m6A in sequence contexts that are not present in human, because it cannot predict m6A 
modifications in a sequence context that it had never seen during the training step. Thus, 
while m6ABasecaller will predict m6A modifications in any species, for species that are 
evolutionarily distant to human, we recommend generating a new m6A-aware basecall-
ing model trained with data from that species of interest, following the same procedure 
as described here.

In this work, we reveal that m6A modifications are preferentially deposited in 
RNA molecules that contained a previous m6A modification, that m6A modification 
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frequencies do not largely differ across isoforms, and that, contrary to the common 
belief, m6A-modified molecules hold longer polyA tails than their unmodified coun-
terparts (Fig. 5), arguing against m6A-mediated mechanisms as main drivers of mRNA 
deadenylation and decay. Notably, the m6ABasecaller has also allowed us to identify 
unexpected issues that may arise when using inducible knockout (iKO) or knock-down 
(KD) systems as ‘control’ conditions. Indeed, we find that most m6A-modified sites are 
still present at detectable levels upon shorter induction times (Fig. 4E-F) suggesting that 
caution should be taken when using these systems and interpreting their results. More-
over, our work demonstrates that the loss of METTL3 protein in inducible systems is 
often not sufficient to prove that m6A is absent in mRNAs, and that, even if at lower stoi-
chiometries, m6A modifications will still be present in certain RNA molecules.

While base-calling models for RNA004 chemistries are available, the m6ABasecaller 
offers the possibility to examine datasets generated with the previous chemistry, for 
which no alternative modification-aware basecaller exists. In addition, the feasibility to 
reimplement the approach for RNA004 chemistries enables future users to be able to 
build RNA and DNA basecalling models for modifications that might not be targeted 
by ONT, such as those that might not be of generalised interest. Thus, it is of pivotal 
importance to ensure that the community will be able to keep exploring the native RNA 
epitranscriptome using independent tools that can complement efforts done by ONT, 
as well as to assess potential biases of ONT-released modification-aware basecalling 
models.

Conclusions
Our work provides a novel framework to generate high quality training sets and train 
modification-aware basecallers. We demonstrate that these tools enable transcriptome-
wide RNA modification mapping with single-molecule and single-nucleotide resolution, 
with high specificity and high sensitivity, and retaining isoform information, opening its 
use for a variety of applications, including the direct detection of RNA modifications in 
clinical samples using nanopore sequencing.

Methods
Generation of PCR/IVT modification‑unaware basecalling models

The ‘default’ basecalling models provided by ONT (such as those included in Guppy ver-
sion 3.6.1, namely dna_r9.4.1_450bps_hac.cfg and rna_r9.4.1_70bps_hac.cfg for DNA 
and RNA basecalling, respectively) have been trained on wild-type (native) RNA and 
DNA molecules from human, yeast and E. coli. Consequently, all modifications that are 
naturally present in any of these species (such as m6A in DRACH context for RNA), will 
be trained into the model, and the model will learn to recognise them as canonical bases. 
To overcome this issue, we generated modification-unaware basecalling models (dna_
r9.4.1_450bps_pcr_hac.cfg for DNA and rna_r9.4.1_70bps_ivt_hac.cfg for RNA), which 
were trained with unmodified DNA (PCR-amplified from E.coli whole genome) or 
unmodified RNA (in vitro transcribed from CEPH1463 cells, UCSC_Run1_IVT_RNA) 
datasets using a customised version of taiyaki. Because highly expressed transcripts 
are known to typically dominate cDNA/RNA sequencing experiments, we balanced 
the RNA training sets taking up to 5 reads per each transcript. Modification-unaware 
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trained models are available in NanoRMS2 GitHub repository (https://​github.​com/​
novoa​lab/​nanoR​MS2/). All models trained as part of this work are listed in Additional 
File 2: Table S1.

