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Abstract 

We present multi‑integration of transcriptome‑wide association studies and colocaliza‑
tion (Multi‑INTACT), an algorithm that models multiple “gene products” (e.g., encoded 
RNA transcript and protein levels) to implicate causal genes and relevant gene prod‑
ucts. In simulations, Multi‑INTACT achieves higher power than existing methods, 
maintains calibrated false discovery rates, and detects the true causal gene product(s). 
We apply Multi‑INTACT to GWAS on 1408 metabolites, integrating the GTEx expression 
and UK Biobank protein QTL datasets. Multi‑INTACT infers 52 to 109% more metabolite 
causal genes than protein‑alone or expression‑alone analyses and indicates both gene 
products are relevant for most gene nominations.

Background
Genome-wide association studies (GWAS) have greatly advanced our understanding of 
the genetic basis of complex diseases and traits by identifying numerous variant-level 
genetic associations. However, most identified associated variants lie in noncoding 
genome regions [1, 2], often obscuring their target genes and complicating the therapeu-
tic target identification. Recent efforts to address this problem have resulted in the emer-
gence of genome-scale molecular quantitative trait loci (QTL) annotations [3, 4] and the 
development of statistical methods bridging genetic variants with molecular phenotypes 
of gene candidates and complex traits [5–18]. These mechanism-aware putative causal 
gene (PCG) implication methods [8] focus on molecular phenotypes that can be unam-
biguously linked to specific genes. Henceforth, we refer to such molecular phenotypes 
as gene products. Key gene products commonly used in QTL mapping include transcrip-
tome abundance, isoform usage, RNA decay rate, and protein abundance.
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Existing mechanism-aware methods primarily implicate PCGs through a single gene 
product. Transcriptome-wide association studies (TWAS) [10–12, 14, 15] evaluate gene 
expression’s mediating role by examining the correlation between genetically predicted 
expression with a GWAS trait. Colocalization analyses [14, 16, 17] aim to identify var-
iant-level overlap of causal expression QTLs (eQTLs) and GWAS associations. Each of 
these methods has been shown to have distinct limitations due to statistical and biologi-
cal factors such as horizontal pleiotropy and linkage disequilibrium (LD) hitchhiking, 
which result in false positives and negatives [5, 19–21].

While eQTL data have shown promise for expanding our understanding of complex 
trait genetic architecture [3, 22, 23], they do not always illuminate the true effects of 
causal genes on complex traits [24–26]. Recent work [27] suggests that most disease 
heritability cannot be explained by tissue-specific cis-expression quantitative trait loci 
(eQTL) data but rather by other molecular mechanisms. In particular, splicing QTLs 
(sQTLs) [3, 28] and protein QTLs (pQTLs) [25, 29] have shown to display minimal 
eQTL overlap and may independently influence disease heritability. Consequently, tran-
scriptome-wide association studies (TWAS) and colocalization analysis of GWAS and 
eQTL data are often ineffective means of identifying causal genes. Numerous molecular 
phenotypes—including isoform usage, RNA degradation, and protein abundance—have 
demonstrated their relevance in explaining and predicting disease risk [30–43]. Joint 
analysis of multiple gene products can offer a holistic view of the underlying biology and 
improve the PCG implication performance.

In this study, we introduce Multi-INTACT, a mechanism-aware PCG inference 
method that aggregates colocalization and TWAS evidence across diverse gene products 
within a Bayesian framework. Multi-INTACT gauges the causal significance of a target 
gene concerning a complex trait and identifies the pivotal gene products. Using com-
prehensive simulations, we demonstrate the advantages of Multi-INTACT over existing 
methods. Finally, we use Multi-INTACT to detect PCGs influencing plasma metabolite 
levels via RNA transcript or protein levels.

Results
Method overview

The key idea of Multi-INTACT is to leverage information from multiple molecular phe-
notypes to implicate PCGs. Particularly, we define gene products as the molecular phe-
notypes that can be explicitly linked to genes. Contemporary experimental technology 
allows for the measurement of various gene products such as RNA abundance, isoform 
usage, RNA decay rate, and protein abundance. To examine potential gene-trait causa-
tive links, Multi-INTACT extends the canonical single-exposure (i.e., a single molecular 
phenotype) instrumental variables (IV) analysis/TWAS method to account for multi-
ple endogenous variables, integrating colocalization evidence in the process. Genetic 
association analysis results of molecular QTLs and GWAS loci are essential to Multi-
INTACT’s inferential procedure. We summarize the Multi-INTACT method workflow 
in Fig. 1a.

While the proposed inference framework can be applied to incorporate many gene 
products simultaneously, for simplicity, we illustrate the method using two gene 
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products, gene expression levels (E) and protein abundance (P). The Multi-INTACT 
model is built upon the existing IV analysis framework, accommodating multiple 
endogenous variables (i.e., E and P) [44]. Figure 1b depicts the assumed directed acy-
clic graph (DAG) for potential relationships between molecular QTLs (G), gene prod-
ucts (E and P), unobserved confounding (U), and the complex trait of interest (Y). 
The primary goal of the statistical inference is to test for potential causal relationships 
from the gene products to the complex trait (i.e., E → Y  and P → Y  ). In the con-
text of a causal model, these potential relationships are represented by the do-calcu-
lus [45] P(Y | do(E)) and P(Y | do(P)) , while allowing flexible relationships between 
gene products. More specifically, we aim to answer the following two related scientific 
questions for each gene candidate: 

1. Is the gene candidate a PCG, i.e., do any of its gene products exert a potential causal 
effect on the trait of interest?

