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Abstract 

Single-cell RNA sequencing (scRNA-seq) data from complex human tissues have 
prevalent blood cell contamination during the sample preparation process. They may 
also comprise cells of different genetic makeups. We propose a new computational 
framework, Originator, which deciphers single cells by genetic origin and separates 
immune cells of blood contamination from those of expected tissue-resident cells. We 
demonstrate the accuracy of Originator at separating immune cells from the blood 
and tissue as well as cells of different genetic origins, using a variety of artificially mixed 
and real datasets, including pancreatic cancer and placentas as examples.
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Background
Single-cell RNA sequencing (scRNA-seq) data analysis of complex (e.g., placenta) or 
inherently mixed (e.g., tumor) tissues pose significant challenges in computational biol-
ogy. Many tissues contain blood vessels, and the resulting scRNA-seq data often include 
blood cell types (e.g., T cells) having highly similar expression profiles with the same cell 
types in the resident tissues. For example, in tumor studies precisely separating blood 
and tissue-resident immune cells in tumor tissues is crucial for understanding the tumor 
microenvironment [1]. In placenta tissues interfacing with the mother and fetus, isolat-
ing the maternal and fetal cells is pivotal to reveal cellular and immunological differ-
ences between them [2]. Therefore, a rigorous preprocessing step is required to enhance 
the quality of the data of interest, subsequently improving the downstream analysis. 
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However, currently there is no dedicated tool to perform such a function. Here we fill in 
the void and propose a novel computational pipeline called Originator. It deconvolutes 
barcoded cells into different origins using inferred genotype information from scRNA-
seq data, as well as separating cells in the blood from those in solid tissues, an issue often 
encountered in scRNA-seq experimentation.

Results and discussion
The proposed Originator framework is illustrated in Fig.  1a. Cells undergo standard 
scRNA-seq preprocessing steps, including quality control (QC), normalization, data 
integration, clustering, and cell-type annotation [3]. Then, Originator takes advantage 
of the differences in the genotype information from the scRNA-seq reads and utilizes 

Fig. 1  Illustration of Originator framework and the prevalence of blood immune cells in tissue samples. a The 
input data are the scRNA-seq experiment on tissue sections. (1) Data preprocessing and cell type annotation. 
(2) Separating barcoded cells into different origins by blood vs. tissue residents context and optionally by 
inferred genotype information. (3) Using the results in steps (1) and (2) to dissect tissue heterogeneity. (4) The 
functional downstream analyses with respect to cells’ origins. b Heatmap plots show inferred immune cell 
type proportions originated from the blood (left) vs. the tissue (right), from scRNA-seq data of a wide-variety 
of organs including liver, lung, spleen, kidney, and pancreas and in the normal or cancer tissues. The cell types 
were annotated by the original publications and blood vs. tissue identification was done by Originator. NA: 
the cell type does not exist in the original publication
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freemuxlet, a reference-free version of the popsicle suite [4] to separate the barcoded 
cells into different (default N = 2) genetic origins, for example, maternal vs. fetal origins. 
Freemuxlet is chosen, as it showed better accuracies at recovering the genetic origins in 
comparison to scSplit [5], in the scRNA-seq data of two placentas and the paired clear 
cell renal cell carcinoma (ccRCC) and PBMC cells from the same patient (Additional 
file  1: Table  S1). Next, given that many tissues have blood contamination, the subse-
quent step separates immune cells by blood vs. expected tissue-resident context using 
the publicly available whole blood scRNA-seq data as the reference [6]. After dissecting 
the heterogeneity of the scRNA-seq data, various downstream functional analyses can 
be performed.

