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Abstract 

Sequence alignment is foundational to many bioinformatic analyses. Many aligners 
start by splitting sequences into contiguous, fixed‑length seeds, called k‑mers. Align‑
ment is faster with longer, unique seeds, but more accurate with shorter seeds avoid‑
ing mutations. Here, we introduce X‑Mapper, aiming to offer high speed and accu‑
racy via dynamic‑length seeds containing gaps, called gapped x‑mers. We observe 
11–24‑fold fewer suboptimal alignments analyzing a human reference and 3–579‑fold 
lower inconsistency across bacterial references than other aligners, improving on 53% 
and 30% of reads aligned to non‑target strains and species, respectively. Other seed‑
based analysis algorithms might benefit from gapped x‑mers too.
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Background
Shotgun sequencing is applied broadly, such as in metagenomic studies of microbiomes 
[1], and data analysis requires researchers to process huge datasets and handle vast 
genomic diversity. Among all steps in processing shotgun sequences, read mapping is 
one of the most computationally intensive ones, and the quality of read mapping directly 
impacts the efficiency and accuracy of interpreting the sequencing data. Thus, this data 
challenge in sequencing-based biological studies calls for a sequence aligner with high 
accuracy, flexibility, and speed. Most sequence aligners have based their search algo-
rithms on splitting sequences into seed sub-sequences of a fixed length, k (k-mers), and 
finding existing occurrences of those k-mers in a reference database, including Minimap 
[2] for read alignment, Blast [3] for similarity search, and Kraken [4, 5] for metagenomic 
taxonomy annotation. The use of k-mers in sequence alignment has made it possible to 
process large sequencing datasets efficiently and has enabled sequencing-based biologi-
cal fields, including modern molecular biology and modern evolutionary biology.

A known challenge in k-mer algorithms is the requirement to choose a k-mer size [6], 
and the choice of k-mer size strongly affects sequence alignment — because any fixed 
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k-mer size can be simultaneously too long to match genomic regions with high densi-
ties of mutations and too short to differentiate duplicated genomic regions. For a region 
with high mutational density, e.g., 1 mutation per 20 base pairs (bp), a long k-mer (e.g., 
30 bp) would be unable to find a match. Meanwhile, for duplicated regions with more 
than 50 bp in length, a short k-mer (e.g., 10 bp) would find many matches. The genomic 
diversity among different species makes it clear that algorithms using fixed-size k-mers 
provide suboptimal flexibility for metagenomic studies.

This conundrum is summarized in Fig. 1a. The k-mers overlapping mutations in the 
query sequence (common in variant-dense regions) — specifically k-mers 1–3 (Fig. 1b) 
— do not match anywhere in the reference genome; these k-mers are too long to 
avoid mismatches. In contrast, k-mers generated from duplicated regions in the query 

Fig. 1 A toy example showing how an x‑mer‑based algorithm (c) can more effectively handle 
low‑complexity repetitive regions and high‑complexity variant‑dense regions than a k‑mer‑based algorithm 
(b), and an algorithm using gapped x‑mers (d) can further improve variant‑dense regions. a The optimal 
alignment result and some candidate suboptimal alignment results of the example query mapping to the 
example reference. The reference is labeled as variant‑dense regions and duplicated regions. b–d Matches of 
k‑mers/x‑mers/gapped x‑mers highlighted in blue represent matches that agree with the optimal alignment. 
Matches of k‑mers/x‑mers/gapped x‑mers highlighted in gray represent matches that do not agree with the 
optimal alignment but support suboptimal ones. The algorithm will then identify all unique offsets (positions 
of the query in the reference) to which any k‑mer/x‑mer/gapped x‑mer maps. For each such offset, the 
algorithm may attempt to extend the k‑mer/x‑mer/gapped x‑mer matches into neighboring base pairs to 
produce an alignment for the query at that position. Each dotted line connecting k‑mers/x‑mers/gapped 
x‑mers represents a unique query offset where such an extension may occur. b K‑mers 4 and 5 match each 
multiple offsets in the reference, while k‑mers 1–3 have no matches. c X‑mers 1–3 each match 1–2 offsets 
in the reference. d Gapped x‑mers 1–2 match a single offset in the reference. Each “_” in a gapped x‑mer 
represents a 1 bp gap
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sequence — such as k-mers 4 and 5 (Fig. 1b) — match many locations in the reference 
genome. As a result, only 2 of the 12 matches (highlighted in blue) contribute to the 
optimal alignment (Fig.  1a), which is less efficiently found with this short k-mer size 
(gray matches in Fig.  1b). Therefore, for regions with mutations, a shorter k-mer size 
would be suitable to avoid mismatches, while for duplicated regions, a longer k-mer size 
would be more efficient to distinguish between those regions. Since both regions with 
mutations and duplicated regions exist within one genome, a fixed size of k-mers can-
not simultaneously be optimal for all genomic regions. Although existing aligners allow 
customization of the k-mer size to tackle this problem for different genomes, even the 
most optimized k-mer size cannot solve this problem, since all k-mer-based aligners use 
a fixed size within a run.

An approach to address these limitations is to incorporate k-mers of varying sizes, 
which we call x-mers. The x-mer approach shortens the size of the x-mers at regions 
with mutations in the query sequence, allowing matches around point mutations (x-mers 
1–2 in Fig. 1c) by avoiding issues encountered by k-mers 1–3 (Fig. 1b). For duplicated 
regions in the query sequence, we extend the x-mer size to distinguish between dupli-
cated regions (x-mer 3 in Fig. 1c). In this example, all x-mers match 1–2 locations in the 
reference, and 3 of the 4 matches (highlighted in blue) contribute to the optimal align-
ment (Fig. 1a), compared to 2 of the 12 matches found using k-mers (Fig. 1b). Moreo-
ver, x-mer matches at the optimal offset can cover 6 of 8 bp of the variant-dense region, 
while k-mer matches at the optimal offset show no coverage of the variant-dense region. 
These results suggest that x-mers can describe the appropriate alignment more precisely 
and utilize more information in the query. However, short x-mers that adapt to dense 
point mutations (e.g., x-mers 1 and 2) are more likely to align to multiple suboptimal 
offsets, reducing their specificity.

While variable-length seeds (x-mers) have previously been used by LAST [7] for local 
alignment, and spaced seeds were first introduced in PatternHunter [8] and later widely 
adopted by many aligners like SHRiMP2 [9], we introduce the concept of dynamically 
incorporating k-mers of dynamic sizes and gaps, which we call gapped x-mers. We 
believe the most interesting contribution of the gapped x-mer is its ability to offer both 
variable length and gaps at the same time. This can be done without storing every such 
possible seed by carefully selecting which ones to store, in a manner reminiscent of min-
imizers [2]. Instead of necessarily shortening the size of k-mers in variant-dense regions, 
this algorithm generates gaps that can skip over different combinations of mutations (as 
illustrated by gapped x-mer 1 in Fig. 1d), allowing them to remain more specific. As a 
result, each gapped x-mer in this example matches exactly one location in the reference, 
identifying the optimal alignment within a single search. This improvement in precision, 
specificity, and coverage allows gapped x-mers to align more effectively and quickly.

We applied the gapped x-mer concept to short-read alignment and developed a short-
read aligner, X-Mapper (https:// github. com/ mathj eff/ Mapper [10]). Overall, X-Mapper 
is a highly accurate tool for sequence alignment, and it reduces the number of subopti-
mal alignments compared to other alignment tools. X-Mapper has been tested in diverse 
microbiome sequencing samples including whole genome sequencing data and metage-
nomes, because we expected gapped x-mer-based algorithms to accommodate diverse 
combinations of regions with mutations and duplicated regions in different species 

https://github.com/mathjeff/Mapper
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better than k-mer-based algorithms. The high accuracy, flexibility, and speed of X-Map-
per can benefit diverse biological studies that rely on shotgun sequencing. X-Mapper 
may also help with larger genomes such as human genomes after further refinement.

We envision that the new concept of the gapped x-mer algorithm can inspire new 
seeding and can help improve other k-mer-based and x-mer-based bioinformatic appli-
cations in the future, such as similarity search (BLAST [3], Diamond [11]), taxonomy 
assignment in metagenomes (Kraken [4, 5]), multiple sequence alignment (MUSCLE 
[12], MAFFT [13]), and genome assembly (SPAdes [14], IDBA [15]).

Results
X‑Mapper algorithm

In this study, we designed a gapped x-mer-based algorithm that uses gapped x-mers of 
all possible sizes and used this algorithm to develop a new short-read alignment tool, 
X-Mapper. X-Mapper starts by building a pyramid of x-mers from 1 base pair up to 
the entire length of the sequence if needed (Fig. 2, details in “Methods”). After building 
x-mers, X-Mapper generates gapped x-mers that we expect to be long-enough based on 
the length of the reference, by adding an additional x base pairs plus a pseudorandom 
number of base pairs from 0 through 2 (specifically the hashcode modulo 3) to avoid 
skipping generating gapped x-mers using certain numbers of base pairs. These approxi-
mately x base pairs are evenly split into gap and extension base pairs, resulting in a 
gap of approximately x/2 base pairs and an extension of approximately x/2 base pairs. 
Each x-mer chooses its gap direction based on the contents of the x-mer itself. Then, 
X-Mapper generates a hashcode for each gapped x-mer. Gapped x-mers from the refer-
ence are then saved to a hashtable. These gapped x-mers are generated for the reference 
genome and each query sequence using the same algorithm to enable finding matches in 
the hashtable. When generating the x-mer pyramid, X-Mapper shifts x-mers by roughly 
one quarter of their length each time (instead of generating all x-mers and storing their 
resulting gapped x-mers), which allows indexing the sequences more quickly with less 
memory. This pyramid structure facilitates efficient, dynamic selection of an appropri-
ate gapped x-mer for a specific section of a query sequence based on the distribution of 
mutations and homology. As a result, the users will not accidentally use a wrong k-mer 
size, e.g., 19–22 mers for a microbe genome (default of some existing aligners).

