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Abstract 

Indexing techniques relying on k-mers have proven effective in searching for RNA 
sequences across thousands of RNA-seq libraries, but without enabling direct RNA 
quantification. We show here that arbitrary RNA sequences can be quantified in sec-
onds through their decomposition into k-mers, with a precision akin to that of con-
ventional RNA quantification methods. Using an index of the Cancer Cell Line Ency-
clopedia (CCLE) collection consisting of 1019 RNA-seq samples, we show that k-mer 
indexing offers a powerful means to reveal non-reference sequences, and variant RNAs 
induced by specific gene alterations, for instance in splicing factors.
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Introduction
With the generalization of RNA-sequencing (RNA-seq) analysis in most areas of biol-
ogy and medicine, RNA-seq repositories have grown in size to millions of samples. The 
Sequence Read Archive (SRA) alone contains 1.8 million public human RNA-sequenc-
ing experiments as of January 2024. Due to high costs of RNA-seq data download and 
reanalysis, exploration of RNA-seq repositories is typically confined to precomputed 
gene expression tables [1, 2]. As it is restricted to annotated genes or transcripts, this 
approach overlooks a large part of transcriptional diversity, which includes mutated, 
abnormally spliced, intergenic, intronic, repetitive, or fusion RNAs [3]. Projects such as 
Recount offer a way to query independent exons or splice junctions in very large (SRA-
scale) datasets [4]; however, this still relies on sequence alignments and does not allow 
to quantify an arbitrary RNA directly. Considering the huge diversity of RNA forms, 
searching RNA-seq repositories using current tools is like looking under the proverbial 
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lamppost. New methods are required to explore the hidden diversity within RNA-seq 
data.

Reference-free queries in large sequence sets are possible thanks to several k-mer-
based data structures that can index large sequence datasets in a fraction of the disk 
space used for raw sequences (see [5] for review). However, most k-mer data structures 
are limited to qualitative queries (presence or absence of a given sequence), which is 
not satisfying for RNA expression analysis. Three recent tools enable quantitative que-
ries in large sequence sets. Needle [6] implements multiple interleaved Bloom filters and 
sketches of minimisers, which enable storing counts in a semi-quantitative way. Meta-
graph [7] uses an optimized De Bruijn Graph structure, enabling to store either pres-
ence-absence or count information. While Metagraph proposes ready-made indexes 
for diverse collections of genomes and metagenomes, the public server does not return 
count information and is limited to one query sequence at a time. Our indexing tool 
Reindeer [8] is optimized for processing several thousands of samples and associate 
k-mers to approximate but accurate counts in each sample.

Our collaborative group has been working under an umbrella project named Tran-
sipedia, aimed at facilitating reference-free transcriptome analysis through improved 
RNA-seq indexes. Here, we use an improved version of Reindeer deployed on a web 
server to demonstrate the capacity of reference-free RNA-seq indexes to detect and 
quantify arbitrary RNA variations of biological significance in cancer RNA-seq data. 
First, we re-evaluate the computational time and memory footprint of Reindeer in 
this practical setting. We then show that transcript quantification with Reindeer can 
achieve a high accuracy by masking non-specific sequences in queries. Building upon 
this, we introduce the first public reference-free index of the CCLE RNA-seq database. 
The rich biological data in CCLE (1019 cell lines from 40 tumor types) allows us to 
illustrate Reindeer’s ability to accurately detect and quantify a large diversity of non-
reference RNA sequences, including RNA mutations, fusions, transposable elements, 
and splice variants. The reference-free CCLE RNA atlas is available for online queries 
along with other datasets at https://​trans​ipedia.​org.

Results
Indexes for arbitrary RNA sequence query and quantification

Our objective is to provide a computational framework enabling quantification of arbi-
trary RNA sequences in large RNA-seq datasets. This framework must satisfy several 
criteria: (i) the capability to index any RNA-seq dataset while preserving all information 
at single-base resolution and (ii) the ability to query the index in real-time for quantify-
ing the occurrence of input sequences in each sample within the index. Indexes should 
be available for query either through a web interface or on a local computer. We describe 
below the realization of such a framework using Reindeer.

Building and querying indexes

The implementation of a Reindeer index server is presented in Fig. 1A. Indexes were 
created with a k-mer size of 31, using the on-disk option that allows queries to be 
performed while only storing the primary k-mer hash in memory. Currently available 
online indexes cover 151 billion reads in 1851 samples. Indexes have relatively small 

https://transipedia.org
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memory footprints and file sizes 15 to 40 times smaller than the original compressed 
fastq files (Table 1). For instance, hardware requirements for querying the 1019-sam-
ple CCLE index are only 22.3 Gb RAM and 236 Gb disk. A socket mode enables the 
index to reside in memory once loaded and allows for real-time queries. Users submit 
queries through the web interface and receive results in the form of count tables or 
graphics (Fig. 1B). Query times are fast enough to handle multiple interactive queries 
for short sequences or full-length mRNAs (100,000 31-mers in 16s, 100 mRNAs in 
14.5s) (Table 2).

