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Abstract 

The history of human populations has been strongly shaped by admixture events, 
contributing to patterns of observed genetic diversity across populations. In this study, 
we introduce the Principal component Ancestry proportions using NNLS Estimation 
(PANE) method that leverages principal component analysis and non-negative least 
squares to assess the ancestral compositions of admixed individuals given a large set 
of populations. Our results show its ability to reliably estimate ancestry across several 
scenarios, even those with a significant proportion of missing genotypes, in a fraction 
of the time required when using other tools.

Background
The history of human populations has been strongly shaped by past admixture events 
that cumulatively have contributed to patterns of genetic variation observed today [1, 
2]. Several interdisciplinary studies proved that virtually all human populations have 
interacted throughout their history in complex demographic scenarios, including migra-
tion and admixture [3–6]. These interactions resulted in a sudden or gradual transfer of 
genetic material, generating new groups different from their sources [1]. Given its signif-
icance for evolutionary and medical studies, many algorithms focusing on the inference 
of the genetic composition of admixed populations have been developed. In this context, 
it has been shown that using phased genotype data can offer a higher resolution descrip-
tion of genetic population structure compared to unphased data [1, 2, 4, 7–9].

However, existing methods often present limitations when dealing with low-coverage 
ancient DNA (aDNA) data. Algorithms using haploid-called genotypes to estimate allele 
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frequencies and allele-sharing probabilities at limited numbers of overlapping variant 
positions have been designed to meet these challenges.

Imputation is a commonly used method to overcome the limitations of low-coverage 
ancient DNA (aDNA), as it can increase the information content in a sample by inferring 
missing SNPs. This approach has been successfully used for ancient DNA data, allow-
ing a better overall resolution [10–12]. However, the accuracy of genotype imputation 
relies on several factors, such as the quality of the sample data and the properties of the 
phased reference panel.

Among others, qpAdm [13, 14] is one of the most widely used approaches to ancient 
data [9, 15–21], given its ability to deal with pseudo-haploid genotypes typically used in 
aDNA analysis and model admixture events involving multiple sources [5, 13, 14]. This 
tool takes advantage of the fact that genetic variation within a specific population can be 
summarized by comparing its allele frequencies to those of three additional groups using 
a “treeness test” belonging to the F-statistics family, the f4 metric [14, 22].

For a given target population T, a set of putative sources of admixture Pi, and a set of 
“right populations” Ri with different relationships to Pi, qpAdm builds a matrix A of f4 in 
the form (T, X, R1, Ri), in which X can alternatively be T or a Pi population. Given that 
any f4 in the state (T, T, R1, Ri) is 0, qpAdm solves the equation w•A = 0, where w are the 
admixture coefficients (weights), assuming that their sum is equal to 1 [13].

QpAdm framework can be iterated multiple times to test several scenarios, allowing 
the evaluation of the models based on their p-values. However, sifting through all pos-
sible proxy sources and the right populations for an admixture event can be overwhelm-
ing. In addition, a recent survey has shown that, depending on the approach and the 
quality of the genetic data analyzed, qpAdm may suffer from high false discovery rates, 
adding substantial uncertainty to the interpretation of the results of admixture inference 
[23].

A similar approach, introduced by Haak et al. [13], but less frequently employed, uses 
a non-negative least squares (NNLS) approach on a matrix of f4s in the form f4(X, R1, Ri, 
Rj), where X is either T or any P population [13, 24].

F-statistics results broadly recapitulate genetic relationships emerging from principal 
component analysis (PCA) [25], widely used in population genetics to quantify genetic 
affinity between populations or individuals, including ancient ones.

There is indeed a geometric relationship between the two metrics, although they are 
based on different statistical principles: the F-statistic is based on the measurement of 
the branch lengths of a hypothetical tree in which the analyzed populations are related, 
while PCA reduces the dimensionality of the data while maintaining the maximum vari-
ance present among individuals. In detail, considering four populations A, B, C, and D 
projected in a PC space, the f2(A, B) is correlated with the Euclidean distance between 
A and B computed in PC coordinates, while the f3(A; B, C) will be proportional to the 
orthogonal projection of A–B on A–C. Similarly, the f4(A, B; C, D) will be related to the 
orthogonal projection of A–B onto C–D [25]. Moorjani et al. showed that f4 ratios can 
be used to estimate the rate of admixture [26].

Considering these results, it is, in principle, possible to use PC coordinates to infer 
admixture proportions of a target population using a set of putative sources. Different 
attempts and approaches have recently been proposed using principal components [27].
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In this study, we present PANE (Principal component Ancestry using NNLS Esti-
mation), in which we aim to leverage PCA and NNLS to assess the ancestral composi-
tions of admixed individuals given a large set of populations.

Similarly to tools like qpAdm, which leverages a set of reference putative sources 
to describe the target admixed samples, we expect the assignment to be more accu-
rate if proxy sources are genetically close to the true source of the admixture. Any 
post-admixture event (i.e., strong drift, gene flow) that increases the genetic distances 
between true sources, proxy sources, and target groups might cause a decrease in the 
accuracy of the assignments. We test PANE on different simulated models, incor-
porating high levels of missingness. We show its ability to reliably estimate ancestry 
across numerous scenarios, even those with a significant proportion of missing geno-
types, in a fraction of the time required when using other tools.

Results
PANE workflow and datasets

Here we provide an overview of the methodology implemented in PANE (Fig. 1). We 
simulated a set of 20 unadmixed and 16 admixed populations (Additional file 1: Fig. 
S1, Additional file 2: Table S1). For each admixed group, we simulated an admixture 
event involving two or three sources [28] with minor source contributions ranging 
from 5 to 40%, to test PANE performance in various conditions and settings, accom-
modating a wide range of routinely performed approaches. For each of the true 
sources, we also simulated a sister group that split 3 thousand years ago (KYA) to 
mimic a proxy source: a group related to the real admixing source but not the direct 
contributor to the admixture event. These proxy populations allowed us to test 
whether PANE could infer the closest proxy sources to the admixing populations.

Fig. 1 Schematic representation of PANE workflow. PANE harnesses non-negative least squares using 
individual or population principal component vectors. PC analysis can be performed using both high-quality 
genomic data and datasets with missing data, or to accommodate varying degrees of missingness, such as 
projection or probabilistic PCA
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Specifically, we simulated admixture events between groups with different degrees of 
affinity, from highly divergent to closely related populations, with pairwise Fst between 
populations ranging from 0.01 to 0.23, including bottleneck events, expecting a lower 
assignment accuracy in cases where the source groups are genetically closer [28]. For 
each scenario, we tested our approach on the average principal component (PC) coordi-
nates from each admixed group (population-wise approach) and on each admixed indi-
vidual separately (individual-wise approach).