With both x-mer pyramids of the query and the reference, X-Mapper searches for 
potential offsets (positions of the query in the reference) for the optimal alignment with 
as many and as long gapped x-mer matches as possible. To do that, X-Mapper starts 
from the bottom of the pyramid, i.e., the first x-mer of length 1 base pair, and moves up 
and down the pyramid based on the number of reference genomic positions the cor-
responding gapped x-mer aligns to (matches). For gapped x-mers that match too many 
duplicated genomic regions, X-Mapper proceeds up and right in the pyramid to check 
longer x-mers to distinguish among different genomic regions, and for gapped x-mers 
yielding too few due to overlapping regions with mutations, X-Mapper proceeds down 
and right in the pyramid to check x-mers of shorter sizes (details in “Methods”) (Fig. 2). 
In this way, X-Mapper efficiently finds interesting x-mers to check instead of iterating 
through all x-mers in the pyramid.
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To identify potential optimal alignments, X-Mapper first optimistically searches for 
the best alignment by following this x-mer path until one reference offset is found hav-
ing more x-mer matches than any other, and at least two query x-mers match to a close 
reference offset. If this process yields exactly one offset, X-Mapper checks it first and 
attempts to determine (using the number of nonoverlapping x-mers that do not match 
at other offsets) that it is the best alignment. If X-Mapper is unable to determine that 
this optimistic alignment is optimal, then X-Mapper continues to follow this x-mer path. 

Fig. 2 X‑Mapper’s algorithm. X‑Mapper starts by building a pyramid of x‑mers. In this simplified example, 
larger x‑mers are built by merging smaller x‑mers left if number of A’s plus C’s is odd, and right if the number 
of A’s plus C’s is even. The hashing function of the leaf node is A = 1, C = 2, G = 3, T = 4. The hashing function 
for a larger child x‑mer, in this simplified example, is 4* the hashcode of the left parent x‑mer + the hashcode 
of the right parent x‑mer. After building x‑mers, we expand most x‑mers into gapped x‑mers. In this simplified 
example, x‑mers choose to extend their gaps to the left if their number of A’s plus G’s is odd; otherwise, they 
choose to extend their gaps to the right. Gapped x‑mers that are excessively short, and expected to match 
to too many places (about 16) in a random reference genome, are not generated. Each resulting gapped 
x‑mer is assigned a hashcode and saved into a hashtable for fast lookup. Hashcodes are highlighted in red. 
The hashtable contains the hashcode and positions (POS) of all gapped x‑mers built from the reference. The 
sequences of the gapped x‑mers are only shown here for clarity. While walking through an x‑mer pyramid 
of the query, X‑Mapper searches for possible offsets (position of the query in the reference) for the optimal 
alignment by expanding each x‑mer into a gapped x‑mer and looking for matches of the gapped x‑mer 
in the reference. If the number of matches is large compared to the number of base pairs specified in the 
gapped x‑mer, the path advances up and right, increasing the number of base pairs used by the following 
seed. If the number of matches is small, the path advances down and right, removing some base pairs from 
the following seed. While following this path through the gapped x‑mer pyramid, X‑Mapper groups matches 
of interesting gapped x‑mers to determine which offset in the reference to check first (referred to as the 
optimistic best offset). If the penalty of an ungapped alignment is no more than an indel, X‑Mapper considers 
the result to be the final alignment for this offset. If the penalty of the initial ungapped alignment is at least 
that of one indel, X‑Mapper checks for indels first. If there may be other co‑optimal or superior alignments, 
X‑Mapper continues to look for all of them before outputting any of them
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Whenever a reference new offset is discovered having at least 2 x-mer matches, X-Map-
per attempts an alignment at this offset. If the x-mer path reaches the end of the query, 
or X-Mapper can demonstrate that no better alignment can exist, this search terminates.

Most of the time, X-Mapper does not need to attempt alignments at offsets other than 
the optimal one. In the toy example, a k-mer-based aligner would require checking eight 
additional offsets (gray dotted lines) to identify the best alignment (Fig. 1a), which could 
be missed if sufficient time is not allotted. Using gapped x-mers, we can find the best 
match after checking a single offset (Fig. 1d).

Alignment accuracy of X‑Mapper in samples with various complexities

To investigate the alignment accuracy of X-Mapper, we first tested alignment penalties 
(alignment scores) from X-Mapper against those of k-mer-based algorithms Strobealign 
and Minimap2, and x-mer-based methods Bowtie2, BWA (referring to BWA MEM in 
this study), and LAST. Since each aligner uses a different penalty formula for spacing, 
appropriately comparing penalties of paired-end alignment results across aligners is not 
well defined. Thus, for this evaluation we tested single-read alignment by comparing the 
results from different aligners for the same read. Specifically, we examined how well each 
aligner aligned the same reads to the same reference genome under the same penalty 
settings (Fig. 3a). We tested two scenarios: a human gut microbiome metagenome [16] 
mapping to its own assembly and a human transcriptomic dataset mapping to a com-
plete human genome reference. Four penalty settings were tested, including the default 
settings of X-Mapper, Bowtie2, Minimap2, and BWA. We compared the alignment 
results of the same reads reported by the four aligners and identified the alignments with 
the lowest penalty (highest alignment score) as optimal. Here, we used a stand-alone 
script to re-compute the penalty of an alignment, using the CIGAR string and posi-
tion reported by each aligner which determined the number of matches, mismatches, 

Fig. 3 Evaluating the alignment accuracy and consistency of X‑Mapper in sequencing samples of various 
complexities. Penalties shown are example penalties for a single read. a Alignment accuracy was evaluated 
by comparing the alignment results of the same reads to the same reference genome under the same 
penalty (alignment score) settings across different aligners. Alignments with the lowest penalty (higher 
alignment score) were considered optimal, while all other alignments with higher penalties (lower alignment 
scores) were declared suboptimal. b Alignment consistency was evaluated by comparing the alignment 
results of the same reads by the same aligner in one reference (Assembly A1) versus a complex reference 
(multiple genomes). Alignments were considered consistent if (1) the optimal alignments to a simple 
reference were also reported when aligned to a complex reference, or (2) a complex reference yielded better 
alignments (with lower penalties or higher alignment scores) than the simple reference, primarily due to 
assembly errors. The alignment consistency was then compared across aligners



Page 7 of 27Gaston et al. Genome Biology  (2025) 26:15 

ambiguous matches, gap opens, and gap extensions. Alignments with higher penalties 
(lower alignment scores) were declared suboptimal. We then calculated the percentage 
of reads reported with suboptimal alignments for each aligner.

Local aligners like Minimap2 and BWA often report soft clips in the middle of ref-
erence contigs. For short-read alignment, we consider soft clips to be less significant. 
Both X-Mapper and Bowtie2 are end-to-end aligners that prioritize alignment contigu-
ity. LAST can be configured for end-to-end alignment using the “-T 1” option. BWA and 
Minimap2 can achieve this by adjusting soft clip penalties with the “-L” and “-z” options, 
respectively. We also configured Minimap2 with the “-ax sr” setting for short reads. 
However, adjusting the soft clip penalty (“-z”) in Minimap2 did not fully prevent soft clip 
reporting. Thus, for a more interesting comparison, we analyzed the alignment results of 
all reads and alignment results of reads without middle soft clips reported by Minimap2 
(Fig. 4 “alignments without middle soft clips”).

Our results demonstrate that X-Mapper exhibits higher alignment accuracy than all 
other aligners, indicated by a lower suboptimal alignment rate (Fig. 4). Specifically, when 
aligning a human gut microbiome metagenome (Fig.  4a “all alignments”), X-Mapper 
shows a suboptimal alignment rate of 0.05% out of 9.3 million reads, which is 6–34 times 
lower than those of Strobealign (1.63%), LAST (0.29%), Bowtie2 (0.53%), Minimap2 
(0.44%), and BWA (0.29%) under penalty setting #1. After excluding alignments where 

Fig. 4 X‑Mapper exhibits higher alignment accuracy with a lower suboptimal alignment rate (percentage of 
reads reported with suboptimal alignments) than other aligners, when applied to a a bacterial metagenome 
and b a human transcriptome. Optimal alignments were identified as those with the lowest penalty (highest 
alignment scores) reported by all aligners. Each sample was tested using four different penalty settings, 
including the default settings of (1) Bowtie2, (2) BWA (referring to BWA MEM in this study), (3) X‑Mapper, and 
(4) Minimap2 (x‑axis). Reads where local aligners, such as Minimap2, reported soft clips in the middle of the 
contigs were removed from downstream analysis (“alignments without middle soft clips”)
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Minimap2 reported middle soft clips (Fig.  4a “alignments without middle soft clips”), 
X-Mapper maintains a suboptimal alignment rate of 0.05%, which is 5–33 times lower 
than those of Strobealign (1.55%), LAST (0.26%), Bowtie2 (0.48%), Minimap2 (0.37%), 
and BWA (0.23%). Configuring Bowtie2 to allow seed mismatches (“-N 1”) improves 
its accuracy from 0.48 to 0.27%, a trend observed across all penalty settings. Therefore, 
we used this Bowtie2 configuration with seed mismatches for downstream analysis. For 
Strobealign, we tested it with both default penalties and adjusted penalties relative to 
different alignment scores (details in “Methods”). However, it still exhibited a relatively 
high suboptimal alignment rate, with the lowest being 0.96%.