Current public scRNA-seq data lack paired PBMC (or blood) and complex primary 
tissue completely free of blood contamination from the same person. We therefore first 
validated the pipeline using the artificially mixed data from a PBMCs dataset and a cell 
mixture dataset containing three breast cancer lines (T47D, BT474, MCF7), monocytes, 
lymphocytes, and stem cells (Additional file 2: Supplementary Notes) [7–9]. Before cre-
ating the artificial mixture scRNA-seq data, we removed the batch effect between the 
PBMC and the breast cancer cell lines (Additional file 2: Fig. S1), using Harmony [10] 
which showed good performance for this task previously [11]. As shown by the UMAP 
plot in Additional file 2: Fig. S1, Originator separates the two compartments highly accu-
rately, with AUC of 0.96, F-1 score of 0.97, and area under the precision-recall curve 
(AUCPR) of 0.96 (Additional file 1: Table S2). Next, we tested Originator on the dataset 
of Krishna et  al. [12], which contains paired ccRCC tissue and PBMC from the same 
patients. To generate the “ground truth” cell types for blood-eliminated ccRCC tissue, 
we applied Originator (or Seurat, for comparison) to the ccRCC to remove the potential 
blood immune cells from those residing in the tissue. We then integrated the cleaned 
ccRCC tissues and PBMC to generate an artificial mixture. Next, we ran Originator on 
this pre-cleaned mixture dataset for five iterations and obtained averaged F-scores of 
0.98, 0.93, 0.91, and 0.99 for B cell, CD4 T-cell, CD8 T-cell, and NK cell respectively on 
the pre-cleaned, mixed dataset (Additional file 2: Fig. S2). We thus conclude that Origi-
nator is effective at removing blood contamination from the results of both datasets 
above.

To signify the prevalence of blood immune cells in tissue samples, we applied Origina-
tor to eight publicly available scRNA-seq data from a variety of organs including lung, 
liver, spleen, kidney, and pancreas, with normal (or adjacent normal) and/or tumor tissue 
samples [12–19]. As summarized in Fig. 1b, in most datasets the majority of the immune 
cells are from the blood, rather than the tissue. The detailed side-by-side comparison of 
UMAP plots of blood vs. tissue immune cells is in Additional file 2: Figs. S3–S4. These 
results unambiguously demonstrate the vast amount of immune cells from blood, rather 
than the tissue microenvironment. Failure to remove these immune cells may yield sig-
nificantly biased results.

To directly demonstrate the potential biases in the downstream analyses due to con-
tamination of the immune cells from the blood, we first applied Originator to a pancre-
atic ductal adenocarcinoma (PDAC) scRNA-seq dataset [19], to demonstrate its utility 
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in removing cells that originate from blood. Originator successfully separates immune 
cells in the blood from those in the tumor tissue (Fig. 2a), and mast and myeloid-derived 
suppressor cells (MDSCs) are exclusive in tissues as expected. The immune cell type pro-
portions of the two compartments are shown in Fig. 2b. The blood has larger propor-
tions of macrophages and regulatory T-cells, but fewer T-cells. We then performed the 
differential expression (DE) analysis comparing the common immune cell types between 
the blood and those expected from the tumor tissues, and detected significant differ-
ences in gene expression in each immune cell type, especially for macrophage and T-cells 
(Fig. 2c, Additional file 1: Tables S3–S6) [20, 21]. For example, CCL4 and CCL5 expres-
sion is higher in T-cells in the tumor tissue compared to those in the blood (Additional 
file  2: Fig. S5a), consistent with the previous study that these genes are directly asso-
ciated with T-cell-inflamed phenotype and antigen-presenting cell-mediated processes 
in PDAC [22]. We also examined the genes common in some immune cell types, but 
showed significant differences between the blood vs. tumor compartments (Additional 
file 2: Supplementary Notes) [23–43]. We subsequently performed gene set enrichment 
analysis (GSEA) comparing the immune cells’ gene expression difference between the 
blood vs. tissue compartments (Fig. 2d). Toll-like receptor (TLR) signaling pathway and 
NOD-like receptor signaling pathway are more active in expected tissue-resident T-cells 
and macrophages compared to those in blood. However, natural killer cell-mediated 
cytotoxicity signaling pathway is downregulated in NK cells from the tumor compared 
to the blood compartment, consistent with observed NK cell dysfunction in PDAC via 
the reduced cytotoxic granule components, granzyme B, and perforin [44]. To demon-
strate the impact of blood cell contamination in functional interpretation, we inferred 
cell–cell communications CCC in tumor tissues before and after removing blood cells 
(Fig. 2e, f ). While the interactions among the cell types are globally less frequent/noisy 
in the tumor compartment, those between fibroblast/epithelium and other cell types 
are strengthened in blood cells, as reflected by the increased node size of these two cell 
types (Fig.  2e). Such a trend of change is most drastic for the MIF signaling pathway 
(Fig. 2f ), which was previously reported to drive the malignant character of pancreatic 
cancer [45]. Particularly, MIF signaling between T-cells/regulatory T-cells and other 
cell types (e.g., epithelial cells) is absent after removing blood immune cells, indicating a 
compromised anti-tumor immune response in PDAC [46].

