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Abstract 

Liquid-liquid phase separation (LLPS) enables the formation of membraneless orga-
nelles, essential for cellular organization and implicated in diseases. We introduce cat-
GRANULE 2.0 ROBOT, an algorithm integrating physicochemical properties and Alpha-
Fold-derived structural features to predict LLPS at single-amino-acid resolution. The 
method achieves high performance and reliably evaluates mutation effects on LLPS 
propensity, providing detailed predictions of how specific mutations enhance or inhibit 
phase separation. Supported by experimental validations, including microscopy data, 
it predicts LLPS across diverse organisms and cellular compartments, offering valuable 
insights into LLPS mechanisms and mutational impacts. The tool is freely available 
at https://​tools.​tarta​glial​ab.​com/​catgr​anule2 and https://​doi.​org/​10.​5281/​zenodo.​
14205​831.
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Background
Liquid-liquid phase separation (LLPS) is a molecular phenomenon that brings mol-
ecules together to form membraneless condensates [1–5]. Recent studies evidenced 
the key role of LLPS in human health and disease, especially in protein condensation 
and neurodegenerative disorders [6]. Nucleic acids are known to play a central role in 
LLPS. Indeed, many proteins undergo phase separation in the presence of RNA [7, 8], 
although some can phase separate independently due to their intrinsically disordered 
domains [1, 9].

Contrary to the process of liquid to solid phase transition (LSPT), in which proteins 
go toward an irreversible aggregation state [10, 11], LLPS is a reversible process [12]. 
The reversibility of LLPS has a dual function: while the increase in protein concentra-
tion enhances the enzymatic activity [8, 13, 14], RNA accumulation in organelles such 
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as P-bodies can inhibit protein translation [15]. Condensates formed through phase 
separation function as dynamic hubs, catalyzing essential biochemical processes by con-
centrating and compartmentalizing specific proteins and biomolecules at precise subcel-
lular locations [16].

Despite recent advances in the experimental probing and characterization of LLPS 
[17] and the construction of large-scale databases of LLPS-prone proteins [18–23], a 
wide coverage of the proteome of different species in light of their LLPS properties is still 
lacking. For this reason, several computational methods have been developed to predict 
the propensity of a protein to undergo LLPS [24–28]. However, most of these methods 
lack the ability to predict the LLPS propensity at the amino acid level and none of them 
has been extensively tested for the prediction of the effect of single and multiple muta-
tions of the protein sequence on their capability to undergo LLPS. One of the first LLPS 
predictors, catGRANULE 1.0, computes the protein propensity for granule formation 
based on structural disorder and nucleic acid-binding propensities [27]. Following this, 
the MaGS method was developed using a variety of features including protein abun-
dance, phosphorylation site annotations, and the occurrence of specific amino acids [25, 
29]. A more recent method is PICNIC, which uses both sequence-based and structure-
based features derived from AlphaFold2 models, focusing on sequence complexity, dis-
order scores, and amino acid co-occurrences [26]. An extended version, PICNICGO, 
adds Gene Ontology terms to provide deeper insights into functions like RNA-binding 
[26]. Lastly, PSPHunter broadens the feature set further by implementing word2vec 
for sequence analysis, alongside Position-Specific Scoring Matrix (PSSM) and Hidden 
Markov Model (HMM) to capture evolutionary and structural insights, encompassing 
a wide array of functional traits like protein modifications and network properties [28].

In this work, we introduce an advanced predictor of LLPS proteins called catGRAN-
ULE 2.0 ROBOT (R—Ribonucleoprotein, O—Organization, in B—Biocondensates, 
O—Organelle, T—Types). This new version significantly enhances the capabilities of its 
predecessor, catGRANULE 1.0, and it is based on a curated database of phase-separat-
ing proteins and their mutants. catGRANULE 2.0 ROBOT integrates a comprehensive 
set of features that include structural and sequence-based data derived from AlphaFold2 
models, specifically targeting properties relevant to phase separation. This version has 
undergone testing against a wide array of mutations, which were compiled through 
an exhaustive literature search. catGRANULE 2.0 ROBOT does not rely on protein 
sequence feature encoders, instead integrating predictions based on physico-chemical 
properties from sequence and structural data. This strategy enhances the interpretability 
of predictions while maintaining robust performance.

The extensive training dataset used in catGRANULE 2.0 ROBOT comprises human 
proteins documented to undergo LLPS, sourced from various databases and resources 
[18–23, 29, 30]. It also includes a selection of negative proteins—those highly unlikely 
to undergo LLPS, specifically excluding known interactors of LLPS proteins [31]. In this 
manuscript, we first report the characterization of proteins belonging to the training 
dataset compared to the rest of the human proteome [32, 33]. Following this, we describe 
each protein in the dataset using a list of features that considers both sequence-based 
physico-chemical properties of the protein and structural properties, which we extract 
based on the AlphaFold Structure Database [34, 35]. After we encode sequence- and 
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structure-based features into a vector, we train multiple binary classifiers and we select 
the best performing model, which we call ROBOT, to define a LLPS propensity score for 
a protein. We tested the algorithm on proteins from various condensates in humans and 
other organisms, demonstrating that it performs better than earlier methods that rely on 
sequence [25, 27–29] and structural features [26]. We also provide an orthogonal vali-
dation of our predictions using thousands of antibody-based immunofluorescence (IF) 
confocal microscopy images obtained from the Human Protein Atlas [36]. catGRAN-
ULE 2.0 ROBOT can be employed to predict profiles of LLPS propensity along protein 
sequences and accurately identifies regions experimentally confirmed as LLPS drivers. 
Furthermore, catGRANULE 2.0 ROBOT assesses the impact of amino acid mutations 
on LLPS propensity, determining whether mutations will increase or decrease it. To 
this end, we employed mutations identified through a comprehensive literature review, 
including a deep mutational scanning of TDP-43 [37].

To make our algorithm easily usable by the scientific community, we developed a user-
friendly web server (https://​tools.​tarta​glial​ab.​com/​catgr​anule2).

Results
Construction and biological characterization of the training dataset

With the aim of building a robust machine learning method to predict the LLPS propen-
sity of proteins at the amino acid level, we defined training and test datasets with the fol-
lowing workflow. We first collected human proteins known to be involved in LLPS from 
several publicly available databases [18–20, 22, 23, 29, 30], obtaining 5656 LLPS-prone 
proteins in total (Fig. 1A–B; see Methods section). We built the negative set by removing 
these proteins and their first interactors from the human proteome (see Methods sec-
tion) [31]. To prevent overfitting during the training phase, we utilized CD-HIT [38] to 
filter both positive and negative sets, ensuring sequence similarity was below 50%. Sub-
sequently, we divided the data into training and test sets, as detailed in Additional file 1: 
Fig. S1A–B (refer to Methods section for more information).

Since it is known that protein length is a relevant feature in LLPS prediction [27], we 
compared the distribution of the length and abundance [39] of the LLPS proteins from 
the training set with the negative set (Additional file 1: Fig. S1C–D) and we observed 
that the differences are consistent with a comparison against the rest of the human pro-
teome (Additional file 1: Fig. S1E–F), highlighting the absence of a bias in the construc-
tion of the negative set.