When aligning a human transcriptomic dataset to a complete human genome ref-
erence, we found that X-Mapper demonstrates a suboptimal alignment rate of 0.48%, 
which is 11–24 times lower than those of Strobealign (10.2%), LAST (5.7%), Bowtie2 
with seed mismatches (5.3%), Minimap2 (6.6%), and BWA (5.7%) under penalty set-
ting #1 (Fig. 4b “all alignments”). After removing alignments where Minimap2 reported 
middle soft clips, X-Mapper maintains a suboptimal alignment rate of 0.25%, which is 
4–18 times lower than those of Strobealign (4.6%), LAST (2.4%), Bowtie2 with seed mis-
matches (1.58%), Minimap2 (1.0%), and BWA (2.1%) (Fig. 4b “alignments without mid-
dle soft clips”).

To investigate X-Mapper’s performance with more divergent references (e.g., not 
the same bacterial strain), we used whole genome sequencing (WGS) data from Bac-
teroides fragilis aligning to its own assembly, to reference genomes representing differ-
ent strains of the same species, and to reference genomes representing other Bacteroides 
species, covering ANI values [17] from 78.7 to 100.0%. X-Mapper demonstrated the 
highest accuracy with the lowest suboptimal alignment rates compared to other align-
ers, a trend consistent across all ANI values and penalty settings (Additional file 1: Fig. 
S1). For instance, when aligning B. fragilis reads to a B. xylanisolvens reference genome 
(ANI = 78.7%), X-Mapper shows 6–53-fold lower suboptimal alignment rates than other 
aligners (under penalty setting #1). When aligning B. fragilis reads to a different B. fra-
gilis strain isolated from the same person (ANI = 99.99%), X-Mapper shows 58–415-fold 
lower suboptimal alignment rates than other aligners (under penalty setting #1).

What makes X‑Mapper more accurate?

To determine the factors contributing to this high alignment accuracy, we built modified 
versions of X-Mapper that use fixed k-mer sizes or x-mers with no gaps. We found that 
the ability to use dynamic k-mer sizes contributes significantly to the high accuracy of 
X-Mapper. Specifically, X-Mapper with ungapped x-mers showed a 4-fold higher sub-
optimal alignment rate (0.17%) compared to X-Mapper with gapped x-mers (0.05%). In 
addition, X-Mapper with a fixed 12-mer size showed the worst performance, with a sub-
optimal alignment rate of 0.85% under penalty setting #1 (Fig. 4a “alignments without 
middle soft clips”). Increasing the k-mer size from 12 to 16 bp greatly improved accu-
racy, while further increasing the k-mer size from 16-mer to 24-mer decreased accu-
racy from 0.17 to 0.72%. The k-mer sizes tested in our study cover the default minimum 
k-mer sizes used by Strobealign (20-mer), Bowtie2 (22-mer), BWA (19-mer), and Mini-
map2 (21-mer).



Page 9 of 27Gaston et al. Genome Biology  (2025) 26:15 

In addition, the suboptimal alignment rates reported by X-Mapper with ungapped 
x-mers and fixed-size k-mers were comparable to the suboptimal rates of all the other 
aligners, except Strobealign. Based on this observation, we hypothesized that the 
absence of gaps and suboptimal k-mer sizes are likely the primary reason for subopti-
mal alignments in other aligners.

To test this hypothesis, we explored the potential causes of suboptimal alignments 
by comparing the alignment results of a single read across different aligners and 
X-Mapper with fixed k-mer sizes. We grouped the suboptimal alignments into dif-
ferent types: reads that failed to align or aligned to the wrong sites, close sites (within 
100  bp), or the same sites but with a higher (suboptimal) penalty score compared 
to the optimal alignments. Reads that failed to align or aligned to the wrong sites 
were considered more serious suboptimal alignments due to their greater potential 
to impact the downstream analysis. When aligned to a bacterial metagenome, these 
wrong alignment sites accounted for 69.2% (Strobealign), 19.9% (LAST), 81.2% (Bow-
tie2), 89.5% (Minimap2), 30.1% (BWA), and 86.9% (X-Mapper) (Fig. 5). The other two 
types of suboptimal alignments included reads aligned to close sites (within 100 bp) 
or the same sites but with a higher (suboptimal) penalty score as the optimal align-
ments (details provided in the following section). These suboptimal alignments iden-
tified approximate sites in the reference but reported a different arrangement of 
matches, such as indels mis-assigned as point mutations or soft clips. These types of 

Fig. 5 Potential causes of suboptimal alignments when aligning a gut microbiome metagenome, after 
excluding alignments with middle soft clips reported by Minimap2. Suboptimal alignments were classified 
into four types: reads failed to align, aligned to the wrong sites, aligned to close sites (within 100 bp), or 
aligned to the same sites but with a higher (suboptimal) penalty score compared to the optimal alignments. 
Reads that failed to align or aligned to the wrong sites were considered more serious suboptimal alignment 
types due to their greater potential to impact downstream analysis. The Bowtie2 configuration allowing 1 
seed mismatch was tested in this analysis
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suboptimal alignments could also be critical for downstream analyses, such as genetic 
variant identification.

We then grouped alignment results by their potential causes. First, if X-Mapper with 
fixed k-mer sizes (12 mers, 16 mers, 20 mers, and 24 mers) could replicate a subopti-
mal alignment, suboptimal k-mer sizes (short k-mers unmatched, short and long k-mers 
unmatched, and long k-mers unmatched) were considered a potential cause (Addi-
tional file 1: Fig. S2). Specifically, if X-Mapper 12 mers reported the optimal alignments 
for a read, but X-Mapper with a longer k-mer size (16–24 mers) reported suboptimal 
alignments with the same suboptimal score as the other aligner, we considered that 
unmatched long k-mers might be the potential cause of suboptimal alignments in the 
other aligners. Conversely, if X-Mapper 24 mers reported the optimal alignments, but 
X-Mapper with a shorter k-mer size (12–20 mers) reported suboptimal alignments with 
the same suboptimal score as the other aligner, we considered unmatched short k-mers 
as the potential cause. If X-Mapper 16 mers or 20 mers found the optimal alignments, 
but both 12 mers and 24 mers reported suboptimal alignments with the same subop-
timal score as the other aligner, we considered that both unmatched short and long 
k-mers might be the main cause. In addition, if X-Mapper with ungapped x-mers could 
replicate a suboptimal alignment with the same suboptimal score as the other aligner, 
then ungapped x-mers were considered a potential cause.

For suboptimal alignments that X-Mapper with fixed k-mer sizes and ungapped 
x-mers could not explain, we examined the details of the alignment results (Additional 
file 1: Fig. S2). If a soft clip or an indel was only found in the optimal alignment, we con-
sidered not finding the optimal alignment containing a soft clip or an indel (i.e., missing 
soft clips or indels) as potential causes for suboptimal alignments. Additionally, if soft 
clips were reported in suboptimal alignments but not in the optimal alignment, we con-
sidered mis-assigned soft clips as the potential cause.

When aligning the gut microbiome metagenome dataset, ungapped x-mers and sub-
optimal k-mer sizes (short k-mer unmatched, long k-mer unmatched, or both) can be 
a primary cause of suboptimal alignments. For this analysis, alignments reported with 
middle soft clips by Minimap2 were excluded. Specifically, ungapped x-mers and sub-
optimal k-mer sizes account for 37.8% of suboptimally aligned reads in Strobealign 
(118,374 reads), 2.0% in LAST (18,983 reads), 46.0% in Bowtie2 (33,947 reads), 60.4% in 
Minimap2 (28,850 reads), 17.9% in BWA (17,872 reads), and 29.8% in X-Mapper (3978 
reads) (Fig. 5). It is not surprising that LAST’s results are least explained by ungapped 
x-mers and suboptimal k-mer sizes, as its variable-length seeding approach closely 
resembling the x-mer algorithm of X-Mapper, which generates seeds long enough for 
specificity and short enough for sensitivity. The remaining suboptimal alignments were 
attributed to missed indels, missed soft clips, and mis-assigned soft clips.

Regarding wrong alignment sites, i.e., reads that failed to align or aligned to the wrong 
sites, we found that X-Mapper reported the fewest compared to the other aligners: 3458 
reads, compared to 81,880 (Strobealign), 3783 (LAST), 27,573 (Bowtie2), 25,823 (Mini-
map2), and 5386 reads (BWA) (Fig.  5). Specifically, ungapped x-mers and suboptimal 
k-mer sizes can explain almost half of the wrong alignment sites for Strobealign (54.6%), 
Bowtie2 (56.6%), Minimap2 (67.5%), and BWA (59.2%) (Fig. 5). However, mis-assigned 
soft clips can explain 60.0% of wrong alignment sites for X-Mapper (Fig. 5). This suggests 
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that inflexible k-mers and x-mers are one of the primary causes of wrong alignment off-
sets for the other aligners, while X-Mapper could improve on soft clip identification for 
more accurate alignments.