Obtaining high‑confidence per‑read labels with NanoRMS2

NanoRMS2 is a software that can generate high-confidence labelled data from biologi-
cal samples, which can in turn be used to train modification-aware basecalling models. 
that will be highly accurate in predicting RNA modifications in in  vivo contexts. The 
NanoRMS2 pipeline takes as input a reference sequence and two direct DNA or RNA 
sequencing samples. The first sample is expected to have little-to-no modification, while 
the second should have at least some base modifications present in biologically relevant 
sequence contexts. The first sample can be generated by amplification (PCR) for DNA 
or in vitro transcription (IVT) for RNA. Alternatively, this sample can be obtained from 
knock-out (KO) or knock-down (KD) of specific modification writer enzymes.

Briefly, NanoRMS2 performs following steps (Fig. 2): i) extraction of basecalling fea-
tures for all bases in all reads: signal intensity (SI), Modification Probability (MP), Dwell-
Time at the position 0 (DT) and 10 bases upstream (DT10), and Trace values for the 
reference nucleotide (TR) and all canonical bases (TA, TC, TG and TT, for A, C, G and 
T/U, respectively; ii) data aggregation for all 7-mers from entire genome/transcriptome, 
iii) pre-selection of candidate modified kmers using Kolmogorov–Smirnov test, iv) com-
bination of semi- and supervised learning to differentiate between un- and modified 
reads at pre-selected positions, v) motif enrichment analysis to further limit the analysis 
only to the sequence motifs that correspond to modification writers, vi) encoding of the 
high confidence labels into BAM files. The labels generated by NanoRMS2 will then be 
used to train the final modification-aware basecalling model (see next section).

Generation of an m6A‑aware basecalling model

The modification-aware (m6A) basecalling model benchmarked in this work (m6ABase-
caller) was trained as follows: first, we trained a modification-unaware model with 
taiyaki using only unmodified (IVT) reads, which were taken from UCSC_Run1_IVT_
RNA dataset, which is publicly available from the Nanopore WGS consortium [63]. This 
model was then used to base-call Human WT rep1 and METTL3 KO rep1 reads from 
PRJEB40872, which were then used by NanoRMS2 to label reads present at m6A sites as 
modified or unmodified [45]. Finally, high-confidence, per-read modification predictions 
were used as ‘labels’ to train the m6A basecalling model using taiyaki. We used at most 2 
modified and 2 unmodified reads for every position of every transcript. The final trained 
m6A-modification aware basecalling model (rna_r9.4.1_70bps_m6A_hac.cfg), which we 
refer to as ‘m6ABasecaller’, is available in GitHub (https://​github.​com/​novoa​lab/​m6ABa​
secal​ler), including detailed description and examples on how to use this model and 
how to process the output files generated by the m6ABasecaller. We should note that 
the m6ABasecaller (rna_r9.4.1_70bps_m6A_hac.cfg) has a slightly lower accuracy (88.9% 
identity to reference) compared to the default RNA model (91.1% identity to reference), 
which we attribute to the basecalling of 5 letters instead of 4.

https://github.com/novoalab/nanoRMS2/
https://github.com/novoalab/nanoRMS2/
https://github.com/novoalab/m6ABasecaller
https://github.com/novoalab/m6ABasecaller
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mESC culturing and passaging

M. musculus embryonic stem cells (mESC E14tg2A) were cultured under feeder-free 
conditions using 0.1% Gelatine (Millipore, #ES-006-B) coated plates (ThermoFisher, 
#140675) and grown in mESC medium prepared as follows: KnockOut™ DMEM 
(ThermoFisher, 10829018) supplemented with 10% FBS (in-house tested for ES com-
petence) MEM Non-Essential Amino Acids Solution 1X (ThermoFisher, #11140050), 
GlutaMAX™ 2 mM (ThermoFisher, #35050061), Pen/Strep 1X (ThermoFisher, 
#15140122), β-mercaptoethanol 50 µM (Gibco, #31350010), HEPES 30 mM (Gibco, 
#15630080), 0,22 µm filtered and then supplemented with LIF conditioned (may 
2021- in house tested). Cells were passed every 2-3 days in a 1:6-1:8 dilution.

