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Abstract 

Single-cell chromosome conformations vary significantly among individual cells. We 
introduce a two-step dimensionality reduction method for density-based, unsuper-
vised clustering of single-cell 3D chromosome structures from simulations or mul-
tiplexed 3D-FISH imaging. Our method clusters up to half of all structures into 5–12 
prevalent conformational states per chromosome. These states are distinguished 
by subdivisions into chromosome territory domains, whose boundary locations influ-
ence subnuclear positions and speckle associations of certain genes and establish 
long-range structural variations of more than 10 Mb. Territory domain boundaries are 
found at few sequence locations, shared among cell types and often situated at syn-
tenic breakpoints.
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Background
With the advent of single-cell super resolution imaging [1–5], multiplexed FISH imag-
ing [6–11], single-cell genomics experiments [12–16], and data-driven genome mod-
eling [17–28], it is now possible to analyze 3D structures of chromosomes and entire 
genomes at the single cell level. Chromatin loops, topological associated domains 
(TADs), and patterns of chromatin compartmentalization are readily detected in ensem-
ble averaged Hi-C data [29–32] but are very dynamic in nature and subsequently show 
large stochastic variations at the single cell level [2, 33]. For instance, chromatin loops, 
detected at specific locations in ensemble Hi-C of mammalian cells, are likely present 
only in 3 to 6.5% of cells at any given time [34] and TAD domain boundaries are rarely 
observed at the ensemble average position but are rather stochastically distributed, 
because of dynamic loop extrusion processes [2, 19, 35, 36]. Thus, detailed analysis of 
single-cell chromosome structures are only meaningful when considering the entirety 
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of structural variability observed in a cell population [37–41]. In contrast to chromatin 
loops and TADs, there has been comparatively less research into the structural varia-
tions of entire chromosomes between cells, and its role in the cell-to-cell variability of 
long-range chromatin interactions. Recent evidence from multiplexed FISH imaging [6, 
9, 37] and single-cell Hi-C experiments [13, 14, 42, 43] suggests large-scale structural 
variations of chromosome morphologies between single cells. For instance, single chro-
mosome clustering identified five subpopulations of conformations for chromosome-V 
of C. elegans embryos, which revealed at a coarse resolution the relative spatial positions 
of 22 TADs to each other [40]. Other studies focused mostly on smaller fragments of 
chromosomes [37, 41]. However, to our knowledge no method exists to study at higher-
resolution chromosome conformational states within the context of the subnuclear envi-
ronment. Moreover, polymer simulations have observed transitions between open and 
more globular conformations of chromosomal regions, as for instance a dumbbell-like 
conformation for a 2-Mb segment of human chromosome 2 [37, 44].

Variations in chromosome conformations could in principle affect a gene’s loca-
tion within the nuclear topography, defined as the subnuclear location with respect to 
nuclear bodies, radial position and nuclear compartments and thus its exposure to func-
tional compartments and nuclear bodies, which have been shown to be of relevance for 
gene function [45]. For instance, gene transcription can be heightened in the close vicin-
ity of nuclear speckles [46–48]. However, up to this point chromosome structural diver-
sity was studied mostly on chromosomal regions of individual loci rather than entire 
chromosomes and without considering a chromosome’s orientation within the nuclear 
topography of single cells. Furthermore, it remains understudied whether large-scale 
variations in the spatial chromosome morphology play a role in regulating gene function 
and thus be a source for transcriptional heterogeneity between single cells.

In this study, we tackle these issues by identifying prevalent subpopulations of 3D 
chromosome structures for entire human chromosomes in the context of the nuclear 
topography of single cells. We also examine how these structural variations affect the 
functional microenvironment of genomic regions within the nucleus. We address sev-
eral important questions, which are non-trivial due to the stochastic, fluid nature of 3D 
chromosome structures. First, can the structures of entire human chromosomes from 
different single cells be classified into prevalent structural states that define distinct 
chromosome morphologies? Second, do chromosome morphologies of prevalent struc-
tural states influence gene functions? To address these questions, we first introduce an 
approach for unsupervised clustering of an ensemble of single-cell chromosome struc-
tures, extracted from 3D structures of entire human genomes, either taken from chro-
matin tracing experiments (for instance, multiplexed DNA-MERFISH imaging [6] and 
SeqFISH + [9]) or genome structure models generated with our data-driven IGM (Inte-
grated Genome modeling) approach [17]. Because chromosome structures are dynamic 
in nature, classifying them based on 3D coordinates is challenging. This is because cer-
tain functionally unrelated regions can show substantial variability in their relative posi-
tions, potentially obscuring the detection of functionally relevant structural similarities 
among other chromosomal regions within a subpopulation of structures. Our approach 
effectively addresses this challenge by formulating the task of clustering individual chro-
mosome structures as a problem of identifying peaks in a density distribution within a 
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reduced 2-dimensional space. In this space, each data point corresponds to a chromo-
some conformation, and the detection of local maxima in the probability density func-
tion determines the positions of densely populated clusters of chromosomes with similar 
3D conformations. As a result, our approach determines subpopulations of chromo-
somes with similar 3D morphology. Unlike other unsupervised clustering methods [37, 
40, 41], our approach does not coerce all the conformations into a defined set of clusters. 
Instead, it rather detects only those morphologies that are substantiated by a sufficient 
number of similar structures at a given sample size. Furthermore, we examine signifi-
cantly larger chromosomes from the entire human genome and concentrate our analysis 
on the connection between chromosome morphology and nuclear topography.

We observed that, depending on the specific chromosome and sample size, up to half 
of all chromosome structures can be grouped into approximately 5 to 12 major confor-
mational classes. These chromosome morphologies are distinguished by the presence 
of characteristic chromosome territory subdivisions, which partition the chromosome 
conformation into one or multiple chromosome territory domains. These domains and 
the sequence locations of their boundaries play a crucial role in establishing long-range 
conformational variations between chromosomes. We validated our results with data 
from multiplex DNA-MERFISH imaging [6] along with single-cell sci-HiC experiments 
[13]. Noticeably, territory domain boundaries are not randomly distributed along the 
sequence; instead they are found only at a few specific locations in the sequence of a 
chromosome. These boundaries often mark a transition between gene-poor and gene-
dense regions and about half of these boundaries are also located at syntenic break-
points. Furthermore, most territory domain boundaries can be found in chromosomes 
of different cell types (e.g., GM12878, H1-hESC and HFFc6).

Interestingly, different chromosome morphologies alter the preferential positions of 
specific chromosomal regions within the nucleus, in particular in terms of their radial 
positions and distances from nuclear speckles. Short distances from nuclear speckles 
have previously been linked to increased gene transcription activity [19, 47–49].

Using spatial transcription data from RNA- and DNA-MERFISH experiments [6], we 
found that certain genes exhibit increased transcription when the chromosome adopts 
a specific morphology that favors its position in a more interior location within the 
nucleus. Therefore, our observations suggest that prevalent chromosome morpholo-
gies may contribute to modulating the functional properties of chromosomal regions, 
which could, at least in part, account for the cell-to-cell heterogeneity of gene expression 
among cells. Our method provides an important approach to study chromosome con-
formational variations and reveal links between chromosome morphologies and gene 
functions.

Results
Structure generation

We first apply our approach to an ensemble of diploid 3D genome structures that were 
generated at 200 kb resolution from ensemble Hi-C data [17, 19, 31]. Our population-
based 3D genome modeling method (IGM—Integrative Genome Modeling, Methods) 
[17, 19, 50, 51] generates a large sampling of 10,000 diploid single-cell 3D genome struc-
tures per cell type, which, as a whole, reproduce the input Hi-C data and predict with 
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high accuracy other orthogonal experimental data [17, 19]; namely, average radial posi-
tions of genomic regions from GPseq experiments [52], mean speckle distances from 
SON TSA-seq [49], mean distances and contact frequencies to the nuclear periphery 
from lamin B1 TSA-seq [49] and lamin B1 pA-DamID [53]. Moreover, predicted chro-
mosome structures are in good agreement with single-cell 3D chromosome conforma-
tions from multiplex DNA-MERFISH experiments [6, 17, 19], and also reproduce with 
high correlation speckle and lamina association frequencies of genomic regions from 
DNA MERFISH [17, 19]. We first focus our analysis on genome structure models from 
lymphoblastoid cells (GM12878) from previously published work [19], human fibro-
blast (HFFc6) [17] and human embryonic stem cells (H1ESC)), and later classify genome 
structures from DNA-MERFISH experiments [6].

Approach

To classify chromosome morphologies, we first isolate individual chromosome copies 
from each whole genome structure in the cell population, resulting in a total of 20,000 
chromosome structures for each autosome (Fig.  1). For each of those structures, we 
then construct a normalized distance matrix, which then serves as input into a dimen-
sion reduction and clustering scheme (Fig.  1). We use a two-step dimension reduc-
tion approach to cluster chromosome structures based on their distance matrices into 
morphological states (Methods). Specifically, each normalized distance matrix is envi-
sioned as a 2D image. Our two-step process combines a convolutional autoencoder 

Fig. 1  Overview of the two-step dimension reduction. Every chromosome structure from each cell is 
represented by an input distance matrix, which is constructed by calculating pairwise Euclidean distances 
between each pair of loci in the chromosome structure. After preprocessing, the matrix is then used as the 
input of the autoencoder. After minimizing the loss between input matrices and output matrices, the latent 
vectors are then embedded by t-SNE [54] to obtain a distribution of all chromosome structures in 2D space. 
The resulting distribution is further used for peak detection and identification of clusters of chromosome 
structures (Methods)
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(consisting of an encoder and a decoder module) with a dimensionality reduction step 
using t-distributed stochastic neighbor embedding (t-SNE) [54] (Methods). The encoder 
module reduces a distance matrix to a latent vector that can reconstruct the original 
matrix by the decoder module. The method reduces the dimensionality, while preserv-
ing enough information to reconstruct the original image. To construct a convolutional 
autoencoder, we use convolutional layers, max pooling layers and up sampling layers, 
which is frequently used for image embedding and classification (Additional file 1: Fig. 
S1) (Methods). t-SNE, a method to separate data points in a reduced data space, is then 
used to project the latent vectors (generated by the autoencoder) onto a lower dimen-
sional space (Fig. 1). Finally, we use a kernel density estimation to calculate a probabil-
ity density function (pdf) that represents the chromosome conformational space in the 
t-SNE reduced dimensions. The resulting density probability matrix shows a balanced 
distribution of local maxima separated by deep valleys (Fig. 1 lower panels), indicating 
the marked presence of a number of preferred conformational states (Methods). We 
then determine these local maxima as cluster centers and identify structures associated 
to each cluster center by watershed segmentation of the probability density distribution 
(Fig. 1 lower left panel, and Methods). Chromosome structures that fall into the same 
segmentation are assigned to the same conformational cluster.