Fig. 1 a Multi‑INTACT workflow. First, we perform multi‑SNP fine‑mapping analysis of eQTL, pQTL, and GWAS 
data (see Methods section). Then, we perform pairwise colocalization analysis of the eQTL and GWAS results, 
and separately, the pQTL and GWAS results. We generate eQTL TWAS weights and pQTL PWAS weights 
from the fine‑mapping analysis. Using these weights, we compute the canonical correlation between the 
GWAS trait and imputed gene product levels. The canonical correlation and pairwise colocalization evidence 
serve as key inputs for Multi‑INTACT analysis. Multi‑INTACT utilizes an EM algorithm to determine the most 
relevant gene product based on the observed data. b Causal diagram that connects genetic variants G, 
expression levels of a candidate gene E, protein levels of a candidate gene P, and a complex trait Y. The node 
U represents latent confounders of effects between E, P, and Y. A similar diagram is assumed by multivariable 
Mendelian randomization methods. The edges that are highlighted in red are those that Multi‑INTACT is 
designed to infer. The solid edges represent the graphical model assumed by most multivariable Mendelian 
randomization methods. The dashed lines emphasize that Multi‑INTACT is designed to be robust to situations 
in which there are effects between gene products or there are violations of the exclusion restriction (i.e., 
direct‑effect genetic variants)
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2. Provided that the gene candidate is a PCG, what are the relevant gene products?

To assess the plausibility of a gene candidate being a PCG, Multi-INTACT applies an 
empirical Bayes procedure to compute a gene-specific posterior probability, denoted 
as the gene probability of putative causality. In particular, the likelihood computation 
generalizes from the existing single-trait TWAS methodology by constructing the com-
posite instrument variables, Ê and P̂ , using their respective molecular QTLs and sub-
sequently testing their canonical correlation with Y. These composite IVs are naturally 
interpreted as the genetic prediction of the corresponding molecular phenotypes, and 
the procedure follows the principles of the IV analysis framework [46, 47]. The prior 
formulation is designed to ensure the key causal assumptions and validate the putative 
causality claim. Specifically, the prior incorporates the colocalization evidence of molec-
ular QTLs and GWAS hits to guard against violations of the exclusion restriction (ER) 
assumption caused by widespread LD in genetic data. Similar to the original INTACT 
method [8], the incorporation of probabilistic colocalization evidence in the Multi-
INTACT model relies on Bayes’ rule and is justified by Dempster’s rule of combination 
[48]. We note that under various possible causal scenarios (Additional file 1: Fig. S1), not 
all types of molecular QTLs are necessarily colocalized with GWAS hits. Additionally, 
considering the low practical power to detect colocalization [19], our implementation 
requires at least one type of molecular QTL to exhibit modest colocalization evidence, 
i.e., has a gene-level colocalization probability greater than zero, as a minimum neces-
sary condition for a candidate gene to be classified as a PCG. Finally, the complement 
of a gene probability of putative causality is a local false discovery rate (lfdr), which is 
suitable for the standard Bayesian false discovery rate (FDR) control procedure to guard 
against type I errors [49–54].

To address the second question on identifying relevant gene products, we formulate 
a model selection problem considering all possible causal relationships from examined 
gene products to the complex trait. In our illustrative example, Multi-INTACT evaluates 
the posterior probabilities for the following four mutually exclusive models: 

1. M0 : neither E or P exerts an effect on Y, i.e., the null model
2. ME : only E exerts an effect on Y, i.e., the E → Y  model
3. MP : only P exerts an effect on Y, i.e., the P → Y  model
4. ME+P : both P and E exert effects on Y, i.e., the (E,P) → Y  model

For a general case where there are p gene products considered, there are 2p models to 
be compared. This presents a practical limitation for Multi-INTACT, as the number of 
models increases rapidly with p.

Multi-INTACT implements an EM algorithm to estimate the empirical Bayes prior 
distribution among the three competing alternative models by pooling information 
across all gene candidates. It subsequently evaluates the posterior model probabilities, 
i.e., Pr(ME | data), Pr(MP | data), and Pr(ME+P | data) , for each gene candidate using the 
Bayes rule. Finally, Multi-INTACT reports a gene product relevance probability of each 
gene product for a given candidate by marginalizing the corresponding posterior model 
probabilities:
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We provide technical details and features of the Multi-INTACT method in Meth-
ods  section. In brief, the Multi-INTACT model can be represented by a structural 
equation model (SEM) that allows pleiotropic effects. Hence, it is robust against some 
of the most common violations of the ER assumptions using genetic data. Importantly, 
although the causality claim is derived based on the one-sample design (i.e., all genetic, 
molecular phenotypes, and complex traits are measured on a single cohort), it can be 
extended to multi-sample designs, which are common among available genomic and 
genetic data.

Simulation study

To evaluate the performance of Multi-INTACT, we perform extensive simulation stud-
ies based on genetic data from GTEx. We extend the simulation design introduced in 
[8], which uses real genotypes of 477K SNPs on chromosome 5 from 500 GTEx samples. 
The selected genomic region contains 1198 consecutive genes, each with at least 1500 
common cis-SNPs, some of which are located in the overlapping cis-regions of multi-
ple gene candidates. We consider a multi-sample design to simulate the molecular and 
GWAS phenotypes, where the residuals of E, P, and Y are uncorrelated after controlling 
for their shared genetic components. The phenotype data are generated by randomly 
sampling the DAGs shown in the second row of Additional file 1: Table S1. Note that the 
data generative models differ from the Multi-INTACT model, as they make additional 
assumptions connecting G, E, and P. Each assembled simulated dataset contains 1198 
genes with ∼ 80% non-PCGs and ∼ 20% PCGs. The causal mechanism of each simulated 
PCG follows a discrete distribution of ME ,MP , and MP+E models, which is varied across 
different datasets. In total, we generate 100 datasets for analysis. Complete simulation 
details are provided in Methods section and Additional file 1: Supplemental Methods.

For each simulated dataset, we perform multi-SNP fine-mapping analyses using indi-
vidual-level genotype-phenotype data for all molecular and complex traits. We then sep-
arately conduct colocalization [14] and TWAS [15] analysis for the protein-GWAS and 
expression-GWAS data. The resulting single-molecular trait integrative analysis data are 
subsequently used as input for Multi-INTACT. For comparison, we also perform single-
molecular trait INTACT [8] analysis for expression and protein data, respectively.