We initially tested PANE performance considering as putative admixture sources the 
entire panel of the true sources or their sister groups (“proxy sources”), even though only 
two (two-way admixture) or three (three-way admixture) sources (“true sources”) were 
used to simulate the admixture event. We then applied the same framework by project-
ing the admixed groups onto the PC space constructed from the first 10 components, 
using all the true sources and their respective sister groups (Fig. 1). The number of com-
ponents was selected after running a preliminary assessment of PANE performance as 
described in Text S1. Subsequently, using NNLS, we modeled the average PC coordi-
nates across individuals of each admixed group as a mixture of those of all the avail-
able sources, considering as sources either the true or the sister groups panel. Standard 
errors (SE) were estimated using a jackknife approach [2, 29], as described in the “Meth-
ods” section.

In this framework, PCA space should be built on high-quality data with a low missing-
ness degree, such as modern sequence data, high coverage, or imputed ancient geno-
types [10, 11].

Data and source availability

Our approach to assessing ancestral composition using principal component analy-
sis and NNLS (PANE) is available as an R package at github.com/lm-ut/PANE and in 
Zenodo https:// doi. org/https:// doi. org/ 10. 5281/ zenodo. 14016 612 [30, 31]. This tool is 
licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0). To view a copy of this license, visit https:// creat iveco 
mmons. org/ licen ses/ by- nc- nd/4. 0/ deed. en.

Requests for accessing previously published data used in this work should be directed 
to the corresponding authors of the publications where they were originally presented 
[19, 20, 32, 32–42]. The Allen Ancient Data Resource is available at [43, 44] and Raveane 
et al. [34] at https:// capel ligro up. wordp ress. com/ data/.

Results on simulated genotypes with no missingness

PANE performance with true sources

In the population-based approach, for all the 16 simulated admixed populations, PANE 
successfully assigned the main ancestry components to the true sources that contributed 
to the admixture event despite the large panel of potential source groups available. The 
ancestry proportions of the true source groups (Additional file 2: Table S2A) yielded a 
maximum error of 0.014 and a maximum jackknife standard error (SE) of 0.012 when 
two sources contributed to the target population (Fig. 2A–C). Minor additional contri-
butions were assigned to other groups but never exceeding 0.004 (Pop 8 in Fig. 2A). In 
these cases, the additional ancestral component was assigned to groups closely related 
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to the true source (Fst ≤ 0.01, [28]). In three-way admixed populations (Pop 15 and Pop 
16 in Fig. 2D–E), the true sources are always recognized with a maximum error of 0.010 
(SE < 0.01).

The ancestry assignment estimation obtained per individual is in Additional file  2: 
Table S2. 70-30% admixed populations (Pop 1–8) show an average error lower than 0.029 
when the admixing sources that split more than 9 KYA (kilo years ago), which increases 
(0.038) when the simulated population split was less than or equal to 9 KYA (Pop 6 and 
7).

Admixed populations with lower source contributions (Pop 9–14) record an average 
error of a maximum of 0.022. In this case, lower error values are observed for popula-
tions with a less recent split (for example Pop 9 and Pop 12). The highest average error in 
the individual-based analysis is observed in the three-way admixed populations (Addi-
tional file 2: Table S2B). An over/underestimation exceeding 0.05 of the assigned contri-
bution to the main sources in the 32% of individuals is recorded. Only one individual has 
an error larger than 0.1.

PANE performance with proxy sources

We evaluated PANE performance on a PCA where the admixed groups were projected 
onto the PC space built on all the remaining populations. We then modeled the admixed 
groups as a mixture of all the proxy sources only. As we knew which simulated proxy 
group was indeed the sister group of the real admixing source, we calculated the assign-
ment error by considering differences in observed and expected ancestry proportions 
and whether PANE could indeed select the closest sister group.

In this scenario, for all the 16 tested populations, the proxies of the true sources were 
recognized without ever assigning even minimal contributions to other populations 
(Additional file 2: Table S2).

For two-way admixed populations with proportions of 70–30%, the average error is 
0.033 (SE < 0.009, Additional file 2: Table S2C). Generally, the error estimates tend to be 
larger when the admixing source populations (Pop 3, 4, 6, and 7 in Fig. 3) are character-
ized by a higher genetic similarity due to recent split times and bottleneck events. How-
ever, the error never exceeds 0.057 (Pop 4).

Fig. 2 PANE assignment using true sources for each admixed group; triangles and boxplots show the 
population and individual ancestry estimation, respectively. On the upper part of the panel the Fst 
values (minimum values are marked with * ) and the Sources that contribute to the admixture event in 
the simulated populations are shown: A) populations obtained from the combination of two sources 
with proportions 70-30%; B) admixed populations obtained from the combination of two sources with 
proportions 90-10% and C) 95-5%. D) Three-way admixed populations generated by combining three 
sources with 40-30-30% and E) 60-20-20% proportions
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The PANE accuracy is also robust in the case of three-way admixed populations, with 
a maximum error of 0.031 (SE < 0.0087).

The overestimation of the major component becomes more important in strongly 
imbalanced contribution cases. When the contribution of the minor source is 10% 
(Fig. 3B), the minor contribution is underestimated (Pop 10, 11 in Fig. 3B). For popu-
lations where the minor source contributed 5%, PANE completely misses the minor 
source contribution and assigns the total of the ancestral component to the main source 
(SE < 0.007) (Fig. 3C).

In individual-based inferences (Additional file 2: Table S2D), PANE correctly assigns 
ancestral proportions in the two-ways 70–30% admixed individuals. The estimates 
obtained for the 50 individuals within each group are characterized by a maximum aver-
age error of 0.0582 (Pop 6, Fig. 3A).

For the admixed populations with minor source contributions of 10% and 5%, the con-
tributions of the minor sources are underestimated or completely missed. In detail, for 
populations 9 and 10, the average estimated minor contribution is 0.038 and 0.034, with 
29% of individuals showing less than 2%. On the other hand, in population 11, the aver-
age minor contribution is 0.016, with 64% of individuals showing less than 2%. No rel-
evant contribution from other sources is recorded. For populations 12, 13, and 14, 85% 
of individuals are modeled as unadmixed, with the remaining individuals showing an 
average minor contribution of 1.3%.