Generation of tamoxifen‑inducible METTL3 knockout mES cells

In order to obtain tamoxifen-inducible METTL3 Knock-Out mES cells, 10^6 E14 
mES (mESC E14tg2A) cells were transformed via electroporation (EP) with 3 ug of 
Piggybac MerCreMer Addgene plasmid (#124,183) and 9ug pBase plasmid (PL623—
Wellcome Trust Sanger Institute) in NEPA21 electroporator. Electroporated (EP) cells 
were then selected with 400 ug/mL Neomycin (Roche, #04727878001) and resistant 
clones (mES cell line expressing Cre) were established. Subsequently, cells carrying 
the MerCreMer system were used for the insertion of 2 LoxP sites flanking a fragment 
of METTL3 gene. Briefly, the LoxP1 site was inserted by electroporation of 12,2 uM 
RNP Cas9 protein (PNA BIO, #CP02), 16 uM sgRNA1 and 4,8 uM ssODN (LoxP1 
sequence) in OptiMEM (Gibco, #11,058–021). 24 h post-EP the cells were sorted, 
seeded at single cell and genotyped by PCR and Sanger sequencing. One positive 
clone was then selected for the insertion of the LoxP2 sequence using the same pro-
cedure as described above with sgRNA2. 48 h post-EP, the cells were sorted, seeded at 
single cell and genotyped by PCR and Sanger sequencing. All sequences used to gen-
erate this cell line can be found in Additional File 2: Table S14, and were taken from 
Wang et al., 2018 [79].

Treatment of mESC with STM2457 inhibitor and with tamoxifen

The METTL3 inhibitor STM2457 (STORM Therapeutics) was administered to mESC 
cultures to a final concentration of 2, 10 or 20 µM. Dilutions of STM2457 were per-
formed in DMSO (PanReac AppliChem, #A3672). As a control, the same volume 
of DMSO was administered to the cells. Cells were harvested with Trizol (Invitro-
gen,15596018) 24 h after the addition of the inhibitor. For tamoxifen treatment, 
(Z)−4-Hydroxytamoxifen (Sigma, #H7904-5MG) (diluted in MetOH) was added to 
the culturing media to a final concentration of 2.5 µM at each medium replacement 
until harvest day. As a control, we added the same volume of vehicle (MetOH). Cells 
were harvested in Trizol (Invitrogen, #15596018) 6 or 14 days after tamoxifen addi-
tion to the media.

Western blotting

To perform the Western Blot assay, cells were lysed in RIPA buffer containing pro-
tease inhibitor (Roche, #11873580001) and lysates were centrifuged at 15000 rcf for 
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15 min at 4 °C to remove cellular debris. Lysates were then prepared with NuPAGE 
sample buffer LDS 4X (Thermo Fisher, #NP0007) and NuPAGE Sample Reducing 
Agent (Thermo Fisher, #NP0004), and were loaded on 15% acrylamide gels. Protein 
content was previously checked with Ponceau (Sigma-Aldrich, #P7170) and mem-
branes (Merck, #IPVH00010) were blocked with TBS-T BSA 3%. METTL3 antibody 
(Abcam ab195352) was used at a 1:1000 dilution, and GAPDH antibody (Abcam 
ab8245) was used at 1:10.000. Anti-mouse (Agilent #P0260) or anti-rabbit (Abcam, 
#ab6721) HRP-conjugated secondary antibodies were diluted 1:5000 in TBS-T.