We first assess the ability of the Multi-INTACT method to identify PCGs. Specifically, 
we evaluate the averaged power and false discovery rate at the target FDR control level 
of 5% across all simulated datasets for all methods. The results show that Multi-INTACT 
exhibits optimal power while properly controlling type I errors (Fig. 2). Multi-INTACT 
outperforms existing methods that use a single gene product for PCG implication, 
including TWAS, colocalization analysis, and INTACT. We find that TWAS methods 
suffer from severely inflated type I errors due to failure to account for LD hitchhiking, 
while colocalization methods properly control type I errors but are overly conserva-
tive. Finally, while the single-trait INTACT method maintains fairly consistent power 
and FDR across TWAS prediction models (Additional file 1: Table S2), Multi-INTACT 
achieves higher power mainly because additional gene products are considered.

(1)
Pr(E exerts an effect on Y | data) = Pr(ME |data)+ Pr(ME+P | data)

Pr(P exerts an effect on Y | data) = Pr(MP | data)+ Pr(ME+P | data).



Page 6 of 23Okamoto et al. Genome Biology           (2025) 26:19 

To illustrate Multi-INTACT’s ability to accommodate results from different TWAS 
prediction methods, we run Multi-INTACT using various popular molecular phenotype 
prediction models and observe that Multi-INTACT’s power and FDR results remain 
fairly consistent across different TWAS models (Additional file 1: Table S3).

Additionally, we compute the gene probabilities of putative causality using only the 
summary association statistics of the simulated complex trait. We find the correspond-
ing results are nearly identical to those obtained from individual-level GWAS data 
(Additional file 1: Table S4). It should be acknowledged that our summary-level statis-
tics represent a best-case scenario, as the LD information perfectly matches the under-
lying GWAS samples. In practice, LD information derived from a population reference 
panel often leads to imperfect characterization of sample LD and less-accurate inference 
results than what are obtained in this experiment.

Next, we evaluate Multi-INTACT as a means to identify relevant gene products 
for PCGs. To this end, we first apply the EM algorithm to estimate the proportions 
of PCG mechanisms in each simulated dataset. Then, we compute the correspond-
ing gene-level posterior model probabilities for ME ,MP , and ME+P . We find that the 
EM algorithm estimates of the mechanism distributions are reasonably accurate, i.e., 
the true proportion of PCGs following a mechanism always falls within the inter-
quartile range of the EM algorithm estimate distribution (Additional file 1: Fig. S2). 
The distributions of the posterior model probabilities, stratified by the underly-
ing true causal mechanisms, are shown in Fig. 3 and Additional file 1: Figs. S3–S5. 
Although the data do not completely distinguish the true mechanism in all settings, 
we find that the true mechanisms are always assessed with the highest posterior 
probabilities on average. Finally, we compute the gene product relevance probabili-
ties for E and P across all genes. Using the gene product relevance probabilities as 

Fig. 2 Average realized power and false discovery rates for each integrative PCG‑implicating method at the 
5% level over 100 simulated data sets. Methods are grouped by whether they consider multiple molecular 
phenotypes. Methods that consider only one molecular phenotype are grouped by omics platform. For 
ease of comparison, we include a dashed blue line to denote the Multi‑INTACT power. Power columns 
representing methods with excessive false discoveries are marked with an asterisk. Error bars represent the 
standard error of the mean
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classification scores, we generate cumulative true discovery versus false discovery 
curves (Fig. 4). Multi-INTACT outperforms alternative methods that rely on a single 
molecular trait at a time in identifying relevant causal gene products from highly 
ranked gene candidates.

Fig. 3 Distributions of posterior probabilities for each gene product‑to‑trait effect scenario and three 
posterior probability types. For example, for genes represented in the left‑most panel, both expression and 
protein levels have direct effects on the complex trait. The left‑most violin plot represents the distribution of 
posterior probabilities of the model in which only expression has a direct effect. The distributions represent 
genes that have nonzero causal effects on Y (through at least one of expression or protein). For each violin 
plot, a horizontal red line denotes the mean of the distribution

Fig. 4 True discovery versus false discovery curves comparing the performances of Multi‑INTACT and 
INTACT for classifying gene‑to‑trait effects. Curves are truncated at a false discovery rate threshold of 0.20 for 
Multi‑INTACT in order to represent the highest‑ranked genes. Results represent 100 simulated data sets with 
causal genes from a variety of possible DAGs. For Multi‑INTACT, we use gene product relevance probabilities 
P(E | data) and P(P | data) as scores for detecting E → Y and P → Y effects, respectively. We use the INTACT 
posterior, fastENLOC gene‑level colocalization probability, and TWAS z‑score magnitude with the respective 
molecular phenotype (expression, left; protein, right) as a classification score in each panel for comparison. 
For each curve, the false discovery rate threshold of 0.05 is denoted by an asterisk
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Analysis of METSIM Metabolon metabolite GWAS data

To demonstrate the advantages of jointly considering multiple gene product molecular 
phenotypes, we apply INTACT and the proposed Multi-INTACT procedures to 1408 
Metabolic Syndrome in Men (METSIM) study plasma metabolite GWASs [55], integrat-
ing the UK Biobank pQTL data [4] and multi-tissue GTEx eQTL data (v.8) [3] to identify 
PCGs and putative biological mechanisms. Details of the pre-processing analysis, includ-
ing algorithms used for TWAS and colocalization, are discussed in Methods section.

The METSIM Metabolon metabolite study includes 10,188 Finnish men from Kuo-
pio examined from 2005 to 2010 [55]. Study participants are whole-genome sequenced, 
yielding >26 million represented variants that pass QC procedures. For a description of 
the METSIM data pre-processing, including QC, genetic association analysis, and multi-
SNP fine-mapping analysis, refer to Additional file 1: Supplemental Methods.

Our previous work highlights the discordance, or the lack of inferential reproducibil-
ity, in implicating PCGs when colocalization and TWAS analyses are applied to gene 
expression data [8, 20]. To determine whether a similar pattern holds in applications 
of proteomics data, we first perform UK Biobank pQTL-metabolite GWAS integrative 
analysis and compare the implicated PCGs (at 5% FDR level) from proteome-wide asso-
ciation study (PWAS), colocalization, and INTACT analyses across the 1408 metabolites. 
PWAS identifies 2217 genes, colocalization analysis identifies 170 genes, and INTACT, 
combining colocalization and PWAS evidence, identifies 293 PCGs. Our results imply 
that ∼95% of the PWAS genes do not show colocalization evidence, suggesting that most 
of these findings are likely due to the LD hitchhiking effects previously discussed in the 
context of TWAS analysis. Although INTACT is effective at guarding against LD hitch-
hiking, its statistical power is compromised and can be improved by incorporating more 
relevant gene products.