Here, we show  an example of a read aligned to a reference offset with eight point 
mutations as the optimal alignment. We found that only X-Mapper and LAST were able 
to align this read, while the other aligners could not (Additional file 1: Fig. S3). We tested 
X-Mapper with ungapped x-mers and a series of fixed k-mer sizes (12 mers to 24 mers) 
and found that X-Mapper with 14 mers, 16 mers, 18 mers, and 20 mers were able to 
report the optimal alignment, but not X-Mapper with ungapped x-mers, 12 mers, 22 
mers, or 24 mers. This case shows that both short and long k-mers can be unmatched 
during alignment. However, a shorter k-mer size appeared to work for Strobealign (14 
mers aligned but not 15 mers), Bowtie2 (14 mers aligned but not 18 mers), Minimap2 
(12 mers and 14 mers aligned but not 16 mers), and BWA (10 mers, 12 mers, 14 mers 
aligned but not 18 mers).

When aligning the human transcriptomic dataset, we found that the ability to use vari-
ous k-mer sizes and gaps accounts for only a small proportion of the high accuracy of 
X-Mapper. Specifically, ungapped x-mers and suboptimal k-mer sizes could explain 7.3% 
(of 1,021,097 reads with suboptimal alignments for Strobealign), 7.2% (of 537,990 reads 
for LAST), 10.6% (of 348,828 reads for Bowtie2), 10.7% (of 221,094 reads for Minimap2), 
9.7% (of 463,526 reads for BWA), and 0% (of 55,193 reads for X-Mapper) (Additional 
file 1: Fig. S4). Instead, missing indels and soft clips were the common causes of subop-
timal alignments. However, for wrong alignment offsets, ungapped x-mers and subop-
timal k-mer sizes were a more important cause, contributing to 34.8% (of 58,928 reads 
with wrong alignment sites for LAST), 32.7% (of 106,880 reads for Bowtie2), 25.9% (of 
84,990 reads for Minimap2), and 22.6% (of 154,179 reads for BWA). For Strobealign 
and X-Mapper, mis-assigned soft clips can explain 71.2% of 640,952 reads with wrong 
alignment sites and 66.5% of 36,842 reads, respectively. These observations are consist-
ent with the microbial metagenomic sample, suggesting that the ability of an alignment 
algorithm to use flexible k-mer sizes and gaps is crucial for achieving high accuracy in 
sequencing datasets.

Suboptimal alignments aligning to close sites or the same sites

Sometimes, aligners identified approximate sites in the reference genome but reported 
different arrangements of matches, resulting in higher penalties or suboptimal align-
ments. For example, X-Mapper, Strobealign, Bowtie2, Minimap2, and BWA aligned the 
same read to nearby sites (POS 170,702–170,764) in the reference (Additional file  1: 
Fig. S5). Among these alignments, X-Mapper reported the lowest penalty of 66 with an 
insertion of 5 bp (in the query), two point mutations, another insertion of 2 bp, a dele-
tion of 2 bp, and two additional point mutations. Bowtie2 reported the second-lowest 
penalty of 70, detecting one point mutation, an insertion of 9 bp (in the query), another 
insertion of 5 bp, and two more point mutations.

In contrast, Minimap2 and BWA did not compute potential indels and instead 
reported a soft clip of 25 bp. Soft clips located in the middle of contigs were treated as 
indels in our analysis. Strobealign aligned the read with a high penalty of 216, indicating 
36 point mutations within 44 bp, which may be attributed to a potential bug in handling 
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complex alignments. LAST did not report any alignment for this read. Since our down-
stream analysis excluded reads where Minimap2 reported middle soft clips, this read is 
included here only as a demonstration.

Another example shows aligners (LAST, Bowtie2, Minimap2, BWA, and X-Mapper) 
reporting alignments of one read to the same site in the reference (POS 24,316) while 
disagreeing on the arrangement of matches (Additional file 1: Fig. S6). In this case, Mini-
map2 reported the arrangement with the lowest penalty of 16, represented by one point 
mutation and a soft clip of 10  bp. However, Minimap2 discarded the last 5  bp in the 
reference as part of the soft clip, which should instead be considered as two point muta-
tions. X-Mapper reported the second-lowest penalty of 23, identifying three point muta-
tions and a 5 bp soft clip.

BWA reported a slightly higher penalty of 29, identifying one point mutation, a 
deletion of 1 bp (in the query), another deletion of 1 bp, and a soft clip of 7 bp. LAST 
reported a different arrangement involving two point mutations, an insertion of 4 bp (in 
the query), and another insertion of 1 bp, yielding a penalty of 37. Bowtie2 reported a 
slightly higher penalty of 38, identifying one point mutation and an insertion of 9 bp (in 
the query). Strobealign aligned the read to a nearby site in the reference (POS 24,265) 
with a high penalty of 380, identifying 80 point mutations. This high penalty may be 
caused by the same bug in Strobealign when handling complex alignments.

X-Mapper invests a substantial fraction of its effort in identifying a better arrangement 
of matches to achieve an alignment with the lowest total penalty. This can be done effi-
ciently using the A* search algorithm [18], which searches the Needleman-Wunsch grid 
to determine the path with the minimum penalty. X-Mapper also actively prunes any 
branches that have exceeded the maximum indel extension length calculated previously 
for this alignment site. This thorough and efficient search for indels allows X-Mapper to 
find an optimal alignment without consuming significantly more time.

Alignment consistency of X‑Mapper in samples with various complexities

In addition to low alignment penalty, it is crucial for an aligner to report consistent 
alignments of the same pair of paired-end reads when aligned to a superset (representing 
diverse microbial species) of its original reference (a single bacterium isolate) (Fig. 3b). 
To test alignment consistency, we aligned a WGS dataset (3.2 million paired-end reads, 
150  bp) of B. fragilis to its own assembly, representing the simple reference. We also 
aligned this WGS dataset to a genome collection of 88 human gut microbiome strains 
(441.4 Mbp in total), representing the complex reference. This collection included (1) 
the B. fragilis WGS assembly (Assembly1); (2) 5 other B. fragilis references representing 
different strains; (3) 55 Bacteroides species that are not B. fragilis; and (4) 27 species that 
are not Bacteroides. These 88 genomes competed for the WGS reads during the align-
ment. For each read, we compared its alignment results to the complex reference with 
those to the simple reference (true alignment site) reported by the same aligner (Fig. 3b). 
Then, the consistency of alignment was compared across aligners. We characterized an 
alignment as consistent if: (1) the optimal alignments to the simple reference were also 
reported when aligned to the complex reference, or (2) the complex reference found bet-
ter alignments (with lower penalties or higher alignment scores) than those to the sim-
ple reference (mainly due to assembly errors). We then computed inconsistency as the 
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percentage of reads that were not reported with consistent alignments to the complex 
reference compared to the simple reference.

We found that the default setting for Bowtie2, Minimap2, BWA, and Strobealign is 
to report a single alignment. Therefore, we also ran these aligners under a setting that 
reports multiple (i.e., 100), if not all, alignments. As a result, suboptimal alignments were 
often reported with this “all” setting enabled. While reporting suboptimal alignments is 
not technically wrong, it is inefficient for users because they need to filter the alignments 
before downstream analysis. Additionally, the secondary alignments can have 4–5 more 
point mutations compared to the optimal alignments, even when the optimal alignments 
have perfect matches. Reporting these suboptimal alignments seems unhelpful. Conse-
quently, we also computed the percentage of reads reported with suboptimal alignments 
when aligned to the complex reference.

We found that X-Mapper reported the lowest inconsistency and fewest suboptimal 
alignments compared to other aligners. For example, under penalty setting #1, X-Map-
per showed an inconsistency rate of 0.09% (out of 3,208,556 aligned reads) and the low-
est suboptimal alignment rate of 1.2e − 06 (Fig.  6). Bowtie2 (“all” mode to report all 
alignments), Strobealign (“all”), and LAST also displayed a relatively low inconsistency 
rate of 0.31% (out of 3,209,652 aligned reads for Bowtie “all”), 2.40% (out of 3,210,658 