Next, we performed a Gene Ontology (GO) term enrichment analysis using Panther 
[32], which revealed that the LLPS proteins in our training set are significantly enriched 
in protein classes linked to RNA-related activities, translation, protein binding, and 
metabolic processes (Fig. 1C and Additional file 1: Fig. S2), compared to the rest of the 
proteome, while the proteins in the negative set are enriched for transporters and trans-
membrane receptors proteins (Additional file 1: Fig. S2). These findings are consistent 
with the literature. RNA metabolism proteins such as TIA-1 and G3BP1 facilitate stress 
granule formation through LLPS, emphasizing the role of RNA-binding proteins in 
cellular stress responses [40, 41]. Moreover, enzymes influence LLPS via various post-
translational modifications that alter protein interactions and stability [42]. By contrast, 
transporter and membrane proteins are known to form irreversible aggregates, as they 

https://tools.tartaglialab.com/catgranule2
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have fewer disordered regions and increased hydrophobicity [43, 44]. In this regard, it 
should be mentioned that defense and immunity proteins tend to also undergo LSPT, 
leading to protein aggregates associated with diseases such as ALS [45] (see Meth-
ods section and Additional file 2: Table S1).

Although we found that proteins belonging to the positive and negative training sets 
are enriched in different biological features, we do not observe a strong separation of the 
two sets from a principal components analysis (PCA) (Additional file 1: Fig. S1G), moti-
vating us to rely on non linear machine learning methods for the classification task. To 
this aim, we characterized each protein in the dataset with a set of prioritized features, 
reported in Additional file  3: Table  S2. We incorporated 80 physico-chemical features 
derived from protein sequence analysis and 2 phenomenological sequence patterns (see 
Methods  section) [27, 46], along with 28 structural features extracted using predicted 
protein structures from the AlphaFold Structure Database [34, 35]. This approach ena-
bled us to identify features related to both the surface and the inner parts of the protein. 
Additionally, we incorporated 18 features based on the compositional similarity of pro-
tein sequence windows to experimentally determined RNA-binding patches, enhanc-
ing our ability to identify potential RNA-interacting regions in the protein sequences 
[47] (see Methods section). In Additional file 1: Fig. S3, we show a cluster map of the 

Fig. 1  A Schematics of the catGRANULE 2.0 ROBOT workflow. A training dataset is constructed consisting 
of 3333 known human LLPS proteins and 3252 non-LLPS proteins. The proteins are then encoded in a set 
of 128 features, including sequence-based physico-chemical and Alphafold2-derived structural features. 
Next, a subset of relevant features is selected using ElasticNet and ten different classifiers are trained on the 
dataset; MLP is the selected classifier according to its superior performance on the test dataset. catGRANULE 
2.0 ROBOT predictions are then validated on sets of known LLPS-prone proteins from different species [22] 
and on immunofluorescence microscopy images from the Human Protein Atlas. LLPS propensity profiles are 
predicted with a sliding window approach and validated on experimentally known LLPS driving regions of 
proteins belonging to different species, obtained from the PhaSepDB database [19]. Finally, catGRANULE 2.0 
ROBOT predicts the effect of single and multiple amino acid mutations on LLPS propensity. B Venn diagram 
showing the overlap of LLPS-prone proteins collected from different databases. C Composition of the training 
dataset in terms of Panther protein class categories. Protein classes with less than 3% have been aggregated 
in the “Less represented label” category
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correlation matrix between the set of 128 features for the training dataset. We observe 
the presence of large clusters, especially for subsets of the physico-chemical features, as 
expected given the higher redundancy in their collection, compared to the structural 
features (see Methods section).

catGRANULE 2.0 ROBOT accurately classifies LLPS prone proteins

After the construction of robust training and test datasets, we developed a machine 
learning pipeline to predict the LLPS propensity of a protein. We employed ElasticNet 
[48] to identify the most relevant features for LLPS classification, then we trained 10 
different binary classifiers, performing a grid search over the hyper-parameters of each 
classifier and employing 5-fold cross validation during training to avoid overfitting (see 
Methods section and Supplementary Information). Finally, we tested their performance 
on an independent test dataset using the area under the receiver-operating characteristic 
curve (AUROC) as scoring metric.

We found that the trained classifiers yield comparable AUROC scores and we selected 
the multi-layer perceptron (MLP) as the optimal one, based on its superior performance 
on the training dataset in 5-fold cross validation (Additional file 1: Fig. S4A). We com-
pared the performance of our trained model on the test dataset with catGRANULE 1.0 
[27], and the top performing state-of-the-art methods that are MaGS [25, 29], PICNIC, 
PICNIC-GO [26], and PSPHunter [28] (see Methods section), observing that our model 
(catGRANULE 2.0 ROBOT) emerges as the best one (Fig. 2A). Additionally, we found 
that catGRANULE 2.0 ROBOT outperforms the other predictors using other perfor-
mance metrics, such as the accuracy, the F1-score, the Matthew’s correlation coeffi-
cient (MCC), and the recall, while MaGS, PSPHunter, and PICNIC-GO perform better 
only for the precision (Supplementary Fig. S4B). Even considering proteins that belong 
to the test dataset and have < 20 % sequence identity with those of the training dataset, 
we observe a good overall performance of catGRANULE 2.0 ROBOT, compared to the 
other algorithms (Additional file 1: Fig. S4C; see Methods section). We highlight that the 
other algorithms are advantaged in the comparison of the performance, since due to the 
iterative sampling of negatives from the human proteome during training or to the lack 
of availability of the full training datasets—especially regarding the negative sets—it is 
likely that subsets of proteins of our independent test dataset belong to the training sets 
of the other algorithms. We provide the LLPS score computed using catGRANULE 2.0 
ROBOT for the whole human proteome in Additional file 4: Table S3.

Next, we compared the performance of catGRANULE 2.0 ROBOT to the other tools 
on 41 experimentally annotated LLPS proteins from different species, not includ-
ing human, which belong to the LLPSDB database [23] and have < 20 % sequence 
identity with the proteins of our training dataset. We found that catGRANULE 2.0 
ROBOT retrieves the highest fraction of LLPS proteins (Additional file 1: Fig. S4D; see 
Methods section).

As an additional validation of the good performances of our model, we tested its 
capability to predict the LLPS propensity of proteins other than human, which was 
the only organism considered during the training (Fig. 2B, Additional file 1: Fig. S4E, 
and Additional file  5: Table  S4). In Fig.  2B, we show the fraction of correctly pre-
dicted proteins for several species, and we compare the result with PICNIC when 
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available [26]. We observe that catGRANULE 2.0 ROBOT significantly outperforms 
PICNIC in most of the species considered and it performs comparably in the others.

Using ElasticNet, we identified 28 features that are the most relevant to distin-
guish LLPS proteins from the negative set. Interestingly, while some of these fea-
tures strongly separate the two classes individually, others do not show such strong 
differences between the classes, justifying our choice of a multivariate and non 
linear feature selection method (Additional file  1: Fig. S5A, Methods  section, and 
Additional file 1: Supplementary Methods). This result was further corroborated by 
a comparison of the performances obtained with the 28 features selected by Elastic-
Net with those achieved by a linear model trained on all the 128 features, or with a 
MLP model trained adding features iteratively using a univariate feature selection 
method (Additional file 1: Fig. S5B; see Methods section).