For the three-way admixed populations, PANE is always able to recognize the correct 
sources and assigns them the right proportions with a maximum error of 0.05 (Pop 16, 
Fig. 3E) since for some individuals there is a slight overestimation of the main source at 
the expense of one of the other two minor sources.

Results on pseudo‑haploid simulated data

We tested PANE using pseudo-haploid samples, simulated by introducing different 
degrees of missing genotypes (up to 50%) and pseudo-haplodized (see the “Methods” 
section) mirroring the fragmentary nature of data commonly adopted in aDNA studies. 
We tested PANE on a PCA where the PC space is built by the diploid genomes of the 
proxy sources, onto which we projected the pseudo-haploid genotypes of the admixed 

Fig. 3 PANE assignment using proxy sources for each admixed group. Triangles and boxplots show the 
population and individual ancestry estimation, respectively. On the upper part of the panel the Fst values 
(minimum values are marked with * ) and the proxy Sources that contribute to the admixture event in 
the simulated populations are shown. A) populations obtained from the combination of two sources 
with proportions 70-30%; B) admixed populations obtained from the combination of two sources with 
proportions 90-10% and C) 95-5%. D) Three-admixed populations generated by combining three sources 
with 40-30-30% and E) 60-20-20% proportions
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groups and all possible true sources. In this scenario, we tested whether ASAP could 
model the admixed groups with the pseudo-haploid true sources.

As shown by Additional file 2: Table S3, PANE correctly detects the closest admixture 
sources even in a large panel of putative donors, despite the target and source samples 
being pseudo-haploid and containing missing genotypes (Fig.  4). Indeed, the average 
assignment error is at a maximum of 0.033. In this case, PANE always identifies the 
true sources and assigns a marginal additional component to other sources (maximum 
0.004). Furthermore, the jackknife SE is also generally low, with a maximum of 0.017 
(Additional file 2: Table S3) seen in the admixed population whose sources split more 
recently (7.5 KYA). Even when single samples are targeted, the true sources are generally 
recognized and the major source ancestry assignments show an average error of 0.039. 
Despite the low average error, the maximum per sample error can reach 0.248, caused by 
the misassignment to the most closely related group to the sources (Fst = 0.01, [28]).

PANE performance with limited reference genetic variation availability

We tested PANE in a scenario where only the proxy, but not the true sources of the 
admixture, were available. The rationale behind this analysis is to mimic the lack of true 
mixing sources when exploring aDNA datasets while leveraging the availability of dip-
loid genomes to build the PC space. In this scenario, we subsetted the source panel to 
only two putative proxy sources to model the admixed groups that underwent a two-way 
admixture event, or three putative sources for the three-way admixture targets. PANE 
can be used with either a large or a small source panel. However, in a real-case scenario, 
selecting a limited number of the source groups requires an initial hypothesis of the 
demographic history of the admixed group to select the optimal proxy sources.

In this test, we projected onto the PC space the pseudo-haploid genotypes of (i) the 
target admixed group and (ii) the closest proxy sources of each true source, two proxy 
sources in case of a two-way admixture, and three for the three-way admixture. The PC 
space was built with the diploid genomes of the remaining proxy sources. We modeled 
the target admixed group’s relative admixture proportions given the projected proxy 
sources, relying on a limited donor panel of two or three groups.

Fig. 4 PANE assignment using pseudo-haploid simulated data and modeling each admixed group as 
a mixture of all the available proxy sources. Triangles and boxplots show the population and individual 
ancestry estimation, respectively. n the upper part of the panel the Fst values (minimum values are marked 
with * ) and the proxy Sources that contribute to the admixture event in the simulated populations are 
shown. A) populations obtained from the combination of two sources with proportions 70-30%; B) admixed 
populations obtained from the combination of two sources with proportions 90-10% and C) 95-5%. D) 
Three-admixed populations generated by combining three sources with 40-30-30% and E) 60-20-20% 
proportions
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Given the large error in individual analysis, mostly due to the lack of a proper refer-
ence dataset, we focused on the population-based approach (Fig. 5). In such a scenario 
(complete results available in Additional file 2: Table S4), error estimates are lower than 
0.043 for all groups whose sources diverged more than 24 KYA (Pop 1, 4, 5, 8, 9, 11, 
12, 14). For the only group whose sources split 24 KYA (Pop 3), the error increases to 
0.11. In contrast, for all the other groups with closer sources, the error estimates range 
between 0.16 and 0.58, with jackknife SE estimation following the same pattern (Addi-
tional file 2: Table S4).

Assessing the effect of strong genetic drift on PANE inference

We assessed the effect of strong genetic drift on admixture proportions estimated by 
PANE, simulating diploid genotypes of admixed populations that witnessed a strong 
reduction immediately after the admixture and continued to evolve for different time 
periods. Our results show that, on average, genetic drift reduces the reliability of infer-
ence with a magnitude proportional to the time that occurred after the split (Additional 
file 1: Fig. S2). In detail, PANE carried a maximum 0.15 error in individual-based analy-
ses, and a 0.12 error in the population average when harnessing a population admixed 
500 generations ago.

Benchmarking PANE versus existing global ancestry inference tools

We compared PANE with qpAdm, Rye, and Unlinked-ChromoPainter NNLS, which 
harness f4-statistics, PCA, and a modified Li and Stephens model with infinite recom-
bination between SNPs for the ancestry composition inference, respectively [13, 14, 
27, 45]. We compared the accuracy in estimating the ancestral proportions of the four 
approaches using the pseudo-haploid genotypes of both the target admixed samples 
and the true sources of the admixture. Our method behaves similarly to the others 
(Fig.  6A–C); the correlation of ancestry assignments (Fig.  6D) of PANE, qpAdm, and 
Rye is higher than 0.95 (PANE vs qpAdm R2 = 0.968, p-value < 10e − 6; PANE vs Rye 
R2 = 0.998, p-value < 10e − 6, PANE vs CP R2 = 0.985). Among the four harnessed algo-
rithms, qpAdm is characterized by the highest average error, and all four approaches 
show a lower accuracy for the admixed populations characterized by a subcontinental 
admixture, in which the two admixing sources are generically close (Fst = 0.01) [28]; see 
Additional file 2: Table S5).

