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Abstract 

Clustering can identify the natural structure that is inherent to measured data. For sin‑
gle‑cell omics, clustering finds cells with similar molecular phenotype after which cell 
types are annotated. Leiden clustering is one of the algorithms of choice in the single‑
cell community. In the field of spatial omics, Leiden is often categorized as a “non‑
spatial” clustering method. However, we show that by integrating spatial information 
at various steps Leiden clustering is rendered into a computationally highly perfor‑
mant, spatially aware clustering method that compares well with state‑of‑the art 
spatial clustering algorithms.

Keywords: Spatial omics, Clustering, Leiden, Domains, Niches, Spatial clustering, 
Spatial biology, Bioinformatics

Background
Single-cell transcriptomics has revolutionized our understanding of cellular heterogene-
ity by enabling the measurement of gene expression at the individual cell level. However, 
this high-dimensional data poses significant challenges in extracting meaningful bio-
logical insights. This can be overcome by grouping cells with similar expression profiles 
into distinct clusters. By partitioning cells based on transcriptional similarities, clus-
tering facilitates the characterization of cell-type diversity within a heterogeneous cell 
population. Furthermore, clustering provides a basis for downstream analyses, such as 
differential expression, trajectory inference, and cell–cell interaction. In single-cell tran-
scriptomics, a variety of clustering algorithms have been used and Leiden clustering has 
emerged as a performant choice [1]. Leiden clustering can be extended to consider mul-
tiomics data via the Leiden multiplex functionality [2].

Progress in spatially resolved omics methods has empowered researchers with the abil-
ity to map gene expression in a spatial manner, transcending conventional cell clustering 
approaches [3]. With spatial omics, scientists can discern higher-order tissue structures, 
termed spatial domains, by integrating spatial information alongside gene expression 
data. The identification of spatial domains through spatial clustering has emerged as a 
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standard practice in constructing spatial atlases. This is instrumental in visualizing tis-
sue anatomy, delineating tissue spatial continuity, pinpointing domain-specific marker 
genes, and unravelling domain-dependent molecular regulatory networks. Performance 
of spatial domain identification improves when leveraging the spatial information com-
pared to non-spatial methods [4].

The Leiden algorithm clusters nodes in a network by optimizing a quality function, in 
a simple case this can be the modularity, which maximizes the differences between the 
actual number of edges in a community and the expected number of such edges under a 
null model. In single-cell transcriptomics, the cells (nodes) are connected to other cells 
based on the distance between cells in the gene expression space (edges), usually in a 
dimensionality reduced latent space. Leiden clustering therefore has been typically cat-
egorized as a “non-spatial” clustering method. However, spatial information can be lev-
eraged at various processing steps, e.g., through spatial feature engineering or directly in 
the clustering procedure rendering Leiden spatially aware. Previous work in the domain 
of geographic health care service areas extended Leiden by integrating spatial informa-
tion and enforcing spatially contiguous clusters [5]. However, for spatial transcriptomics 
this approach seems less suitable as domains can be spatially separated, e.g., in repeating 
or symmetric structures such as the two brain halves. Another approach is to include 
spatial embeddings using Leiden multiplex. Leiden multiplex enables the user to define 
an arbitrary number of networks (layers) with the same set of nodes (cells or spots) that 
describe different modalities of edges between the nodes. So, in spatially resolved omics 
data, the spatial neighborhood can be encoded by defining a spatial connectivity (based 
on, e.g., Euclidean distance) as the weight of edges between nodes as an additional layer 
to the typical k-nearest neighbors in gene expression space.