Fig. 2  A Receiver-operating characteristic (ROC) curves obtained from the test dataset, for catGRANULE 
2.0 ROBOT and other LLPS prediction algorithms (see Methods section for details). The area under the 
ROC curve (AUROC) for each algorithm is indicated in the legend. B Bar plot of the fraction of correctly 
predicted LLPS proteins for different species. The annotation of LLPS proteins was obtained from the DrLLPS 
database [22]. A star above a bar indicates a p value smaller than 0.05 from a Fisher’s exact test between the 
fraction of correctly predicted LLPS proteins in catGRANULE 2.0 ROBOT and in PICNIC. C Bar plot showing 
the Spearman’s correlation coefficient between the 28 features selected during the training step using 
ElasticNet and the predicted LLPS score, for the proteins belonging to the training dataset. The bar plot on 
the right shows the −log10(p value) of the correlation coefficient. D Box plot of the permutation importance 
computed on the training dataset for the 28 features selected during the training step using ElasticNet
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Physico‑chemical determinants of LLPS

To quantify the impact of the features to the discrimination of LLPS-prone proteins, 
we computed the Spearman’s correlation coefficient of each selected feature with 
the predicted LLPS score, using the proteins belonging to the training set (Fig. 2C). 
We found, as expected and in agreement with the results from the catGRANULE 1.0 
algorithm [27], that features associated to hydrophobicity (e.g., Hydrophobicity_6) 
are negatively associated with the LLPS propensity score [17], while those related to 
the nucleic acid binding propensity (e.g., NucleicAcidBinding_2) [8], to the disorder 
(e.g., Disorder_8) [49], or to the protein length [27] are positively associated. Yet, 
the contribution of specific classes of amino acids is contained in multiple physico-
chemical features: for instance, aliphatic amino acids contribute positively to LLPS 
prediction in the low folding propensity [50, 51] (Fig. 2C), which is in agreement with 
experimental evidence [52–54].

We found that the radius of gyration normalized by protein length (RG_protein_norm) 
exhibits a negative correlation with the LLPS score, while the standard deviation of the 
accessible surface area (asa_std) shows a positive correlation (Fig. 2C). This suggests that 
more compact proteins are less prone to liquid-liquid phase separation (LLPS). Indeed, 
the power-law exponent < 1.0 for soluble species (monomers and oligomers, [55]) sug-
gests that phase-separating proteins display consistent scaling behavior in terms of size 
and shape, a fundamental characteristic of protein structure. So, proteins with variable 
surface exposure, which facilitates interactions with other proteins and nucleic acids, are 
more likely to undergo LLPS. Coiled coils deviate from this typical behavior by exhibit-
ing a linear scaling of the radius of gyration with the number of residues, further empha-
sizing the influence of specific protein structures on LLPS propensity. In this regard, 
it could be hypothesized that specific features of a protein sequence, computed on the 
internal or solvent-exposed residues, may be more informative in predicting the pro-
tein’s LLPS propensity, compared to those computed on the full sequence. To test this, 
we analyzed the ability of separating the dataset on specific physico-chemical features 
computed exclusively for the buried or solvent-exposed residues, and compared the per-
formance to the same features derived from the entire sequence. We defined the exposed 
residues as those with a solvent-accessible surface area (ASA) greater than 50%, using 
the PDB structure of each protein. In Additional file 1: Fig. S6, we show the ROC curves 
obtained for the features Hydrophobicity_6 and Disorder_8 considering the exposed 
or buried residues versus the whole sequence. The full sequence consistently provided 
more informative results than the exposed or buried residues alone.

Then, we computed the permutation importance to quantify the contribution of 
each feature to the overall score (Fig.  2D; see Methods  section). We found that the 
average pLDDT is the most relevant feature. This finding aligns with expectations, as 
pLDDT is a measure of protein disorder [56], which corroborates our analysis that 
protein disorder significantly contributes to phase separation [27].

We further validated our feature selection strategy conducting an iterative fea-
ture elimination analysis (Additional file  1: Fig. S5 and Supplementary Methods). It 
highlighted the importance of properties such as nucleic acid binding in LLPS. Spe-
cifically, these nucleic acid binding predictions are based on the electrostatic charge, 
which is known to facilitate RNA contact [7, 11] and prevent protein aggregation [57].
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Independent validation of catGRANULE 2.0 ROBOT

As an additional validation of catGRANULE 2.0 ROBOT predictions, we used 10757 
antibody-based images obtained by immunofluorescence (IF) confocal microscopy in 
human cell lines obtained from the Human Protein Atlas (https://​www.​prote​inatl​as.​org/​
human​prote​ome/​cell) [36]. After cell segmentation, we computed the coefficient of vari-
ation (CV) of the green fluorescence per cell and we considered the maximum of this 
quantity over the cells, for each protein. Next, we identified puncta of the green fluores-
cent protein and we computed the area, normalized by the average area of the nuclei per 
image, and the average number of puncta per protein (see Methods section and Addi-
tional file 6: Table S5). We chose these quantities since we hypothesized that proteins 
undergoing LLPS would have more and larger droplets compared to other proteins, and 
a more compartmentalized expression.

By ranking the proteins based on their LLPS propensity scores predicted by catGRAN-
ULE 2.0 ROBOT and selecting an equal number of proteins from the top and bottom of 
the ranking, we observe that the AUROC scores initially range from 0.6 to 0.7, depend-
ing on the sample size under consideration. As the number of proteins increases, the 
AUROC scores gradually decrease toward 0.5, as shown in Fig. 3A. This trend supports 
the hypothesis that proteins with higher predicted LLPS scores exhibit droplets with the 
expected features in immunofluorescence (IF) images. Our predictions generally align 
well with the microscopy images, though not perfectly, due to the considerable variabil-
ity in IF images of the same protein across different cell lines, the heterogeneity in anti-
body specificity, and the variability of experimental conditions.

In Fig. 3B, we report the values of the features computed from the IF images shown 
in Fig. 3C for some example proteins well known to undergo LLPS, such as SFPQ [58, 
59], predicted to undergo LLPS by catGRANULE 2.0 ROBOT but not known, such as 
NAMPT and FGD1, and predicted to not perform LLPS (PIRT and ZNF641). We notice 
that the proteins predicted to undergo LLPS by catGRANULE 2.0 ROBOT show clear 

Fig. 3  A AUROC versus the number of top and bottom proteins, ranked according to the predicted 
catGRANULE 2.0 ROBOT LLPS propensity score, for the average number of droplets (i.e., green puncta, left), 
area of the green puncta normalized by the average area of the nuclei (center) and coefficient of variation 
(CV) of the green intensity over the cell (right), computed from approximately 11k antibody-based images 
obtained by immunofluorescence (IF) confocal microscopy from the Human Protein Atlas (HPA). Line 
colors indicate the selection of proteins from different sub-cellular locations. See the Methods section and 
Additional File 6: Table S5. B Table showing the values of the quantities computed from the IF images for 
five example proteins, together with the LLPS propensity score predicted by catGRANULE 2.0 ROBOT and 
whether the protein was previously known to undergo LLPS. C IF images of the proteins reported in B. Note 
that the edge color matches those in B 

https://www.proteinatlas.org/humanproteome/cell
https://www.proteinatlas.org/humanproteome/cell
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droplets of the green fluorescence in the nucleus (SFPQ and NAMPT) or in the cyto-
plasm (FGD1) (Fig.  3C). Notably, FGD1 has been recently predicted between the top 
dosage sensitive proteins, a feature strongly associated with the ability to undergo LLPS 
[60]. Meanwhile NAMPT ensures the inactivation of ASK3, a protein that gets inactive 
after forming condensates via LLPS under hyperosmotic stress [61].