Next, we apply Multi-INTACT, integrating the UK Biobank pQTL data and the eQTL 
data representing one (at a time) of 49 tissues from the GTEx project. We first com-
pute the gene probabilities of putative causality and identify PCGs at 5% FDR level sepa-
rately in each metabolite-tissue pair. The full Multi-INTACT results from this analysis 
are summarized in the supplemental data. Among the tested 68,992 tissue-metabolite 
pairs, Multi-INTACT identifies 8610 PCG-tissue-metabolite triplets, notably more than 
the expression-only or protein-only INTACT analyses which implicate 4128 and 5682 
triplets, respectively. Upon stratifying the results by tissues, it is clear that although the 
number of discoveries varies by tissue, Multi-INTACT consistently implicates more 
genes than the expression-only and protein-only INTACT analyses (Fig. 5). The increase 
in the discoveries illustrates the improved power of combining relevant gene products. 
Additionally, while a large proportion of the triplets identified by Multi-INTACT are 
also implicated by at least one of the INTACT analyses, there are many PCGs identified 
only by Multi-INTACT (Additional file 1: Fig. S6).

The overlap of PCG-metabolite pairs identified between tissues varies widely across 
the 49 GTEx tissues (Fig. 6a). Unsurprisingly, Multi-INTACT results derived from brain 
cerebellum and cerebellar hemisphere expression data share a high proportion of iden-
tified PCG-metabolite pairs. Of the 894 unique PCG-metabolite pairs discovered in at 
least one tissue, we find that 23% of the PCG-metabolite pairs are implicated in a single 
tissue, and 50% of pairs are implicated in between 2 and 10 tissues (Fig. 6b). Meanwhile, 
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Fig. 5 Multi‑INTACT PCG implication results summary, by tissue. For each tissue‑specific analysis, only genes 
with both expression and protein data are tested

Fig. 6 Overlap between gene‑metabolite pairs discovered by Multi‑INTACT using expression data across 
GTEx tissues. a Pairwise overlap of PCG‑metabolite pairs implicated across tissues. Fill color denotes (# 
gene‑metabolite pairs implicated by both tissues)/(# gene‑metabolite pairs implicated by at least one of the 
tissues). b The distribution of the number of tissues in which Multi‑INTACT identifies gene‑metabolite pairs
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4% of PCG-metabolite pairs are identified in >40 tissues. We find that the discrepancy of 
PCG discovery across tissues is driven by the tissue-dependent variability of eQTL dis-
covery, which has been observed in tissue-specific TWAS analysis and attributed to both 
variation in statistical power and to biological factors, such as tissue-specific gene regu-
lation. As a result, many genes do not have expression prediction models in all tissues. 
Here, we caution against interpreting tissue-specific PCG discoveries solely by biological 
(or statistical) factors.

To validate the Multi-INTACT PCG findings, we compare our inferences to a high-
quality annotated causal gene set for a group of metabolites by a knowledge-based 
approach (KBA). The KBA nominates PCGs by matching known metabolite biochem-
istry to functions of genes near strong GWAS signals [40, 41, 56, 57]. For our validation 
analysis, we limit the KBA nominations to genes that have both pQTLs and eQTLs in 
at least one tissue (i.e., candidates for Multi-INTACT analysis), where the KBA nomi-
nates 423 unique gene-metabolite pairs in total. The overlapping of the PCGs implicated 
by each integrative approach and the KBA are summarized in Fig.  7. The expression-
only and protein-only analyses identify 238 and 184 known gene-metabolite KBA 
pairs, respectively. In contrast, Multi-INTACT results overlap with 304, or ∼70%, of 

Fig. 7 Overlap between gene‑metabolite pairs discovered by integrative approaches and the 
knowledge‑based approach (KBA). a INTACT using GTEx multi‑tissue eQTL data. Numbers represent 
pairs implicated in at least one tissue. b INTACT using the UK Biobank pQTL data set. c Multi‑INTACT 
using both GTEx and UK Biobank QTL data sets. There are 289 unique pairs implicated by KBA and either 
INTACT‑expression or INTACT‑protein. Of these pairs, 287 are represented in the intersection of the KBA and 
Multi‑INTACT discoveries
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the annotated KBA pairs, demonstrating superior power over the existing methods. 
Although the KBA is intended to benchmark Multi-INTACT, it does not provide an 
exhaustive list of all biologically-feasible PCG-metabolite pairs. Some pairs implicated 
by Multi-INTACT, but not the KBA, may reflect known biology. For example, we iden-
tify GSTA1 as a PCG for DHEA-S (C100000792) in both liver and adrenal cortex tissues. 
This finding may reflect previous biological evidence that both GSTA1 and DHEA-S 
have roles in metabolizing prostaglandins [58, 59].

Next, we investigate the directional consistency of different gene product-to-trait 
effects from the PCGs implicated by Multi-INTACT. The central dogma states that the 
flow of genetic information from DNA to RNA to protein is one-directional, implying 
that the sign of a gene’s effect should be the same across gene products. Despite this, 
many studies [60–63] report complex relationships between expression levels, protein 
abundance, and disease risks. Although Multi-INTACT is not specifically designed to 
estimate gene product-to-trait effects, the signed TWAS and PWAS test statistics from 
confidently inferred PCGs should represent their qualitative directional effects. PCGs 
are confidently inferred if they are statistically significant based on gene probability of 
putative causality at 5% FDR level. In this analysis, we further select a subset of Multi-
INTACT gene-tissue-metabolite triplets for which both gene expression and protein 
abundance are deemed relevant gene products. To this end, we focus on the set of tri-
plets whose gene product relevance probabilities for both expression and protein are 
≥ 0.50 . For this selected set of triplets, we examine the directional consistency of the 
z-statistics from the corresponding TWAS and PWAS analyses.