Fig. 1  A Reindeer index build and query workflow implemented on the Transipedia web server. Reindeer 
pre-built indexes can be easily queried by nonexperts using the Transipedia web interface. For large 
queries and/or pipelines, locally installed indexes can be queried from the command line using rdeer-client 
(rdeer). The output is a tabulated count file. B Graphical output of a query corresponding to a prostate 
cancer-specific sequence (AR-V7). Each dot corresponds to a cell line, with Reindeer counts on the Y axis. 
The query sequence was a 51-nt fragment spanning exon 3-4 junction, specific to androgen receptor variant 
AR-V7 (Gencode transcript AR-204). Examples of web queries are provided on the repository: https://​github.​
com/​Trans​ipedia/​Reind​eer-​use-​cases

https://github.com/Transipedia/Reindeer-use-cases
https://github.com/Transipedia/Reindeer-use-cases
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Accuracy of RNA expression measure

In order to assess Reindeer’s capacity to accurately quantify RNA expression from 
RNA-seq samples, we compared it to standard quantification approaches. Reindeer 
queries can be made using full-length sequences (e.g., complete mRNAs) or frag-
ments of size not smaller than k as input. Reindeer returns counts for all consecu-
tive k-mers in the query (Additional file 1: Fig. S1, Additional file 3: Supplementary 
Methods). Counts can be interpreted in different ways depending on whether users 
expect raw counts or counts normalized by query sequence length. To determine the 
optimal counting scheme, we used the SEQC/MAPQC dataset in which the abun-
dance of 1000 transcripts was evaluated in 16 samples both by qPCR and Illumina 
RNA-seq [9]. Means of k-mer counts best correlated with qPCR abundance and tran-
script-per-million (TPM) measured from RNA-seq reads by Kallisto [10] (Fig.  2A, 
B, Additional file  1: Fig. S2), while sums of k-mer counts best correlated with raw 
RNA-seq counts (Fig.  2C, Additional file  1: Fig. S2). Correlation coefficients (CC) 
with Kallisto counts were around 0.8, in line with previous reports [6]. We found that 
quantification accuracy could be substantially improved by masking query k-mers 
with multiple instances in the human genome (“Methods”). This procedure led to > 
0.9 Pearson correlations with both qPCR and RNA-seq derived abundances, reaching 
a Pearson CC of 0.95 with Kallisto raw counts (Fig. 2D–F, Additional file 1: Fig. S2). 
This demonstrates that simple quantitative queries in a k-mer index can achieve accu-
racies approaching that of a state-of-the-art RNA-seq quantification method. Note 
that while TPM-like counts are identical in absolute value across methods, raw counts 
require a linear correction due to the conversion of fragment to k-mers (discussed in 
Additional file 3: Supplementary Methods).

Table 1  Reindeer index properties for various datasets (on-disk indexes)

Dataset #Samples Fastq.gz size 
(Gb)

Index size (Gb) RAM (Gb) Load time (h:m:s)

GSE62852-AML 40 252 16 10.8 00:02:17

GTEx (part) 1119 6100 312 42.2 00:08:58

SEQC/MAQC 16 51 2.4 3.1 00:00:33

CCLE 1019 8900 236 22.3 00:05:57

Table 2  Query times on the CCLE index (on-disk index)

Query type # Queries Query time (s)

31-mers 1000 1.0

10000 2.0

100000 16.0

500000 89.0

1000000 179.0

Full-length mRNAs (mean size: 1.9 kb) 1 0.6

100 14.5

1000 132.8
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Finding mutations in RNA

Given an index of 1019 cancer cell lines enabling fast and accurate quantification of 
arbitrary RNAs, we set out to use this system to retrieve different types of RNA vari-
ations not commonly accessible in transcriptome databases. First, we designed que-
ries for mutations and indels. We selected mutations/indels in common cancer genes 
from the Depmap database [11] and designed 61-nucleotide sequences around each 
variation as explained in the “Methods” section (Additional file 1: Fig. S3, Additional 
file 2: Table S1). We refer to these sequences as “probes.” With k = 31, a 61-nucleotide 
( 2k − 1 ) size ensures that any k-mer in the probe covers the variation.