LLPS predictions and subcellular compartmentalization

Next, we studied how the predicted LLPS score varies for proteins belonging to different 
subcellular locations. We found that nucleolar proteins have the highest LLPS propen-
sity, on average, followed by cytoplasmic and nuclear proteins (Fig.  4A). As expected, 
secreted, extracellular and membrane proteins are not predicted to undergo LLPS 
(Fig. 4A). For the nucleolus, nucleus, cytoplasm, and mitochondrion, we collected anno-
tations for proteins from different types of liquid-like condensates from the DrLLPS 
database [22]. We show the distributions of the predicted LLPS score stratified by con-
densate in Additional file 1: Fig. S7A. We observe that proteins belonging to the Sam68 
nuclear body show the highest LLPS scores, on average, followed by other nuclear con-
densates, such as the DNA damage foci, and the nucleolus. Cytoplasmic condensates, 
like stress granules and P-bodies, also show high LLPS score, while the mitochondrial 
RNA granules are at the bottom of the ranking. These results are in agreement with 
recent data from filtration chromatography and dilution experiments [62]. We noticed 
that the composition of certain condensates largely overlaps, e.g., for stress granules and 
P-bodies, while others display a more unique composition (e.g., postsynaptic density) 
(Additional file 1: Fig. S7B).

Fig. 4  A Violin plot showing the predicted LLPS score for proteins belonging to different subcellular 
locations, obtained from Uniprot [65], sorted according to descending median LLPS propensity score. The 
number of proteins for each subcellular location is indicated above each violin. B Cluster map of the average 
permutation importance for each condensate. We show the condensates in the rows and we clustered 
them, we show the 28 features selected by our model ordered according to the descending permutation 
importance obtained from the full training dataset (see Fig. 2D). C Box plot showing the predicted LLPS 
propensity score for different classes of LLPS-prone proteins [66], sorted according to the median
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We then investigated the relevance of the features selected in our model for each 
condensate, by averaging the permutation importance over random sub-samplings 
of the proteins belonging to each condensate (see Methods section). While for most 
of the condensates we found a ranking of the selected features, according to the 
average permutation importance, similar to the one obtained on the training data-
set (Fig.  2D), for the Sam68 nuclear body we observe that NucleicAcidBinding_2 is 
the most important feature, while structural features such as AlphaHelix_9 and Beta 
Sheet_1 are the top scoring for the mitochondrial RNA granule (Fig.  4B and Addi-
tional file  3: Table  S2). This pattern corresponds well with our analysis of RNA-
binding proteins documented in UniProt, where 11 out of 12 proteins in the Sam68 
nuclear body are RNA-binding, in contrast to 30 out of 42 in the mitochondrial RNA 
granule. Specifically, the Sam68 nuclear body proteins exhibited 73 instances of beta 
strand regions and 38 instances of compositional bias, compared to 293 beta strand 
occurrences and 10 instances of compositional bias in the mitochondrial RNA gran-
ule. We further confirmed the result on the RNA binding propensity by computing 
the catRAPID signature score for the proteins in each condensate [63], which show 
that proteins belonging to the Sam68 nuclear body have the highest propensity for 
RNA binding and there is a wide difference between condensates (Additional file 1: 
Fig. S7C). Meanwhile looking at the DisProt disorder score [64] (feature Disorder_10, 
see Additional file 3: Table S2), we see less accentuated differences between conden-
sates, although proteins belonging to the mitochondrial RNA granule have the small-
est disorder score, on average (Additional file 1: Fig. S7D).

Finally, we divided proteins in different classes according to their role in condensate 
formation that have been previously defined [66] (see Methods section). Amyloid pro-
teins are those found exclusively inside solid aggregates. Proteins belonging to the amy-
loid-promoting region (APR) and droplet-promoting region (DPR) classes have specific 
domains that can initiate amyloid or droplet formation under certain physical condi-
tions [66]. Droplet drivers and clients are proteins that facilitate or participate in LLPS 
formation [66]. The FullFuzzy class includes typically intrinsically disordered proteins 
whose interaction behavior is dependent on the cellular context [67]. Low-complexity 
aromatic-rich kinked segments (LARKs) proteins are a class of proteins containing RNA 
binding domains [66]. Using this categorization, we first computed the predicted LLPS 
score for each protein and grouped the predictions by class (Fig. 4C), observing a clear 
trend from DPRs as the highest LLPS propensity class to amyloid as the lowest LLPS 
propensity class, in line with our expectations. Moreover, LARKs proteins also tend 
to have lower LLPS propensity scores, in line with the known role of aromatic chains 
in protein aggregation [68, 69]. The DropletAmyloid class, capable of both LLPS and 
LSPT, ranked intermediately, suggesting these phenomena might not be exclusive but 
could either compete or synergize, leading to a more thermodynamically stable struc-
ture. Indeed, while LLPS involves multivalent macromolecular interactions, LSPT also 
refers to specific changes in physicochemical properties. Both processes are concentra-
tion-dependent, yet intrinsic sequence features and the actual folded state of the pro-
teins critically influence whether they undergo LLPS or LSPT [70, 71]. Additionally, we 
observe that some classes show a large overlap in their composition, especially the set of 
fullFuzzy proteins with the LARKs and DropletDrivers (Additional file 1: Fig. S8).
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Although our analysis does not show substantial separation between the LLPS scores 
of drivers and clients (Fig.  4C), we further investigated their classification using the 
DrLLPS database, in which proteins are divided in scaffolds, clients, and regulators [22]. 
catGRANULE 2.0 ROBOT performs better than other LLPS predictors at distinguishing 
scaffolds from regulators and clients (Additional file 1: Fig. S9), which is in agreement 
with the fact that scaffolds drive LLPS independently from other proteins; notably, also 
PICNIC shows similar results [26].

LLPS profile and mutation score

Next we investigated the capability of our method to identify experimentally annotated 
LLPS driving regions, collected from the PhaSepDB database [19], in Fig.  5. Specifi-
cally, we studied how the AUROC score varies when considering sets of top and bottom 
scores of increasing size (see Methods  section). We find that both the MLP classifier 
trained on structural and physico-chemical features and a Random Forest trained only 
on physico-chemical features achieve a AUROC ∼ 0.9 when considering the top pre-
dictions, while the performance decreases to AUROC ∼ 0.6 when taking into account 
all the predicted scores (Fig.  5A). We noticed that the predictions of the two classifi-
ers have a good correlation (Additional file 1: Fig. S10A). Interestingly, we obtain bet-
ter performance on proteins belonging to different organisms compared to the subset 
of human proteins. From this analysis, we chose to adopt the Random Forest classifier, 
trained only on physico-chemical features, as the preferred model for the computation 
of LLPS propensity profiles. Our choice was further supported by the superior perfor-
mance, on average, of the Random Forest classifier trained on the set of physico-chemi-
cal features over all the other classifiers, even when trained on the full set of features, in 

Fig. 5  A AUROC vs number of top and bottom scores for the MLP classifier trained on structural and 
physico-chemical features (black) and a Random Forest classifier trained only on physico-chemical features 
(red). Dots and dashes indicate proteins from all organisms or only from human, respectively. B-C-E-F LLPS 
propensity profiles predicted by the Random Forest classifier trained only on physico-chemical features (black 
curve) and experimentally annotated LLPS driving regions (blue lines) obtained from the PhaSepDB database 
[19] for four proteins from different organisms. D Protein structure colored according to the predicted LLPS 
propensity profile
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the prediction of the experimental LLPS-driving regions (Additional file 1: Fig. S10B). 
We conducted the same analysis of Fig.  5A using the PSPHunter algorithm [28] and 
we found that catGRANULE 2.0 ROBOT strongly outperforms it in the prediction of 
experimentally annotated LLPS regions from the LLPS propensity profiles (Additional 
file 1: Fig. S10D). In Fig. 5B, C, E, and F, we show the predicted LLPS propensity profiles 
for four proteins from different organisms, together with the experimental LLPS driving 
region, finding a strong agreement between our predictions and the experimental anno-
tation [19]. Finally, in Fig. 5D we show the structure of the protein (PDB) from panel B 
and its LLPS propensity colored at single amino acid resolution (see Methods section). 
In this case, the regions with higher LLPS propensity tend to match with structural ele-
ments of low complexity such as loops.