Fig. 2  Applications of Originator to pancreatic ductal adenocarcinoma (PDAC) and placenta scRNA-seq data. 
a UMAP plot of cells in PDAC tissues (top-left) separated into blood and expected tissue-resident immune 
cells (bottom-left). UMAP plot of cells in PDAC tissues after blood immune cell removal is shown on the 
top-right. b The cell type proportion barplot shows the immune cell types in blood and PDAC tumor tissue, 
as well as all cell types in the tumor tissue before and after blood immune cell removal. c Venn diagram of 
the significant DE genes identified when comparing immune cells in blood and expected tumor resident 
tissue. d GSEA results comparing blood and expected tissue-resident immune cell types. e Overall CCC in the 
tumor tissues before and after blood immune cell removal. f CCC of MIF signaling pathway in tumor tissues 
before and after blood immune cell removal. g UMAP plot of cells in placenta tissues deciphered into fetal vs. 
maternal origins and blood vs. placenta-resident cells. h Cell type proportions in the different compartments 
related to the placenta. i Upset plot of significant DE genes identified in common cell types between fetal 
and maternal placenta tissues. T-cell is excluded due to the near 0 counts in the fetal tissue. j GSEA results 
comparing fetal and maternal tissues among common cell types. CCC of common cell types in fetal (k) and 
maternal (l) tissues

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Some tissues may have different genetic lineages that also need to be addressed. For 
example, the placenta has both maternal and fetal tissues. We then applied Originator 
to the human placenta [47] and separated the single cells into fetal and maternal origins 
as well as blood vs. expected tissue-resident cells. The cells from the fetal origin account 
for the majority of the cell populations, and the expected tissue-resident cells signifi-
cantly over-weigh blood cells, as expected (Fig. 2g). The framework correctly and exclu-
sively assigns trophoblast cells, including cytotrophoblasts, syncytiotrophoblasts, and 
extravillous trophoblasts, to the fetal tissue (Fig. 2g, h) [48]. On the contrary, immune 
cells, vascular endothelial cells, and fibroblasts (type 1 and type 2) appear in both mater-
nal and fetal tissues, also as expected (Fig.  2h). We further performed DE analysis on 
the common cell types between fetal and maternal tissues and discovered drastic differ-
ences in gene expression related to the local tissue environment (Fig. 2i, Additional file 1: 
Tables S7–S9). For example, the top-ranked DE gene EGFL6 between maternal vs. fetal 
fibroblast cells is highly expressed in fibroblasts subtype 1 in fetal tissues as expected 
(Additional file  2: Fig. S6a) [49]. However, it is much lower in fibroblast subtype 1 or 
mostly absent in fibroblast subtype 2 in maternal tissues, similar to a previous report 
[50]. Among the DE genes from macrophage cells (Additional file 1: Table S9), SEPP1 is 
expressed at much higher levels in Hofbauer cells originating from the fetal tissue com-
pared to the maternal tissue (Additional file 2: Fig. S6b), in accordance with a previous 
study [51]. We additionally performed GSEA on the DE genes of the common cell types 
between fetal and maternal cells in the placenta tissue (Fig.  2j). The MAPK signaling 
pathway is enriched in vascular endothelial cells from the fetal tissues, which agrees with 
its role in growth factor-induced fetoplacental angiogenesis [52]. On the other hand, 
fibroblast type 2 from the fetal origin is enriched with several other signaling pathways, 
such as calcium, hippo, and Ras signaling pathways as well as ECM-receptor interaction 
(Fig. 2j), which indicates extracellular matrix (ECM) remodeling during trophoblast dif-
ferentiation [53]. We also compared the CCC among the common cell types between the 
fetal and maternal tissues (Fig. 2k, l). Type 1 and type 2 fibroblasts both show different 
degrees of CCC with some other cell types when comparing the maternal and fetal tis-
sue contexts. A higher interaction between fibroblast cells (type 1 and type 2) and vas-
cular endothelial cells in fetal tissues reflects the active formation of the villous stroma 
underneath the syncytiotrophoblast and surrounding fetal capillaries [54]. On the con-
trary, higher interactions between type 2 fibroblast and macrophages in maternal tissue 
may assist trophoblast invasion through growth factors and cytokines [55]. Thus, teasing 
apart the cell types by their genetic and local tissue context helps to refine the molecular 
analysis in placenta scRNA-seq data.