To limit false positive calls, we applied a masking step that discarded parts of probes 
with multiple hits in the genome or harboring low complexity sequences (“Methods”). 
While this only eliminated 1.7% of probes (Table 3), it reduced false positive hits by 
93.9% (Additional file 2: Table S2). Several query modes were then tested whereby at 
least 1, 3, 5, or 10 k-mers in each probe had to be non-zero for the call to be made 
( min_hits = 1 to 10) (Table 3). Recall was satisfying in all cases (0.875 to 0.945), while 
precision ranged from 0.269 ( min_hits = 1) to 0.893 ( min_hits = 10). Thus, there is 
a significant benefit in requiring several k-mer hits around an event to make a call. 
Hereafter, min_hits is set to 3 unless specified otherwise.

Fig. 2  Correlations between Reindeer counts and established count methods. 1000 genes were quantified 
in 16 reference SEQC/MAQC-III samples. A, D Reindeer (mean counts) vs. qPCR. B, E Reindeer (mean counts) 
vs. Kallisto TPM. C, F Reindeer (sum counts) vs Kallisto raw counts. Unicity masking: counts obtained after 
removal of non-unique k-mers
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Restricting Reindeer queries to recurrent (“hotspot”) cancer-related mutations from 
Cosmic [12] substantially improved precision and recall ( ≥ 0.9, Table  3). We hypoth-
esized that the remaining false positive (FP) calls may be true mutations filtered out 
by Depmap due to a more stringent count threshold. To assess this, we computed the 
variant allele frequencies (VAF) of mutations using counts obtained with wildtype and 
mutant probes. VAF computed by Reindeer was in general highly correlated to that 
inferred from conventional RNA-seq alignment (Fig. 3A) and FP calls had significantly 
lower VAF (Additional file 2: Table S3, Fig. 3B), supporting these may be in part censored 
by Depmap. Further testing of 12 RNA-seq files (corresponding to 78 FP pairs) using a 
sensitive variant caller [13] or by direct parsing of the fastq files confirmed 76 of the 
78 (97%) of the putative FPs as likely true positives (Additional file 2: Table S4). Finally, 
we analyzed samples with available DNA sequencing data: out of 44 FP calls in these 
samples, 31 (70%) turned out positives at the DNA level (Additional file 2: Table S5). In 
summary, we estimate that the majority of the putative FP mutations at min_hits =3 are 
actually true mutations.

Finding fusion transcripts

We next tested Reindeer’s capacity to retrieve gene fusion events. DepMap provides 
genomic coordinates of fusion junctions identified after alignment of RNA-seq reads 
by STAR-fusion [14]. We selected fusion events with a breakpoint at exon edges, 

Table 3  Accuracy measures of Reindeer mutation and fusion calls

a Min count cutoff and low complexity masking
b Restricted to RNA-seq-derived mutations
c min_hits: minimum number of positive k-mers in query
d All positive and negative counts are given for pairs {probe, sample}

#total 
probes

#probes 
after 
selectiona

min_
hitsc=1

min_
hits=3

min_
hits=5

min_hits=10

Mutations All Depmap 
mutationsb (50 
cancer genes)

3685 3621 dTrue + 4346 4255 4205 4026

False + 11810 911 589 484

False - 255 346 396 575

Precision 0.269 0.824 0.877 0.893

Recall 0.945 0.925 0.914 0.875

Cosmic Hot-
spot mutations

960 951 True + 1665 1631 1611 1558

False + 6823 184 114 90

False - 51 85 105 158

Precision 0.196 0.899 0.934 0.945

Recall 0.970 0.950 0.939 0.908

Fusions All Depmap 
fusions (junc-
tion at exon 
edges)

8972 8860 True + 9410 9277 9201 9018

False + 25732 10048 6558 2378

False - 170 303 379 562

Precision 0.268 0.480 0.584 0.791

Recall 0.982 0.968 0.960 0.941

Cosmic fusions 60 59 True + 99 98 98 96

False + 22 3 3 2

False - 1 2 2 4

Precision 0.818 0.970 0.970 0.980

Recall 0.990 0.980 0.980 0.960
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which are considered more reliable [15], and designed 51-mer sequences centered 
on the fusion junction (“Methods,” Additional file  1: Fig. S3B & Additional file  2: 
Table S6). Probes shorter than (2k − 1) are desirable when querying fusion and splice 
junctions, since k-mers overlapping the junction at their tip might accidentally match 
other partner exons. Masking of k-mers present in the reference genome or transcrip-
tome and of low complexity k-mers (see the “Methods” section) yield a total of 8860 
fusion probes (Additional file 2: Table S2).