Overall, of the 8007 analyzed triplets, 5000 ( ∼ 62% ) show matching directions from 
both gene products, while 3007 ( ∼ 38% ) show opposite directions. Interestingly, some 
tissues known to play key roles in metabolism show high directional consistency. For 
example, the highest directional-consistency proportion is observed in liver (Fig.  8), 
where 88% expression-to-trait and protein-to-trait effects are concordant and signifi-
cantly higher than the remaining tissue “population” (p value = 5.2× 10−12 ). The con-
cordant proportion increases to 96% when intersecting the Multi-INTACT results with 
the KBA results. Finally, we compute the Spearman correlation coefficient to compare 
the signed negative log p values of the TWAS and PWAS analyses. For the triplets impli-
cated by Multi-INTACT, the correlation estimate (0.319, p  value = 2.18× 10−188 ) is 
higher than the “population” average for tested metabolite-tissue pairs (mean = 0.156, 
variance = 0.002). A recent study comparing PWAS and TWAS in four blood lipid traits 
reports a similar range of correlation estimates (0.083–0.144) as our population average 
[64]. Following the sign concordance analysis, we investigated the overlap of significant 
PWAS and TWAS results and found it to be substantial (Additional file 1: Fig. S7).

Lastly, we demonstrate the utility of Multi-INTACT for gene set enrichment analysis 
(GSEA). We focus our analysis on Multi-INTACT results derived from lipid metabo-
lite data and liver expression data based on known biology [65] and results from previ-
ous analyses. For each target gene tested among the liver-lipid metabolite results, we 
form an aggregated probability of putative causality by combining the gene probabil-
ity of putative causality across metabolites (see Methods  section for details). We then 
apply INTACT-GSE [8], a recently introduced GSEA method. We use the aggregated 
probability of putative causality as input for INTACT-GSE. These probabilities have the 
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unique advantage of quantifying the uncertainty of the presence/absence of a PCG for 
at least one lipid metabolite, which is a key to obtaining unbiased enrichment estimates 
for candidate gene sets. We examine 213 Biological Process (BP) GO terms, estimating 
enrichment and the corresponding 95% confidence intervals. In summary, we identify 
16 GO terms that are nominally significant at the 5% level, i.e., their confidence intervals 
do not overlap with 0 (Table  1). Among these findings, cholesterol metabolic process 
(GO:0008203), steroid metabolic process (GO:0008202), and chemical reactions and 
pathways involving fatty acids (GO:0006631) are strongly enriched and reflect the well-
known roles of liver in human metabolism. Full INTACT-GSE results are available in the 
supplemental data.

Discussion
We present Multi-INTACT, a novel statistical method for mechanism-aware PCG impli-
cation by integrating GWAS and multiple types of molecular QTL data. Through simula-
tions and real data analysis, we demonstrate that Multi-INTACT properly controls type 

Fig. 8 Gene‑metabolite pairs with Multi‑INTACT gene product relevance probabilities greater than 0.5 for 
both expression and protein, by tissue, with proportions of PWAS and TWAS test statistics that were the 
same/opposite signs. In the right panel, we show the intersection of genes implicated by Multi‑INTACT 
and the knowledge‑based approach (KBA) results. For each tissue‑specific analysis, only genes with both 
expression and protein data are tested
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I errors by effectively guarding against LD hitchhiking and identifies causal genes with 
increased statistical power compared to other popular PCG implication methods. Addi-
tionally, its ability to simultaneously evaluate the relevance of multiple gene products 
(i.e., those exerting direct effects on complex traits) can help gain insights on detailed 
molecular mechanisms of complex diseases, serving as a potential tool for drug target 
discovery.

We motivate and derive the Multi-INTACT method under a non-parametric graphi-
cal model representing the established IV analysis with multiple endogenous variables, 
where the model assumptions focus on the conditional independence relationships 
rather than the distributional assumptions on molecular and complex phenotypes. Spe-
cifically, the graphical model does not assume normality of each phenotype or additivity 
(see the SEM in Methods  section). Consequently, Multi-INTACT is robust and capa-
ble of handling various types of (e.g., quantitative, binary, and categorical) phenotypic 
data. Furthermore, we show that with additional linearity and normality assumptions, 
the Multi-INTACT model can be represented by a structural equation model (Eq.  2 
in Methods  section), which naturally extends the SEMs previously used in integrative 
genetic association analysis with a single molecular phenotype [5, 6].

The unique inference strategy implemented in Multi-INTACT is to leverage colo-
calization evidence and prevent TWAS/PWAS association signals driven solely by 
pleiotropic effects. This is a key difference from the alternative strategy that attempts 
to explicitly estimate and control potential pleiotropic effects [5, 6]. In our numerical 
experiments and real data analysis, we find that the Multi-INTACT strategy is con-
ceptually simple, computationally efficient, and practically effective. Nevertheless, we 
acknowledge that, despite many unresolved statistical and computational challenges, 
accurate estimation of pleiotropic effects has the potential to further increase the power 

Table 1 Top enriched Biological Process GO terms from the INTACT‑GSE gene set enrichment 
analysis

Each listed term is nominally significant at the 5% level

Biological 
Process GO 
term ID

Term INTACT-GSE enrichment 
estimate (log odds ratio)

95% confidence interval

GO:0008203 Cholesterol metabolic process 3.069 (1.907, 4.231)

GO:0008202 Steroid metabolic process 2.633 (1.609, 3.657)

GO:0006644 Phospholipid metabolic process 2.141 (1.057, 3.225)

GO:0006629 Lipid metabolic process 2.026 (1.045, 3.007)

GO:0042632 Cholesterol homeostasis 2.018 (0.840, 3.197)

GO:0006631 Fatty acid metabolic process 1.997 (0.931, 3.064)

GO:0006082 Organic acid metabolic process 1.978 (1.025, 2.930)

GO:0016042 Lipid catabolic process 1.913 (0.854, 2.972)

GO:0055088 Lipid homeostasis 1.894 (0.737, 3.051)

GO:0046395 Carboxylic acid catabolic process 1.893 (0.842, 2.943)

GO:0009636 Response to toxic substance 1.852 (0.715, 2.989)