Finally, we used our method to compute LLPS propensity profiles and score mutations 
affecting condensate formation, a task rarely explored by previous approaches. Given 
current limitations of AlphaFold in predicting single amino acid mutation effects [72, 
73], we employed a Random Forest classifier trained on physico-chemical features. This 
simplified model performs similarly to the full model in predicting LLPS propensity pro-
files (Fig. 5A). To validate the capability of our method in identifying the effect of muta-
tions on LLPS, we collected a list of 24 distinct mutations of 9 proteins that undergo 
LLPS in the WT form but show increased or reduced LLPS propensity when mutated 
(see Methods section and Additional file 7: Table S6), and we compare the performance 
in scoring mutations of catGRANULE 2.0 ROBOT with those achieved by catGRAN-
ULE 1.0 [27] and PSPHunter [28].

First, we computed the LLPS score of the WT proteins and we notice that only cat-
GRANULE 2.0 ROBOT correctly predicts all of them to undergo LLPS (Fig. 6A). Next, 
we computed a mutation score (see Methods section) for the 24 mutations for the three 
algorithms and we evaluated the fraction of correctly predicted mutations separately for 
the set of mutations increasing or decreasing the LLPS propensity. We found that cat-
GRANULE 2.0 ROBOT and catGRANULE 1.0 correctly predict the 80% of the muta-
tions with a negative effect on LLPS, while PSPHunter correctly calculates only the 50%. 
For mutations with a positive effect on LLPS, catGRANULE 2.0 ROBOT outperforms 
the other algorithms (Fig. 6B).

Next, to assess the ability of catGRANULE 2.0 ROBOT to predict the effect of muta-
tions on LLPS propensity under consistent environmental conditions, we analyzed 
a mutational scanning dataset of TDP-43 [37], a protein known to undergo LLPS and 
that is implicated in neurodegenerative diseases. This large-scale screening highlights 
a strong correlation between the formation of LLPS and cellular toxicity. Specifically, 
mutations that facilitate LLPS in TDP-43 increase cellular toxicity due to interactions 
with other cellular molecules. Conversely, mutations leading to LSPT result in less 
toxic, more inert protein aggregates [37]. The mutational scanning includes approxi-
mately 60,000 mutations of TDP-43, including both single and double mutations [37] 
(see Methods section). In Fig. 6C, we show the distribution of the mutation score (Eq. 
(1)) predicted by catGRANULE 2.0 ROBOT, considering the full mutational scanning 
or restricting the absolute value of the experimental phase separation score to a certain 
threshold. We observe that the separation between the distributions of LLPS decreasing 
and LLPS increasing mutations, represented by the red and black curves, respectively, 
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increases with the threshold on the experimental score, and that catGRANULE 2.0 
ROBOT correctly predicts the sign of the mutation score for a LLPS decreasing (G335I) 
and a LLPS increasing (W334K) mutations whose physical properties were studied in 
detail [37] (Fig.  6C). In Fig.  6D, we show the AUROC achieved by catGRANULE 2.0 
ROBOT, computed on sets of top and bottom mutations selected at different thresholds 
of the experimental phase separation score. While at low values of the threshold cat-
GRANULE 2.0 ROBOT achieves an AUROC score slightly higher than 0.6, increasing 
the threshold, which corresponds to selecting sets of mutations with stronger negative 
or positive effect on TDP-43 LLPS, it reaches AUROC close to 0.9 (Fig. 6D). The inset 
shows the profiles of the TDP-43 WT protein, which nicely agrees with the experimental 
LLPS region (red line) [74], and of the two mutations already shown in Fig.  6C. Fur-
thermore, we observed that the histograms of the catGRANULE 2.0 ROBOT mutation 
score for single and double mutations are both approximately Gaussian centered at zero 
(Additional file 1: Fig. S10C). Nevertheless, for double mutations the tails of the distribu-
tion are heavier, suggesting that they can have a stronger effect on the LLPS propensity 
compared to single mutations, as expected [37].

Fig. 6  A LLPS propensity score computed by catGRANULE 2.0 ROBOT, catGRANULE 1.0, and PSPHunter 
on the WT sequence of 9 proteins for which mutations affecting LLPS were collected. Colored dashed 
lines indicate the threshold to discriminate LLPS from non-LLPS proteins, with the color matching the 
algorithm. B Bar plot showing the fraction of correctly predicted mutation scores by catGRANULE 2.0 ROBOT, 
catGRANULE 1.0, and PSPHunter, for a set of 24 mutations including 20 mutations with a negative effect on 
LLPS and 4 mutations with a positive effect. C Distributions of the catGRANULE 2.0 ROBOT mutation score for 
mutations decreasing or increasing LLPS (red and black curves, respectively) from a mutational scanning of 
TDP-43 [37], at different thresholds on the experimental phase separation score. In the rightmost panel, the 
colored dashed lines show the predicted mutation score of two selected mutations. D AUROC computed 
on the catGRANULE 2.0 ROBOT mutation scores for the mutational scanning of TDP-43, as a function of the 
threshold on the experimental phase separation score. Increasing the threshold corresponds to selecting 
more restricted sets of mutations, with stronger positive and negative experimental effect on LLPS. The inset 
shows the LLPS propensity profiles predicted by catGRANULE 2.0 ROBOT for the WT sequence of TDP-43 and 
the two mutations shown in C. The red line indicates the experimental LLPS region
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Overall, we showed that catGRANULE 2.0 ROBOT can accurately predict LLPS pro-
pensity profiles and LLPS-prone regions of proteins from different species. Moreover, it 
outperforms previous methods in scoring the effect of single and multiple amino acids 
mutations on LLPS, making it an appealing tool for the design of proteins or peptides 
with tunable LLPS properties.

Discussion
The emergence of LLPS as a central molecular process governing membrane-less orga-
nelle formation underscores its implications in cellular organization and human health, 
particularly in the context of neurodegenerative disorders. Unlike the irreversible aggre-
gation characteristic of LSPT [57, 75], LLPS condensates present a reversible but less 
thermodynamically stable state. This reversibility facilitates dynamic protein and RNA 
compartmentalization, influencing critical cellular activities [8].

In this study, we developed a LLPS protein predictor, catGRANULE 2.0 ROBOT, 
which integrates structural and sequence-based features. The algorithm enables detailed 
profiling of phase-separation properties and computation of mutants, offering an intui-
tive web interface and pre-calculated scores for various model systems. A series of 
enhancements positions catGRANULE 2.0 ROBOT at the forefront of predictive tools 
for studying LLPS outperforming current methodologies by integrating comprehen-
sive biophysical data and cutting-edge computational predictions. Consistent with prior 
findings, our results demonstrate that nucleic acid binding, intrinsic disorder [27, 49], 
and specific amino acid properties, such as aliphaticity [53, 54], play a positive role in 
influencing LLPS. Furthermore, structural insights derived from AlphaFold2 [34], par-
ticularly variability in pLDDT-based disorder, highlight the critical balance between 
structured and disordered regions in regulating LLPS behavior.