Fig. 6 X‑Mapper exhibits the lowest alignment inconsistency (fraction of reads reported with inconsistent 
alignments) and the fewest suboptimal alignments (fraction of reads reported with suboptimal alignments) 
when aligned to a complex reference. Alignment consistency was tested by comparing the alignment results 
of a whole genome sequencing (WGS) sample aligning to 88 bacterial genomes (representing a complex 
reference), to the alignment results of this WGS sample aligning to its own assembly (representing a simple 
reference). An alignment was considered consistent if: (1) the optimal alignments to the simple reference 
were also reported when aligned to the complex reference, or (2) the complex reference yielded better 
alignments (with lower penalties or higher alignment scores) than those in the simple reference. Bowtie2, 
Minimap2, and BWA were run under their default settings and settings that reports multiple, if not all, 
alignments (labeled as “all”). Since the “all” settings often report suboptimal alignments, the fraction of reads 
reported with suboptimal alignments was also evaluated for each aligner. Alignment consistency was tested 
using four different penalty settings, including the default settings of (1) Bowtie2, (2) BWA, (3) X‑Mapper, and 
(4) Minimap2. The Bowtie2 configuration with seed mismatches was tested in this analysis
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aligned reads for Strobealign “all”), and 3.25% (out of 3,211,829 aligned reads for LAST). 
However, these came with a high cost of 73.5%, 53.4%, and 6.5%, respectively, of reads 
having suboptimal alignments. Other aligners exhibited 562–579-fold higher inconsist-
ency rates of 52.0% (of 3,215,249 aligned reads for Minimap2 “all”), 51.9% (of 3,223,873 
aligned reads for BWA “all”), 51.4% (of 3,210,436 aligned reads for Strobealign “default”), 
52.1% (of 3,209,422 aligned reads for Bowtie2 “default”), 52.0% (of 3,215,249 aligned 
reads for Minimap2 “default”), and 52.0% (of 3,223,843 aligned reads for BWA “default”). 
Additionally, these aligners reported 4–133-fold higher suboptimal alignment rates than 
X-Mapper, at 1.6e − 04 (Minimap2 “all”), 1.6e − 04 (BWA “all”), 3.9e − 05 (Strobealign 
“default”), 5.6e − 06 (Bowtie2 “default”), 1.6e − 04 (Minimap2 “default”), and 6.5e − 06 
(BWA “default”). We tested these aligners under four different penalty settings (default 
settings of Bowtie2, Minimap2, BWA, and X-Mapper) and consistently found that 
X-Mapper provided the most consistent alignments with the fewest suboptimal align-
ments. These observations indicate that X-Mapper is more consistent and more easily 
interpretable when aligning samples to complex references, such as microbial metagen-
omes. If users are interested in suboptimal alignments, that can be controlled via a sepa-
rate parameter in X-Mapper (–max-penalty-span), which we did not test here.

What makes X‑Mapper more consistent?

To identify causes of alignment inconsistency, we also tested X-Mapper with ungapped 
x-mers and fixed k-mer sizes. We found that X-Mapper with ungapped x-mers showed 
a slightly higher inconsistency rate of 0.15% (of 3,208,056 aligned reads) than X-Map-
per, which was similar to the inconsistency rates observed for Bowtie2 (“all”) (Fig.  6). 
We found that a fixed k-mer size (X-Mapper 16–24 mers) showed a higher inconsist-
ency rate of 3.25–3.28% (of 3,197,876 to 3,211,829 aligned reads) than X-Mapper, which 
was similar to the inconsistency rates observed for LAST and Strobealign (“all”) (Fig. 6). 
Short k-mers, which can effectively avoid mutations but struggle to differentiate variant-
dense regions in the reference genome, are more likely to yield too many matches for 
each k-mer when dealing with highly repetitive regions. This results in high inconsist-
ency when aligning to a complex reference compared to a simple reference. Conversely, 
always using long k-mers is not ideal because they can be inefficient if the target strain 
is not well represented in the reference genome. This highlights the importance of using 
gapped x-mers, for aligning complex reference of diverse microbial species.

Biological relevance of alignment consistency

To demonstrate the biological relevance of alignment consistency, we summarized 
the percentage of reads aligned to their own assembly, denoted “Assembly1,” or com-
binations of reference genomes that include Assembly1. Our hypothesis is that a good 
aligner should align reads from the WGS data back to their own assemblies as much as 
possible in a complex reference. We found that all aligners were able to align most of the 
WGS reads (3.2 million). However, these reads were assigned to different combinations 
of reference genomes by different aligners (Additional file 1: Fig. S7a).

Reads aligning to genome sets that contain the Assembly1 (A1, highlighted in purple) 
are likely true positive alignments. Reads aligning to genome sets that do not include 
A1 (labeled in blue) are likely false positive alignments. Except for X-Mapper, LAST, 
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Strobealign (“all”), and Bowtie2 (“all”), the remaining aligners reported high false posi-
tive rates of 52.9–53.0%, indicating that other B. fragilis strains co-exist with the target 
B. fragilis strain when aligned to this complex reference (Additional file 1: Fig. S7a). We 
also tested another sample with the target B. fragilis strain mixed only with other Bacte-
roides species that are not B. fragilis. The remaining aligners also showed high false posi-
tive rates, with 30.0% of reads aligning to only the non-target Bacteroides species.

X-Mapper, along with LAST, Strobealign (“all”), and Bowtie2 (“all”), retrieved 95.6–
98.9% of reads aligning back to A1 (Additional file  1: Fig. S7a). However, X-Mapper 
aligned a substantially higher proportion of reads uniquely to A1 (26%) compared 
to 5% (LAST), 12% (Strobealign “all”), and 5% (Bowtie2 “all”). This suggests that A1 is 
more competitive during alignment when using X-Mapper compared to the other three 
aligners.

To evaluate the specificity of each aligner’s alignments, we calculated the effective 
abundance of each genome as the effective average read depth that maps to a genome, 
which we expect to be 1 for A1 and 0 for all the other genomes. For each read, we deter-
mined the set of genomes to which this read was reported as aligned [19], filtered that 
set to genomes having ≥ 5% coverage, and added a read weight of 1 divided evenly 
among genomes in that set. X-Mapper retrieved 49.9% A1 abundance after normali-
zation, while LAST, Strobealign (“all”), and Bowtie2 (“all”) retrieved 22.6%, 35.4%, and 
23.5% A1 abundance, respectively (Additional file 1: Fig. S7b). Instead, the other three 
aligners mis-assigned higher abundances (10.8–15.5%) to non-target B. fragilis strains 
compared to X-Mapper (7.4–11.7%). This indicates that when aligning to the complex 
reference, the higher alignment consistency of X-Mapper results in more accurate tax-
onomy assignment and a more efficient abundance retrieval rate for the target strain.

Speed of X‑Mapper

We found that X-Mapper is competitive in speed compared to other aligners when 
tested on the same computer (30 GB RAM, 1–30 threads, and 3.00 GHz CPU speed) for 
reference indexing and read alignment (Additional file 1: Fig. S8). For read alignment, we 
found that X-Mapper (52.07 s with 15 threads) was generally faster than Bowtie2 (“with 
seed mismatches,” 111.05 s with 15 threads), LAST (231.43 s with 15 threads), and BWA 
(65.55 s with 15 threads), but slower than Strobealign (34.92 s with 15 threads) and Min-
imap2 (43.54 s with 15 threads) when aligning a real human gut microbiome metagen-
ome of 9.3 million 100 bp reads to a 99.0 Mbp reference genome set — a dataset used 
for accuracy evaluation (Fig. 4a). For a simulated human gut microbiome metagenome 
of 3.2 million 150 bp reads aligned to a 441.4 Mbp reference genome set — a dataset 
generated for consistency evaluation (Fig. 6) — X-Mapper (97.87 s with 15 threads) was 
generally faster than Bowtie2 (“with seed mismatches,” 202.57 s with 15 threads), LAST 
(99.64  s with 15 threads), and Minimap2 (748.63  s with 15 threads), but slower than 
Strobealign (18.55 s with 15 threads) and BWA (37.69 s with 15 threads).

For reference indexing, we found that X-Mapper and LAST demonstrate a higher effi-
ciency of multithreading, reducing the time from 57.85 s with one thread to 7.21 s with 
30 threads (X-Mapper), and from 37.4 s with one thread to 9.8 s with 30 threads (LAST), 
for the real metagenome. However, indexing was more time-consuming for Bowtie2 and 
BWA, taking 92.49 s and 41.39 s for the real metagenome (Bowtie2), and 489.93 s and 
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257.8 s for the simulated metagenome (BWA), which is 1.1- to 4.3-fold longer than the 
time spent on read alignment (with 30 threads). Since X-Mapper continues indexing the 
reference genome during alignment if longer gapped x-mers are required, it is difficult to 
estimate the exact time spent on each part. We included only the initial round of refer-
ence indexing in the run time for indexing, while all other time was considered part of 
read alignment.

In terms of memory usage, X-Mapper is more resource-intensive than other align-
ers due to its storage of gapped x-mers. For a 99.0 Mbp reference, X-Mapper typically 
requires 3 GB of RAM, compared to Strobealign of 1.2 GB, LAST of 0.6 GB, Bowtie2 of 
0.4 GB, Minimap2 of 1.1 GB, and BWA of 3.8 GB. For a 441.4 Mbp reference, X-Mapper 
requires 15–20 GB of RAM, compared to Strobealign (“all”) of 5.9 GB, LAST of 2.5 GB, 
Bowtie2 (“all”) of 2.4 GB, Minimap2 (“all”) of 3.7 GB, and BWA of 4.2 GB. The runtime 
of X-Mapper does not significantly decrease with increased memory (Additional file 1: 
Fig. S9).

Alignment algorithms represent a balance between speed and accuracy. We evaluated 
this balance across aligners (Fig. 7), with accuracy measured by suboptimal alignments 
(for “the real metagenome”) and alignment inconsistency (for “the simulated metage-
nome”). We found that the relationship between alignment time (with 30 threads) and 
suboptimal alignment rates exhibits diminishing returns, where X-Mapper stands out as 
an outlier, offering the highest accuracy with competitive speed. As to alignment incon-
sistency, X-Mapper demonstrated 4-fold lower inconsistency than the second most con-
sistent aligner, Bowtie2 (“all”), while requiring only half the alignment time. Compared 
to aligners with 37–38 times lower inconsistency (X-Mapper 16–24 mers, Strobealign 
“all,” and LAST), X-Mapper had 1–5-fold longer runtime. Given the increased availabil-
ity of computing power and genomic data, we believe that an increase in memory and 
potentially some runtime in exchange for higher accuracy and consistency can be help-
ful for current research.