Total RNA extraction

For each condition, 3 wells of a 6-well plate of mESC (corresponding to 6*10^6 cells 
approximately) were resuspended in 1 mL Trizol (Invitrogen,15596018) vortexed two 
times for 30 s and incubated 5 min at room temperature, then processed immediately 
or stored at −80. Next, 200 µL of chloroform (Sigma, C2432) was added to each sample, 
mixed for 20 s, incubated for 2–3 min at room temperature and centrifuged at 16,000 g 
for 15 min at 4ºC. The resulting upper aqueous phase was transferred to a new tube and 
mixed with 500 µL of molecular grade 2-propanol (Sigma, I9516). Samples were incu-
bated 10 min at room temperature and centrifuged at 12,000 g for 10 min at 4ºC to pre-
cipitate the RNA. The pellet was washed with 70% ethanol and centrifuged at 7,500 g for 
5 min at 4ºC, air-dried for 10 min and eluted in nuclease free water.

PolyA selection from mESC total RNA

Total RNA was DNAse-treated (Ambion, AM2239) at 37ºC for 20 min, and cleaned up 
using RNeasy MinElute Cleanup Kit (Qiagen, 74,204). 70–100 ug of total RNA was then 
subjected to double polyA-selection using Dynabeads Oligo(dT)25 (Invitrogen, 61,002) 
following manufacturer’s protocol and eluted in ice-cold 10 mM Tris pH 7.5.

Generation of in vitro transcribed ‘curlcake’ sequences

This study used synthetic RNAs known as ‘curlcakes’, which were designed to include 
all possible 5-mer sequences while minimising RNA secondary structures [44–51], and 
consist of four in-vitro transcribed constructs: Curlcake 1, 2,244 bp; Curlcake 2, 2,459 bp; 
Curlcake 3, 2,595 bp and Curlcake 4, 2,709 bp. To generate ‘curlcake’ synthetic RNAs, the 
plasmids were digested with BamHI-HF (NEB, R3136L) and EcoRV-HF (NEB, R3195L) 
followed by a clean-up using phenol/chloroform/isoamyl-alcohol 25/24/1, v/v, pH = 8.05 
(Sigma Aldrich, P3803). Linearized plasmids were used for in vitro transcription with the 
AmpliScribe T7-Flash Transcription Kit (Lucigen, ASF3507) adding unmodified rATP 
and N6-methyladenosine triphosphate (m6ATP, TriLink Biotechnologies, N-1013–5), 
N5-methylcytosine triphosphate (m5CTP, Trilink, N-1014–1), 5-hydroxymethylcytosine 
triphosphate (hm5CTP, Trilink, N-1087), N4-acetylcytosine triphosphate (N4-Acetyl-
CTP, Jena Bioscience, NU-988S), N1-methylpseudouridine triphosphate (m1meΨTP, 
Jena Bioscience, NU-890S), pseudouridine triphosphate (ΨTP, Trilink, N-1019–1) and 
N5-methyluridine triphosphate (m5UTP, Trilink, N-1024–1). All constructs were poly-
adenylated using Escherichia coli poly(A) polymerase (NEB, M0276S) according to man-
ufacturer’s instructions and purified with RNAClean XP beads. The addition of poly(A) 
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tail was confirmed using Agilent 4200 TapeStation and the concentration was deter-
mined using Qubit Fluorometric Quantitation.

Direct RNA nanopore library preparation and sequencing

For RNA002

PolyA( +) selected (for in  vivo samples) or in  vitro polyadenylated (for synthetic curl-
cakes) RNA samples were prepared for nanopore sequencing using the direct RNA 
sequencing (DRS) kit (SQK-RNA002), following the ONT protocol version DRS_9080_
v2_revI_14Aug2019 with half reaction for each library until the RNA Adapter (RMX) 
ligation step, with some adaptations. Briefly, 250 ng of polyA( +) RNA were ligated to 
pre-annealed custom RT adaptors (IDT) containing barcodes [88] with T4 DNA con-
centrated Ligase (NEB-M0202M) for 15 min at RT. Next, reverse transcription was per-
formed during 15 min at 50ºC using SuperScript IV RT Enzyme (Invitrogen,18,090,050), 
followed by heat inactivation for 5 min at 70ºC. Ligated products were then purified 
using 1.8X Agencourt RNAClean XP beads (Fisher Scientific, NC0068576) and washed 
with 70% freshly prepared ethanol. For the last ligation step, 50 ng of reverse transcribed 
RNA from each reaction was pooled, mixed with RMX adapter, composed of sequencing 
adapters with motor protein, and incubated for 15 min in the presence of concentrated 
T4 DNA Ligase (NEB-M0202M). Finally the ligated RNA:DNA hybrid was purified 
using 1X Agencourt RNAClean XP beads, washed with Wash Buffer (WSB) twice. The 
sample was then eluted in Elution Buffer (EB) and mixed with RNA Running Buffer 
(RRB) before loading onto a primed R9.4.1 flowcell, and ran on a MinION sequencer.