To assess our clustering performance, we employ Silhouette analysis [55]. The Sil-
houette coefficients of all clustered chromosomes are larger than 0.5 (some reaching 
up to 0.72), thus confirming that structures in different clusters are well separated in 
the reduced space (Additional file 1: Table S1). To further quantify the structural sim-
ilarity of chromosomes within and between clusters, we calculate the average Wasser-
stein distance metric [56]. The dissimilarity of chromosomes in two different clusters 
is defined as the average Wasserstein distances of all intra-chromosomal distance dis-
tributions, calculated from all chromosomes in each cluster (Fig. 2A). We normalize 
this dissimilarity measure by the average Wasserstein distance for chromosomes in 

(See figure on next page.)
Fig. 2  Clustering of chromosome 6 structures reveals dominant chromosome morphologies (Shown 
are results for GM12878 cells). A Pairwise dissimilarity measure between chromosome structures in the 
8 detected clusters for chromosome 6. The dissimilarity matrix is calculated by measuring the average 
Wasserstein distance [56] between all intra-chromosomal distance distributions between two clusters. Each 
entry represents the log fold ratio between the inter-cluster dissimilarity and the intra-cluster dissimilarity. 
Positive off-diagonal values indicate larger dissimilarity between structures of different clusters than those 
within a cluster. B The cluster occupancy of the 8 predicted clusters for chromosome 6. The occupancy is 
defined by the number of chromosome structures in a cluster divided by the total number of structures in 
all clusters. C The distributions of the radius of gyration of all structures in each cluster (Methods). D For each 
cluster the following information is shown (Methods): (top panel) The average contact frequency matrix 
calculated from all structures in a cluster; (second panel from top) different shade of green indicate the 
location of chromosome territory domains; (third panel from top). The average distance matrix calculated 
from all chromosome structures in the cluster; (fourth panel from top) Selected example of a chromosome 
structure in the cluster. Numbers and circles indicate chromosomal regions of the corresponding 
chromosome territory domains. The color bar indicates the sequence position of each chromosomal region. 
We also highlighted several specific genomic regions (regions I, II, and II) below the RadRatio and RGRatio 
profiles, which are compared and discussed in the text. E The genomic positions of the 8 detected domain 
boundaries on chromosome 6. F Contact probabilities versus different ranges of sequence distances for all 
predicted clusters from the model. We observe similar contact probabilities at smaller scales in all clusters. 
At larger scales, cluster 4 has the largest contact probabilities while cluster 8 has the smallest contact 
probabilities
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Fig. 2  (See legend on previous page.)
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the same cluster (Methods). We observe that the average Wasserstein dissimilarity 
measure is always substantially larger (i.e., ~ 2–fourfold) for structures in different 
clusters, showcasing the structural distinction between chromosomes in the different 
clusters (Fig. 2A, row-wise comparison). We also found similar results when assessing 
clusters with other distance measures, including a Euclidean distance measure and 
Gaussian dissimilarity [37, 57], confirming an overall higher similarity for structures 
within than between clusters (Methods) (Additional file 1: Fig. S2). (For comparison 
with other clustering methods see SI (Additional file 1: Fig. S3AB, S4AB).)

Assessing robustness of clustering method

Because our approach relies on density-based clustering, the cluster detection 
requires sufficient numbers of similar chromosome structures. We therefore assessed 
the robustness of our method with a decreasing number of input structures (Addi-
tional file  1: Fig. S5). Using 20,000 chromosome structures, we identified eight 
prevalent conformational clusters for chromosome 6 and between five and 12 clus-
ters for other chromosomes. The same clusters were detected when the number of 
input structures was reduced to at least 15,000. As the number of input structures 
decreases further, the number of detected clusters declines (Additional file 1: Fig. S5). 
For example, with 10,000 input structures, seven of the eight clusters were identified, 
and with 5000 structures, five of the eight clusters were detected (Additional file  1: 
Fig. S5). This reduction in cluster detection is due to the difficulty in identifying very 
low-occupancy clusters with smaller number of input structures, as detecting local 
density maxima via kernel density estimation requires a sufficient number of struc-
tures that are similar to each other. However, clusters with higher occupancy are con-
sistently identified, with nearly identical average distance matrices, underscoring the 
robustness of our method even with smaller input sizes. Therefore, a larger sample 
of structures may reveal additional clusters that could go undetected with a smaller 
sample size (Additional file 1: Fig. S5).

We also tested the robustness of our method with respect to the resolution of the 
chromosome structures. We downsampled all chromosome structures from 200 kb to 
3 Mb resolution, meaning chromatin regions were sampled at intervals of only 3 Mb. 
Despite the substantially lower structural resolution, we can still identify six out of 
eight clusters detected in our original 200 kb resolution chromosome structures, with 
very similar contact patterns (Additional file 1: Fig. S6).

Finally, we also generated a negative control consisting of 20,000 genome struc-
tures modeled as random self-avoiding chromosome homopolymers (without Hi-C 
restraints) constrained only by nuclear volume. As anticipated, the negative control 
failed to produce our observed clusters (Additional file 1: Fig. S6). As a positive con-
trol, we created several datasets consisting of chromosome structures derived from 
average cluster distance matrices, with varying levels of random noise sampled from a 
Gaussian distribution (standard deviation ranging from 0.1 to 0.8). Our method suc-
cessfully separated all data points in the conformation space and accurately clustered 
all structures from each positive control dataset into their correct clusters, regardless 
of the noise levels (Additional file 1: Fig. S7).
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A large fraction of chromosomes can be clustered into prevalent structure morphologies

Depending on the specific chromosome, about 25–50% of all chromosome structures 
can be clustered into 5 to 12 prevalent morphology states (Additional file 1: Table S1, 
Fig. S8). For instance, about 40% of all chromosome 6 structures and about 50% of chro-
mosome 22 structures can be clustered into 8 and 11 dominant conformational states, 
respectively (Fig.  1, lower left panel). The number of structures in each cluster varies 
(Fig. 2B). For chromosome 6, cluster 4 has the highest occupancy containing ~ 40% of all 
clustered structures, while all other clusters have an occupancy of less than 20% (Fig. 2B). 
Unclustered structures located midway between two cluster centers have conformations 
that can be considered as intermediates between the structures in both clusters and have 
relatively low copy numbers in the population (Additional file 1: Fig. S9). As expected, 
the overall shape of chromosomes varies between clusters. For instance, cluster 8 of 
chromosome 6 contains structures with the most extended conformations, having 50% 
larger average radius of gyration than chromosomes in cluster 4, which shows the lowest 
average radius of gyration and highest uniformity in shape (Fig. 2C). Chromosome clus-
ters with large average radius of gyration typically show the largest cell-to-cell variations 
in their shape within the cluster (e.g., clusters 6, 8).

Chromosome conformations are distinguished by territory domains

Differences in chromosome structures between clusters become more apparent when 
we compute the average contact frequency maps and distance matrices from all chro-
mosomes in each cluster (Fig.  2D). Every cluster displays a unique contact frequency 
pattern (Fig.  2D). Most clusters (and 60% of all clustered chromosomes) show visible 
boundaries in the average distance and contact frequency matrices that divide the chro-
mosome territory into spatial subdivisions, with increased contact frequencies within, 
and reduced contact frequencies between territory domains (e.g., clusters 1, 3, 6, and 8 
in Fig. 2D). These territory domain boundaries are most evident in the average distance 
matrix of a cluster (Fig.  2D), showing increased distances (i.e., dark blue off-diagonal 
regions in av. distance matrices) and thus spatial segregation between territory domains 
(Fig. 2D). Consistently, these boundaries appear as local maxima in insulation score pro-
files calculated from the averaged cluster distance matrices (Methods) (Additional file 1: 
Fig. S10, S11, S12) or from single-cell structures (Additional file 1: Fig. S10, S11, S12). 
They also tend to delineate regions with distinct average radial positions. For instance, 
cluster 3 contains a territory domain boundary at sequence position 155  Mb (bound-
ary 8 in Fig. 2D,E), which separates a small q-terminal domain f (155–171 Mb) from the 
remainder of the chromosome territory (domain e), as depicted in Fig. 2D. A representa-
tive chromosome structure of cluster 3 shows the small q-terminal territory domain spa-
tially separated from the bulk of the remaining chromosome territory (Fig. 2D (cluster 3, 
lower panel)). Noticeably, the territory domain boundary shows relatively low chromatin 
fiber condensation and thus acts as a hinge region allowing the separation of domain f 
(in cluster 3) from the bulk of the chromosome territories (domain e) (see section below, 
and representative structure in Fig. 2D)).

Cluster 6 exhibits another territory domain boundary at around 134-Mb sequence 
position (Fig. 2D,E), which separates a slightly larger chromosome territory domain at 
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the q-arm terminal end of the chromosome (domain l at 134–171 Mb, Fig. 2D) from the 
remainder of the chromosome territory (domain k).

Instead, cluster 2 contains a relatively small chromosome territory domain at the 
p-arm terminal end of chromosome 6 (domain c in cluster 2 (0–14 Mb), Fig. 2D). Over-
all, territory domain boundaries are located at a few specific locations in the chromo-
some (Fig. 2E). In chromosome 6, we find a total of 8 territory domain boundaries and 
a total of 17 territory domains across the 8 chromosome morphology clusters (domains 
a–q in Fig. 2D,E, middle panel).

The sequence locations of domain boundaries and the size of territory domains have 
profound implications for the decay rate of the contact probability P(s) as a function 
of genomic separation (Fig. 2F). This measure is traditionally used in the Hi-C field to 
investigate the polymeric nature of chromosome folding patterns. At shorter sequence 
distances (< 10 Mb), the decay rate is similar for chromosomes in all clusters. However, 
at larger sequence distances, the decay rate varies substantially for chromosomes in dif-
ferent clusters (Fig. 2F). For chromosomes with no or only a small territory domain (e.g., 
clusters 2 and 4), the decay rate is similar to those of the ensemble average. However, 
with increasing number and sizes of territory domains, we observe a decrease in long-
range chromatin interaction probability for regions separated in sequence between 10 
and 100 Mb, in particular for cluster 8, which contains the most fragmented chromo-
some morphology with 4 chromosome territory domain boundaries (Fig.  2F). These 
observations affirm the role of territory domain boundaries on modulating long-range 
chromatin distances.

Morphology clusters are validated by imaging and sc‑Hi‑C experiments

We assessed our findings with chromosome tracing data from multiplex DNA-MER-
FISH imaging [6]. Due to the relatively small sample size (~ 7000 chromosome struc-
tures) and low coverage (~ 3  Mb step size), density-based clustering can only recover 
the 3 clusters with the highest occupancy (clusters 1, 4, and 7) (Additional file  1: Fig. 
S13). This is also found when clustering a downsampled version of the modeled popula-
tion, where we find fewer clusters which are still among the original detected clusters at 
the 200-kb resolution (Additional file 1: Fig. S6). This is anticipated from simulations of 
density-based clustering, which detects a smaller number of clusters with smaller sam-
pling sizes (Additional file 1: Fig. S5). Nevertheless, more than half of all DNA MERFISH 
structures show high structural similarity to one of our predicted cluster morphologies 
(Methods), and thus about 56% of all DNA-MERFISH structures (about 4000 structures) 
can be classified to one of the eight chromosome morphology clusters (Fig. 3A–D). The 
average distance matrices for each cluster computed from the classified DNA-MERFISH 
structures showed high similarity with those from our models, and confirmed the loca-
tions of all domain territory boundaries (Pearson’s r > 0.88) (Fig.  3A,B). For instance, 
DNA MERFISH structures confirm the small chromosome territory domain at the p-ter-
minal end of chromosome 6 in clusters 3 and 6 at the sequence location 134 and 155 Mb, 
respectively, both in distance matrices and single-cell representative structures (Fig. 3A–
D). DNA MERFISH also confirmed the more fragmented chromosome morphologies of 
cluster 8 and cluster 5 (Fig. 3A–D), including the depleted intra-chromosomal interac-
tions for the territory domain i (sequence location 114–127 Mb). It is noteworthy that 



Page 10 of 44Zhan et al. Genome Biology           (2025) 26:30 

cluster 4 shows also the highest occupancy (28%) in DNA MERFISH structures (Fig. 3E), 
while about 72% of classified structures contain at least one territory domain boundary.