Fig. 5 PANE performance with limited reference genetic variation availability. Only population-based 
inferences are shown.n the upper part of the panel the Fst values (minimum values are marked with * ) 
and the proxy Sources that contribute to the admixture event in the simulated populations are shown. 
A) populations obtained from the combination of two sources with proportions 70-30%; B) admixed 
populations obtained from the combination of two sources with proportions 90-10% and C) 95-5%. D) 
Three-admixed populations generated by combining three sources with 40-30-30% and E) 60-20-20% 
proportions
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We also compared the computational speed of each framework (Fig.  6E) replicating 
(10 iterations) the ancestry inference for the same set of 100 individuals. For PANE and 
Rye, we included the PC time (10 analysis), while for qpAdm we took into consideration 
the estimation of the f2. ASAP outperforms the other methods: PANE computational 
time stands at 454  s (SD = 5  s), while Rye reaches 575  s (SD = 14.1  s), qpAdm 2011s 
(SD = 22.399 s), and ChromoPainter 156 min and 23 s (9383 s, SD = 1148 s).

PANE performance on real data

We tested PANE on real data using a dataset of different ancient Eurasian populations 
[32, 46]. We projected 1380 ancient individuals into the first 10 principal components 
inferred using 1668 present-day individuals. Following Lazaridis et  al. [32, 46], we 
applied PANE on 1350 target individuals, using five putative sources: Western Hunter-
Gatherers (WHG), Caucasus Hunter-Gatherers (CHG), Eastern Hunter-Gatherers 
(EHG), Anatolia Neolithic (AN), and Levant Neolithic.

Fig. 6 Comparison between PANE (red), ChromoPainter NNLS (CP, yellow), qpAdm (blue), and Rye (green) 
modeling the ancestral proportions of pseudo-haploid admixed populations given a set of pseudo-haploid 
sources. A Ancestry proportions for simulated populations with 70–30% sources’ contribution. B Ancestry 
proportions for simulated populations with 90–10% (Pop 9–11) and 95–5% (Pop 12–14) sources’ contribution. 
C Ancestry proportions for three-way admixture simulated populations with 40–30–30% (Pop 15) and 
60–20–20% (Pop 16) sources’ contribution. D Correlation of the ancestry proportion assignment between 
CP, Rye, and qpAdm on the y-axis and PANE on the x-axis, and E computational time for a subset of 100 
individuals

Fig. 7 Ancestry inference using PANE on the aDNA dataset. A The PCA used as input by PANE. B Ancestry 
proportions for 1350 ancient individuals (x-axis ordered by k-mean cluster numbers computed on PANE 
inferred proportions): the upper panel has been estimated using PANE, while the lower panel shows 
estimates reported in the original publication using F4admix [46]
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The ancestry compositions captured by PANE on real data show a significant correla-
tion (R = 0.92, p < 0.0001) with F4admix results obtained in the original paper [46], con-
firming the reliability of PANE in real-world scenarios (Fig. 7, Suppl. Table 6).

Moreover, we explored the individual ancestral composition of specific geographic 
locations in different time transects, as in Lazaridis [46]. This enabled us to pinpoint 
the emergence of ancestral influences across different geographical regions and pre-
historic periods. First, we examined the Anatolian region and confirmed an increase 
in Caucasus/Levantine ancestries of around 3000 KYA, accompanied by a subsequent 
reduction in local Anatolian ancestry (Additional file 1: Fig. S3). Then, we confirmed 
the introduction of CHG-related ancestry into Steppe populations around 5000 KYA, 
alongside the absence of Anatolian ancestry in this region prior to 3000 KYA. We 
did not observe an increase in Levantine PPN ancestry, suggesting that most East-
ern influence is associated with AN ancestry. Our approach corroborates again the 
complex genetic composition observed within the Yamnaya cluster, characterized by 
consistent CHG admixture (Additional file 1: Fig. S4).

PANE analysis further identified a less pronounced overrepresentation of CHG 
ancestry than EHG ancestry in Aegean Bronze Age populations. This observation 
suggests significant gene flow occurring after the Neolithic period, particularly dur-
ing the Early Bronze Age, across the Aegean and Balkan Peninsula regions [33–35, 
47] (Additional file 1: Fig. S5). Similar trends were also observed in Italy, where Iron 
Age Southern Italian samples exhibited the highest frequency of Caucasus hunter-
gatherer ancestry, found almost absent in Central Italian Etruscans (Additional file 1: 
Fig. S6) [48].

Although overall there is a high correlation between the two inferences, we 
observed 273 (out of 6750) highly discordant estimates (HDE), in which the ancestral 
proportion difference exceeds 0.2.

1. When considering Western Hunter-Gatherer ancestry, we observed a correlation 
R = 0.9 (p-value <  1e−4) and 53 HDEs. Many of them include hunter-gatherers from 
Serbia and Romania, which are modeled by PANE as approximately 70% WHG with 
the remaining ancestry mainly assigned to EHG, while 90% WHG and 10% EHG 
were estimated by Lazaridis et al. [46]. These samples were first published by [42], 
who described them as a combination of WHG and EHG using qpAdm (although 
the estimates are associated with very low p-values) and D-statistics.

2. Concerning the ancestry of Turkey Barcin Neolithic individuals, commonly known 
as AN [46], we observed a correlation R = 0.95 (p < 1e − 4) and 59 HDEs. Neverthe-
less, a few individuals exhibit a substantial discrepancy in AN ancestry proportion 
between the two compared methods, making it challenging to determine which 
of the two approaches has the highest performance. For example, PANE estimates 
higher AN ancestry for some Mycenaean individuals [19] while F4admix gives higher 
Anatolian ancestry for an Iron Age individual from Lebanon [37] (Additional file 2: 
Table S6). Both methods can be inaccurate in some cases, as shown by comparisons 
with previous studies.
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3. Concerning the Iran Neolithic/CHG ancestry, we observed a correlation R of 
0.95 (p-value < 1e − 4) and 47 HDEs. Most (20) are related to populations from 
Chalcolithic and Bronze/Iron Age Near East (Iran and Lebanon) individuals. For 
example, seven Bronze Age individuals from Shahr I Sokhta are modeled as hav-
ing a substantially smaller Iran Neolithic/CHG ancestry for PANE estimations 
(mean = 0.65) compared to F4admix (mean = 0.94). In Narasimhan et  al. [20], 
when Shahr I Sokhta individuals are modeled using qpAdm, they show an average 
of 0.66 IN/CHG (SD = 0.05).

4. In the case of EHG, we noted 40 HDEs and an R-value of 0.86 (p-value < 1e − 4). As 
for WHG, most of the HDEs are related to Hunter-Gatherers from the Iron Gates 
regions of Serbia and Romania, for which PANE estimates a higher proportion of 
EHG when compared to Lazaridis et al. [46]. Furthermore, in four Bell Beaker indi-
viduals from Germany, France, and England, PANE estimates a very low proportion 
of such ancestry.