GO:0006805 Xenobiotic metabolic process 1.805 (0.520, 3.091)

GO:0001889 Liver development 1.616 (0.333, 2.899)

GO:0007041 Lysosomal transport 1.616 (0.333, 2.899)

GO:0007034 Vacuolar transport 1.485 (0.223, 2.747)

GO:0042594 Response to starvation 1.373 (0.124, 2.621)
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of PCG implication. We will explore the possibility of combining these strategies in 
future work. Additionally, the use of a multiplicative combination of colocalization and 
multivariable regression evidence (via Bayes rule) in Multi-INTACT inference can also 
be justified by Dempster-Shafer (DS) theory [48] as described in the original INTACT 
paper. Specifically, the combination of the colocalization and regression evidence is an 
application of Dempster’s rule of combination. This application is a generalization of the 
INTACT evidence integration step in which each evidence source integrates informa-
tion across multiple gene products rather than only the transcriptome.

In our joint analysis of METSIM Metabolon metabolite GWAS, GTEx eQTL, and UK 
Biobank pQTL data, we highlight the practical utility of Multi-INTACT, showing its 
potential in validating known and uncovering unknown molecular mechanisms of com-
plex traits. Our investigation of directional consistency of gene-to-trait effects of PCGs 
between different gene products illustrates the complexity of the underlying scientific 
problem: although the observed patterns are sensible and expected by existing theoreti-
cal and experimental evidence, it is considerably challenging to interpret these findings 
for individual gene-tissue pairs. The observational association data have intrinsic limita-
tions for further explorations. We hope that our findings can serve as a starting point for 
careful design of experimental investigations. In addition, we demonstrate that Multi-
INTACT output can be directly applied to gene set enrichment analysis, a key feature 
to further validate and explore PCG findings. With improved information from multiple 
gene products, gene set enrichment analysis becomes more powerful compared to our 
previous analysis using a single gene product [8].

Although Multi-INTACT offers multiple improvements over existing PCG impli-
cation techniques, it does have limitations. The input from the existing colocalization 
and TWAS/PWAS analysis methods and the quality of currently available genetic data 
ultimately impact the performance of the Multi-INTACT analysis. This is clearly dem-
onstrated from our simulation analysis (Additional file  1: Fig. S8). Future advances in 
methods development and data generation in the related areas will help improve Multi-
INTACT analysis. Other limitations that Multi-INTACT shares with many integrative 
analysis methods include a reliance on prior biological knowledge to determine relevant 
tissues or cell types and a focus on model selection/testing rather than estimating gene-
to-trait effects. Other studies [66, 67] have developed algorithms that attempt to infer 
the causal tissue, but we are not aware of any such method that considers multiple gene 
products. Nevertheless, these may be able to complement Multi-INTACT in an inte-
grative analysis. Finally, Multi-INTACT explicitly focuses on gene products. Although 
this feature makes implicating PCGs more direct and interpretable, there is room for 
improvement by incorporating some indirect but potentially important genomic infor-
mation (e.g., chromatin structure, methylation status, and 3D genome structure). 
Consideration of output from methods that consider these datatypes such as the ABC 
model [68] or PUMICE [69] may increase the quality of our PCG implications. Under 
the Bayesian framework of Multi-INTACT, it seems feasible to integrate this additional 
genomic information by modifying the prior formulation. Another promising exten-
sion of Multi-INTACT would be to account for a multi-ancestry study design. Previous 
studies have shown that incorporating ancestry into TWAS prediction models can yield 
higher predictive accuracy of expression prediction models and increased efficiency in 
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detecting gene-trait associations [70, 71]. We suspect that the approach to construct-
ing race-stratified molecular gene product prediction models described in [70] could 
be adapted to improve the performance of Multi-INTACT. Additionally, if the GWAS 
data contains admixed populations, our methods could borrow ideas from existing work 
[71] which consider global genetic ancestry in order to mitigate false positives. We will 
address these challenges in our future work.

Conclusion
In conclusion, Multi-INTACT integrates multiple gene products to reliably infer causal 
genes and mechanisms. Importantly, Multi-INTACT assesses which molecular gene 
products are the most relevant to disease, providing insights into possible drug targets. 
The Multi-INTACT software implementation is computationally efficient and can be 
applied using summary statistics of GWAS data. While we show that Multi-INTACT 
is useful for integrating expression and protein QTL datasets, our method has strong 
potential for studying complex trait etiology as the availability of molecular QTL data-
sets increases.

Methods
Structural equation model for Multi-INTACT 

The Multi-INTACT method can be represented by a structural equation model (SEM), 
extending the SEM for TWAS analysis [8]. Consider a sample of N individuals from 
a single cohort. For a target gene, let E(N × 1),P(N × 1) , and G(N × p) denote their 
expression levels, protein abundance, and genotypes for p cis genetic variants, respec-
tively. The measurements of the complex trait of interest and the unobserved confound-
ing are represented by Y (N × 1) and U(N × 1) . All observed phenotype measurements 
are assumed to be pre-centered. Let p-vectors βE and βp denote the genetic effects on 
respective gene products for all cis-variants of the target gene and the p-vector βY  rep-
resents potential pleiotropic effects. Scalars θE and θP denote effects of unobserved con-
founding on expression and protein levels, respectively. Finally, we denote the E → Y  
and P → Y  effects by γ and δ , which are of interest for inference. Reflecting the graphical 
model in Fig. 1b, the proposed SEM is given by

Noticeaby, our model does not assume that E and P have separate effects on Y. Spe-
cifically, the Multi-INTACT model, represented by the SEM, is a conditional model only 
focusing on the potential causal relationships E → Y  and P → Y  . It does not explicitly 
specifying other possible causal relationships (e.g., between E and P). Implicitly, potential 
E → P and/or P → E effects effects are accounted for by the corresponding residual error 
terms, i.e., eE and eP . Alternatively, this approach can be understood as marginalizing all 
over other causal relationships between variables, thus representing all graphical mod-
els in Additional file 1: Table S1. The SEM is also similar to the multivariable Mendelian 

(2)

E = GβE + θEU + eE , eE ∼ N (0, σ 2
E I)

P = GβP + θPU + eP , eP ∼ N (0, σ 2
P I)

Y = GβY + γE + δP + θYU + eY , eY ∼ N (0, σ 2
Y I).
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randomization (MVMR) models discussed in genetic epidemiology [44, 72–74]. Their 
major difference lies in the inference strategy.