We also assessed our findings with available single cell Hi-C (sci-HiC) data of 
GM12878 cells [13] (Additional file 1: Fig. S14AB). To increase the relatively low con-
tact coverage (on average only 3879 contacts per cell at 200 kb resolution), we applied 
the scHiCluster imputation method [58] (Additional file 1: Fig. S14B). About 8500 out 
of 11,000 imputed single-cell contact matrices could then be classified based on their 
similarity to the average contact maps of our detected clusters (Methods) (Additional 
file 1: Fig. S14B). The average contact frequency maps for each cluster show good agree-
ment with those from our models, including locations of territory domain boundaries 
(Additional file 1: Fig. S14B). A control experiment, where off-diagonal contact entries 

Fig. 3  Chromosome clusters can be validated by imaging experiments. A Average distance matrices from 
modeled chromosomes (chromosome 6) in each cluster downsampled to the respective coverage as 
observed in DNA-MERFISH experiments [6]. Tick labels of all distance matrices indicate sequence location 
in Mb. For comparison with experiment distance matrices were down sampled to the same coverage in 
the experiment (window size 3 Mb). B The corresponding average distance matrices of chromosomes from 
DNA-MERFISH experiments for each cluster [6] together with their Pearson’s R with distance matrices from 
the model. C Selected representative examples of single-cell modeled structures and the corresponding 
downsampled version for chromosome structures for each cluster. Matrices are calculated with window size 
200 kb. D Average distance matrices and selected representative single-cell chromosome structures from 
DNA-MERFISH experiment for each cluster. In panels A, B, lower panel C and D distance matrices are shown 
at 3-Mb resolution (coverage in DNA MERFISH experiment); in upper panel C the distance matrix is shown at 
200 kb resolution. E Comparison of the cluster occupancy between the chromosome conformational clusters 
observed in our models and corresponding chromosome conformational clusters from DNA-MERFISH 
experiments
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in each sci-HiC contact map were randomized, resulted in cluster averages that did not 
reproduce the contact patterns of our clusters (Additional file 1: Fig. S14C).

Territory domain boundaries influence long‑range chromosome structure variation

The specific locations of territory domain boundaries greatly influence the long-range 
distance distributions between genomic regions. For instance, even though loci α , β , and 
γ (Fig. 4A) at sequence locations 97, 120, and 143 Mb are equidistant to each other along 
the sequence, the pairwise 3D distance distributions involving these three regions show 
substantial differences in clusters 5, 6, 7, and 8 due to differences in the domain bound-
ary locations in each cluster (Fig. 4A,B). For instance, loci β and γ are located in the same 
territory domain in clusters 7 and 8, while being in different territory domains in clusters 
5 and 6. Subsequently, the cumulative distributions of loci β–γ distances are substantially 
shifted to smaller values in clusters 7 and 8, while the distance distributions for the same 
loci pair are shifted to substantially larger values in clusters 5 and 6 (Fig. 4B). In contrast, 
in clusters 5 and 7 the loci α and β are located in the same territory domain and therefore 
have distance distributions with substantially smaller distances than in clusters 6 and 8, 
where the two loci reside in different territory domains. Finally, loci α and γ , separated 
by 46 Mb sequence distance, show relatively smaller distances in clusters 7 and 5, where 
both loci are in the same territory domain, while distances are dramatically shifted 
to larger values in clusters 6 and 8, where both loci are separated by territory domain 
boundaries (Fig. 4B). (For cumulative distance analysis for all clusters see SI (Additional 
file 1: Fig. S15AB)).

The corresponding distance distributions from DNA-MERFISH experiments show the 
same general behavior (Fig. 4B): regions within the same territory domains have distance 
distributions shifted to smaller values, whereas distances are shifted to larger values 
when loci were positioned at opposing sides of a territory domain boundary (Fig. 4B).

Noticeable the 46-Mb region centered at loci β (stretching between loci α –γ , Fig. 4A) 
also shows a substantially larger radius of gyration in cluster 5 than in other clusters, in 
both, our models and DNA MERFISH clusters (Fig. 4C).

Chromosome morphologies influence nuclear locations of chromosomal regions

Next we aim to address the following question: Does the morphology of a chromo-
some structure influence the nuclear positions of its chromosomal regions? We can 
analyze chromosome structures within the nuclear topography, for instance, by 
measuring the radial positions of chromosomal regions. Loci β (at sequence location 
120  Mb) is part of a small territory domain in cluster 5 (domain i: 114–127  Mb in 
Figs.  2D, 4A) and is bordered by two territory domain boundaries (boundary bd-5 
and bd-6 in Fig. 4A). This region has very low gene density and is mostly composed 
of chromatin of the inactive B-compartment, specifically, the B3 subcompartment 
annotation [31]. It is noticeable that this region shows significantly more peripheral 
radial position in cluster 5 than in any other cluster (p-values of Welch’s t-test for 
cluster 5 vs cluster 6, 7, 8 = 3.16e − 08, 1.39e − 13 and 3.37e − 08 (Additional file  1: 
Table  S2)). For instance, the cumulative radial distribution of loci β is dramatically 
shifted to higher peripheral radial positions in cluster 5 than in clusters 6, 7, and 
8 (Fig.  4D, middle panel), while the neighboring loci α and γ show relatively more 
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Fig. 4  Cumulative distance analysis unveils cell-to-cell variations of chromosome structures influenced 
territory domain boundaries. (Shown are results for GM12878 cells). A The genomic positions of three studied 
loci α (97 Mb), locus β (120 Mb), and locus γ (143 Mb) showed together with their locations within distance 
matrices of predicted clusters 5, 6, 7, and 8. B (Left column) Cumulative distance distributions of three pairs 
of selected locations at locus α (97 Mb), locus β (120 Mb), and locus γ (143 Mb) for clusters 5, 6, 7, and 8 of 
modeled structures. (Right column) Cumulative distance distributions of three pairs of selected locations at 
locus α (97 Mb), locus β (120 Mb) and locus γ (143 Mb) for clusters 5, 6, 7, and 8 of matched DNA-MERFISH 
structures [6]. C Distributions of average radius of gyration for a downsampled region between 97 and 
143 Mb of predicted clusters for both model and DNA MERFISH [6]. D Cumulative radial position distributions 
of three selected locations at locus α (97 Mb), locus β (120 Mb), and locus γ (143 Mb) for cluster 5, cluster 6, 
cluster 7, and cluster 8 of modeled structures. Note that cluster 5 has a larger radial position distribution than 
other clusters at locus β
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interior locations in cluster 5 than in clusters 6, 7, and 8 (Fig. 4D, left and right pan-
els). This means that domain i (including loci β ) in cluster 5 protrudes out of the chro-
mosome territory towards the periphery of the nucleus (Fig. 4D), which explains the 
loss of intra-chromosomal interactions and increased spatial distances of this region 
in the average distance matrix (Fig. 2D). When loci β is part of other, larger territory 
domains in clusters 6, 7, and 8, it shows substantially more interior radial locations 
(Fig. 4D, middle panel). (Cumulative radial distributions for all clusters are shown in 
SI (Additional file 1: Fig. S15CD)).

To better quantify cluster-specific preferences in radial positions of genomic 
regions, we compute the log ratio between the average radial positions in a cluster 
and the ensemble of all clustered chromosomes (RadRatio) (Methods) (Fig. 5A, sec-
ond profile panel from top). We see that RadRatio profiles differ substantially between 
all clusters of chromosome 6, in particular for clusters 1, 3, 5, 6, and 8, which show 
pronounced positive and negative peaks in the RadRatio profile (Fig.  5A). A nega-
tive RadRatio value indicates that the average radial position of a genomic region 
is shifted to the nuclear interior in a cluster in comparison to structures of the cell 
population as a whole. For instance, the RadRatio profiles in clusters 1 and 3 differ 
substantially across the entire chromosome (Fig. 5A). Among the eight clusters, four 
specific genomic regions particularly differ in their RadRatio profiles (regions I (24–
48  Mb), II (105–114  Mb), III (155–171  Mb), IV (114–127  Mb)) (Fig.  5A,B). Region 
I contains the MHC gene cluster at location 28.5–33.5  Mb. In cluster 1, region I is 
significantly shifted towards more interior nuclear positions in comparison to the 
same region I in clusters 3, 5, and 6, which even show more exterior nuclear loca-
tions than in the population average (p-values of Welch’s t-test [59] = 4.06e − 12, 
1.02e − 03 and 6.17e − 09, respectively, for comparing cluster 1 to clusters 3, 5, and 
6 (Additional file 1: Table S2)) (Fig. 5A–C). The genomic region II forms a small ter-
ritory domain in cluster 8 (domain p in cluster 8, Fig.  5A,B), which shows strongly 
negative RadRatio, and therefore loops towards the nuclear interior. Instead, the 
same region II in cluster 6 is part of a larger territory domain with significantly 
higher RadRatio (p-values = 1.04e − 09, Welch’s t-test for clusters 8 and 6 (Additional 
file  1: Table  S3)), while in cluster 2 the same region II is even shifted towards the 
nuclear periphery in comparison to the population average (see negative RadRatio for 
regions II in cluster 2 in Fig. 5A) (p-values = 4.95e − 17, Welch’s t-test for clusters 8 
and 2 (Additional file  1: Table  S3)). In cluster 3, region III forms a small chromo-
some territory domain at the q-terminal chromosome end (domain f in cluster 3 in 
Figs. 2D, 5A,B). This territory domain loops towards the nuclear interior in cluster 3, 
as shown by the negative RadRatio profile and the representative structures (Figs. 5A, 
2D). In clusters 1 and 2, the same region III shows a more exterior nuclear location 
and does not form a separate domain, but is part of a larger chromosome territory 
domain (Fig.  5A). In addition, region IV (114–127  Mb), the aforementioned region 
that forms the small domain i in cluster 5, is gene poor and contains the long gene 
NKAIN2 that spans about 1-Mb genomic DNA, extends towards the nuclear exte-
rior in cluster 5, while the same region IV in cluster 7 is embedded in a larger ter-
ritory domain and shows a significantly more interior nuclear location (Figs. 5A–C, 
2D) (p-values = 1.39e − 13, Welch’s t-test (Additional file 1: Table S4)). Moreover, in 
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Fig. 5  Chromosome morphologies show preferences in nuclear locations. (Shown are results for GM12878 
cells). A For each cluster the following information is shown (Methods): (top panel) RadRatio: the log fold 
ratio of the average radial position in the cluster with respect to full ensemble average. (A negative RadRatio 
value indicates that its average radial position in the cluster is closer to the nuclear interior than in the 
overall population as a whole.); (second panel from top) RGRatio: the log fold ratio of RG in the cluster with 
respect to the value in the full ensemble; (third panel from top) the A/B compartment profile from the 
averaged contact frequency matrix of chromosomes in the cluster; (fourth panel from top) different shades 
of green indicate the location of chromosome territory domains. Also shown as labeled red blocks are the 
genomic positions of 4 selected regions I, II, III, and IV. These regions show particularly different behavior in 
RadRatio and RGRatio between the clusters: (region I (24–48 Mb), II (105–114 Mb), III (155–171 Mb), and IV 
(114–127 Mb)). B The genomic positions of the 4 selected regions I, II, III, and IV in a schematic chromosome 
as well as 4 selected loci (δ (31 Mb), ε (110 Mb), β (120 Mb), and φ (160 Mb)) on chromosome 6. C Cumulative 
radial position distributions of four selected locations at locus δ (31 Mb) of region I, locus ε (110 Mb) of region 
II, locus β (120 Mb) of region IV, and locus φ (160 Mb) of region III. D Proposed scheme of switching between 
different conformational states
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cluster 4, without chromosome territory boundaries, the radial positions for almost 
all chromosomal regions are shifted towards the nuclear periphery in comparison to 
the population average (see positive values in RadRatio profile in Fig. 5A) (Additional 
file 1: Table S3)) (Fig. 5C).