Results and discussion
In this study, we review how Leiden clustering can utilize spatial information through 
selection of spatially variable genes (SVGs) instead of highly variable genes (HVGs) [6], 
spatially aware dimensionality reduction through MUTLISPATI-PCA [7] (msPCA), and 
explicitly modelling the spatial embedding in the Leiden multiplex clustering (Spatial-
Leiden) (Fig. 1a). We demonstrate their application to a 10x Visium spatial transcriptom-
ics dataset of the human dorsolateral prefrontal cortex (DLPFC), the most widely used 
benchmark dataset for spatial clustering methods [8]. This dataset consists of spatial 
gene expression data and histology images of 4 replicate slices from 3 donors, together 
with ground truth annotation of anatomical domains in those tissue samples. We com-
pare the performance of a non-spatially aware and SpatialLeiden clustering to two widely 
used spatially aware domain detection tools, SpaGCN and BayesSpace [9, 10], and evalu-
ate the performance of the tools (Fig. 1b, c).

While use of SVGs over HVGs yielded only minor improvements, we observed sub-
stantial improvement in performance when using spatially aware dimensionality reduc-
tion (msPCA) and using SpatialLeiden over non-spatial Leiden, revealing a better 
representation of the neocortex layering pattern (Fig. 1b, Additional File 1: Fig. S1-S3). 
We quantitatively evaluated performance of the different clustering strategies using the 
Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) score, showing 
significant improvements of SpatialLeiden over the non-spatial Leiden implementation 
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(Additional File 1: Table  S1, S2), with performance that was comparable to SpaGCN 
and BayesSpace (Fig. 1c) at a fraction of the processing time. SpatialLeiden performed 
favorably when we compared its performance to other tools in a recent benchmark 
study, ranking 5th of 15 tools [4] (see Additional File 1: Supplementary Methods for fur-
ther details).

As with other multi-modal clustering approaches, careful consideration has to be 
paid to a number of parameters including the resolution to be applied to each modal-
ity (with the same implications as in Leiden, i.e., a higher resolution meaning stronger 
within cluster connectivity and therefore more clusters) and the weight of each modality 
(Additional File 1: Fig. S4). Furthermore, the spatial relationship between cells can be 
modelled in different ways; a regular grid pattern is suitable for Visium (isometric) and 
binned Stereo-seq (square), while for imaging-based spatially resolved transcriptomics 

Fig. 1 SpatialLeiden workflow. a Schematic of data processing and modelling steps to enable spatially aware 
Leiden clustering; feature selection can be performed by, e.g., SVG selection, dimensionality reduction by, 
e.g., MULTISPATI‑PCA, and clustering is performed by SpatialLeiden. b Histology and manually annotated 
neocortex layered domains for the mouse brain DLPFC (slice 151673) and spatial domains detected by 
Leiden, SpatialLeiden, SpaGCN, and BayesSpace. c Box plot of ARI and NMI for all 12 DLPFC samples. 
Performance of SpaGCN and BayesSpace is in line with previous reports [11]. Center line: median; box limits: 
upper and lower quartiles; whiskers: 1.5 × interquartile range; dots: outliers; asterisks: significance (false 
discovery rate, two‑sided Wilcoxon signed‑rank test), only shown for Leiden vs corresponding SpatialLeiden 
(see Additional File 1: Table S1, S2)
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methods Delaunay triangulation or k-nearest neighbors can be used to define the spatial 
layer. We investigated the effect of the neighborhood structure and size and found it to 
have similar effects as changing the weighting of the spatial layers (Additional File 1: Fig. 
S5, S6).

Many domain identification methods integrate spatial and gene expression informa-
tion into a joint latent space, which is then clustered using conventional so-called “non-
spatial” clustering methods, such as Leiden. To investigate whether using SpatialLeiden 
can further enhance domain identification, we generated spatially informed latent spaces 
using Banksy [12] and SpiceMix [13] while varying the influence of the spatial informa-
tion in the latent space. SpatialLeiden improved domain identification, particularly when 
the spatial information contributed less to the joint latent space (Additional File 1: Fig. 
S7).