Discussion
X-Mapper was designed to offer greater flexibility in filtering alignment results and to 
produce outputs that are more suitable for downstream analysis, such as filtered VCF 
files. In previous work [19], we found that alignment results can be incompletely sum-
marized by tools like SAMtools [20] and BCFtools [21], which significantly affects 
the accuracy of downstream analyses, including genetic variant calling. Specifically, 
BCFtools (“bcftools call” command) frequently excludes indels in minimally overlapping 
paired-end reads. This exclusion of indels by BCFtools also leads to an underreporting of 
the major variant, which in turn elevates the frequency of minor variants, contributing 
to false positives in point mutation identification. Thus, X-Mapper includes specific set-
tings (e.g., –max-penalty-span) that allows users to control the inclusion of suboptimal 
alignments within a specified penalty range or exclude them entirely.

To improve memory usage, we developed X-Mapper Next, which enables alignment to 
the human genome on a local PC with 16 GB of RAM, compared to X-Mapper’s mem-
ory usage of 48 GB. For bacterial genomes, X-Mapper Next reduces memory usage from 
15–20 to 3 GB of RAM for a 441.4 Mbp reference and from 3 to 1 GB of RAM for a 99.0 
Mbp reference.
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X-Mapper Next shows comparable accuracy, consistency, and speed when tested with 
human gut microbiome sequencing data. The suboptimal alignment rate decreases from 
0.05 to 0.04%, with the read alignment run time increasing from 41.17 to 59.50  s (30 
threads, penalty setting #1, Additional file  1: Fig. S10). Meanwhile, the inconsistency 
rate drops from 0.09 to 0.08%, with the read alignment run time also decreasing from 
100.99 to 84.79 s (30 threads, penalty setting #1, Additional file 1: Fig. S10). In addition, 
X-Mapper Next maintains an efficient reference indexing run time compared to X-Map-
per, with 26.54 s versus 28.18 s for a 441.4 Mbp reference (30 threads) and 10.06 s versus 
7.21 s for a 99.0 Mbp reference (30 threads). We are continuing to improve X-Mapper 
Next and perform more comprehensive testing on the human genome in future work.

A limitation of our work is that we have not significantly tested X-Mapper’s perfor-
mance on long-read sequencing data, for which Minimap2 is specifically designed. 
This is currently being addressed in ongoing work. We have evaluated X-Mapper on 
human and diverse bacterial genomes, including both metagenome and transcrip-
tome datasets, but have not yet tested it on non-microbial, non-human genomes. In 

Fig. 7 Run time of aligners tested on the same computer (30 GB RAM, 30 threads, 3.00 GHz CPU) for 
read alignment. Run time was measured for a human gut microbiome metagenome sample (the “real 
metagenome”) containing 9.3 million 100 bp reads aligned to its own 99.0 Mbp reference assembly, which 
was used for accuracy analysis (Fig. 4a); and a simulated human gut microbiome metagenome sample 
containing 3.2 million 150 bp reads aligned to a 441.4 Mbp reference dataset (the “simulated metagenome”), 
which was generated for consistency analysis (Fig. 6). The balance between speed and accuracy was 
compared across aligners, with accuracy measured by suboptimal alignments (for the “real metagenome”) 
and alignment inconsistency (for the “simulated metagenome”)
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addition, our evaluation using the human transcriptomic dataset may pose greater 
challenges for aligners designed primarily for genomic data alignment, as these align-
ers can behave differently when handling reads that span introns.

Conclusions
This study introduced a new sequence alignment algorithm based on k-mers of dynamic 
sizes and gaps, which we call gapped x-mers. We use the gapped x-mer algorithm to 
develop a short-read alignment tool, which we call X-Mapper (https:// github. com/ mathj 
eff/ Mapper). X-Mapper is a user-friendly application package, requiring only java. We 
found that X-Mapper displays the advantages of high accuracy, flexibility, and speed 
compared to existing aligners when applied to shotgun sequencing data from microbi-
ome studies. Compared to Strobealign, LAST, Bowtie2, Minimap2, and BWA:

1. X-Mapper exhibits higher alignment accuracy than all other aligners, with a 5–33-
fold lower suboptimal alignment rate when aligning a human gut microbiome 
metagenome and a 11–24-fold lower suboptimal alignment rate when aligning a 
human transcriptomic dataset. Ungapped x-mers and suboptimal k-mer sizes are 
major contributors to the wrong alignment sites for Strobealign (54.6%), Bowtie2 
(56.6%), Minimap2 (67.5%), and BWA (59.2%) when aligning the human gut micro-
biome metagenome and for LAST (34.8%), Bowtie2 (32.7%), Minimap2 (25.9%), and 
BWA (22.6%) when aligning the human transcriptomic dataset.

2. X-Mapper reports a 3–579-fold lower alignment inconsistency compared to other 
aligners. Except for X-Mapper, LAST, Strobealign (“all”), and Bowtie2 (“all”), the 
remaining aligners report high false positive rates of 52.9–53.0% in identifying wrong 
strains and 30.0% in identifying wrong species. After normalizing the number of 
reads to the total number of genomes each read aligns to, X-Mapper retrieved 49.9% 
of abundance, while LAST, Strobealign (“all”), and Bowtie2 (“all”) retrieved 22.6%, 
35.4%, and 23.5% A1 abundance, respectively.

3. When tested with human gut microbiome sequencing samples, X-Mapper showed 
competitive speed compared to other aligners. More importantly, it demonstrated 
higher accuracy, with a lower suboptimal alignment rate and lower alignment incon-
sistency compared to aligners of similar speed, indicating that X-Mapper achieves a 
more efficient balance between speed and accuracy.

In summary, this study demonstrates exploratory work that applied a gapped x-mer-
based algorithm for short-read alignment, which created X-Mapper. X-Mapper was 
first tested against microbial genomes and shotgun sequencing. The accuracy, flex-
ibility, and speed of X-Mapper suggest that in principle, this algorithm would poten-
tially be useful to improve a variety of bioinformatics applications based on k-mers 
and x-mers — for example, similarity search (BLAST [3], Diamond [11]), taxonomy 
assignment in metagenomes (Kraken [4, 5]), multiple sequence alignment (MUSCLE 
[12], MAFFT [13]), and genome assembly (SPAdes [14], IDBA [15]). With the active 
application of sequencing in all biological fields, this advance can be a great improve-
ment for many sequencing-based studies in the future.

https://github.com/mathjeff/Mapper
https://github.com/mathjeff/Mapper
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Methods
X‑Mapper usage

X-Mapper is a user-friendly application packaged as a jar (https:// github. com/ mathj 
eff/ Mapper), which only requires java, and no special environment or additional runt-
ime dependencies. Furthermore, X-Mapper can directly generate vcf files without 
requiring downstream tools such as BCFtools or SAMtools.

X‑Mapper algorithm

1) Build x-mers for reference.

X-Mapper starts by building a pyramid of x-mers to represent the reference (Fig. 2). 
The important properties of this process are (1) the pyramid construction process is 
determined solely by the sequence base pairs in the pyramid. If the same process is 
applied to the same sequence in the reference and to a portion of a query, the same 
pyramid will be produced. (2) Every base pair is covered by an x-mer in each level of 
the pyramid (different size of x-mers), except for x-mers that have become too large 
and would extend past the ends of the sequence. (3) The number of x-mers in each 
level of the pyramid usually decreases exponentially, which usually keeps the total 
number of x-mers in the pyramid less than about 4 times the length of the sequence.

First, X-Mapper builds an x-mer of length 1 bp for each position in the reference. 
To build the next level, it first visits each x-mer and chooses based on the x-mer’s 
contents whether that x-mer will request to merge with the x-mer to its left or to its 
right. Each x-mer of length 1 either requests to merge left or right, and encourages 
its descendants to request to merge left or right, for 4 combinations in total. Each of 
the 4 possible x-mers of length 1 (A, C, G, T) is assigned a different combination of 
these directions. For x-mers formed from merging two other x-mers, each x-mer usu-
ally identifies the parent with the larger hashcode and requests to merge left or right 
based on its recommendation. For the other parent, the child x-mer passes its recom-
mendation along about which direction its descendants should merge with.

Next, X-Mapper visits every pair of adjacent x-mers, and if either x-mer in the pair 
requests to merge with the other, then X-Mapper performs a merge and adds the 
resulting x-mer into the next level of x-mers. Notice that for every x-mer that is not 
at the edge of the pyramid, it is guaranteed to produce a child x-mer in the following 
level of the pyramid. Also notice that if x-mers make independent, uniformly random 
decisions about which directions they request to merge in, then the probability of any 
particular child x-mer to exist is the probability that either parent requested its exist-
ence, which is approximately ¾ (= 1 − ½*½). This design generally causes the number 
of x-mers at each level to decrease exponentially as a function of the level number.

If X-Mapper sees an ambiguous base pair such as N, X-Mapper expands this into 
the relevant possibilities  among A, C, G, and T. When multiple ambiguous x-mers 
merge, X-Mapper evaluates all of the possible combinations as long as the number of 
ambiguous base pairs is less than a limit (default setting is 3).

https://github.com/mathjeff/Mapper
https://github.com/mathjeff/Mapper
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To reduce memory usage needed to index the reference genome, X-Mapper chooses 
hash functions and merge directions in a symmetric way such that the existence of 
an x-mer with a certain hashcode ensures the existence of the reverse complement 
x-mer with the same hashcode. In practice, this is done by temporarily keeping track 
of two hashcodes and two sets of merge direction requests and resolving them arbi-
trarily when needed (selecting those of the x-mer with higher hashcode).