Chromatin A/B compartments

To gain insights into how chromosome conformations influence gene function, we cal-
culated A/B compartments in each cluster by eigenvector decomposition of its contact 
frequency matrix following the approach in Rao et  al. [31] ((Fig.  5A third panel and 
Additional file 1: Fig. S16). The first principal component (PC1) corresponds to A and 
B compartment patterns in clusters 1, 2, 3, 4, and 5. For clusters 6, 7, and 8, the second 
principal component (PC2) correlates with A-B compartments, while PC1 correlates 
with territory domains (Additional file 1: Fig. S16). This may be explained by the larger 
number of domains and relatively large changes in radial positions at domain bounda-
ries, in particular for clusters 7 and 8. Our observations are similar to a recent study 
in mouse cortex brain cells [60], where PC1 components correlated with chromosomal 
megadomain structures in some neuronal cells, while the PC2 component correlated 
with A/B compartments. Interestingly, we observe considerable differences in A/B com-
partment annotations across clusters (Pearson’s correlations to ensemble PC1 profile 
range between 0.72 and 0.99). Notably, chromatin regions exhibiting the greatest struc-
tural variations between clusters (regions I–IV) also show the largest shifts in A/B com-
partment eigenvalues (Fig.  5A). The most striking difference occurs at the p-terminal 
end of chromosome 6 in cluster 3 (region III), which shifts from a B to an A compart-
ment, while in most other clusters it remains in the B compartment. Similarly, region IV 
is annotated as part of the A compartment only in cluster 5, while in all other clusters it 
remains in the B compartment. Additionally, the q-terminal regions in cluster 1 (includ-
ing region I) display substantially higher positive eigenvalues compared to other clusters. 
These findings suggest that shifts in chromosome conformations may be associated with 
changes in chromatin functional properties.

Chromatin fiber condensation

Chromosome morphologies show also differences in the local chromatin fiber conden-
sation, which is measured by the radius of gyration (RG) over a sliding 1-Mb window 
[17, 19]. Differences are best illustrated by the log ratio between the average RG values in 
a cluster and the overall ensemble average (RgRatio) (Methods) (Fig. 5A, second panels 
from top). The RGRatio shows substantial differences between the clusters, most notice-
able at territory domain boundaries that coincide with major transitions in the radial 
positions of adjacent genomic regions (Fig. 5A). For instance, at region II (105–114 Mb) 
in cluster 8 forms a small territory domain (p) that loops towards the nuclear interior 
(Fig.  5A–C). The two domain p boundaries at region II (105–114  Mb) show distinct 
maxima in the RGRatio values, indicating a more extended chromatin fiber in cluster 
8 to allow for the radial transition of domain p (Fig.  5A, B, indicated by two arrows). 
This is also shown in representative structures of cluster 8 (Fig. 2D) showing an extended 
fiber at the domain boundary, acting as a hinge region to facilitate the radial transition 
of domain p towards the nuclear interior (Figs. 2D, 5D). Similarly, the gene-poor region 
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IV (114–127 Mb), which extends towards the nuclear exterior, is flanked by regions with 
increased fiber extension (peaks in RGRatio), while region IV itself shows substantially 
higher fiber compaction in cluster 5 than in the ensemble average (i.e., negative RgRatio 
values) (Fig. 5A–C, indicated by two arrows, 5A).

Chromosome morphologies influence inter‑chromosomal interactions

For most genomic regions, interchromosomal proximity matrices vary considerably 
between different morphology clusters (Fig.  6A, left panels and Additional file  1: Fig. 
S17). To quantify these differences, we computed the IppRatio, defined as the logarith-
mic ratio of the total count of a genomic region’s inter-chromosomal contacts within a 
cluster and the total count across all structures in the population (Methods) (Fig.  6A, 
right profile panels). For instance, region II (105–114 Mb) in cluster 8 (i.e., domain p) 
shows higher IppRatio in cluster 8 than in any other cluster (Fig. 6A), partially because 
of the more interior and exposed location of this region in cluster 8 (Fig.  6A, lower 
right panels). Overall chromosome morphologies with territory domain boundaries 
show higher propensity for interchromosomal interactions. Cluster 4 containing chro-
mosomes without territory domain boundaries displays reduced inter-chromosomal 
interactions than clusters 5 and 8 (Fig.  6B,C). Interestingly, chromosomes in different 

Fig. 6  Comparison of inter-chromosomal proximity frequency map and associated features for 
chromosomes in different clusters (Shown are results for GM12878 cells). A (left panels) The average 
proximity frequency matrix between structures of chromosome 6 and structure of all other chromosomes 
in the genome for different clusters (Methods), (right panels) Inter-chromosomal proximity profile (IPP), 
defined as the total number of inter-chromosomal contact proximities of a genomic region with any 
other chromosomal region of any chromosome divided by the total number of genome structures in a 
cluster (Methods). The red line shows the genome-wide IPP profile calculated from the whole ensemble of 
structures, while the blue line shows the IPP profiles calculated from the structures in each cluster. IppRatio, 
defined as the log ratio of IPP values in a cluster over the IPP value calculated from the ensemble of all 
clustered structures. Each row of panels shows these properties calculated from different clusters, namely 
clusters 4, and 8. B Ranking of the average IppRatios between chromosome 6 and the other chromosomes in 
different clusters. Only the 7 top ranked chromosomes leading to the highest averaged IPPRatio are shown. 
C (top left panel) Interchromosomal proximity frequency map between chromosome 6 and chromosome 2 
calculated from structures in cluster 8 and (bottom left panel) and structures in cluster 4. (Top middle panel) 
IPP profile of chromosome 6 considering interactions only to structures of chromosome 2 in cluster 8 (blue 
curve) and (bottom middle panel) in cluster 4 (blue curve). For comparison also the ensemble profile as in A 
are shown in red (Top right panel). IppRatio profiles between chromosomes 6 and 2 in cluster 8 and (Bottom 
right panel) in cluster 4. Also shown are representative structures of chromosome 6 and 2 in cluster 8 (top 
left) and cluster 4 (bottom left)
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clusters favor interactions with different chromosomes (Fig.  6B,C). Chromosome 6 in 
cluster 8 shows the highest average IppRatio with chromosomes 2, 21, and 8, while clus-
ter 5 shows highest interchromosomal interactions with chromosome 20 and 16 instead 
(Fig. 6B,C).

Chromosome morphologies influence gene functions

To examine if chromosome morphologies affect the disposition of genomic regions to 
nuclear speckles, we simulated SON TSA-seq data from the chromosomes in each clus-
ter. SON TSA-seq is an experimental method that measures mean cytological distances 
to nuclear speckles [49]. We previously showed that we can predict speckle locations 
and SON TSA-seq data with good agreement to experiments (Pearson’s r = 0.87 between 
prediction and experiment [19] and Pearson’s r = 0.79 for speckle association frequency 
(SAF)) [17, 19]. We found that SON TSA-seq signals (and thus mean speckle distances) 
vary considerably for specific chromosomal regions in different clusters (Fig.  7A and 
Additional file 1: Fig. S18). For instance, region II (105–114 Mb) in cluster 8 (i.e., terri-
tory domain p in cluster 8) shows the highest SON-TSA-seq signals among all clusters 
(Fig. 7A) and thus its mean speckle distance is significantly smaller than the same region 
in cluster 6 (p-value = 2.36e − 06, Welch’s t-test (Additional file  1: Table  S2)) (Fig.  7B, 
right panel). Cluster 4 shows the overall largest speckle distances (p-value = 3.90e − 09, 
paired t-test) (Fig. 7C, left panel). This observation is also confirmed by DNA MERFISH 
experiment [6] (p-value = 5.39e − 14, paired t-test) (Fig. 7C, right panel). The predicted 
mean speckle distances in different clusters are also confirmed by high correlations with 
those from DNA MERFISH experiments (Pearson’s correlations range from 0.71 to 0.81) 
(Additional file 1: Fig. S19A).

Fig. 7  Potential linkage between chromosome morphologies and gene functions (Shown are results 
for GM12878 cells). A Contact frequency matrices and 4 profiles of different structural properties for 
chromosome 6 in clusters 6 and 8. (Top panel) SON TSA-seq predicted from genome structures in each 
cluster. Positive values indicate shorted mean distances to nuclear speckles. (Second panel) SafRatio, log 
ratio of SAF calculated from chromosomes in the cluster over SAF calculated from structures in the whole 
ensemble (Methods). (third panel from top) Average contact frequency matrices calculated from structures 
in the cluster. The first four panels show data for a zoomed-in genomic region in chromosome 6. The fifth 
and sixth panels from top show the predicted cluster SON TSA-seq and cluster average contact frequency 
matrices for the full-length chromosome 6. The bottom panel shows selected representative structures 
for chromosome 6 in each cluster. Also indicated is region II (genomic location (105–114 Mb)), which is 
discussed in the text. B Distributions of the average radial position and average speckle distances for a region 
II (genomic location: 105–114 Mb) in clusters 4, 6, and 8 as well as the p-values of Welch’s t-test [59] between 
two pairs of clusters. Differences between clusters of the radial positions and average speckle distances are 
significant. C Distributions of speckle distance (SpD) of all imaged chromosomal regions in cluster 4 and 
cluster 8 from models (left panel) and from DNA MERFISH experiments (right panel). Distances are stat. 
significant different between cluster 4 and 8 for both models and experiments. p-values of the paired t-test 
for both model and DNA MERFISH are shown [6]. We found the average SpD of cluster 4 is larger than that 
of cluster 8 in both model and DNA MERFISH. D The transcription ratio, log ratio of average transcription 
level calculated from the DNA-MERFISH cluster over average transcription level calculated from all clustered 
DNA-MERFISH structures of a locus from region II with genes ENSG00000228624 and ENSG00000196591 
for cluster 6 and cluster 8 [6]. E (Top panel) The genomic positions of region I (24–48 Mb), region II (105–
114 Mb), and region III (155–171 Mb) together with locus I (26 Mb), locus II (113 Mb), and locus III (158 Mb) 
on chromosome 6. (Second panel from top) The transcription ratio of the three selected locus I, II, and III for 
all clusters measured by DNA-MERFISH [6] (Methods) (Third panel from top) SafRatio of cluster 1, 8, and 3. 
(Fourth panel from top) RadRatio of cluster 1, 8, and 3. F A/B compartments (PC1) of clusters 1, 8, and 3

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Highly transcribed genes are often found close to nuclear speckles [6, 29, 59] and thus 
higher SON TSA-seq signals generally correlate with higher transcriptional activity [19, 
46–48]. We therefore speculate that in cluster 8 transcriptionally active genes in region 
II (105–114  Mb) have higher transcription levels than the same genes in cluster 6 or 
any other cluster. We validated this hypothesis with spatial transcriptomics data from 
RNA-MERFISH experiments, which is jointly measured with DNA-MERFISH chromo-
some tracing [6]. We selected genes in regions I, II and III for which RNA MERFISH 
transcriptomics data is available and which show the largest differences in speckle asso-
ciations between clusters (highest SafRatio levels). For instance, in region II two such 
genes (ENSG00000228624 and ENSG00000196591) were measured by RNA MERFISH 
data [6]. These genes show substantially higher nascent transcription levels in cluster 
8 than the same genes in cluster 6 (Fig. 7D). Indeed, cluster 8 shows the highest tran-
scription levels of these genes among all clusters (Fig.  7E), confirming our hypothesis 
(Fig. 7DE). Similarly we located a gene (ENSG00000224843) within chromosomal region 
I with available transcription data [6] (locus I in Fig. 7E). In cluster 1, this gene is part 
of a territory domain that loops towards the nuclear interior showing smaller speckle 
distances than in other clusters. Notably, also this gene exhibits the highest transcrip-
tion level in cluster 1 (red arrows indicate gene locus I in Fig.  7E). We also identified 
three genes (ENSG00000271913, ENSG00000164691, and ENSG00000226032) located 
at loci III in region III with available RNA MERFISH data. In cluster 3, region III forms 
a small territory domain at the p-terminal chromosome end, which separates from the 
bulk chromosome territory and loops towards the nuclear interior showing the smallest 
speckle distances among all clusters. Indeed, RNA MERFISH experiments confirm that 
the nascent transcription levels of these genes are highest in cluster 3 than in any other 
cluster (Fig. 7E). These observations indicate that variations in chromosome conforma-
tions correlate with gene transcription levels, possibly through variations in the specific 
nuclear locations of genes in different conformations. However, further experimental 
evidence is required to establish a definitive causal link between chromosome conforma-
tion and gene expression.