Conclusions
Originator is the first dedicated systematic tool to decipher scRNA-seq data by genetic 
origin and blood/tissue contexts in heterogeneous tissues. It can be used as an effec-
tive tool to remove the undesirable blood cells in scRNA-seq data. It can also provide 
improved cell type annotations and other downstream functional analyses, based on the 
genetic background. Future work will be focused on generating pan-tissue immune cell 
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atlas, which is free of immune cells originating from blood contamination, which will 
better annotate the expected tissue-resident immune cells truthfully from the tissues of 
interest.

Methods
scRNA‑seq case study data sets

scRNA-seq data from liver, lung, pancreas, and kidney are used in this study. For lung, 
we used a large scRNA-seq dataset from the integrated human lung cell atlas (v1.0), 
containing samples from 107 individuals [13], as well as lung cancer datasets from Xing 
et al. and Bischoff et al. [17, 18]. For liver tissues, we used the single-cell liver landscape 
dataset from five individuals [15] and another healthy liver dataset from Guilliams et al. 
[16]. Additionally, we used lung, spleen, and liver scRNA-seq datasets from Domínguez 
Conde et al. [14]. We obtained the paired blood and kidney cancer dataset from Krishna 
et al. [12]. For pancreatic ductal adenocarcinoma (PDAC), we use a scRNA-seq dataset 
from GSE212966, which includes two tumor tissues [19]. The last dataset is the scRNA-
seq data from placenta tissues, comprising eight placenta samples from the previous 
study (EGA; https://​www.​ebi.​ac.​uk/​ega/) hosted by the European Bioinformatics Insti-
tute (EBI; accession no. EGAS00001002449) [47]. Cell types in the placenta and PDAC 
tissues are annotated using the cell-type-specific marker genes [56] (Additional file  1: 
Tables S10–S11).

Description of Originator for scRNA‑seq data analysis

Originator is a multi-module framework that can be used to preprocess scRNA-seq data 
from heterogeneous tissues. It consists of one mandatory step based on the tissue vs. 
blood compartments and also an optional step based on the genetic origins. Originator 
takes the gene expression matrix processed by Cell Ranger (version 7.1.0) of 10 × genom-
ics as the input [57]. For genetic background based deciphering, it also uses the BAM file. 
It processes and outputs the R data serialization file (RDS). This output file contains gene 
expression and related information, including the cell type, blood and tissue immune cell 
annotation, and annotation by genetic information if this function is needed.