To assess a target gene for its putative causality, we consider testing a null hypothesis,

In Multi-INTACT, we adopt the Bayesian strategy of model selection and assess the 
posterior probability of M0 . The strategy also naturally extends to the subsequent task 
of assessing relevant gene products by evaluating (and marginalizing from) the posterior 
probabilities of the alternative models,

Note that the main goal of Multi-INTACT is to distinguish between different models 
representing different mechanisms for a candidate gene. These models are characterized 
by M0,ME ,MP , and ME+P . Our goal is fundamentally different from rigorously estimat-
ing the causal effects γ and δ . This important point dictates our formulation of the statis-
tical problems and the inference procedure for fitting SEM (2).

A key feature of the Multi-INTACT method is the use of colocalization evidence to 
guard against widespread LD hitchhiking. This feature is motivated by the following 
observation from the proposed SEM: if a gene product has a non-zero effect on the com-
plex trait of interest (e.g., δ  = 0 ), its causal molecular QTL must also impose a non-zero 
genetic effect on the complex trait (e.g., βp · δ �= 0 ). That is, colocalization is a neces-
sary condition for γ  = 0 or δ  = 0 under the proposed model. In comparison, TWAS and 
PWAS signals driven by LD hitchhiking are not expected to exhibit colocalization evi-
dence. However, in current practice, colocalization analysis is often severely underpow-
ered [19]. Acknowledging this caveat, instead of requiring all implicated PCGs to show 
a high level of colocalization evidence, our default implementation of Multi-INTACT 
essentially filters out candidate genes that lack even modest colocalization evidence.

To compute the likelihood, we simplify SEM Eq.  2 for inference. Because the con-
founding U is unobserved, its effects on E, P, and Y are absorbed into the respective 
residual error terms. Consequently, E and P become endogenous variables (under the 
one-sample design) in the final regression equation of Y. To properly examine the gene-
to-trait effects γ and δ , Multi-INTACT constructs two genetic instruments,

such that they are uncorrelated with U and eY  . The p-vectors β̂e and β̂p denote pre-
diction weights for expression and protein levels derived from a TWAS method. Fur-
thermore, as the colocalization prior effectively controls for the pleiotropic effects, we 
choose not to explicitly estimate βY  and absorb its effect into the residual error eY  . In 
the end, we fit the following regression model to compute the marginal likelihood for 
γ  = 0 or δ  = 0 , i.e.,

(3)M0 : γ = 0 and δ = 0.

(4)
ME : γ �= 0 and δ = 0

MP : γ = 0 and δ �= 0

ME+P : γ �= 0 and δ �= 0.

(5)
Ê = Gβ̂e

P̂ = Gβ̂p,
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Note that, the estimated percentage of variance explained (PVE), or R2 , by fitting (6) 
is identical to the squared canonical correlation between Y and (Ê, P̂) , which we rea-
son from the perspective of multivariable IV analysis without the SEM formulation in 
Results section.

Because the regression model (6) requires only genetically predicted molecular gene 
products, the inference procedure can be naturally extended to multi-sample designs, 
in which the prediction models for Ê and P̂ are learned in a cohort different from the 
GWAS samples. Importantly, the extension to data from multi-sample designs does not 
alter the causal implication of the original SEM model.

Computing gene probability of putative causality

We compute the gene probability of putative causality for a target gene by applying the 
Bayes rule,

where pcoloc,E and pcoloc,P denote the pre-computed gene-level colocalization prob-
abilities of respective molecular QTLs and GWAS hits, π f (pcoloc,E , pcoloc,P) denotes the 
composite prior probability of putative causality, and BF represents the marginal likeli-
hood/Bayes factor. See Supplemental Methods for details on the computation of BF, esti-
mation of π , and the prior function f.

Computing gene product relevance probability

The computation of gene product relevance probabilities breaks down to evaluating pos-
terior probabilities for ME ,MP , and MP+E . To be consistent with the GPPC calculation, 
we specify Pr(M0) = 1− π f (pcoloc,E , pcoloc,P) and define the following conditional pri-
ors for the three alternative models,

where M0 indicates the set of non-null models and hE + hP + hE+P = 1.
Following an empirical Bayes procedure, we first compute the Bayes factor of each 

non-null model for all target genes and design an EM algorithm to obtain the MLE of 
(hE , hP , hE+P) by pooling all candidate genes (Supplemental Methods). We then evaluate 
the required posterior model probabilities by plugging the estimated hyperparameters 
and subsequently compute the gene product relevance probabilities for each target gene 
using Eq. (1).

Input for Multi-INTACT 

Multi-INTACT is compatible with all existing TWAS methods that provide genotype 
prediction models for candidate gene products (e.g., TWAS Fusion, PTWAS, Pre-
diXcan, and SMR) and probabilistic colocalization methods that quantify gene-level 

(6)Y = γ Ê + δP̂ + eY .

(7)GPPC := Pr(γ �= 0 or δ �= 0 | data) ∝ π f (pcoloc,E , pcoloc,P)BF,

Pr(ME | M0) = hE ,

Pr(MP | M0) = hP ,

Pr(ME+P) | M0) = hE+P ,



Page 18 of 23Okamoto et al. Genome Biology           (2025) 26:19 

colocalization evidence using probabilities (e.g., fastENLOC and coloc). In practice, we 
observe that inputs derived from TWAS and colocalization methods leveraging proba-
bilistic multi-SNP fine-mapping results achieve the highest sensitivity for prioritizing 
PCGS among methods with proper FDR control [8]. Therefore, we strongly recommend 
performing multi-SNP fine-mapping analyses, using software packages DAP or SuSiE, 
for each gene product to generate optimal inputs for Multi-INTACT. We show an exam-
ple of this pre-processing procedure in our real data analysis (Additional file 1: Supple-
mental Methods).