Characteristic features of chromosome territory domain boundaries

Territory domain boundaries are found at a few genomic locations. These regions are 
often located close to transitions between gene-poor and gene-rich chromosomal 
regions and coincide often with boundaries between Hi-C subcompartments, as defined 
by Rao et  al. [31] (Fig. 8A–C, Additional file 1: Fig. S20AB). For instance, in chromo-
some 6 most territory domain boundaries align with boundaries between the A2 and B3 
subcompartments (Fig. 8A,C). If a boundary is present in a cluster, it also often coincides 
with major transitions in the radial position and pronounced peaks in RGRatio profiles 
(e.g., RadRatio and RGRatio profiles of region II in cluster 8 vs cluster 4) (Fig.  8A,B, 
Additional file 1: Fig. S20AB). We also noticed that domain boundaries often separate 
chromosomal regions with generally high and low cell-to-cell variability in their radial 
positions (see δRAD profiles in Fig. 8A).

Strikingly, territory domain boundaries often overlap with synteny breakpoints, which 
separate syntenic blocks. In syntenic blocks, the collinearity (i.e., order) of homolo-
gous genes are conserved across genomes of different species. Syntenic breakpoints are 
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boundaries between syntenic blocks where genomic rearrangements have occurred dur-
ing evolution. Strikingly, 4 out of 8 territory domain boundaries in chromosome 6 and 
50–83% territory domain boundaries of all chromosomes are found at syntenic break-
points between the mouse and human genome (Fig.  8D, E). Most dramatically this is 
seen in chromosome 12, where almost all major syntenic breakpoints align with chro-
mosome territory domain boundaries (Fig. 8D). We can only speculate why some syn-
tenic breakpoints coincide with territory domain boundaries. It is possible that syntenic 
blocks contain genes that are functionally constrained to be colocalized and thus must 
maintain this co-localization in chromosome conformations. It is also possible that the 

Fig. 8  Territory domain boundaries are related with gene function and synteny blocks. A Characteristic 
features for a chromosomal region spanning across region II, which forms territory domain 3 in cluster 8 and 
the same region II in cluster 4. Shown are epigenetic marks and other features for this sequence region. From 
the top to the bottom, the displayed features are chromosome sequence location, Hi-C subcompartments, 
refseq genes, H3K27ac, H3K4me1, H3K4me3, H3K9me2, H3K9me3, H3K27me3, H4K20me1, and the ensemble 
structural variability (δRAD) calculated from all structural models. In addition, the following features are 
shown for the same regions calculated from cluster 8 and cluster 4: SON TSA-seq, RgRatio, and RadRatio 
(Definitions as in Figs. 2 and 4, Methods). Also shown are lines that indicate the territory domain in cluster 
8 and corresponding domain boundaries that overlap with regions of reduced chromatin compaction 
(RGRatio) (bd1 and bd2). For bd2 two alternative boundaries exist in the cluster (bd2 and bd2’). B Illustration 
of schematic features of a chromosome morphology with three territory domains. Shown are also nuclear 
bodies. bd regions indicate domain boundaries that show increased decompaction of the chromatin fiber 
(i.e., RG) in comparison to the ensemble average, and which allow the territory domain to loop towards the 
nuclear interior, while other territory domains remain at the periphery. C Average gene density changes 
from the downstream 400-kb region to the upstream 400-kb region at domain boundary regions (BD) and 
none domain boundary regions (none BD) with 95% confidence interval. We observe sharper changes of 
average gene density at domain boundary regions rather than none domain boundary regions. The barplot 
of subcompartment distribution at domain boundary regions (BD) together with their downstream 800-kb 
regions and the upstream 800-kb regions of domain boundary regions (BD), where we observe dominant A2 
and B3 proportions. D Illustration of synteny blocks of human chromosomes 6, 8, 10, and 12 shown together 
with alignments between boundaries of synteny blocks and domain boundaries found by the model. E 
Illustration of synteny blocks of human chromosome 6 and their mapping from mouse chromosomes 1, 4, 9, 
10, 13, 14, and 17. Four domain boundaries related with region I, II, and III can be aligned with the boundaries 
of synteny blocks
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location of a territory domain boundary may increase the probability for a chromo-
somal rearrangement at this particular sequence location during evolution. If syntenic 
breakpoints align with territory domain boundaries in GM12878 cells, then they should 
also be found in other human cell types. We applied our clustering protocol to genome 
structures generated from Hi-C data of two additional cell types, the human embryonic 
cell H1 hESC, and the fibroblast cell HFFc6 (Fig. 9A–C). Indeed, in all these cell types 
we detected clusters with similar locations of chromosome territory domain bounda-
ries. The only exceptions are clusters 5 and 7, which were not detected in H1 hESC cells. 
Although similar clusters are found in these cell types, the cluster occupancy varies con-
siderably between cell types (Fig. 9D).

Discussion
Here we present a method to cluster 3D chromosome structures into prevalent subpop-
ulations to study the role of structural stochasticity in gene function. Given the substan-
tial dynamic variability of genome structures within a cell population [38], clustering of 
whole chromosome structures into prevalent chromosome morphologies poses a signifi-
cant challenge. To achieve this goal, we introduced a two-step density-based clustering 
method that combines a convolutional autoencoder with t-SNE dimension reduction to 
cluster large ensembles of single cell 3D chromosome structures into prevalent confor-
mational clusters. Our density-based clustering does not coerce all conformations into a 
defined set of clusters, but rather detects only those conformational subpopulations that 
are supported by a substantial amount of structures.

We found that up to half of all structures for each chromosome can be clustered in 
5 to 12 prevalent chromosome structure subpopulations (i.e., morphologies), which 

Fig. 9  Comparative analysis of predicted clusters of chromosome 6 from genome structures of GM12878, 
H1-hESC, and HFFc6 cells. A The contact frequency matrices of the 8 predicted clusters of chromosome 6 
in GM12878 cells. B The contact frequency matrices of the predicted clusters of chromosome 6 in H1-hESC 
cells. Clusters 5 and 7 were not observed in H1-hESC cells and are indicated by “N/A”. C The contact frequency 
matrices of the predicted clusters of chromosome 6 in HFFc6 cells. D Comparison of the cluster occupancy 
between the chromosome conformational clusters observed in GM12878, H1-hESC, and HFFc6 cells
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are distinguished in their long-range (> 10  Mb sequence distance) chromatin interac-
tion patterns. It is possible that with larger population sizes, additional clusters with a 
smaller occupancy can be detected. Notably, each chromosome morphology is charac-
terized by chromosome territory domains, which partition the chromosome into spatial 
subdivisions that show weak correlations in their spatial positions to each other. Thus, 
the sequence locations of these boundaries play a pivotal role in establishing long-range 
structure variations and are found at a few locations in the chromosome. For instance, in 
chromosome 6, we observe 8 territory domain boundaries. These boundaries are often 
located at transitions between gene-poor and gene-rich sections as well as boundaries 
between A2 and B3 Hi-C subcompartments [31]. Interestingly, about half of the detected 
territory domain boundaries overlay with locations of syntenic breakpoints. These syn-
tenic breakpoints constitute boundaries where genomic rearrangements have occurred 
during evolution and they separate syntenic blocks, genomic regions with conserved 
collinearity of genes. At this point, we do not know why some syntenic breakpoints over-
lay with chromosome domain boundaries. But it is interesting that we observe a link 
between the evolutionary history of a chromosome and the dynamic variations of its 
chromosome conformations. Similar territory domain boundaries are found in differ-
ent cell types. For instance, human lymphoblastoid cells (GM12878), embryonic stem 
cells (H1-hESC), and fibroblast cells (HFFc6) all share similar cluster morphologies with 
similar locations of domain boundaries. However, the relative occupancy of each cluster 
varies between cell types.

A unique aspect of this work is our ability to analyze chromosome morphologies 
within the context of the nuclear topography. We found that preferences in radial posi-
tions, speckle distances, and lamina proximity of chromosomal regions differ between 
chromosome morphologies. The nuclear microenvironment of a gene can impact 
its transcription rate [19]. For instance, shorter distances from nuclear speckles can 
enhance gene expression levels of actively transcribed genes [46–48]. It is therefore plau-
sible that the differences observed between chromosome morphologies also affect tran-
scription levels of specific genes. In chromosome 6, we discovered three specific regions 
that show relatively large differences in speckle distances and nuclear locations between 
different morphologies. Through RNA MERFISH data analysis, we found that genes in 
these regions showed significant differences in their transcription rate when part of a 
different chromosome morphology. At this point, the causality between structure and 
function is unknown, for instance if the chromosome morphology influences the gene 
function or vice versa. However, our work suggests that chromosome conformations 
potentially contribute to the cell-to-cell heterogeneity of gene transcription observed in 
single-cell RNA-seq experiments [61, 62]. Such information can be important for unveil-
ing the role of genome structure in the regulatory processes of genome function.

An open question pertains to how the inception of a territory domain boundary is 
regulated. A territory domain boundary is often associated with an extended chromatin 
fiber at the boundary region. It is conceivable that reduced occupancy of certain archi-
tectural proteins at specific locations could promote such a chromatin fiber decompac-
tion and thus favoring the emergence of a particular domain boundary. It was recently 
shown that downregulation of cohesin loaders leads to a more compact chromosome 
conformation in  vivo [63]. At this stage, this explanation is speculative, and further 
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research is required to offer further insights. It will be interesting to test in future under 
which conditions polymer simulations could reproduce the observed territory domains 
at predicted locations. For instance, it would be interesting if loss of CTCF loop extru-
sion barriers at specific regions would favor macrodomains at specific sites, or if specific 
block polymer states could similarly reproduce the observed territory domains.

Finally, our work illustrates how genome structure models can aid the classification 
of chromosome tracing data obtained from multiplexed FISH imaging. At limited cov-
erage and population size, clustering chromosome structures from tracing experiments 
is challenging. However, it is feasible to cluster chromosome structures at higher reso-
lutions and coverage from data-driven modeling approaches, such as IGM [17]. These 
structural clusters can then facilitate the classification of chromosome morphologies 
from multiplexed FISH data.

Conclusions
Chromosomes show substantial variability in their structure conformations among 
individual cells. This dynamic variability poses great challenges for structure–function 
analysis, necessitating a method to identify prevalent subpopulations of chromosome 
structures. Here, we proposed a two-step dimension reduction method, which allowed 
us to identify the existence of conformational subpopulations with distinct long-range 
chromatin interaction patterns. Our findings indicate that variations in chromosome 
conformations could contribute to the cell-to-cell heterogeneity of gene transcription. A 
critical factor for establishing chromosome structure subpopulations is the presence of 
territory domain boundaries, often located at evolutionary syntenic breakpoints, which 
could introduce physical properties that could favor their locations at these locations.