For RNA004

For RNA004 runs (Table  S2), DRS library preparation was carried out according to 
the manufacturer’s instructions (direct-rna-sequencing-sqk-rna004-DRS_9195_v4_
revB_20Sep2023-promethion). 100 ng of polyA( +) RNA were ligated to pre-annealed 
custom RT adaptors (IDT) containing barcodes [88] with T4 DNA concentrated Ligase 
(NEB-M0202M) for 15 min at RT. Next, reverse transcription was performed during 15 
min at 50ºC using SuperScript IV RT Enzyme (Invitrogen,18,090,050), followed by heat 
inactivation for 5 min at 70ºC. Ligated products were then purified using 1X Agencourt 
RNAClean XP beads (Fisher Scientific, NC0068576) and washed with 70% freshly pre-
pared ethanol. After elution, all reverse transcribed samples were pooled in one tube, 
and 500 ng of total cDNA were mixed with 6 µl of RNA Ligation Adapter (RLA), fol-
lowed by 15 min incubation in the presence of concentrated T4 DNA Ligase (NEB-
M0202M). Finally the ligated RNA:DNA hybrid was purified using 0.6X Agencourt 
RNAClean XP beads, washed with Wash Buffer (WSB) twice. Before loading the librar-
ies, these were mixed with 100 µl of Sequencing Buffer (SB) and 68 µl of Library Solution 
(LIS). Libraries were run on a primed FLO-PRO004RA flowcell using a PromethION 2 
Solo sequencing device.

Basecalling, demultiplexing direct RNA sequencing data

Raw Fast5 files from dRNA sequencing runs analysed in this study (listed in Addi-
tional File 2: Table  S2) were processed with Master of Pores pipeline version 3 [61], 
which is publicly available in GitHub (https://​github.​com/​bioco​recrg/​MOP3). The 

https://github.com/biocorecrg/MOP3


Page 29 of 36Cruciani et al. Genome Biology           (2025) 26:38 	

mop_preprocess module was used to process the samples, using DeePlexiCon with 
default parameters [88] to demultiplex the runs when required, and basecalled with 
Guppy basecaller 3.4.5 (https://​nanop​orete​ch.​com) using the m6A basecalling model 
trained as part of this work (rna_r9.4.1_70bps_m6A_hac.cfg, which is available at https://​
github.​com/​novoa​lab/​m6ABa​secal​ler/​tree/​main/​basec​alling_​model).

Extraction of modification information from DRS datasets basecalled with m6ABasecaller

m6A-basecalled Fast5 files were processed with ModPhred [62] (https://​modph​red.​
readt​hedocs.​io/​en/​latest/) to encode the modification probabilities (calculated by the 
m6ABasecaller) into Fastq files. ModPhred was also used to map the Fastq files with 
minimap2 [97] (version 2.17-r941) with “-ax map-ont -k13” parameters to the hg38 
genome for human data, mm10 genome for mouse data, and GRCz11 for zebrafish data. 
ModPhred was also used to generate a compressed bedMethyl (*.mod.gz) file with a list 
of m6A sites, which were considered as those positions with coverage > = 25 and modifi-
cation frequency > = 5%, using as modification probability 0.5.