A significant contribution of this study lies in the strategic construction of training 
and testing datasets. We constructed our training and testing sets using diverse and 
well-curated sources of LLPS-relevant data, incorporating proteins known to undergo 
LLPS [18–20, 22, 23, 29, 30]. This strategy ensured comprehensive coverage, integrat-
ing both frequently observed cases and rarer instances, thereby enhancing the diver-
sity of the training dataset and significantly expanding the LLPS atlas. Additionally, we 
placed strong emphasis on the construction of a stringent negative set. Specifically, we 
excluded proteins documented in the analyzed studies and their direct interactors. By 
adopting this approach, we mitigated biases arising from known non-physical interac-
tions, ultimately improving the specificity and robustness of our predictions [76]. Our 
training dataset relates to proteins forming phase-separated assemblies in near physio-
logical conditions (e.g., nucleolar proteins) and we focused on the intrinsic determinants 
of LLPS, namely those sequence and structural properties that favor LLPS under these 
conditions. However, in the future we plan to include context-dependent features such 
as ions and cellular-specific chemical modifications, which greatly impact phase sepa-
ration through mechanisms like ionic strength, pH, and concentration. In this regard, 
a neural network-based model that predicts LLPS given a set of specific experimental 
conditions has been recently introduced, although a broad applicability of such class 
of models will require the curation of large databases with standardized annotations of 
experimental conditions in which proteins undergo LLPS [77].
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While our collection of proteins represents a bona fide set of LLPS-prone candi-
dates, we acknowledge that LLPS is a complex and multifaceted process that requires 
further refinement in its definition. Traditionally, LLPS describes the spontaneous 
formation of distinct phases in supersaturated solutions, driven by intrinsic molecu-
lar interactions [8]. However, as mechanisms such as phase separation coupled with 
percolation [78] and nanoclustering [79] are being explored, it becomes evident that 
the phenomenon may be more nuanced than previously understood. Therefore, future 
efforts must incorporate more detailed definitions of protein assemblies. These efforts 
will be critical to fully understanding the diverse mechanisms driving LLPS and refin-
ing the properties and definitions associated with this phenomenon.

Through a combination of direct and indirect experimental approaches [36, 37], we 
corroborated our predictions, affirming the robustness and reliability of catGRAN-
ULE 2.0 ROBOT. The analysis of deep mutational scanning, particularly in the case 
of TDP-43 [37], further strengthens the alignment between our predictions and 
experimental observations, underscoring the clinical relevance of our study. Indeed, 
an essential aspect of our method is the capability to identify and predict the effects 
of mutations on LLPS propensity. This holds promise for elucidating the molecular 
mechanisms underlying disease-associated mutations and guiding precision protein 
engineering efforts [80, 81]. We stress that evaluating the impact of mutations on the 
propensity for LLPS presents significant challenges, primarily due to the dependency 
of experimental validation on varying environmental and cellular conditions. High-
quality in vitro data is notably difficult to procure, as exemplified by studies such as 
[82, 83]. In contrast, numerous in-cell experiments, such as those reported in [84, 
85], provide evidence of phase separation. These studies also include assessments 
ensuring that the mutations do not interfere with cellular processes or protein inter-
actions that could sequester the protein into stress granules. Currently, the absence of 
a comprehensive database for extensive validation remains a major limitation in test-
ing predictive methods. Furthermore, it is crucial to acknowledge that environmental 
factors such as pH, ionic strength, and concentration can significantly influence the 
conditions under which phase separation occurs, even in mutants. Additionally, it is 
important to consider that cellular robustness may mitigate the impact of mutations. 
The presence of multiple proteins supporting the LLPS organelle and the influence of 
multivalency can buffer the effects of individual mutations. This suggests that in a cel-
lular context, mutations might have a lower impact due to the collective interaction of 
various molecules involved in the LLPS process.

A key enhancement in catGRANULE 2.0 ROBOT is the use of AlphaFold2 [34], 
with plans to upgrade to AlphaFold3 [86] in future iterations for even more precise 
structural predictions. Additionally, we aim to integrate it with algorithms such as 
catRAPID [87] and scRAPID [88] to better predict specific RNAs that contribute to 
protein crowding, enhancing the model’s ability to simulate complex biological envi-
ronments, and the cell type specific expression of the RNAs interacting with proteins 
undergoing LLPS. Moreover, further experimental validation through techniques 
such as FRAP and FCS [89] will be essential to link LLPS-related properties with spe-
cific structural features now predictable with AlphaFold3 [86] and to better define 
the events leading to LLPS. These developments will position the new generation of 
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algorithms at the cutting edge of predictive tools for studying protein phase separa-
tion, offering unparalleled accuracy and comprehensive biophysical data integration.

Conclusions
Here, we built comprehensive datasets of LLPS proteins and developed catGRANULE 
2.0 ROBOT, a method for predicting LLPS propensities. By integrating sequence-
based features with structural insights from AlphaFold2, our approach provides 
reliable LLPS profiles and robust predictions for the effects of mutations on LLPS 
propensity. To support the research community, we developed a web server for cat-
GRANULE 2.0 ROBOT (https://​tools.​tarta​glial​ab.​com/​catgr​anule2) enabling users to 
explore LLPS predictions and design mutants for various applications.

We applied catGRANULE 2.0 ROBOT to proteins localized in various cellular com-
partments, including stress granules, nuclear bodies, Cajal bodies, and P-bodies. In 
all our analysis, we focused on the intrinsic determinants of LLPS encoded within 
protein sequences, though future developments should incorporate environmental 
factors, such as protein concentration, and the conditions under which these pro-
teins are expressed [77]. Further exploration of these conditions, along with chemi-
cal modifications of proteins [79] and RNAs [80], could reveal critical interactions 
essential for organelle formation. Moreover, to enhance our understanding of LLPS 
assemblies, we plan to integrate data on protein-protein and protein-RNA interac-
tions [31, 90], providing a clearer picture of their composition and dynamics. Such 
an approach, inspired by efforts to map interactions involving RNA-binding proteins 
[91], has already revealed critical characteristics of LLPS in our recent work [76, 92].

In conclusion, our study not only deepens the understanding of LLPS but also paves 
the way for new engineering applications. With the ability to predict and manipu-
late LLPS propensity, we open avenues for designing proteins with tailored behavior, 
offering, for instance, potential for therapeutic innovation [93, 94].