Methods
Population‑based modeling

We used ensemble Hi-C data with the Integrative Genome Modeling (IGM) platform 
[17] to generate one 10,000 whole genome structure population for HFFc6 (raw Hi-C 
data from 4DN Data Portal, accession code 4DNES2R6PUEK [24]) and H1-hESC (raw 
Hi-C data from 4DN Data Portal, accession code 4DNES2M5JIGV [24]) cell lines, and 
used a previously generated and analyzed 10,000 structure population for GM12878 
[19].

IGM simulates a population of structures that is compatible with the avail-
able ensemble Hi-C data by optimizing the positions of the chromatin regions. Let 
X s = {x1s, . . . , xNs} denote a diploid whole genome structure of N  regions, x1s ∈ R

3 
being the Cartesian coordinates of the i th genomic region. A population of structures 
is defined as a collection of S such structuresX = {X1, . . . ,XS} . Also, let A = aIJ H×H

 
denote the Hi-C contact probability matrix, so that 0 ≤ aIJ ≤ 1 indicates the probability 
that two unphased loci I and J  ( I , J ∈ {1, . . . ,H} ) are in contact. In the following, we 
will denote with (lowercase) i and i′ the two copies associated with unphased region I 
(uppercase). Our genome simulation approach numerically approximates the solution 
to the optimization problemX̂ = argmaxXP(A|X) , where P(A|X) is the probability 
that a population of structures X reproduces the input contact matrix A. However, this 
poses major difficulties: first of all, it is an extremely highly dimensional maximization 
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problem. Second, the input data A does not provide information on which contacts 
coexist within the same structure in the population and, since it is unphased, does not 
specify which alleles in the representation (either i ori′ ,  j or j′ ) are actually in con-
tact. In order to account for this missing information, we introduce an indicator ten-
sorW =

(
wijs

)
N×N×S

,H ≤ N  , such as wijs = 1(0) indicates that loci i and j are (not) in 
contact in diploid structure s-th. It is then essential to jointly optimize both X and W  
variables, i.e.

We adapted a hard Expectation–Maximization algorithm that uses a series of numeric 
strategies for efficient and scalable model estimation to tackle such a daunting task. We 
first initialize the chromatin structures in random territories, and then we start an itera-
tive optimization, where W  and X are alternatively optimized. Each iteration consists 
of one Assignment step (A-step), where a given subset of contacts from the input Hi-C 
matrix are optimally allocated across the structures ( W  is optimized), and a Modeling 
Step (M-step) where the structure coordinates are optimized using Simulated Anneal-
ing Molecular Dynamics and Conjugate Gradient ( X is optimized). Additional batches 
of chromatin contacts are gradually added in each iteration, so as to improve and facili-
tate overall convergence. Upon convergence, a population X̂ of single-cell whole genome 
structures are available, which are statistically consistent with the input ensemble Hi-C 
matrix A , and also predict a number of orthogonal observables. More details on IGM 
formulation and implementation can be found in Boninsegna et al. and Tjong et al. [17, 
51].

Preliminary raw Hi-C datasets preprocessing into a 200 k base pair resolution contact 
probability matrix was accomplished by following the protocol detailed in Yildirim et al. 
[19].

Genome representation

Chromosomes are represented in our models as homopolymer chains of monomers 
at 200-kb base-pair resolution, so that the full diploid genome is represented with 
N = 30,332 monomers for GM12878 and N = 29,838 for both H1-hESC and HFFc6. 
Each 200-kb chromatin region is modeled as a sphere of radius around Rbead = 118nm 
in all cell lines, so that the ratio of the genome volume to the nuclear volume is 0.4 
[19, 51]. The nuclei for GM12878 and H1-hESC are modeled as spheres of radius 
Rnuc = 5,000nm [19, 51]. The nucleus for HFFc6 is modeled as an ellipsoid of semiaxes 
(a, b, c) = (7,840nm, 6,470nm, 2,450nm) [17].

Two‑step dimension reduction

The basic aim of this study is selecting representative single-cell structures from our 
population and studying their significance. Multiple features of a single-cell structure 
can be extracted and calculated, such as contact matrix and distance matrix, which can 
be further calculated as a feature vector. Due to the high dimension of the feature vector 
of our 200-kb model, direct classification of these feature vectors is unrealistic. We here 

X̂ , Ŵ = argmaxX ,W P(A,W |X)
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introduce the two-step dimension reduction that preserves both efficiency and accuracy 
during the dimension reduction.

Removal of unrestrained beads

For each single structure, we remove those beads that are not restrained. All beads 
remaining in the structure belonging to the “domain” category (not centromeres or tel-
omeres) are considered to construct the distance matrix, while beads belonging to “cen” 
(centromeres or telomeres) are removed.

Input distance matrix

The distance matrix D(s) = (d
(s)
ij ) of chromosomal structure s is calculated by the sur-

face-to-surface distance between bead i and bead j:

where xis and xjs are the 3D coordinates of bead i and bead j in structure s and Rbead 
is the bead radius in our model. d(s)ij  is set to be 0 if i = j . The matrix is then applied 
normalization to ensure the maximum entry in the matrix is 1 (dropping the structure 
superscript s):

Convolutional autoencoder

Convolutional autoencoders are frequently used in image classification. Here we adopt 
the elements from a frequently used convolutional neural network (AlexNet) [64] which 
is made up of several convolutional and max pooling layers. In this study, we regard each 
input distance matrix as an image, which is then regarded as the input of the input layer. 
The autoencoder consists of an encoder and a decoder, where the input distance matrix 
is the input of the encoder while the latent matrix is the output. The latent matrix is then 
used as the input of the decoder to generate the final output. We perform 15 epochs with 
batch size 200 to train the autoencoder after shuffling the input dataset. The autoencoder 
is implemented by the python package keras https://​github.​com/​keras-​team/​keras.

Processing of input distance matrices  Due to the size of the layers in the convolutional 
autoencoder, the input matrix is resized to multiples of 50 by bilinear interpolation so 
that the size of the input matrix matches the reconstructed output matrix by the autoen-
coder. This is required so that the size is divisible by 50 = 5× 5× 2 , because our autoen-
coder contains downsampling and upsampling layers, two of which are of size (5, 5) and 
size (2, 2).

Convolutional layer  A convolutional layer performs convolution operation to an origi-
nal input over each window and constructs a new output. We use three convolutional 
layers in the encoder and four convolutional layers in the decoder. In the encoder, the 
first layer has 16 filters with a kernel with size (10, 10) . The next two layers each have 8 

d
(s)
ij = �xis − xjs�2 − 2Rbead

dij′ =
dij

maxk ,ldkl

https://github.com/keras-team/keras
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filters with a kernel with size (10, 10) and 4 filters with a kernel with size (10, 10) . We use 
the ReLU activation function to process the output of each convolutional layer:

In the decoder, the first layer has 4 filters with a kernel with size (10, 10) . The next two 
layers each have 8 filters with a kernel with size (10, 10) and 16 filters with a kernel with 
size (10, 10) . We use the ReLU activation function to process the output of these convo-
lutional layers. To generate the output, the last convolutional layer uses 1 filter with a 
kernel with size (10, 10) , we use the sigmoid activation function to ensure that the values 
in the final output matrix are located between 0 and 1:

For each convolutional layer, we use the stride size (1, 1) and the same padding size to 
ensure the output has the same height and width as the input.

Max pooling layer  A max pooling layer is used to downsample an original input by 
calculating the maximum value in each window and generate a new value. We use three 
max pooling layers in the encoder. The first two layers have a pooling window with size 
(5, 5) . The last layer has a pooling window with size (2, 2) . We use the same padding size 
for each max pooling layer to generate the output. The stride size is the same as the win-
dow size for each layer.

Upsampling layer  An upsampling layer is used to up sample an original input by fill-
ing each window with the corresponding value. We use three upsampling layers in the 
decoder. The first layer has a sampling window with size (2, 2) and the next two layers 
have a sampling window with size (5, 5).

Latent vector  The latent vector is generated by directly flattening the latent matrix. We 
then use standard normalization to normalize the whole set of latent vectors to ensure 
that each dimension xl ′ = (xl1′, xl2′, .., xlN ′) of the set of new vectors has mean 0 and 
standard deviation 1:

where xl  and σl is the mean and the standard deviation of each dimension 
xl = (xl1, xl2, ..., xlN ) of the set of original vectors. N  is the size of the training set. After 
the operation of the encoder, the size of the latent vector is about 700 times smaller than 
the number of entries in the input matrix, which significantly reduces the dimension 
size. In other words, longer chromosomes result in bigger latent vectors.

ReLU(x) = max(0, x)

Sigmoid(x) =
1

1+ e−x

xli′ =
xli − xl

σl
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Mean squared error  We use the mean squared error (MSE) to calculate the loss 
between the input matrix Minput and the output matrix Moutput , which is the mean 
Euclidean distance between the input matrix and the output matrix of the training 
dataset:

where N  is the size of the training set.

Optimizer  We use an optimizer that applies the Adadelta algorithm [65] to train the 
autoencoder. In comparison with other gradient descent methods, this method does not 
require setting of the learning rate parameter and is relatively more robust.

T‑distributed stochastic neighbor embedding

T-distributed stochastic neighbor embedding (t-SNE) is a robust and nonlinear dimen-
sion reduction method [54]. By using proper probability distributions P = (pij) and 
Q = (qij) to measure similarities between data points in both the original space and the 
lower dimensional space. The method facilitates the embedding by minimizing the Kull-
back–Leibler divergence [66] between the two distributions by:

We set the dimension of the embedded space to be 2, the perplexity to be 200 and the 
learning rate to be 1000. The parameters are selected according to the package sugges-
tions to preserve robustness.

Principal component analysis

Principal component analysis (PCA) is a frequently used dimension reduction method 
which computes the principal components of the data. The method uses singular value 
decomposition (SVD) of the covariance matrix to construct principal components which 
are then used to find embedded data points in the lower dimensional space. The dimen-
sion of the embedded space is set to be 2.

Multidimensional scaling

Classical multidimensional scaling (MDS), which is also known as Principal Coordinates 
Analysis (PCoA), is another nonlinear dimension reduction [67]. The classical MDS 
transforms pairwise distances between data points into dissimilarities and minimizes a 
cost function. We use Euclidean distances as dissimilarity measurement. The dimension 
of the embedded space is set to be 2.

Locally linear embedding

Unlike PCA which projects data points in a linear way, locally linear embedding (LLE) 
is a nonlinear dimension reduction technique [68]. The method can be viewed as a 

MSE =
1

N

∑N

i=1
�M

input
i −M

output
i �

2

2

KL(P||Q) =
∑

i �=j

pijlog
pij

qij
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collection of local PCA which preserves distances within each local neighborhood 
graph. The dimension of the embedded space is set to be 2.

Isomap

Isomap, which is also a nonlinear dimension reduction method, is an extended version 
of MDS [69]. Specifically, the method uses geodesic distances of each local neighbor-
hood graph as similarity measurement before performing MDS. The dimension of the 
embedded space is set to be 2.

Spectral embedding

Spectral embedding (SE) is another nonlinear dimension reduction method [70]. The 
method uses eigenvectors of the Laplactian matrix to construct embedded data points 
in the lower dimensional space. The dimension of the embedded space is set to be 2. 
All embedding listed above including t-SNE, PCA, MDS, LLE, Isomap, and SE are per-
formed by the python package sklearn [71].

UMAP

Uniform Manifold Approximation and Projection (UMAP) uses knowledge of algebraic 
topology and simplicial complexes to perform dimension reduction [72]. The method is 
an increasingly frequently used nonlinear dimension reduction method which is often 
used to compete with t-SNE. UMAP is performed by the python package umap-learn 
[72]. We set the dimension of the embedded space to be 2 and the learning rate to be 1.0.

Peak detection

In the 2D embedded conformational space, every data point represents a single struc-
ture. The structures that are closed with each other in 2D distance are more likely to 
have similar conformations. The next step is to sample part of the data points which are 
representative from the 2D distribution.