2) Expand gapped x-mers.

When X-Mapper encounters an x-mer that seems interesting enough (long enough), 
X-Mapper first expands it into a gapped x-mer unless this is disabled via --no-gapmers. 
X-Mapper adds a gap of length equal to approximately half of the length of the x-mer, 
followed by a k-mer of approximately the same length. Each x-mer extends its gap to 
the left if it plans to next merge to the right, and extends its gap to the right if it plans 
to merge to the left. Each x-mer is then replaced with a new x-mer that ignores the con-
tents of its gap.

3) Save x-mers into hashtable.

As X-Mapper generates x-mers, it assigns a hashcode to each x-mer based on its con-
tents/sequence. The hashcode and the number of base pairs in the x-mer are then used 
together to identify a bin in the hashtable, and the position of the x-mer is added into 
the bin if there are not already too many x-mers in this bin (see the following section). 
This allows subsequent lookups to quickly identify all of the positions of an x-mer based 
solely on its hashcode and number of base pairs used.

If many x-mers are in a bin, then every subsequent lookup for the corresponding hash-
code will yield that many matches and can cause alignments to be slow. To keep align-
ment fast, when X-Mapper is saving x-mers into the hashtable, it imposes a limit on the 
maximum number of x-mers that may be saved into any particular hash bin. Because 
discovering a match in a longer x-mer is both more unusual and more valuable than in 
a shorter x-mer, X-Mapper allows a different limit on the number of x-mers per bin as a 
function of the length of the x-mer, i.e., usually equal to the number of base pairs used by 
each x-mer in that bin.

Note that because the maximum number of positions in the reference genome saved 
of any small x-mer is also small, the total amount of space spent storing small x-mers is 
small, and the majority of space is spent storing medium-sized x-mers.

4) Build x-mers for queries and align queries using the x-mer pyramid.

After having built a database of x-mers describing the reference genome, X-Mapper 
visits each query separately and begins to build a similar pyramid for each. X-Mapper 
starts at the x-mer in the first position of the first row of the pyramid for the query and 
does a lookup in its x-mer database to see how many positions that x-mer can be found. 
If the number of positions that an x-mer finds exceeds the maximum number allowed, 
then X-Mapper proceeds to the next position of the next row of the pyramid. Other-
wise, X-Mapper saves that x-mer and its corresponding alignment offsets (positions of 
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the query in the reference) and returns to the next position in the previous level of the 
pyramid. This process is repeated to form a path of x-mers through the pyramid, which 
dynamically adjusts the level of the pyramid and therefore also adjusts the length of the 
x-mers based on the number of matches of each in the reference. If gapped x-mers were 
enabled when indexing the reference, gapped x-mers are used when analyzing the query, 
too.

5) Optimistic check for single best alignment.

X-Mapper follows this x-mer path until one reference offset is found having more 
x-mer matches than any other, and at least two x-mer matches in total. If this process 
yields exactly one position, X-Mapper checks it first and attempts to determine (using 
the nonexistence of x-mer matches at other offsets) that it is the best alignment. If 
X-Mapper is unable to determine that this optimistic alignment is optimal (which can 
often be demonstrated via the nonexistence of enough x-mers matching at other offsets), 
then X-Mapper continues to follow this x-mer path.

6) Visit offsets in priority order.

If X-Mapper is unable to demonstrate that the optimistic best alignment is optimal, it 
continues to follow the x-mer path and looks for new matching offsets. For each discov-
ered offset, X-Mapper attempts an alignment at that position. Positions that are discov-
ered earlier entail fewer initial mismatched x-mers, and are considered higher priority 
and are checked before later positions [22].

X-Mapper generally disregards offsets until two supporting x-mers are found for the 
same position because positions having only one supporting x-mer are likely to yield 
poor alignments and may even be the product of hash collisions where the hashtable has 
stored different x-mers with different contents into the same bin.

The process of checking candidate offsets continues until X-Mapper finds an align-
ment and can demonstrate that no other candidate offset can provide a lower penalty 
(due to the nonexistence of x-mer matches), or X-Mapper can demonstrate that no can-
didate offset can provide a satisfactory penalty, or until the x-mer path reaches the end 
of the query.

7) Refine bound on alignment penalty.

Once X-Mapper finds an offset that seems worthwhile to check for a possible align-
ment, X-Mapper attempts to compute a bound on the maximum possible alignment 
penalty at this position, to improve the performance of the subsequent search for indels.

First an ungapped alignment is checked, and if its penalty is less than the penalty of 
a single gap (indel), then that alignment is used. Next, X-Mapper identifies the region 
around the candidate alignment and extracts short pieces (length approximately 
log(query length * 3 + 1) / log(4) + 1) from it. X-Mapper also extracts short pieces from 
the query and searches for the maximum number of nonoverlapping, nonmatching 
pieces that can be detected. Each such nonmatching piece is expected to contribute at 
least one mutation to the final alignment. If this penalty is higher than what X-Mapper 
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is interested in, the offset is rejected. Lastly, X-Mapper computes the maximum length 
of extensions that can exist in an optimal alignment at this offset based on the maximum 
interesting penalty and the minimum number of mismatched pieces. If the maximum 
possible indel length is 0, an ungapped alignments is reported.

8) Split query and join alignments.

If X-Mapper is unable to determine the nonexistence of indels in the best alignment 
at the offset, X-Mapper next splits the query into several pieces and for each one, sepa-
rately refines the bound on the alignment penalty (step 7) and searches for indels (step 
9). If the best alignments for two adjacent pieces of the query are adjacent, those align-
ments are re-joined into one contiguous alignment. If neighboring pieces yield best 
alignments that are nonadjacent, X-Mapper proceeds to thoroughly check for indels in 
the next step.

9) Check for indels.

The last step in X-Mapper is to identify the optimal alignment overlapping a given off-
set via dynamic programming.

The first step in the indel identification process is to generate a lazy Needleman-Wun-
sch grid [23], which can determine the penalty of an individual alignment. Each possible 
alignment is modeled as a path through this two-dimensional grid, where a movement in 
the x-direction represents the alignment of a base pair in the query, and a movement in 
the y-direction represents the alignment of a base pair in the reference. This allows each 
box in this grid to be aware of the minimum penalty required to reach that box from the 
start of the grid.

The next step in the indel identification process is to search this Needleman-Wunsch 
grid for the path having minimum penalty. This is done using the A* search algorithm 
[18], plus pruning any branches that have exceeded the maximum indel extension length 
calculated previously for this offset.

When the A* search completes, it produces a path that can be transformed into an 
alignment, and the alignment process for that particular query offset is done. Other pos-
sible offsets might still need to be checked as previously described, depending on the 
exact alignment penalties.

Evaluating alignment accuracy of X‑Mapper in microbial samples with various complexities

To evaluate the alignment accuracy, we tested X-Mapper (version 1.1.0-beta09), Bowtie2 
[24] (version 2.5.1, default and -N 1), BWA [25] (version 0.7.17-r1188), Minimap2 [2] 
(version 2.26-r1175), Strobealign [26] (version 0.13.0), and LAST [7] (version 1584) to 
align the same sequence dataset to the same reference. The datasets included (1) a human 
gut microbiome metagenome (NCBI accession SAMN10410254) mapping to its own 
assembly, representing a complex reference; (2) a human transcriptomic dataset (NCBI 
accession DRR163384) mapping to a complete human genome (GCF_009914755.1); and 
(3) a WGS sample of B. fragilis (NCBI accession SAMN11846534) mapping to its own 
assembly (SAMN11943505), to different strains of the same species (SAMN11943558 
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isolated from the same person; SAMN11943586 and SAMN11943574 isolated from dif-
ferent people), and to genomes generated from one WGS assembly (SAMN11943558) 
with various inserted mutation densities (5e − 4, 2e − 2, 3e − 2, 4e − 2, and 5e − 2); and 
to other species, including B. caccae (NCBI accession SAMN11943406), B. stercoris 
(NCBI accession SAMN11943815), B. ovatus (SAMN11943669), and B. xylanisolvens 
(SAMN11944338).

For a fair comparison, we tested all aligners under the same penalty settings:

1. The default setting of Bowtie2 (penalty setting #1):

– X-Mapper: “--max-penalty 0.60 --snp-penalty 6 --new-indel-penalty 5 --extend-
indel-penalty 3 --ambiguity-penalty 1”

– Bowtie2: “--mp 6,6 --rfg 5,3 --rdg 5,3 --np 1 --ignore-quals”
– Minimap2: “-ax sr -B 4 -O 3 -E 3 -A 2 --score-N 1” (“-A 2” as default)
– BWA: “-B 5 -O 4 -E 3 -A 1 -L 100” (“-A 1” as default). The “-L 100” setting was 

applied to prevent soft clipping. Here, we kept the default settings of “-A 2” for 
Minimap2 and “-A 1” for BWA, while adjusting the “-B” and “-O” scores such 
that “-A” score + “-B” score equaled the total point mutation penalty and “-A” 
score + “-O” score equaled the total gap open penalty.