5. We then observed 74 HDEs and a correlation R of 0.88 (p-value <  1e−4) for Levant 
Neolithic ancestry. Most of the HDEs are related to ancient individuals from the 
Near East, for which estimates of Levant PPN are always higher than those inferred 
by Lazaridis et al. [46]. These results align with previous estimates on the same sam-
ples. For example, for the individual I3832, which was modeled as 0.58 Levant PPN 
and 0.42 Iran Chalcolithic using LINADMIX in its original publication [38], PANE 
estimated the Levant PPN proportion at 0.77, which was 0.38 when using F4admix 
[46]. A possible explanation for this discrepancy is related to the fact that in [46], 
the same individual is modeled to have approximately ~ 0.2 related to AN. Similarly, 
PANE ancestral composition for individuals from Roman and Iron Age from Leba-
non are in line with previous DyStruct inferences [37]. Furthermore, F4admix [19] 
estimated a substantial proportion of Levant PPN ancestry in two Greek and one 
Italian Bronze Age samples, in contrast with a series of findings on the same or simi-
lar individuals. All these samples are characterized by a missingness rate higher than 
40% (I9006), suggesting that using PANE on projected PCs might be less biased than 
F4admix estimates.

We also used PANE to test the robustness of the support behind the hypothesis 
that the WHG contributions of British farmers came mostly from continental WHG 
rather than local British WHG [49]. Therefore, we ran PANE with the same settings as 
Brace et al. [49], modeling European Neolithic samples as a mixture of WHG and AN. 
We confirmed their results by finding WHG proportions in Iberian Early Neolithic 
samples similar to those in British Neolithic samples, suggesting a common WHG 
source (Additional file 2: Table S7). We then tested models with pairwise WHG indi-
viduals as possible sources and a single AN population (see the “Methods” section). 
We found that both Iberian and British samples consistently preferred Bichon or Vil-
labruna-associated samples as WHG source, indicating their close relationship to the 
true source and confirming a shared origin in this cluster (Additional file 2: Table S8) 
[39]. This case illustrates how PANE can be a powerful tool to test and refine hypoth-
eses in the ancient genomic field.
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To assess the reliability of our methods in a different region, we leveraged the PCA 
of [20] to assess PANE performance on South-East Asian populations. In doing so, we 
harnessed the available 9 PCs modeling 15 groups as a combination of AN, Ganj Dareh 
Neolithic ancestry, West Siberian hunter-gatherer–related (WSHG), and Andamanese 
hunter-gatherer–related (AHG) and compared to the qpAdm results reported in Nar-
asimhan et  al. [20]. Our results (Additional file  2: Table  S9) show that there is a high 
similarity in estimated ancestry proportions, with the only exception of AN and Ganj 
Dareh Neolithic which are under and overestimated, respectively.

Furthermore, we used PANE to model modern humans as a combination of Mbuti, 
Neanderthal, and Denisova using the first two PCs (Additional file 1: Fig. S7A). In doing 
so, we were able to detect the virtual absence of archaic contribution in Western Africa, 
and the exclusive contribution of Denisovan ancestry in Papuans [50] (Additional file 1: 
Fig. S7B).

Discussion
We present a global ancestry exploration approach, based on PCA and NNLS, that 
allows an accurate estimation of ancestry proportions in admixed groups or single sam-
ples. The approach leverages how the location of samples on the PC space can be related 
to the mean time of coalescence between pairs of samples [51], and to the recent obser-
vation that PC vectors are strongly related to f4 metrics [25]. Specifically, in the case 
of an admixture event, samples will fall along a gradient and their putative admixture 
sources will be placed at the ends of the gradient [22, 51]. Our approach exploits the 
relative coordinates of the admixed samples and the ones of the putative sources in the 
PC space and summarizes the ancestry proportions of the targets through NNLS. There-
fore, the groups selected to build the PC space need to describe the genetic differences 
between the populations of interest: adding an extreme outgroup, for example, will min-
imize the PC coordinates’ differences between the target and proxy source set and limit 
the efficiency of PANE.

An advantage of the method is that it can leverage the entire PC space, allowing a large 
panel of donors to model a given target admixed group or multiple parallel analyses in 
case several different target groups and their relative proxy sources are analyzed.

We demonstrated that the approach is highly accurate in most of the scenarios tested. 
Regardless of the availability of true or proxy admixture sources, our approach correctly 
assigned ancestral proportions, with a low associated error. Moreover, in the rare cases 
of error, PANE appointed a group closely related (Fst = 0.01) to the source. Furthermore, 
our results demonstrate that ASAP reliably detects admixture contributions of 10% or 
more, while contributions as low as 5% are often missed when using proxy sources. In 
contrast, PANE can properly identify even a 5% contribution from the minor source 
when true sources are used, emphasizing that the splitting time between true sources 
and proxies (3 KYA) significantly impacts detection accuracy. The method tends to over-
estimate the major component in cases of imbalanced contributions. Although PANE 
performs well with balanced sources, it faces challenges with minor sources and imbal-
anced admixtures. These findings underscore the necessity for accurate reference panels 
and further exploration of the detection limits for small admixture proportions.
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More importantly, PANE performs well even when pseudo-haploid data with miss-
ing variants are analyzed, with a maximum assignment error of 3%. Specifically, when 
the admixture sources have a split time > 24 KYA, PANE error estimates are lower than 
0.014. On the other hand, for closely related admixture sources, the per-sample misas-
signment can reach 20% when multiple, closely related putative sources are available.

Compared to other global ancestry assignment tools, the approach is faster in terms 
of runtime while being as accurate (ChromoPainter) or more accurate than other tools 
(qpAdm) and, most importantly, provides ancestry estimates based on a straightforward 
formulation of user-defined ancestry sources with no need for in- or out-groups.

When tested on a real dataset of ancient and modern European and Asian genotypes, 
PANE confirmed the trends in ancestry composition observed in previous research, pro-
viding relevant information on the complex scenario of the continent. Notably, it esti-
mated significant gene flows after the Neolithic period in Aegean Bronze Age Eurasian 
populations and confirmed previous findings about the shared origin of WHG ancestry 
in British and Iberian farmers. Furthermore, our results on a PCA built with South-East 
Asian individuals demonstrate that PANE can be used in different world regions. Fur-
thermore, although this property should be thoroughly tested with extensive simula-
tion and comparisons, PANE can infer the presence of archaic introgression in human 
populations.