Methods
Construction of the training dataset

To build the positive set of LLPS-prone proteins, we collected data for human pro-
teins from several databases and resources. Specifically, we used:

•	 929 proteins annotated as “Droplet state” in the PRALINE database [18];
•	 3876 proteins from the CD-CODE database [20];
•	 3807 proteins used in a recent study on LLPS predictors (provided in table  S1 

from [29]);
•	 117 proteins defined in [30] (obtained from Table  S3 in [25], where they are 

defined as the “Gingras gold standard”);
•	 3633 proteins from the DrLLPS database [22];
•	 833 proteins from the PhaSepDB database (v2.1) [19];
•	 59 proteins from the PhaSePro database [21];
•	 92 proteins from LLPSDB [23].

https://tools.tartaglialab.com/catgranule2
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We considered the union of these sets since some of them have a large overlap, as shown 
by the Venn diagram in Fig. 1B, obtaining 5656 proteins. Next, we used CD-HIT [38] to 
filter proteins from the positive set for 50% sequence identity, obtaining 4807 proteins. 
To generate the negative set, we removed the proteins belonging to the positive set from 
the human proteome, and we also removed their first interactors based on protein-pro-
tein interactions collected from the BioGRID database (v3.5.175) [31]. Finally, we filtered 
proteins in the negative set using CD-HIT, as described above. To ease the comparison 
with the top performing state-of-the-art methods, which are MaGS [25, 29], PICNIC, 
and PICNIC-GO [26], we included in our training positive set the LLPS-prone proteins 
on which those algorithms were trained. Since the positive training set for PICNIC was 
extracted from the CD-CODE database [20], but the authors do not provide the proteins 
that have been used in the training, we included in the positive training set all the pro-
teins belonging to CD-CODE, after the CD-HIT filtering described above. Next, we ran-
domly sampled the same amount of negative proteins. Considering the intersection with 
the proteins for which a pdb file is present in the AlphaFold Protein Structure Database 
(https://​alpha​fold.​ebi.​ac.​uk/) [35], the final training dataset is made of 3333 positive and 
3252 negative proteins. We used the remaining LLPS-prone proteins as an independent 
positive test set and we sampled the negatives as for the training dataset. We obtained 
a test dataset with 1422 positive and 1376 negative proteins. More details are in Addi-
tional file 1: Supplementary Methods.

From the training dataset, we computed the correlation matrix of the features and 
we represented it in a hierarchical cluster map using the function “clustermap” of the 
“seaborn” Python package.

Definition of model features

Physico‑chemical features

We use a list of 80 experimental scales encoding physico-chemical properties of proteins 
that describe aggregation, hydrophobicity, membrane, nucleic acid binding, disorder, 
burial, alpha helix, beta sheet, turn propensities, and two phenomenological sequence 
patterns [27, 46]. These features are computed solely based on the protein sequence and 
they were already used in the cleverSuite [46] and in the training of the catGRANULE 
1.0 algorithm for LLPS propensity prediction [27]. Each protein sequence is transformed 
in a list of 82 numbers, representing the average of each physico-chemical feature over 
the sequence.

AlphaFold2‑derived features

We downloaded the structures predicted by AlphaFold2 [34] for the whole human pro-
teome from the AlphaFold Protein Structure Database (https://​alpha​fold.​ebi.​ac.​uk/) [35]. 
For the proteins having multiple predicted models, we select the model with highest 
average predicted local-distance difference test (pLDDT), a measure of local accuracy 
of the AlphaFold2 prediction. Next, we used the “Bio.PDB” submodule of the “Biopy-
thon” (version 1.81) python package to extract structural features from the pdb file for 
each protein. Specifically, we extract the number of contacts, the radius of gyration (RG), 
and the accessible surface area (ASA), from which we define the exposed residues of the 
protein as those with ASA 50%, while the rest are considered as internal. Next, for the 

https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
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internal and the exposed residues we extract the secondary structure properties (helix, 
strand, coil, turn, accessibility, disorder) and the charge. More details are in Additional 
file 1: Supplementary Methods.

For each protein structure, we obtain a vector of structural and RNA-binding features 
of length 46; adding the 82 physico-chemical features we have 128 features per protein. 
In Additional file 3: Table S2, we report a mapping of the feature names and their cat-
egorization in feature families. We also report the original references from which the 
physico-chemical scales were obtained.

Model training

We use the Python library scikits-learn (version 1.1.1) [95] to train multiple classifi-
ers for LLPS propensity prediction. Specifically, we use Decision Tree, Random Forest, 
XGBoost, Gradient Boosting, Gaussian Naive Bayes, TabNet, Logistic Regression, cat-
Boost, K-neighbors, and a multilayer perceptron (MLP). For each classifier, we define a 
scikits-learn pipeline including feature scaling (“StandardScaler” function), feature selec-
tion, and training of the classifier. We use ElasticNet as the feature selection method since 
it performs multivariate feature selection, i.e., it takes into account the (possibly non-lin-
ear) statistical dependence between features when selecting them during training [48]. 
To avoid overfitting, we use a 5-fold cross validation for training (“gridsearchCV” func-
tion), including a grid search for hyperparameter optimization on both the feature selec-
tion method and the classifiers. To this end, we defined a parameter search space specific 
to each classifier. We trained each classifier using the area under the receiver operating 
characteristic curve (AUROC) as the scoring function. We selected the MLP as the best 
model based on the AUROC obtained on the training set. In the feature selection step, 
we obtained a set of 28 features selected by ElasticNet. We computed the Spearman’s 
correlation coefficient between each feature and the predicted LLPS propensity score on 
our training dataset, to obtain a sign for the effect of a feature increase or decrease on 
the LLPS propensity score. To quantify the contribution of each selected feature to the 
final AUROC score, we used the “permutation_importance” function from the “sklearn.
inspection” submodule, which randomly permutes a feature in the dataset and computes 
the AUROC using the trained model. We represent the distributions of the values of the 
permutation importance obtained from 50 repetitions of the described procedure using a 
box plot. More details are in Additional file 1: Supplementary Methods.

Model validation

We compared the performance of catGRANULE 2.0 ROBOT on the independent test 
set with those of catGRANULE 1.0 [27] and of the four top performing state-of-the-art 
algorithms, MaGS [25, 29], PICNIC, PICNIC-GO [26], and PSPHunter [28]. We dis-
carded other LLPS predictors that were shown to perform worse than these state-of-
the-art algorithms. For each algorithm, we computed the ROC curves using the function 
“roc_curve” from “sklearn.metrics” and the AUROC using the function “roc_auc_score” 
on the test dataset.

As a further validation of catGRANULE 2.0 ROBOT, we considered the proteins in 
our independent test dataset with sequence identity, computed using the mmseqs2 algo-
rithm [96], smaller than 20% with the training set: we found 716 positive and 590 negative 
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proteins. From these sets, we randomly sampled a balanced test dataset of 100 proteins 50 
times and we computed the mean and standard deviation of different performance met-
rics for all the LLPS predictors. Since each metric quantifies different strengths and weak-
nesses of the tools, we also computed a normalized overall score, obtained by computing 
a z-score for each metric, then aggregating by taking the average over the samples for 
each tool and metric, computing the mean of the z-score over the metrics for each tool 
and normalizing these values between 0 and 1. Moreover, we considered proteins from 
the LLPSDB database [23] with less than 20% sequence identity with our training set, and 
we found 41 proteins belonging to different species, which did not include Homo sapiens. 
We compared the performance of catGRANULE 2.0 ROBOT with the other tools by con-
sidering the predicted LLPS score and evaluating the fraction of correctly predicted LLPS 
proteins at increasing values of a threshold on the LLPS score. MaGS was not included in 
this analysis since it works only for human and yeast proteins.

For the computation of the catGRANULE 2.0 ROBOT LLPS propensity score in other 
species, we retrieved proteins annotated as LLPS-prone from the DrLLPS database [22], 
we downloaded the pdb files for those proteins from the AlphaFold Structure Database 
[35], we encoded each protein into the vector of 128 features described above, and we 
predicted the LLPS propensity score using our pre-trained MLP classifier. We retrieved 
the numbers of correctly predicted proteins by PICNIC from [26] and, for the species 
that are predicted both in our study and by PICNIC, we tested, for each species sepa-
rately, if the fraction of correctly predicted LLPS-prone proteins by catGRANULE 2.0 
ROBOT was significantly larger than the one predicted by PICNIC using a Fisher’s exact 
test (function “fisher_exact” in scipy.stats).