Outlier removal

To remove outlier data points, we first calculate a pairwise distance matrix of all data 
points. We then generate the total distance between each data point and all the other 
data points by calculating the row sum of each row. The data points that have extreme 
total distances are removed by the 3-sigma rule. We only select data points whose row 
sums are within 3-sigma range (sl − 3σl , sl + 3σl) , where sl  and σl is the mean and the 
standard deviation of the row sum vector sl.

Kernel density estimation

Then we use bivariate kernel density estimation to calculate the probability density func-
tion of the distribution. Given a 2D independent and identically distributed sample 
X = (x1, x2, x3, ..., xN ) , for each point we are able to find a density function p so that this 
set of data points is sampled directly from a distribution with joint probability density 
function p:
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where xi = (xi1, xi2)
T . We choose K  to be the Gaussian kernel. The bandwidth H is esti-

mated by Scott’s Rule [73]. The resulting 2D density measures how data points are dis-
tributed in the conformation space. Each local maximum of the 2D density is defined as 
a peak, which is a representative conformation.

Grid approximation

We use a (1000, 1000) grid G to approximate probability density function p(x) and 
generate a 2D density matrix P . The grid is constructed with the minimum value and 
the maximum value of each of the two dimensions xi1 and xi2:

We then calculate the density value by the probability density function p(x) at each 
grid point and construct the density matrix P = (pij):

Maximum filter

A local maximum is an entry that is larger than all its 8 neighbors in the 2D density 
matrix P . To avoid selecting multiple local maxima in a small area, however, we com-
pare each entry with a larger range of its neighborhood. A maximum filter with size 
(5, 5) is applied to matrix P to generate another matrix P′ = (pij′) . We then use exclu-
sive disjunction (XOR) to generate matrix Q = (qij) by comparing P and P′:

where IA is the indicator function which equals 1 when A is true. The entries in matrix Q 
with value 1 are detected as local maxima or peaks.

Cluster analysis

Boundary estimation by watershed

Considering each local maximum, we use a watershed-like approach to simulate the 
cluster boundary around it. We first create a density gradient with 100 levels ranging 
from 0 to the largest density in the 2D density matrix P . A set of contour lines which 
are polygons formed by grid points gradually change (shrink) over the density gradi-
ent. The change terminates when there is a contour in the set containing only the 
target local maximum, which results in our target contour line that contains only the 
corresponding maximum. All points surrounded by the contour line are then consid-
ered as the cluster members of the corresponding maximum. A cluster is not consid-
ered if it contains fewer than 100 members.

p(x) =
|H |−

1
2

N

∑N

i=1
K (H− 1

2 (x − xi))

G = {(minixi1,maxixi1), (minixi2,maxixi2)}1000×1000

pij = p
(
G(i, j)

)

qij = Ipij=pij ′ ⊕ Ipij=0
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Silhouette analysis

We use the Silhouette Coefficient [55] to measure the clustering performance, which 
is directly calculated by intra-cluster distances and nearest-cluster distances. For a 
data point xi from cluster A , we define its intra-cluster distance by:

where SA is the size of cluster A . We also define its nearest-cluster distance by:

where SB is the size of cluster B . Then the silhouette of data points xi is written as:

The final Silhouette Coefficient is the mean silhouette of all clustered samples which 
ranges between − 1 and 1. Higher values indicate better clustering performance, or in 
other words the data points are more properly separated.

Contact frequency matrix construction

By selecting a certain number of neighbors around each peak, we are able to con-
struct a contact frequency matrix for each peak. We estimate a path (polygon) sur-
rounding each peak based on density. We then select all points inside the polygon as a 
cluster that corresponds to the peak. To calculate the contact frequency matrix CM(a) 
for structure a , we say beads i and j are in contact (i.e., cmij

(a) = 1 ) if and only if:

where xia and xja are the 3D coordinates of bead i or bead j . Rbead is the bead radius in 
our model. The contact frequency matrix for cluster A , CM(A), is calculated by the sum 
of all contact matrices in the cluster:

The contact frequency matrix for all structures that are classified to a cluster is cal-
culated as:

where S is the set of clustered structures. To enhance off-diagonal contacts, we visu-
alize all contact frequency matrices from the models by applying transformation 
log2(cmij + 1) . All color bars shown together with contact frequency matrices in the fig-
ures show a ratio with regard to the maximum value.

a(i) =
1

SA − 1

∑

i �=j,j∈A

||xi − xj||2

b(i) = minB �=A
1

SB

∑

j∈B

||xi − xj||2

s(i) =
b(i)− a(i)

max(a(i), b(i))

�xia − xja�2 ≤ 3Rbead

CM(A) =
∑

aǫA

CM(a)

CM(Ens) =
∑

aǫS
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Average distance matrix construction

Similarly to the construction of a contact frequency matrix, we can also construct 
an average distance matrix for each cluster. Each entry dm(a)

ij  of the distance matrix 
DM(a) for structure a is calculated by the Euclidean distance between bead i and bead 
j:

where xia and xja are the 3D coordinates of beads i and j . dm(a)
ij  is set to be 0 if the entry 

is at the diagonal. After min–max normalization of each distance matrix, the average 
matrix for cluster A (which we will denote as DM(A) ) is calculated by the average of all 
matrices in the cluster:

where SA is the number of structures in cluster A . All color bars shown together with 
average distance matrices in the figures show a ratio with regard to the maximum value.

Dissimilarity measurement

Euclidean distance dissimilarity  We first construct two flattened distance matrices 
R(a) and R(b) for structure a and structure b . Each matrix contains Euclidean distances 
between all possible pairs of beads in each structure. The Euclidean distance between 
these two structures s(ab)e  is further calculated by:

Then the final Euclidean distance dissimilarity between cluster A and cluster B is the 
average value of all possible pairs between these two clusters:

where M is the total number of pairs between the two clusters. To compare inter-clus-
ter dissimilarity and intra-cluster dissimilarity, we normalize s(AB)e  by the intra-cluster 
dissimilarity of cluster As(AA)e :

Gaussian dissimilarity  The calculation of Gaussian dissimilarity is adapted from East-
wood and Wolynes [57] and Cheng et al. [37], which is an alternative way to compare 
pairwise distances between two structures. After generating d(a)ij  and d(b)ij  which are the 

dm
(a)
ij = �xia − xja�2

DM(A) =
1

SA

∑

aǫA

DM(a)

s(ab)e = �R(a) − R(b)�2

s(AB)e =
1

M

∑

aǫA,bǫB

s(ab)e

rs(AB)e = log2
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Euclidean distances between bead i and bead j for both structure a and structure b, the 
Gaussian dissimilarity s(ab)g  is calculated by:

where the scaling factor σ = 8Rbead and Rbead is the bead radius in our model. N  is the 
total number of pairs of beads in the structure. Similarly, the final Gaussian dissimilarity 
between cluster A and cluster B is the average value of all possible pairs between these 
two clusters:

where M is the total number of pairs between the two clusters. To compare inter-clus-
ter dissimilarity with intra-cluster dissimilarity, we normalize s(AB)g  by the intra-cluster 
dissimilarity of cluster As(AA)g :

Due to computational complexity, we randomly select 200 structures from each clus-
ter to compute the similarities above.

Wasserstein distance dissimilarity  We calculate both intra-cluster dissimilarity and 
inter-cluster dissimilarity by distance measurement to compare low intra-cluster dissim-
ilarity with high inter-cluster dissimilarity. The Wasserstein distance W (u, v) measures 
the dissimilarity between two probability distributions u and v by:

where U and V  are the cumulative probability distributions of u and v [56]. To measure 
dissimilarity between two clusters of structures, for each pair of bead i and bead j , we 
obtain the 1D probability distributions for the distances between pair i and  j in cluster 
A d(A)ij  and the distances between pair i and j  in cluster B d(B)ij  , which are then used to 
calculate the Wasserstein distance of these two distributions. The final dissimilarity s(AB)w  
is obtained by averaging the Wasserstein distances of all possible pairs:

s(ab)g = 1−
1

N

∑
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where N  is the total number of pairs of beads in the structure. For intra-cluster dis-
similarity, we randomly sample a subcluster with size M

2
 and indices i which is then used 

to calculate the final dissimilarity with its reverse subcluster with indices (M − i − 1) , 
where M is the number of structures in cluster A . For inter-cluster dissimilarity, we 
directly apply the method above. To compare inter-cluster dissimilarity with intra-clus-
ter dissimilarity, we normalize s(AB)w  by the intra-cluster dissimilarity of cluster As(AA)w :

Proximity frequency map

The calculation of a proximity frequency map is similar to the calculation of a contact 
frequency matrix. We select a larger range to visualize inter-chromosomal contact pat-
terns. To calculate the proximity frequency map PM(a) for structure a , we define the i th 
bead and the j th bead in structure a forms a contact (i.e., pmij

(a) = 1 ) if and only if:

where xia or xja are the 3D coordinates of bead i or bead j . We set Rsoft = 2,000nm . The 
proximity frequency map for cluster APM(A) is calculated as:

where SA is the number of structures in cluster A . The inter-chromosomal parts of each 
map are shown as the average of both homologous copies, while the intra-chromosomal 
part is calculated from the target chromosome copy only.

Structural features prediction

Insulation score

Contact‑based approach  We use sliding windows to slide along the diagonal of contact 
frequency matrix CM(A) to calculate contact differences as the insulation score profile 
for cluster A . For chromatin region i , we use upper triangular matrix LM(A)

i  representing 
the binary submatrix of the left region with length l , upper triangular matrix RM(A)

i  rep-
resenting the binary submatrix of the right region with length l (including region i ) and 
matrix M(A)

i  representing the binary submatrix between the left region with length l and 
the right region with length l (including region i ) to calculate the score:

where l is the sliding window size. 〈X ,Y 〉F is the Frobenius inner product between 
matrix X and matrix Y  . E is a matrix of ones. The largest peaks of the insulation score 
profile are used as candidates for domain boundaries.
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Distance matrix approach  The insulation score profile can also be determined using 
the distance matrix DM(A) . To calculate the score, we also use the upper triangu-
lar matrix LM(A)

i  , upper triangular matrix RM(A)
i  , and matrix M(A)

i  in the same way as 
described above except we use the average distance matrix for each cluster. We first 
transform the distance matrix into a binary matrix and set the entry to be 1 if its value is 
larger than the threshold (0.4 to 0.5). Then the score for chromatin region i in a cluster is 
defined by:

To accurately detect the peak locations, we first use a larger window size (40  MB) 
to detect approximate locations of domain boundaries in each cluster, then we use a 
smaller window size (6 Mb) to detect their specific locations. When detecting peaks in 
the profile, we use detecta https://​github.​com/​demotu/​detec​ta to calculate the locations 
of local maximas.

Radial position (RAD)

The radial position of a chromatin region i in structure s in a spherical nucleus (as 
GM12878) is calculated as:

where xis is the the 3D coordinates of bead i in structure s, and Rnuc is the nucleus radius 
which is 5 μm. r(s)i = 0 means the region i is at the nuclear center while r(s)i = 1 means 
it is located at the nuclear surface. The average radial position (RAD) of cluster A is the 
average of radial positions of all structures in this cluster:

where SA is the number of structures in cluster A . To compare against the ensemble pro-
file, we use a log ratio comparison to show the difference. The log ratio of cluster A radial 
position against the ensemble one (RadRatio) is calculated as:

where the ensemble radial position is calculated in the same way, but for all structures 
that are classified to any cluster. Similarly, we can calculate all following structural fea-
tures with the (Ens) superscript.