The output file generated by ModPhred (mod.gz) was then processed to identify repli-
cable m6A sites using a custom python script. Replicable m6A sites were defined as those 
sites with coverage > = 25 and their respective modification frequency > = 5% in all rep-
licates. Metagene plots depicting the distribution of m6A sites were generated using the 
Guitar package version 2.14 [98]. As input we used a isoform annotation that was fil-
tered to contain only those transcripts that were expressed in our samples, in order to 
avoid the presence of artificial peaks (as the package by default uses the mean 5’-UTR, 
CDS and 3’-UTR length of all annotated isoforms) for plotting the m6A distribution.

Motif enrichment analysis of the predicted m6A sites was performed using MEME 
version 4.11.2 [99] with the following parameters: -nostatus -dna -mod zoops -nmotifs 
5 -minw 2 -maxw 10. To build m6A frequency scatter plots and density plots with loga-
rithmic axis, a pseudocount of 0.001 was added to each value to allow for logarithmic 
transformation.The set of m6A sites predicted in human, mouse and zebrafish DRS data-
sets using m6ABasecaller are listed in Additional File 2: Table  S5 (human HEK293T), 
Table  S7 (mouse ES cells), Table  S8 (zebrafish embryos 4hpf) and Table  S13 (human 
HepG2).

Isoform annotation

Per-read isoform annotation was performed on uniquely mapping reads, which were 
extracted using the samtools flag -F 3844, using Isoquant v2.2.2 [100] with “–stranded 
forward –complete_genedb –count_exons –data_type nanopore” parameters and the 
Ensembl annotation version 109. Isoquant was used to perform isoform predictions, 
and only those reads with “unique”, “fsm” (full splice match) or “mono_exon_match” tags 
were kept for downstream analyses. We should note that this filtering discarded ~ 80% 
of the mapped reads that could not be unambiguously assigned to a specific isoform. 
We realised that Isoquant annotations correctly assigned isoforms based on exon-intron 
junctions, but sometimes contained reads that corresponded to two distinct isoforms, 
which had either different 5’utr start sites or different 3’utr ends.

https://nanoporetech.com
https://github.com/novoalab/m6ABasecaller/tree/main/basecalling_model
https://github.com/novoalab/m6ABasecaller/tree/main/basecalling_model
https://modphred.readthedocs.io/en/latest/
https://modphred.readthedocs.io/en/latest/
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PolyA tail length estimation

Per-read polyA tail length estimation was performed using the mop_tail module of 
MOP2, using tailfindr version 1.3 [101]. Per-read polyA tail length estimations were 
merged with per-read modification data and per-read isoform assignments, generating a 
final table that contained all features for every read.

Analysis of m6A modification co‑occurrence

To assess whether m6A modifications tend to occur in the same reads, we first filtered 
the DRS dataset to keep only full-length reads that were uniquely assigned to a given iso-
form. Then, we analysed the per-read m6A modifications for each pair of predicted m6A 
sites that met the following criteria: (i) both m6A sites were found in a transcript with 
coverage > = 200 reads, and (ii) the expected number of reads that contain two modified 
sites > = 2. If these criteria were met, the expected m6A co-occurrence of site A and B –
quantified as ‘reads’ or ‘counts’– was calculated as follows:

Then, for each pair of m6A sites analysed, the number of standard deviations (NSD) 
from the expected counts was computed as follows:

Comparison of m6ABasecaller predicted m6A sites with orthogonal datasets

To compare the list of m6A sites predicted by the m6ABasecaller to those previously 
published and had been annotated under hg19 assembly, we lifted the genomic coordi-
nates using the UCSC “Lift Genome Annotations” online tool (https://​genome.​ucsc.​edu/​
cgi-​bin/​hgLif​tOver) to hg38. To subset the bed files based on coverage (only sites with 
at least 25 reads coverage were included in our analysis), we used bedtools coverage tool 
(bedtools version v2.30.0). The m6A sites identified by m6ABasecaller as well as by other 
orthogonal studies (before and after filtering) are listed in Additional File 2: Table S10, 
and can be found in m6ABasecaller Github repository (https://​github.​com/​novoa​lab/​
m6ABa​secal​ler).