Computation with GWAS summary statistics

The Multi-INTACT computation can be approximated using summary statistics of 
GWAS data. At a minimum, single-SNP association testing z scores, weights for molecu-
lar phenotype prediction, and an appropriate LD reference panel are required to com-
pute multivariate Wald statistic for Bayes factor calculation. We show the details of two 
approximate computation methods using the minimum GWAS summary statistics in 
Supplemental Methods. The same information can also be used to compute gene-level 
colocalization evidence.

It is worth emphasizing that summary statistics-based computation is not exact, 
and the loss of accuracy is expected. In practice, we find that if the LD reference panel 
matches well with the underlying GWAS samples, the results approximate the exact 
computation (using individual-level data) well (Additional file 1: Fig. S9). Most impor-
tantly, there should not be inflation of type I errors in PCG implication due to replacing 
individual-level data with the corresponding summary statistics under this setting. How-
ever, the consequence of severe mismatch between the LD panel and GWAS samples is 
unclear and needs further investigation.

Simulation study

We use genotypes of 477K SNPs on chromosome 5 from 500 GTEx samples, including 
1198 consecutive genes, each with at least 1500 common cis-SNPs. The complex and 
molecular phenotypes are simulated based on the complete DAG models shown in the 
second row of Additional file 1: Table S1, all of which assume no direct effects between 
E and P (note that Multi-INTACT inference does not assume or use this information).

Specifically, in each simulated data set, each of 1198 genes’ causal mechanisms is inde-
pendently drawn from a Multinomial(π0,πE,πP,πE+P ) distribution, where π0 , πE , πP , and 
πE+P represent probabilities of the null, expression-only, protein-only, and expression-
and-protein models. For each gene, we randomly select two eQTLs and two pQTLs, 
where one variant is both a causal eQTL and pQTL. We select a distinct causal GWAS 
SNP. All effect sizes (represented by edges in the DAGs) are drawn from a N (0,φ2) dis-
tribution, with φ set to 0.6 and residual error variances set to 1 to yield realistic signal-
to-noise ratios. The distribution of the proportion of variance explained for all simulated 
phenotypes is shown in Additional file 1: Fig. S10. The Mean PVE for gene expression, 
protein levels, complex trait, expression-mediated complex trait, and protein-mediated 
complex trait are 0.167, 0.166, 0.159, 0.050, and 0.049, respectively. These values reason-
ably resemble the observed metabolite data in practice; the mean (SD) of the estimated 
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heritability across all metabolites is 0.186 (0.149). We use GCTA [75] to estimate metab-
olite heritability.

We simulate 100 datasets using the above scheme by varying the values of ( π0,πE,πP

,πE+P ), with approximately 1/3 simulated datasets taking values from (0.8,0.1,0.05,0.05), 
(0.8,0.05,0.1,0.05), and (0.8,0.05,0.05,0.1), respectively. We use the different simulated 
datasets to examine the accuracy of the estimated (hE, hP, hE+P) values from the pro-
posed EM algorithm. The FDR and power for PCG discovery are calculated across all 
simulated datasets. Additionally, we vary the ratios of causal versus noncausal genes by 
subsampling the simulated data, the Multi-INTACT results remain stable (Additional 
file 1: Table S5).

In order to examine the robustness of Multi-INTACT in the presence of effects 
between expression and protein levels, we perform additional simulations to repre-
sent all 9 scenarios shown in Table S1. Additionally, we provide a comparison of Multi-
INTACT to two additional PCG implication methods: SMR [11] and FOCUS [5], a 
causal gene method designed to control for LD hitchhiking. We describe the design of 
these additional simulations in Supplemental Methods. Power and FDR results for these 
simulations are shown in Additional file 1: Figs. S11–S13.

Finally, stratifying the analysis results of the simulated data reveals that the power of 
Multi-INTACT is positively correlated with the signal-to-noise ratios of genetic associa-
tion signals (Additional file 1: Fig. S8). Thus, increasing sample sizes in molecular and 
complex trait association analyses is likely to enhance the power for PCG discovery.

Preprocessing of UK Biobank pQTL data and multi-tissue GTEx eQTL data

We use PTWAS [15] multi-tissue prediction models trained on the GTEx data set to 
predict expression for the individuals in the METSIM cohort. For clarity, PTWAS refers 
to a method that can generate molecular phenotype prediction models, and it can be 
used to perform either TWAS or PWAS analysis if it is trained on expression or protein 
data, respectively. For PWAS analysis, we use the most significant cis-pQTL (±1 Mb) 
to predict protein levels for each individual. We perform pairwise colocalization analy-
ses between the QTL data and metabolite GWASs using fastENLOC, computing gene 
level colocalization probabilities [20] to quantify the likelihood of a colocalized variant 
for each metabolite-transcript or metabolite-protein pair.

INTACT and Multi-INTACT analyses

We performed INTACT analyses using the default setting in the R package (linear prior 
and GLCP threshold t = 0.05). We focus on genes with both expression data and protein 
data available in the UK Biobank and GTEx prediction models. The number of tested 
genes per metabolite-tissue pair depends on the availability of expression and protein 
prediction models. The number of genes tested ranges from 186 (kidney cortex) to 1795 
(nerve tibial). The complete breakdown is shown in Additional file 1: Fig. S14.

INTACT-GSE pathway enrichment analysis for lipid metabolites

We perform probabilistic GSEA using the Multi-INTACT results derived from liver 
expression data. We use Multi-INTACT’s default settings (truncation threshold equal 
to 0.05 with the linear prior function) to compute posterior probabilities for each 
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gene-metabolite triplet. For each tested gene, we compute an aggregated probability of 
putative causality across all lipid metabolites by

where GPPCi is the gene probability of putative causality for the examined gene and 
the ith lipid metabolite. Intuitively, the aggregated quantity represents the probability 
of the target gene is a PCG for at least one metabolite. We examine all GO BP terms 
for which at least one annotated gene has a nonzero aggregated probability of putative 
causality. GSEA input, including gene-level aggregated probabilities of putative causality, 
is included in the supplemental data. We access the GO term annotation data via the R 
package org.Hs.eg.db (v3.17.0).
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