Our approach relies on the assumption that the target group is indeed admixed. In the 
PCs, the target group might fall within a given cline as a result of a demographic scenario 
different from admixture (i.e., isolation by distance, or genetic drift) [51, 52]. Given that 
the PCA is the backbone of our tool, the accuracy of the assignment will be affected by 
any kind of bias that distorts the PC space (sample size differences between populations, 
ascertainment bias, linkage disequilibrium between SNPs, missing data). Furthermore, it 
is important to highlight that “PCA cannot distinguish between alternative models that 
have the same effect on mean coalescent time”: thus, events, such as admixture, recent 
drift, or isolation by distance, might all produce similar projections [51]. It follows that 
PANE cannot be used as a formal test for admixture, but rather an exploratory tool, and 
integrated with different analyses, such as formal tests for admixture (such as F3 admix-
ture statistics or LD decay methods [5, 26]), to test the admixture event further.

Conclusions
PANE is a powerful and flexible tool for analyzing ancestral proportions in individu-
als and mixed populations, offering a faster and often more precise alternative to other 
available methods. Thanks to the joint use of PCA and NNLS, the method can handle 
various situations, including scenarios with incomplete data. Although ancestral infer-
ences can sometimes be biased by extreme genetic drift, PANE is still a useful tool for 
characterizing large-scale genomic datasets and can be widely used to complement more 
specific analyses, significantly contributing to the understanding of the genetic complex-
ity of human populations.
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Methods
Datasets

Simulated dataset

Genotype data with no missingness We used a simulated genotype dataset from Molin-
aro et  al. composed of 13 simulated demes with different population sizes and split 
times ranging from 250 to 4000 generations, to represent a simplified scenario for cur-
rent European-like (EUR 1–3), East Asian-like (ASN 1–3), and African-like (AFR 1–7) 
groups and 7 sister groups characterized by a split time from their closest population of 
100 generations [28]. The data simulation was carried out with mspms and following a 
modified Van Dorp et al. model [53, 54]. The initial dataset consisted of eight admixed 
groups, obtained by combining pairs of the simulated Ghost populations (GST), all with 
ancestry proportions of 70–30%. The pairs of admixing GST were selected in order 
to cover a broad spectrum of split times. Specifically, we simulated admixture groups 
whose sources split time span from 75 to 9 KYA, six sources shared a bottleneck event 
and for three of these, we simulated an additional one. The initial set also comprised one 
admixed group characterized by a three-way admixture with the proportions of 60–20–
20%, with African-like, European-like, and Asian-like ancestries, respectively.

We simulated an additional three-way admixture group, using the same highly diver-
gent sources as above, but different ancestry proportions, namely 40% for the African-
like ancestry and 20% for both the European and Asian-like ancestries. To test models 
with strongly imbalanced ancestry proportions, we also simulated three groups with 
90–10% and three groups with 95–05% ancestry proportions. In this case, as well, we 
chose the admixture sources (GST) to cover a broad spectrum of split times. All admix-
ture simulations were carried out with admix-simu (https:// github. com/ willi amslab/ 
admix- simu), creating 50 individuals per population, using a constant recombination 
rate (1.25 ×  10−8) and admixture time of 100 generations [28]. We obtained a simulated 
dataset of 4,745,025 SNPs, 20 non-admixed, and 16 admixed groups. After filtering for 
minor allele frequency with PLINK (maf 0.01), the final dataset comprised 284,249 SNPs 
[55]. PC analyses were performed on the final dataset, projecting the admixed target 
samples on the scaffold built from the non-admixed groups. The simulated GST popula-
tions acted as “true sources,” while their sister groups acted as “proxy sources” for all our 
tests.

Ancient (pseudo-haploid) data To mimic the data quality of ancient DNA, we manipu-
lated the simulated set by introducing both missing data as well as using pseudo-hap-
loid genotypes. In each population, we introduced a variable missing rate (from 10 to 
50%) in randomly selected positions, so every 10 individuals would be characterized by 
10, 20, 30, 40, or 50% of missing data. Secondly, we created pseudo-haploid genotypes 
by randomly selecting at each locus one allele and assigning it as a homozygous geno-
type, eventually obtaining for each simulated group 100 pseudo-haploid genotypes from 
the original 50 diploid individuals. The missingness proportions were maintained after 
pruning.

https://github.com/williamslab/admix-simu
https://github.com/williamslab/admix-simu


Page 15 of 21de Gennaro et al. Genome Biology           (2025) 26:29  

PCA was performed after filtering for minor allele frequency (maf 0.01). For the 
pseudo-haploid datasets containing missing data, pruning was also performed (PLINK 
v1.9 indep-pairwise 50 10 0.1) [55].

After the filtering, the bim file of the modern simulated dataset contains 284,249 SNPs, 
the one in which only the true sources are pseudo-haploid has 135,211 SNPs, while the 
one in which the proxy sources are also pseudo-haploid has roughly 100,000 SNPs.

Real modern and ancient dataset

We downloaded the 1240  K + HO dataset (version V52.2, https:// reich. hms. harva rd. 
edu/ allen- ancie nt- dna- resou rce- aadr- downl oadab le- genot ypes- prese nt- day- and- ancie 
nt- dna- data) in EIGENSTRAT format [43, 44]. Such dataset includes present-day and 
ancient DNA data converted in PLINK format using convertf [22].

Starting from the.anno file and following the Aneli et al. method [48], we created a list 
of ancient and modern samples to keep from the 1240 K + HO dataset.

In particular, only the ancient ones (those that in the “Full date “column did not have 
the string “present”) coming from Western Eurasian countries (latitudes higher than 22 
and longitudes between − 15 and 60) and the present-day Mbuti individuals from Congo 
(string “Mbuti” in the “Genetic.ID” column) [5, 56] were selected. Then, we removed 
individuals that in the “Group.ID” column have the string “Ignore.” Finally, we kept only 
those whose “Assessment” column contained the string “PASS.” After removing any 
duplicates, we created a preliminary plink file with only 1240 K + HO ancient samples to 
whom we added other ancient samples taken from other published datasets [32, 46, 48, 
57, 58].

For the modern samples, we selected individuals coming from Western Eurasian coun-
tries with latitudes higher than 22 and longitudes between − 15 and 60, but removing 
those coming from Uzbekistan, Kazakhstan, Algeria, Morocco, Tunisia, and Libya, as 
well as some populations from Russia and others showing “Ignore” within “Group.ID.” 
Then, we selected the samples flagged as “PASS” in the “Assessment” column. In this 
way, we created a preliminary plink file with only the 1240 K + HO modern individuals 
to which we merged other modern-day samples taken from the Raveane et al. dataset 
[34].