First, Originator separates immune cells in blood vs. those in the tissue using the 
blood immune cell scRNA-seq reference constructed from the publicly available scRNA-
seq data from the whole blood cells [6]. Annotated immune cells of interest (monocytes, 
macrophages, T-cells, regulatory T-cells, plasma cells, NK cells, and B-cells) from the 
datasets of this study are aligned to the whole blood scRNA-seq reference data using 
package Seurat (4.3.0) [58]. For each immune cell type, the top 10 latent variables from 
each scRNA-seq sample are used to compute a pairwise Euclidean distance matrix 
between each query immune cell and the reference whole blood. The latent variables 
can be obtained by UMAP or PCA-based dimension reduction. We compared UMAP-
based and PCA-based dimension reduction on the data of Krishna et al. [12] and found 
that the former yielded higher accuracies in detecting the immune cell types (Additional 
file 2: Fig. S7). Thus, we used UMAP-based dimension reduction in this report. To sepa-
rate each query of immune cells into blood or expected tissue-resident cells, k-means 

https://www.ebi.ac.uk/ega/
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clustering (default k = 2) is applied using Euclidean distances relative to the whole blood 
immune cell reference. The cluster more similar to the whole blood immune cell refer-
ences is annotated as the blood immune cells, and the other cluster is determined as the 
expected tissue-resident immune cells.

If the tissue contains a mixture of cells of different genetic backgrounds, such as mater-
nal and fetal origins, Originator provides an optional step to decipher the barcoded cells 
by the genetic origin relying on the overlapping genetic variants extracted from the 
scRNA-seq data. Genetic variants are extracted by bcftools (version 1.17) [59]. Variants 
informative of genetic origins are determined by excluding single nucleotide polymor-
phisms (SNPs) with minor allele frequency (MAF) greater than x percentages (default 
x = 10), using the 1000 Genomes Phase 3 reference panel (release date: 2013/05/02) [60]. 
The freemuxlet package is used to separate the single cells with the parameter “–nsample 
N” (default N = 2), as implemented in popscle (https://​github.​com/​statg​en/​popsc​le) [4]. 
N denotes the number of genetic origins of the single cells (e.g., N = 2 for the maternal 
and fetal origins in a placenta scRNA-seq data). Mosaic doublets (a single barcoded cell 
with a 50% genetic mixture from two individuals) are also identified in this step as part 
of the quality control. As trophoblast cells in the placenta are of fetal origin, the cluster 
that contains trophoblast cells is identified with fetal origin, while the other cluster is 
marked as maternal origin.

Testing the performance of Originator

The artificially mixed tissue-blood-resident data were generated to assess the ability of 
Originator to separate blood cells and tissue immune residents. We included two data-
sets: (1) artificially mixed data from a PBMCs dataset and a cell mixture dataset contain-
ing three breast cancer lines (T47D, BT474, MCF7), monocytes, lymphocytes, and stem 
cells [7–9]. (2) A paired pre-cleaned ccRCC tissues and PBMC from the same patient 
provided by Krishna et al. [12]. The details of the evaluation are in Additional file 2: Sup-
plementary Notes. Additionally, we also benchmarked freemuxlet [4] (used in Origina-
tor) against scSplit [5, 61] in identifying cells from different genetic origins using two 
different datasets, including (1) scRNA-seq data of two placenta samples and (2) mixed 
PBMC scRNA-seq data from two ccRCC patients provided by Krishna et  al. [12, 47] 
(Additional file 2: Supplementary Notes).

Downstream analysis

DE analysis was performed using FindMarkers() in the package Seurat (4.3.0) [58]. GSEA 
is done using gseKEGG() in the package ClusterProfiler (4.8.2) with the gene set informa-
tion from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [62, 63]. 
CCC inference was performed using the package CellChat [64].

Code availability

Originator is freely available to use at URL: https://​github.​com/​lanag​armire/​Origi​nator 
under an MIT license compliant with Open Source Initiative (OSI) (http://​opens​ource.​
org/​licen​ses) [65]. The source code used in the manuscript is also publically available at 
https://​zenodo.​org/​recor​ds/​14750​795 (DOI: https://​doi.​org/​10.​5281/​zenodo.​14750​794) 
[66].

https://github.com/statgen/popscle
https://github.com/lanagarmire/Originator
http://opensource.org/licenses
http://opensource.org/licenses
https://zenodo.org/records/14750795
https://doi.org/10.5281/zenodo.14750794
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