To test whether SpatialLeiden is applicable across technologies, tissues, and neigh-
borhood models, we analyzed a number of datasets (Stereo-Seq mouse embryo [14], 
BaristaSeq mouse brain primary cortex, MERFISH mouse brain hypothalamus preoptic 
area [15], osmFISH mouse brain somatosensory cortex, STARmap mouse brain medial 
prefrontal cortex [16, 17], STARmap1k mouse brain visual cortex) and demonstrated 
exceptional improvements over non-spatially aware Leiden clustering. SpatialLeiden 
demonstrated top tier performance for all datasets (Fig. 2, Additional File 1: Table S3). 
For imaging-based spatial transcriptomics methods, we found that modelling the spatial 
neighborhood using the 10 k-nearest neighbors generally performed better than using 
Delaunay triangulation. When using HVG selection and PCA all non-Stereo-seq dataset 
were processed within 2.5 min utilizing less than 400 MB of RAM, and all Stereo-seq 
samples were processed in less than 8 min with a maximum of 2 GB of RAM (Additional 
File 1: Fig. S8).

Conclusions
Our results show that the reference implementation of the Leiden algorithm can indeed 
be used as a spatially aware clustering algorithm. Subsequent studies that compare spa-
tially aware clustering algorithms should clearly state that they compare to non-spatial 
implementation of Leiden, rather than misclassifying Leiden as a non-spatial algorithm.

We describe the different steps at which spatial awareness can be introduced into the 
analysis, and our implementation allows easy parameterization of key considerations for 
modelling gene and spatial modalities. While many spatial domain clustering tools rely 
on spatially aware dimensionality reduction approaches, this is often followed by non-
spatial clustering, and we demonstrated that these methods can improve with spatially 
aware clustering such as SpatialLeiden.

Due to the algorithmic similarity between Louvain and Leiden clustering, our 
approach is directly applicable to Louvain community detection. Furthermore, leverag-
ing an additional graph layer for the spatial neighborhood has the potential to be trans-
ferred to other graph-based clustering methods.

The same way Leiden became the method of choice for clustering of single-cell data, 
we believe that SpatialLeiden will become the method of choice for spatial data owing to 
its efficiency, simplicity, and ease of integration into existing analysis workflows.
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Methods
Data processing

Data was analyzed using python (v3.10.14), Scanpy [18] (v1.10.1), and Squidpy [19] 
(v1.4.1).

Spatial neighborhood graph generation

The neighbors of each cell were defined depending on the technology. For datasets with a 
regular grid, the neighbors were defined using squidpy.gr.spatial_neighbors with coord_
type ‘grid’, n_rings set to 1, and n_neighs set to 6 or 4 for Visium and Stereo-seq, respec-
tively (unless otherwise specified). For all other datasets, the neighbors were defined 
either using Delaunay triangulation (squidpy.gr.spatial_neighbors with delaunay = True) 
or using the k-nearest neighbors (squidpy.gr.spatial_neighbors with coord_type ’generic’ 
and n_neighs set to 10 unless otherwise specified). The untransformed neighborhood 
graph ‘spatial_connectivities’ was used as is for regular grids as all connections are equi-
distant. For Delaunay triangulation and kNN, the ‘spatial_distances’ were transformed to 
‘spatial_connectivities’ via the following formula:

Fig. 2 Performance of SpatialLeiden across technologies and tissues. a Stereo‑Seq of the mouse embryo at 
various development stages. b BaristaSeq of mouse primary cortex. c MERFISH mouse brain hypothalamus 
preoptic area. d osmFISH of mouse somatosensory cortex. e STARmap mouse brain medial prefrontal cortex. 
f STARmap* of mouse visual cortex. Performance metrics of other tools are taken from Yuan et al. [4]. Methods 
were run with 5 different random seeds and median results were reported per sample. a–c, e Box plot of 
the median NMI with center line: median; box limits: upper and lower quartiles; whiskers: 1.5 × interquartile 
range; dots: outliers. d, f Bar plot of the median NMI
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HVG and SVG detection

HVGs were detected based on filtered count data (scanpy.pp.highly_variable_genes with 
flavor ‘seurat_v3’). To detect SVGs, first the neighbors were defined as described above, 
and the Moran’s I score was calculated for all genes using squidpy.gr.spatial_autocorr 
with mode ‘moran’ and selecting the top 3000 scoring genes. Gene selection was only 
performed for capture-based spatial transcriptomics technologies (Visium, Stereo-seq).