– Strobealign: “-B 6 -O 5 -E 3 -A 0 -L 1000.” The -L 1000 parameter was applied to 
prevent excessive soft clipping, for example, preventing a 100 bp soft clip with 
only 1 match. We also tested configurations with “-A” set to 0 (“-B 6 -O 5 -E 3”), 
1 (“-B 5 -O 4 -E 3”), and 2 (“-B 4 -O 3 -E 3”), which produced similar results (the 
highest suboptimal alignment rates). Here, the setting “-A 0” was used because 
the default setting, “-A 2,” occasionally triggered an error in samtools during 
“samtools view -F 4,256” processing (even though Strobealign itself did not report 
any errors).

– LAST: “last-train -q 4 -a 3 -b 3 -r 2 -X 1 -Q1” followed by “lastal -q 4 -a 3 -b 3 -r 2 
-X 1 -T1 -p reads.train.” The “T1” setting (overlap alignment) was applied to pre-
vent excessive soft clipping.

2. The default setting of BWA (penalty setting #2):

– X-Mapper: “--max-penalty 0.50 --snp-penalty 5 --new-indel-penalty 6 --extend-
indel-penalty 1”

– Bowtie2: “--mp 5,5 --rfg 6,1 --rdg 6,1 --np 1 --ignore-quals”
– Minimap2: “-ax sr -B 3 -O 4 -E 1 -A 2 --score-N 1”
– BWA: “-B 4 -O 5 -E 1 -A 1 -L 100”
– Strobealign: “-B 5 -O 6 -E 1 -A 0 -L 1000”
– LAST: “last-train -q 3 -a 4 -b 1 -r 2 -X 1 -Q1” followed by “lastal -q 3 -a 4 -b 1 -r 2 

-X 1 -T1 -p reads.train”

3. The default setting of X-Mapper (penalty setting #3):

– X-Mapper: “--max-penalty 1.00 --snp-penalty 10 --new-indel-penalty 20 
--extend-indel-penalty 5 --ambiguity-penalty 1”
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– Bowtie2: “--mp 10,10 --rfg 20,5 --rdg 20,5 --np 1 --ignore-quals”
– Minimap2: “-ax sr -B 8 -O 18 -E 5 -A 2 --score-N 1”
– BWA: “-B 9 -O 19 -E 5 -A 1 -L 100”
– Strobealign: “-B 10 -O 20 -E 5 -A 0 -L 1000”
– LAST: “last-train -q 8 -a 18 -b 5 -r 2 -X 1 -Q1” followed by “lastal -q 8 -a 18 -b 

5 -r 2 -X 1 -T1 -p reads.train”

4. The default setting of Minimap2 (penalty setting #4):

– X-Mapper: “--max-penalty 0.60 --snp-penalty 6 --new-indel-penalty 4 
--extend-indel-penalty 2 --ambiguity-penalty 1”

– Bowtie2: “--mp 6,6 --rfg 4,2 --rdg 4,2 --np 1 --ignore-quals”
– Minimap2: “-ax sr -B 4 -O 2 -E 2 -A 2 --score-N 1”
– BWA: “-B 5 -O 3 -E 2 -A 1 -L 100”
– Strobealign: “-B 6 -O 4 -E 2 -A 0 -L 1000”
– LAST: “last-train -q 4 -a 2 -b 2 -r 2 -X 1 -Q1” followed by “lastal -q 4 -a 2 -b 2 

-r 2 -X 1 -T1 -p reads.train”

Here, we tested single-end alignment because different tools have varying algo-
rithms for computing pair-end penalties, which could result in different preferences 
for the best alignments. We used a stand-alone script to re-compute the penalty of an 
alignment, using the CIGAR string and position to confirm the number of matches, 
mismatches, ambiguous matches, gap opens, and gap extensions.

Regarding soft clips, we consider them not important for short-read alignment, as 
both X-Mapper and Bowtie2 emphasize the contiguity of alignment. However, Mini-
map2 and BWA often report soft clips in the middle of a reference contig under their 
default settings. We found that changing the soft clip penalty works for BWA (-L), but 
not for Minimap2 (-z, even when trying various scores/penalties from 100 to 1 bil-
lion). For a fair comparison for Minimap2, we removed reads reported with soft clips 
in the middle of the contigs by Minimap2, which accounted for 0.2–1% of all reads 
(Figs. 4 and 5). We also conducted another analysis that kept all reads and treated soft 
clips in the middle of the contigs as indels. The results showed the same trend, with 
X-Mapper reporting the lowest suboptimal alignment rates (Fig.  4) than the other 
aligners.

The default maximum allowed penalty of X-Mapper is 10 point mutations per 
100 bp match (“–max-penalty”), allowing twice the divergence of a species-level ANI 
of 95% [17]. For references with more than 10% dissimilarity to the sample, we recom-
mend using a more representative reference or adjusting the “–max-penalty” setting 
to allow for more mutations. Thus, alignments from other aligners exceeding 10% dis-
similarity were excluded from downstream analysis.

The optimal alignments of a read were identified as those with the lowest penalty 
across all alignments reported by the aligners. Alignments with higher penalties were 
considered suboptimal. We used suboptimal alignment rates to represent alignment 
accuracy, computed as the number of reads reported with suboptimal alignments 
by an aligner divided by the total number of reads in the input sequence dataset. To 
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determine the potential cause of suboptimal alignments, we tested X-Mapper with 
fixed k-mer sizes (--block-length k) and ungapped x-mers (--no-gapmers) to see if a 
suboptimal k-mer size could replicate the suboptimal alignments. We confirmed the 
potential cause by adjusting the k-mer size for Minimap2 (-k and -w during library 
indexing), BWA (-k minimum seed length), and Bowtie2 (--seedlen).

Evaluating alignment consistency of X‑Mapper in samples with various complexities

We tested the ability of aligners to report consistent alignments for the same read when 
aligning it to a single reference genome versus complex reference genomes represent-
ing diverse microbial species. Specifically, we compared the alignment of one B. fragilis 
WGS dataset (NCBI accession SAMN11943556) to its own assembly (Assembly1) with 
the alignment of this WGS dataset to a collection of 88 human gut microbiome genomes 
(Additional file  2: Table  S1). The genome collection included (1) the B. fragilis WGS 
assembly (Assembly1); (2) 5 other B. fragilis references representing different strains; (3) 
55 Bacteroides species that are not B. fragilis; and (4) 27 species that are not Bacteroides.

For each read, we compared its alignments to the complex reference with those to the 
simple reference. An alignment was characterized as consistent if: (1) the optimal align-
ments to the simple reference were also reported when aligned to the complex refer-
ence, or (2) the complex reference produced better alignments (with lower penalties) 
than those in the simple reference. We then computed inconsistency as the percentage 
of reads that did not have consistent alignments when aligned to the complex reference 
compared to the simple reference.

For Strobealign, LAST, Bowtie2 (“-N 1”), Minimap2, and BWA, we used the total pen-
alty of a pair of paired-end reads to identify their optimal alignments. X-Mapper selected 
the optimal alignments based on Combined Alignment Scores (cs), which consider both 
the alignment penalties of paired-end reads and the spacing penalties between them. 
Therefore, we used cs to determine the optimal alignments of a pair of paired-end reads 
for X-Mapper.

We ran all aligners using four different penalty settings (as described above). For 
X-Mapper, we adjusted spacing penalty for paired-end reads proportionally based on the 
point mutation penalty. We disabled secondary suboptimal alignments (–max-penalty-
span 0) to avoid reporting suboptimal alignments.

Short read speed test

For a fair comparison in terms of run time, all aligners (X-Mapper, Minimap2, Bowtie2 
“-N 1,” BWA, Strobealign, and LAST) were tested on the same sequence dataset aligning 
to the same reference genome under their default penalty settings. We used two testing 
datasets: (1) a human gut microbiome metagenome (NCBI accession SAMN10410254, 
100 bp, 9.3 million reads) aligning to its own assembly (99.0 mbp) and (2) a simulated 
human gut microbiome metagenome (NCBI accession SAMN11943558, 1.6 million 
reads, 150 bp) aligning to a reference collection of 88 genomes (441.4 mbp, Additional 
file 2: Table S1). For the simulated human gut microbiome metagenome dataset, Bow-
tie2, Minimap2, BWA, and Strobealign were set to output multiple, if not all, align-
ments (-a or -N 100). All samples were run on the same computer with 30 GB RAM, 
1–30 threads, and a 3.00 GHz CPU. By default, Java allocates 25% of system memory. 
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In this analysis, Java was allocated a maximum of 30 GB of RAM to run X-Mapper (java 
-Xms30g -Xmx30g). The same process, from reference indexing to read alignments, was 
tested on all aligners.

Code and data availability

All data is publicly available on DOI: https:// doi. org/ 10. 6084/ m9. figsh are. 25976 434 [27]. 
All code is publicly available on https:// github. com/ mathj eff/ Mapper [10] (X-Mapper 
DOI: https:// doi. org/ 10. 5281/ zenodo. 14258 690 [28] and X-Mapper Next DOI: https:// 
doi. org/ 10. 5281/ zenodo. 14258 790 [29]) and https:// github. com/ caozh ichon gchong/ 
Mapper_ eva (DOI: https:// doi. org/ 10. 5281/ zenodo. 14252 193 [30]). Code was tested on 
python v3.7 and jupyter notebook v5.7.1.
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