Radius of gyration (RG) (i.e., local chromatin fiber decompaction)

The local compaction of the chromatin fiber at the location of a given locus is estimated 
by the radius of gyration for a 1-Mb region centered at the locus. To estimate the val-
ues along an entire chromosome, we use a sliding window approach over all chromatin 
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regions in a chromosome. The radius of gyration for a 1-Mb region centered at locus i in 
structure a , is calculated as:

where dj is the distance between the chromatin region j to the center of mass of the 
1-Mb region. The average radius of gyration (RG) of cluster A is the average of radial 
positions of all structures in this cluster:

where SA is the number of structures in cluster A . Similarly, the log ratio of cluster A 
radius of gyration against the ensemble one (RgRatio) is calculated as:

For the overall compactness of the conformation, we use all the beads to calculate the 
radius of gyration for structure a:

where N  is the total number of beads in the structure, dj is the distance between the 
chromatin region j to the center of mass of the whole structure.

Structural variability (δRAD)

The structural variability (δRAD) of region i in cluster A is calculated as:

where σ (A)
i  is the standard deviation of the population of radial positions of region i in 

cluster A and σ (A) is the mean standard deviation calculated from all regions within 
the same chromosome of the target region. Positive values ( sv(A)i > 0 ) result from high 
cell-to-cell variability of radial position, whereas negative values ( sv(A)i < 0 ) indicate 
low variability. The log ratio of cluster A structural variability against the ensemble one 
(δRadRatio) is calculated as:

Prediction of speckle locations in single cells

We follow the approach by Yildirim et  al. [19] and Boninsegna et  al. [17] to calcu-
late the locations of nuclear speckles in single cells of GM12878. For each single cell, 
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a chromatin interaction network is calculated for chromatin regions that are part of 
the A1 subcompartment as defined in Rao et  al. [31], where each vertex represents 
a 200-kb chromatin region and edge is created between two vertices i , j if the cor-
responding chromatin regions has a spatial distance dij ≤ 4Rbead , where Rbead is the 
bead radius in our model.

We then apply the Markov Clustering Algorithm (MCL) [74] to detect highly con-
nected subgraphs within a network using the MCL tool in the MCL-edge software 
[74]. Speckle locations are identified as the geometric center of each detected A1 
subgraph in each cell. In each structure, A1 subgraphs are only considered with sizes 
larger than 3 nodes. This procedure predicts locations of speckles, which reproduce 
with high correlation experimental SON TSA-seq data [19].

Speckle distance (SpD)

The speckle distance (SpD) for region i is calculated by measuring the distance 
between the surface of each chromatin region i to the nearest speckle:

where SA is the number of structures in cluster A , d(a)il  is the distance between the region 
i and the predicted nearest nuclear body location l . The log ratio of cluster A speckle 
distance against the ensemble one (SpdRatio) is calculated as:

Speckle TSA‑seq (SON TSA‑seq)

Speckle TSA-seq can be viewed as an average over distances to all speckles. To pre-
dict TSA-seq signals for speckle from our models, we use the following equation:

where SA is the number of structures in cluster A , L is the number of predicted speckle 
locations in structure a , d(a)il  is the distance between the region i and the predicted 
nuclear body location l , and k is the estimated decay constant in the TSA-seq experi-
ment [49] which is set to 4 in our calculations. The normalized TSA-seq signal for region 
i then becomes:

where sg (A) is the mean signal calculated from all regions in the genome. The predicted 
speckles are used for distance calculations. The log ratio of cluster A speckle TSA-seq 
against the ensemble one (SON TSA-seq Ratio) is calculated as:
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Speckle association frequency (SAF)

For a given 200-kb region, the association frequency to the speckle (SAF) is calculated 
as:

where SA is the number of structures in cluster A , ndi<dt is the number of structures, in 
which region i have a distance to the speckle smaller than the association threshold dt . 
We set dt to be 1000 nm for the model and 500 nm for the DNA-MERFISH dataset [6]. 
For SAF calculation, we use the predicted speckle to calculate distances (see Identifying 
spatial partitions by Markov clustering), where we calculate distances from the surface 
of the region to the center-of-mass of the partition. The log ratio of cluster A SAF against 
the ensemble one (SafRatio) is calculated as:

Inter‑chromosomal proximity profile (IPP)

The calculation of inter-chromosomal proximity profile (IPP) is based on the proxim-
ity frequency map. For a given 200-kb region, the process is similar to the calculation 
of speckle association frequency, but we replace the distance to the smallest speckle by 
the contact with any inter-chromosomal regions which can be chromosome-wide or 
genome-wide:

where SA is the number of structures in cluster A , ndi≤Rsoft is the total number of con-
tacts, in which region i is within contact range Rsoft = 2,000nm with any target inter-
chromosomal regions from the same genome structure. Every IPP is shown as the 
average of both homologous copies. The log ratio of cluster A IPP against the ensemble 
one (IppRatio) is calculated as:

When calculating the average IppRatio of a chromosome, we calculate the mean of 
chromosome-wide IppRatios of the chromosome.

Histone modification signals, reference genes, and synteny blocks

We collected histone modification signals including H3K27ac, H3K4me1, H3K4me3, 
H3K9me3, H3K27me3, and H4K20me1 for GM12878 and H3K9me2 for GM23338 from 
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the ENCODE [75]. The reference genes file for hg38 was downloaded from the UCSC 
Genome Browser [76]. The genes are mapped to the 200-kb bins according to their tran-
scription midpoints. All related signals and genes together with other structural features 
are shown by the Integrative Genomics Viewer (IGV) [77]. The subcompartments for 
GM12878 are obtained from Rao et al. [31]. The genetic information and illustration of 
synteny blocks for both human and mouse chromosomes are generated by Synteny Por-
tal [78].

Cluster assessment with experimental single‑cell data

Single cell Hi‑C assessment

Sci‑HiC dataset  We collected multiple sci-HiC datasets of GM12878 from the 4DN data 
portal (4DNESUE2NSGS) [13]. Each dataset consists of single-cell sequencing data of 
thousands of cells and we collected more than 11,000 single cells in total. A systematic way 
of massively demultiplexing single cell Hi-C is discussed in Ramani et al. [13] which applies 
combinatorial cellular indexing to chromosome conformation capture. We use the pro-
vided pipeline to process all collected sci-HiC datasets. Due to the large number of missing 
contacts, it is necessary for us to preprocess the datasets to reconstruct missing informa-
tion. We adapt the preprocessing method from Zhou et al. [58]. Given a raw single-cell 
contact matrix Mraw = (mraw

ij )
n×n

 , we construct a new matrix Mconv = (mconv
ij )

n×n
 by 

applying convolution with filter F = (fij)(2w+1)×(2w+1)
:

For a 200-kb matrix, we set w = 5 . In this step, we integrate the interaction informa-
tion from the genomic neighbors to impute the interaction at each position. Random 
walk with restart is then performed to estimate contact probability between every two 
beads. In order to perform a random walk, a transition matrix Mtrans = (mtrans

ij )
n×n

 is 
calculated based on the contact matrix after convolution. Every entry in the original 
matrix is normalized by its corresponding row sum:

We initialize the random walk by an identity matrix R0 so that the contact probability 
between every two beads is set to be 0. By applying the following recurrence formula, we 
are able to obtain a resulting matrix after the values converge:
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where I is the identity matrix and p is the restart probability with 0.5. We define there 
is a convergence when �Rt − Rt−1�2 ≤ 10−6 . Each element in the resulting matrix Rt 
after convergence indicates the probability of the random walk to reach the jth node 
when starting from the ith node. All contacts with probability larger than the 75th per-
centile of all probabilities in each row are chosen to convert Rt into a binary matrix Mrw.

Sci‑HiC assessment  For comparison of clusters, a direct way is to compare their con-
tact frequency matrices. We define the difference matrix of cluster A to be:

where D(A) = (d
(A)
ij ) is the resulting difference matrix. M(Pop) = (m

(Pop)
ij ) is the contact 

frequency matrix for the whole population calculated by contact range 2 (contact when 
two beads are within the range of twice the bead radius), while M(A) = (m

(A)
ij ) is the con-

tact frequency matrix for the cluster. SA is the cluster size while SPop is the population 
size. Due to the sparsity of single-cell Hi-C, we preprocess each raw contact matrix by 
the preprocessing method above to construct a processed contact matrix. The next step 
is to assign each contact matrix to the clusters defined by our model. For cluster A , a 
superiority mask M(A)

sup = (ms
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ij ) and an inferiority mask M(A)

inf = (mi
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ij ) are calculated 

by its difference matrix D(A):

where IA is the indicator function which equals 1 when A is true. For each preproc-
essed matrix Mrw from the sci-HiC population, we define the assessment score as:

where 〈X ,Y 〉F is the Frobenius inner product between matrix X and matrix Y  . E is a 
matrix of ones. For each contact matrix, we choose the pair of masks that has the largest 
assessment score with the matrix and assign the matrix to the corresponding cluster. To 
filter matrices that are different from all clusters, we only classify matrices to a cluster A1 
when s(A1) − s(A2) ≥ 0.01 , where A1 is the cluster with the largest matching score and A2 
is the second largest one. The final matching probability is defined as:
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where K  is the total number of clusters. Similarly, a contact frequency matrix can be 
generated using all inferred sci-HiC matrices classified to each cluster. To preserve sym-
metry, we symmetrize each contact frequency matrix by selecting the minimum number 
of contacts between pairs (i, j) and (j, i).

Sci‑HiC control dataset  A control dataset is generated to ensure our assessment pro-
cedure is not classifying artifacts and false signals. For each sci-HiC contact matrix, we 
randomly rearrange all the entries while maintaining its diagonality and the total num-
ber of contacts to construct a sudo single-cell contact matrix. We apply this process for 
every sci-HiC matrix and construct a control dataset in the end. The same assessment 
procedure is then applied to the control dataset.

Imaging assessment

DNA‑MERFISH dataset  We process the DNA-MERFISH datasets from Su et  al. [6] 
which includes high-resolution coordinates of chromosome 2 from 3029 copies and 
low-resolution coordinates of chromosome 6 from 7336 copies. For chromosome 6, we 
also process distances of imaged genomic regions to the nearest detected speckle and 
total numbers of transcription “on” of all associated genes for each locus. All datasets are 
preprocessed by linear interpolation to remove missing values if applicable. We remove 
copies without valid values in coordinates and in speckle distances.

DNA‑MERFISH assessment  The preprocessed DNA-MERFISH coordinates can be 
then used for assessment. Each single structure is used to calculate a distance matrix 
DM in the same way stated above. To compare DM with the average distance matrix 
DM(A) for cluster A , we first downsample DM(A) by selecting the beads that are mapped 
by the DNA-MERFISH coordinates. Then we flatten both matrices by extracting the 
upper triangular parts and normalizing them by min–max normalization to generate 
two distance vectors R and R(A) . We define the assessment score as:

where r(x, y) measures the Pearson’s correlation coefficient between vector x and vec-
tor y . For each distance matrix, we choose the average distance matrix that has the larg-
est assessment score with the matrix and assign the matrix to the corresponding cluster 
if they are sufficiently similar. To filter matrices that are different from all clusters, we 
only classify matrices to a cluster A1 when s(A1) − s(A2) ≥ 0.05 , where A1 is the cluster 
with the largest matching score and A2 is the cluster the second largest one. The final 
matching probability is defined as:

p(A1) =
s(A1)

∑K
k=1s

(Ak )

s(A) = exp(r(R,R(A)))



Page 41 of 44Zhan et al. Genome Biology           (2025) 26:30 	

where K  is the total number of clusters. Similarly, an average distance matrix can be 
generated using all DNA-MERFISH distance matrices classified to each cluster.

Data visualization

All chromosome structures are visualized by Chimera [79].
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