MULTISPATI‑PCA

We implemented MULTISPATI-PCA [7] in python (https:// github. com/ HiDiH labs/ 
multi SPAETI , v0.1.0) and used it to perform spatially aware dimensionality reduction. 
The spatial neighborhood graph ‘spatial_connectivities’ was used to calculate 30 com-
ponents (corresponding to the 30 largest eigenvalues) based on the 3000 HVGs/SVGs 
(Visium, Stereo-seq) or all genes in the case of imaging-based technologies (STARmap, 
STARmap*, MERFISH, BaristaSeq, osmFISH) as for normal PCA.

Latent neighborhood graph generation

The spatial neighborhood graph in the Visium grid ‘spatial_distances’ from squidpy.
gr.spatial_neighbors (as described in SVG detection) is used as the spatial layer for Lei-
den clustering. To build the neighborhood graph in latent space of gene expression, we 
first calculated the first 30 principal components based on the top 3000 variable genes 
(scanpy.tl.pca). We identified the 15 nearest  neighbors per spot (scanpy.pp.neighbors) 
based on the PCA or MULTISPATI-PCA results from either the HVGs/SVGs (Visium, 
Stereo-seq) or for all genes in the case of imaging-based technologies (STARmap, STAR-
map*, MERFISH, BaristaSeq, osmFISH) and used the resulting ‘connectivities’.

Non‑spatially aware Leiden

We used Leiden [1] (https:// github. com/ vtraag/ leide nalg, v0.10.2) as implemented 
in Scanpy with the default parameters and varied the resolution to achieve the cor-
rect number of clusters for each of the DLPFC datasets following the approach of the 
SpaGCN.search_res function (https:// github. com/ jianh uupenn/ SpaGCN).

Spatially aware Leiden multiplex (SpatialLeiden)

We implemented a spatially aware version of Leiden (https:// github. com/ HiDiH labs/ 
Spati alLei den, v0.1.0) by using the Layer multiplex [20]. An additional graph encoding 
for the spatial neighborhood of the cells was added as second layer in addition to the 
layer encoding gene expression in latent space. The additional spatial layer was encoded 
as RBConfigurationVertexPartition as is the default for the scanpy implementation for 
the latent space graph. The optimal clustering was identified by running the Optimiser.
optimise_partition_multiplex from leidenalg until convergence. As only the ratio of the 
layer weights is relevant, the weight for the gene expression latent space layer was kept 
at 1, and the weight for the spatial neighborhood was set depending on technology and 
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method of neighborhood definition. The resolution for the latent space partition was set 
by running the standard Leiden clustering and identifying the resolution which yields 
the correct number of clusters. The resolution of the spatial partition was then varied to 
identify the correct number of clusters in the multiplex Leiden using the same approach 
as described for the standard Leiden method.

Implementation and comparison to other spatial clustering algorithms

Implementation and comparison to other spatial clustering algorithms is described in 
the supplemental methods.

Statistical testing

To test significant differences in ARI or NMI, two-sided Wilcoxon signed-rank tests 
were performed and the false discovery rate correction calculated with the Benjamini–
Hochberg procedure.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 025‑ 03489‑7.

 Additional File 1: Supplementary Information. Supplementary methods, Supplementary Figures (Fig. S1‑S8), and 
Supplementary Tables (Table S1‑S4).

 Additional File 2: Source data. Data to reproduce Fig. 1c, 2 , and S8.
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