Comparison of m6ABasecaller and m6Anet accuracy in curlcake mixtures

We generated subsets of 4000 reads from 0 and 100% m6A modified curlcakes (rep2) 
with 6,25%, 12.5%, 25% and 50% m6A modified reads using an in-house script, avail-
able here: https://​github.​com/​novoa​lab/​m6ABa​secal​ler/​blob/​main/​noteb​ooks/​
m6Anet.​ipynb. Briefly, we selected 1000 uniquely mapping, full-length reads per curl-
cake sequence (total of 4 ‘curlcakes’). Only full length reads were kept to ensure equal 
coverage of all positions. The list of read IDs used for these subsets is available in the 
m6ABasecaller GitHub repository at https://​github.​com/​novoa​lab/​m6ABa​secal​ler_​
dev/​tree/​main/​curlc​akes_​mixtu​res. The same input reads were used to benchmark 
m6ABasecaller and m6Anet. For m6Anet, we used default parameters according to 
the instructions of the repository (github.com/GoekeLab/m6anet) with the default 
model. Following the m6Anet recommended thresholds, we considered a site to be 

Exp(A,B) = modfreq(A) ∗modfreq(B) ∗ transcriptcoverage

NSD(A,B) =
Obs(A,B)− Exp(A,B)

Exp(A,B) ∗ (1− (modfreq(A) ∗modfreq(B))

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://github.com/novoalab/m6ABasecaller
https://github.com/novoalab/m6ABasecaller
https://github.com/novoalab/m6ABasecaller/blob/main/notebooks/m6Anet.ipynb
https://github.com/novoalab/m6ABasecaller/blob/main/notebooks/m6Anet.ipynb
https://github.com/novoalab/m6ABasecaller_dev/tree/main/curlcakes_mixtures
https://github.com/novoalab/m6ABasecaller_dev/tree/main/curlcakes_mixtures
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m6A-modified modification probability threshold, reported in the data.site_proba.csv 
output, was greater than 0.9.

Training classifiers for RNA004 chemistry

For reads sequenced with RNA004 chemistry, 13 features from positions -1, 0 (modi-
fied base) and + 1 were extracted (39 features in total). These features originated from: 
i) signal intensity (SI) mean and standard deviation, ii) dwell time at a pore (DT0) and 
at a helicase (shifted by 10 bases, DT10), iii) basecaller features, i.e., probability of an 
A, C, G, T/U, N (stay signal) and a reference base; and iv) the three most likely k-mers 
returned by a CTC-CRF basecalling model. Signal-based features were retrieved using 
remora v2.1.3, whereas basecaller-based features were obtained using bonito v0.8.1. The 
features were extracted using two basecalling models: rna004_130bps_fast@v5.1.0 (fast) 
and rna004_130bps_hac@v5.1.0 (hac). Basecalled reads were aligned with minimap2 
v2.28 using the following parameters: -k13 -w4 -n1 -m15 -s30 -A2 -B1 -O1,32 -E1,0.

Sequencing runs of synthetic modified and unmodified ‘curlcakes’ were downsampled 
to 1,000 reads per reference per sample, selecting the reads with the longest alignments. 
Features were then retrieved from each dataset as described above, and stored in BAM 
files as tags. Only positions centred at the modified base and containing only single 
modification within a 7-mer were used. For example, for m6A only BBBABBB positions 
were used. Subsequently, a classifier was trained for every selected 7-mer and for every 
sample (modification type). Reads originating from unmodified and modified samples 
were balanced to match the coverage of the sample with lower number of reads for a 
given position. Positions with fewer than 100 aligned reads were skipped. Data was split 
50:50 into a training and testing set. Random Forest classifier was trained using a train-
ing set and evaluated on a testing set. Random Forest implementation from scikit-learn 
v1.5.2 was used. Receiver operating characteristic (ROC) curve and the total area under 
the curve (AUC) were calculated using scikit-learn v1.5.2.
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