From this modern dataset, we extracted only the autosome chromosome SNPs and 
excluded those monomorphic (–maf 0.00001) and with more than 5% missing data (–
geno 0.05) using PLINK [55].

Then, we extracted the bulk of variants built on our modern dataset from the ancient 
dataset and finally merged all with PLINK1.9 excluding the ancient samples with less 
than 20,000 SNPs (N = 1381). To assess the relatedness between individuals and exclude 
close relatives, we calculated the kinship coefficient, pi-hat, which represents the prob-
ability that two randomly selected alleles at the same locus are identical by descent 
(IBD) between two samples. Using PLINK 1.9 with the options –genome –min 0.35, we 
selected pairs of individuals with a pi-hat value of 0.35 or higher, retaining a total of 7312 
unrelated individuals.

https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
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We then filtered out samples with duplicated IDs retaining the one with a higher num-
ber of SNPs. We carried out a principal component analysis (PCA) using smartpca, 
through which we filtered out outliers obtaining a dataset of 6408 samples. Our final real 
dataset, containing 4740 ancient and 1668 modern samples with 206,363 SNPs, was con-
verted to the EIGENSTRAT format using convertf.

Principal component analysis (PCA)

PCA was performed using smartpca (version 16000) available in the EIGENSOFT pack-
age [5].

The admixed (or target) populations were always projected, regardless of the dataset 
used. In the case of datasets with pseudo-haploid or ancient individuals, we projected 
all samples’ genotypes onto the principal components inferred from the diploid/modern 
individuals using the lsqproject: YES option. For each analysis on the simulated and real 
genotype datasets, we run 10 PCs. Furthermore, we performed the same analysis using 
different numbers of PCs, in order to assess the performance of PANE (see Text S1).

Non‑negative least squares (NNLS)

To perform the non-negative least squares, we used the NNLS function, as described in 
[1, 4, 7], which is an adaptation of the Lawson–Hanson NNLS implementation of non-
negative least squares [59] available in the statistical software package R 3.5.1 [60].

We applied NNLS both population-wise and individual-wise. To estimate the NNLS 
population-wise, we estimated the average of each of the population PCs and then 
applied NNLS on the resulting vector. On the other hand, to estimate the NNLS individ-
ual-wise, the PCs of each individual were maintained as separate vectors.

Our approach is equivalent to that of Leslie et al. [7] and Montinaro et al. [2], which 
was used on chromosome painting profiles with the scope of minimizing potential biases 
due to incomplete lineage sorting.

In detail, PANE uses NNLS on a PCA matrix rather than a chromosome painting 
matrix, with the goal of minimizing the squared differences between the observed data 
(individual or population data points in the PC space) and the admixture model’s predic-
tions, constrained by non-negative coefficients:

where P is the PCA matrix of the sources and y is the vector of the tested individual/
populations. In other words, we are minimizing the distance between predicted and 
observed coordinates in the PC space.

Error values reported in the text were calculated as the absolute average difference 
between the observed and the expected proportion assignment. We used a block jack-
knife approach to resample our set and estimate the standard errors. Given that the sim-
ulated set consisted of only chromosome 1, we could not use chromosomes as blocks, as 
usually it is done when the entire genome is available. We thus estimated the number of 
SNPs available after filtering and divided them into 20 blocks. For each resampling step, 
we removed one of such blocks and performed PCA on the remaining ones.

Standard errors were estimated on chromosome-based jackknife replications [61].

min(x)||Px − y||22; x ≤ 0
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Testing post‑admixture genetic drift effect on PANE estimates

We tested the effect of substantial drift, by simulating several two-way admixture events 
with variable admixture generation times: 50, 100, 150, 200, 250, 300, 350, 400, 450, and 
500. Each simulated admixed group underwent a bottleneck, decreasing its effective 
population size from 10,000 to 1000, 50 generations after the admixture event had taken 
place. For the group that underwent the admixture event at 50 generations, we set the 
bottleneck event at 1 generation. In each analysis, we simulated 0.7–0.3 admixture con-
tributions from the two sources, a 250-Mb sequence, a constant recombination rate of 
1.25 ×  10−8, and a mutation rate of 1 ×  10−8. Eventually, we sampled 50 diploid individu-
als from the admixture groups and from the two groups contributing to the admixture 
event. We performed PC analyses by projecting the admixed group on the scaffold built 
by the sources. Simulations were carried out entirely with Msprime [53, 62].

qpAdm

To validate the results obtained from PANE, we performed the most widely used 
approach to assess the ancestry components and the relative proportions of the admixed 
population: qpAdm programs in the ADMIXTOOLS2 package [63], using precomputed 
f2 statistics. For each admixed individual, we tested as “left” populations all the possi-
ble true sources and used all the others as right populations. Subsequently, we selected 
the inference characterized by the largest p-value, irrespectively to their significance. 
Although there are many ways to harness qpAdm to obtain more reliable results, we 
decided to use a strategy comparable to the other tools harnessed here.

Rye

We applied Rye [27] converting the PCA output obtained by smartpca using a custom 
R script. We performed five different rounds using the first ten PCs.

ChromoPainter

ChromoPainter (CP) [64] was applied using the unlinked (-u) model, where, for each 
SNP in the target, we assign a score of 1/K to each reference haplotype that carries 
the same allele, where K is the total number of reference haplotypes that carry the 
same allele.

Analysis of Eurasian ancient and modern genotype data

We carried out a PCA computing 10 principal components (PCs) per each individual in 
our final dataset projecting ancient samples on the top of present-day genome variability 
(N = 1668). We used smartpca version 16,000 with autoshrink lsqproject options for this 
analysis. Subsequently, we selected ancient individuals previously analyzed in Lazaridis 
et al. [46] and filtered out samples with less than 180 K missing SNPs. This resulted in a 
dataset comprising 1380 ancient targets, of which 30 were chosen as sources for PANE. 
The selection of sources samples was based on the five main ancestral sources identi-
fied in Lazaridis et al. [46], namely Western Hunter-Gatherers (WHG), Eastern Hunter-
Gatherers (EHG), Caucasus Hunter-Gatherers (CHG), Anatolian Neolithic, and Levant 
Neolithic. PANE was run using 10 PCs, and the estimates were correlated with F4admix 
results using all samples combined, as well as stratified by different ancestral sources. 



Page 18 of 21de Gennaro et al. Genome Biology           (2025) 26:29 

Pearson correlation analysis was performed using the ggpubr library in R. To explore 
ancestry over time, we visualized single ancestry trends by either selecting individuals as 
indicated in the publication or by visually inspecting populations present in [46] figures.