Regarding the analysis of the LLPS propensity per condensate, first we retrieved the 
annotation of the protein sub-cellular locations from Uniprot (https://​www.​unipr​ot.​
org/) [65] and the annotation of LLPS condensates from the DrLLPS database [22]. Since 
proteins can be found in multiple condensates, we represented the intersections using an 
upset plot (“upset” function from the “UpsetR” package, version 1.4.0, in R version 4.0.3). 
The violin plots are obtained using the function “violinplot” from the seaborn Python 
package. More details are in Additional file 1: Supplementary Methods.

Validation on immunofluorescence images from the Human Protein Atlas

For the analysis of antibody-based images obtained by immunofluorescence (IF) con-
focal microscopy from the Human Protein Atlas (https://​www.​prote​inatl​as.​org/​human​
prote​ome/​cell) [36], we retrieved a curated list of 11,608 images from [97]. We used a 
CellProfiler3 [98] pipeline provided in [97], which we adapted to compute additional 
quantities from the images and to use it with CellProfiler4.2.6 [99].

Specifically, we perform cell segmentation from the IF image through the Otsu’s thresh-
olding method using the red and blue channels, which quantify the microtubules and the 
DAPI, respectively. Then, we compute the standard deviation and the mean of the green 
intensity per cell, whose ratio defines the coefficient of variation (CV). Next, we segment 
the nuclei using the blue channel, we compute the area of each nucleus, and we take the 
average over each image. Finally, we segment the droplets (i.e., puncta of the green fluores-
cent protein) for each cell using the robust background thresholding method, and we com-
pute the area, measured in pixels, of each droplet, which is made adimensional by dividing 

https://www.uniprot.org/
https://www.uniprot.org/
https://www.proteinatlas.org/humanproteome/cell
https://www.proteinatlas.org/humanproteome/cell
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it by the average area of the nuclei for the corresponding image. To obtain measurements 
at the protein level and compare them to the LLPS propensity scores predicted by cat-
GRANULE 2.0 ROBOT, we computed, for each protein, the average number of droplets, 
the maximum normalized area, and the maximum CV of the green signal. In this way, we 
obtained the measurements for 10,757 IF proteins, each corresponding to one IF image. 
We provide all the computed scores in in Additional file 6: Table S5.

Computation of the LLPS propensity profiles and prediction of the effect of mutations 

on LLPS

catGRANULE 2.0 ROBOT predicts the LLPS propensity of a protein based on a set of 
sequence- and structural-based features. However, to compute a LLPS propensity profile 
and to allow the usage of our model on deep mutational scanning of proteins, which 
generate tens of thousands of mutations, we chose to train the model using only physico-
chemical features. This choice allows a fast analysis of deep mutational scanning of pro-
teins and it is supported by previous studies that showed that AlphaFold2 cannot predict 
reliably the structure of proteins subjected to single-point mutations [72, 73].

Prediction and validation of LLPS propensity profiles

We generate a LLPS propensity profile for a protein by applying a sliding window to a 
protein sequence and scoring each segment with the trained model. In this way, we obtain 
a LLPS propensity score at single amino acid resolution. We trained different classifi-
ers using both the full set of features or only the set of physico-chemical features. Then, 
we collected approximately 250 proteins from different organisms from the PhaSepDB 
database [19], where regions responsible for LLPS are annotated over the sequence. Fur-
thermore, to increase the accuracy and the sensitivity of the prediction, we filtered out 
proteins with more than 90% of the sequence annotated as the LLPS-prone region from 
the PhaSepDB database. Using this dataset, we found that the optimal size of the sliding 
window for the computation of the LLPS propensity profiles is 21 amino acids. To quan-
tify the performance of the trained models over the PhaSepDB database, we concatenated 
all the protein sequences and we ranked the amino acids according to the predicted LLPS 
propensity. Next, we selected subsets of top and bottom LLPS propensity scores and we 
computed the AUROC score, where the true classes are obtained from the PhaSepDB 
database (see Fig. 5A). To select a model for the computation of the profiles, we compared 
the average AUROC obtained from the top-bottom scores approach and we found that a 
Random Forest classifier, trained only on the set of physico-chemical features, achieves 
the best performance (Additional file  1: Fig. S10B). Moreover, the average of the LLPS 
propensity profiles obtained with the Random Forest classifier shows a good correlation, 
quantified by the Spearman’s correlation coefficient, with the LLPS propensity score pre-
dicted by the full model, which is the MLP classifier trained on the full set of features 
(Additional file 1: Fig. S10A).
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Prediction of the effect of mutations on LLPS propensity

To score the effect of a mutation on the LLPS propensity of a protein, we employ the 
sum of the difference between the LLPS profiles of the mutant and wild-type (WT) 
proteins, indicated as mut(i) and WT(i), respectively, divided by the average of the 
profile of the WT protein

where N is the sequence length.
We collected a list of 24 mutations of 9 proteins, including single and multiple amino acid 

mutations, from the literature and the Uniprot database [65]. Specifically, we searched for 
“phase separation” in the “mutagenesis” field. We did not include other search strings (e.g., 
“condensation”) given the variability in experimental conditions and cellular assays. The 
mutations are reported in Additional file 7: Table S6, where we also indicate the references 
from which the mutations have been retrieved. These mutations were categorized accord-
ing to their annotated effect of increasing or decreasing LLPS propensity and/or affecting 
the protein localization in SGs and PBs. Next, we predicted the LLPS propensity profiles of 
the wild-type (WT) and mutated proteins, and we computed a mutation score as defined 
in Eq. (1). We also computed the LLPS propensity of the WT and mutated proteins using 
the PSPHunter [28] and catGRANULE 1.0 [27] web servers, and we compared the fraction 
of mutations for which the effect on LLPS propensity was correctly predicted, separately 
for mutations decreasing and increasing the LLPS propensity, between catGRANULE 2.0 
ROBOT and these two algorithms (Fig. 6B). The predicted scores for the WT and mutated 
proteins for the three algorithms are reported in Additional file 7: Table S6.

Finally, we considered a mutational scanning of TDP-43 where approximately 
60,000 mutations of the prion-like domain were generated and their toxicity was 
quantified in yeast cells [37]. The authors showed that mutations that increase protein 
aggregation strongly decrease toxicity, while toxic mutations promote LLPS. Thus, the 
toxicity score can be used as a proxy of experimental LLPS propensity. We predicted 
a LLPS propensity profile for each mutation and we computed a mutation score as 
described above. Then, we employed a top-bottom approach as we did for the valida-
tion of the LLPS propensity profiles. Specifically, we ranked the mutations according 
to the experimental phase separation score and we set different thresholds on this 
score. For each threshold, we computed the AUROC, as shown in Fig. 6C.
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Additional file 6: Table S5. Features computed from immunofluorescence microscopy images obtained from the 
Human Protein Atlas, aggregated at the protein level.

Additional file 7: Table S6. List of 24 mutations affecting LLPS curated from the literature with predicted mutation and 
WT scores by catGRANULE 2.0 ROBOT, catGRANULE 1.0 and PSPHunter.
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