To assess the reliability of our methods in a different region, we leveraged the PCA of 
[20] to assess PANE performance on South-East Asian populations. In doing so, we har-
nessed the available 9 PCs modeling 15 groups as a combination of Anatolia_N, Ganj_
Dareh_N, WSHG (West Siberian hunter-gatherer–related), and AHG (Andamanese 
hunter-gatherer–related) and compared to the qpAdm results reported in [20].

Inference of archaic admixture in modern humans

To test the applicability of PANE in archaic admixture inference, we have projected 
6441 modern and ancient genomes onto the PC space built using 182,314 SNPs from 
Chimp, Neanderthal (Vindija), and Denisova [40, 41]. PCA was carried out using 
smartpca [22] with lsqproject and autoshrink options set as NO. Next, we used PANE 
to model different individuals as a combination of Mbuti, Neanderthal, and Denisova, 
using the first 2 PCs. 
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 Additional file 1: Supplementary Figure S1-S7. Fig. S1: Overview of the simulated scenario. We used a simulated 
genotype dataset composed by 13 simulated demes with different population sizes and split times ranging from 
250 to 4,000 generations, to represent a simplified scenario for current European-like (EUR 1-3), East Asian-like (ASN 
1-3) and African-like (AFR 1-7) groups and 7 sister groups characterized by a split time from their closest popula-
tion of 100 generations [28]. Fig. S2: Effect of drift on PANE estimations, results showing the difference between the 
observed and expected major ancestry assignment by PANE (y-axis) across 10 admixture generations (x-axis), rang-
ing from 50 to 500. For each admixture generation, the dots represent each simulated sample (50 per each group) 
and the boxplot shows the group distribution. The group average error increases with the number of admixture 
generations elapsed since the admixture event, indicating that substantial drift does have an impact on the ancestry 
assignment accuracy. Notably, in this scenario PANE carried a maximum 0.15 error in individual-based analyses, and a 
0.12 error in the population average. Fig. S3: Ancestry proportion patterns in Anatolia. Following Lazaridis et al. 2022 
[32, 46], we estimated ancestry composition in different Eurasian broad regions. The left and right panel shows the 
ancestry composition using PANE and F4admix (as estimated by [32, 46]). Fig. S4: Ancestry proportion patterns in the 
Steppe region. Following Lazaridis et al. 2022 [32, 46], we estimated ancestry composition in different Eurasian broad 
regions. The left and right panel shows the ancestry composition using PANE and F4admix (as estimated by [32, 46]). 
Fig. S5: Ancestry proportion patterns in Southern East Europe. Following Lazaridis et al. 2022 [32, 46], we estimated 
ancestry in different Eurasian broad regions. The left and right panel shows the ancestry composition using PANE 
and F4admix (as estimated by [32, 46]). Fig. S6: Ancestry proportion patterns in Italy. Following Lazaridis et al. 2022 
[32, 46], we estimated ancestry in different Eurasian broad regions. The left and right panel shows the ancestry 
composition using PANE and F4admix (as estimated by [32, 46]). Fig. S7: Testing hybridization with other species. 
(A) Principal Component Analysis (PCA) used as input for the PANE framework. A total of 6,441 modern and ancient 
genomes are projected onto the genetic variability of Neanderthal, Denisovan, and chimpanzee genomes, using 
182,314 SNPs for the projection. (B) PANE results showing average Denisovan and Neanderthal ancestry proportions 
(± 1 SD) in modern human populations, with populations sorted by Neanderthal ancestry levels.

 Additional file 2: Supplementary Table S1-S9. Table S1: List of simulated populations. Column "% admix" indicates the 
admixed proportions for both the two-way (from Pop1 to Pop 14) and three-ways (Pop15-16). In Source 1, Source 
2, and Source 3 columns are listed the sources used to create the admixed individuals, while Proxy 1, Proxy 2 and 
Proxy 3 columns indicate the populations closer to the real sources. The pairs of admixing Ghosts were selected to 
cover a broad spectrum of split times ("Minimum split time (KYA)" column), allowing us a deeper evaluation of the 
framework performance. Fixation index (Fst) for real sources and Proxies are shown in"Sources Fst" and "Proxies Fst" 
columns respectively. Table S2: PANE performances on simulated genotypes with no missingness. Results are listed 
in tables separated by methodology (Population-based and individual-based) and donors (real sources or closer 
populations) used. Each table shows PANE results, the errors (calculated as the difference from the PANE results and 
the expected proportion), and the standard errors (obtained from the jackknife approach - see M&M). Table S3: PANE 
performances with pseudo-haploid samples. Results are listed in tables separated by used methodology (Popula-
tion-based and individual-based). Each table shows PANE results, the errors (calculated as the difference from the 
PANE results and the expected proportion), and the standard errors (obtained from jackknife approach- see M&M). 
Table S4: PANE performances with pseudo-haploid samples and limited reference genetic variation availability. 
Results are listed in tables separated by used methodology (Population-based and individual-based). Each table 
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shows PANE results, the errors (calculated as the difference from the PANE results and the expected proportion), 
and the standard errors (obtained from the jackknife approach - see M&M). Table S5: Comparison between PANE 
(columns 3:9), qpAdm (columns 10:16), Rye (columns 17:23), and ChromoPainter NNLS (columns 24:30) modeling 
the ancestral proportions of pseudo-haploid admixed populations given a set of pseudo-haploid sources. Individual-
based approach was applied. Table S6: Ancestry compositions captured on real data by PANE compared with those 
obtained with F4admix in Lazaridis et al., 2022 [32, 46]. Table S7: PANE composition with the same settings as Brace 
et al. 2019 [49], modeling European Neolithic samples as a mixture of WHG and AN. Table S8: Models with pairwise 
WHG individuals as possible sources and a single Anatolian Neolithic population. Table S9: Assessing the perfor-
mance of PANE on a South-East Asian dataset. We leveraged the PCA of Narasimhan et al. 2019 [20] to assess PANE 
performance on South-East Asian populations. In doing so, we harnessed the available 9 PCs modeling 15 groups as 
a combination of Anatolia_N, Ganj_Dareh_N, WSHG (West Siberian hunter-gatherer–related), and AHG (Andama-
nese hunter-gatherer–related) and compared to the qpAdm results reported in Narasimhan et al. 2019 [20].

 Additional file 3: Supplementary Text S1. Text S1: Evaluation of PANE performance in relation to the number of PCs.
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