Fusion events were quantified requesting at least 1, 3, 5 or 10 non-zero count 
k-mers, as done for mutations (Table  3). Recall was high in all cases (0.94 to 0.98), 
but precision was relatively low (0.27 to 0.79) due to a high number of FPs. Restrict-
ing evaluation to Cosmic fusions (100 fusion events) largely reduced the FP rate, 

Fig. 3  Comparison of Depmap and Reindeer calls for mutations and fusion transcripts. A, B Reindeer variant 
allele frequencies (VAF) measured as the count ratio: mutated / (mutated + wild-type) * 100, for all Depmap 
mutations in cancer genes. A Correlation of Depmap VAF (based on RNA-seq alignment) and Reindeer VAF. 
Each dot shows a mutation in one sample, colored according to gene (50 genes). B Comparison of Reindeer 
VAF for true positive (n = 4255) and false positive (n = 911) calls in Depmap. C Detection of DepMap Cosmic 
fusion events in CCLE cancer cell lines. Cosmic fusions were retrieved using a 51-nt probe centered on the 
fusion junction. Top: cell lines are colored by tumor type. Blue: events from DepMap found by Reindeer (true 
positive); red: events found in an extra sample with Reindeer compared to DepMap; green: events not found 
with Reindeer. Lines with identical fusion names correspond to different exon-exon junctions of the same 
genes
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improving both precision and recall to above 0.97 for min_hits ≥ 3 (Table 3, Fig. 3C). 
This suggests the initial query list from Depmap contained fusions yielding multi-
ple erroneous hits. The only two missed fusion events had SNPs in close proximity 
(7 and 4 nucleotides) to the junction, such that the minimum number of matching 
k-mers was not reached (Additional file 1: Fig. S4). Of the three apparent false posi-
tives remaining (Fig. 3C, red), two were annotated in the LigeA fusion database [16] 
in the correct cell line, supporting their reality. Finally, fusion transcript expression 
quantified by Reindeer was highly correlated to that given by Depmap (Pearson CC = 
0.92, Additional file 1: Fig. S5).

Finding expressed transposable elements

Transposable elements in the human genome are mostly silent but can be re-expressed 
in tumor cells upon lifting of epigenetic repression. Measuring their expression is com-
plex because exact repeats impede the attribution of RNA-seq reads to specific loci. We 
compared the quantification of human endogenous retroviruses (ERV, a major class 
of transposable elements) by Reindeer and by two software relying on different map-
ping strategies. Telescope [17] estimates transposable element expression at locus-level 
through genome mapping, allowing for up to 100 mapping positions and reassigning 
ambiguous reads to specific loci using an expectation maximization algorithm. While 
Reindeer does not use expectation maximization, locus-level ERV quantification after 
masking of non-unique sequences was reasonably similar to that of Telescope (Pearson 
CC:0.88, Fig. 4A, Additional file 1: Fig. S6), while requiring only a fraction of the time 
(4–5 h by sample with Telescope vs. seconds for Reindeer). REdiscoverTE [18] estimates 
transposable element expression at the family level based on Salmon [19], a fast quanti-
fier using pseudo-mapping. REdiscoverTE and Reindeer ERV quantifications were highly 

Fig. 4  Quantification of transposable elements and novel splice junctions. A Correlation of quantification 
of 1000 ERVs by Reindeer and Telescope, in 56 colon cell lines from CCLE. B Correlation of quantification 
of 50 ERV families by Reindeer and RediscoverTE, in 56 colon cell lines from CCLE. C Quantification of 
SF3B1-induced neojunctions in cell lines. Each dot represents the sum of counts of 849 SF3B1-induced 
neojunctions in one CCLE cell line. Cell lines harboring hotspot (likely oncogenic) SF3B1 mutations, other 
missense SF3B1 mutations and wild-type SF3B1 are distinguished. Cell lines with outlier neojunction 
expression (> 2 SD above mean) are shown in red
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correlated, both for raw counts and for CPM normalized counts (Pearson CC = 0.99 and 
0.96 respectively) (Fig. 4B, Additional file 1: Fig. S7). Although a significant fraction of 
k-mers in ERV elements were masked as non-unique (“Methods”), all tested elements 
had sufficient specific k-mers to remain quantifiable, even at the locus level. Finally, as 
observed for mRNA quantification, Reindeer’s raw counts required a linear correction to 
match raw counts from the specialized tools.

Finding aberrant splicing junctions

Aberrant splice junctions caused by mutations in RNA processing genes are generally 
absent from reference transcriptomes. Their detection usually requires downloading 
and reanalyzing RNA-seq files. Using Reindeer, one may directly interrogate an RNA-
seq index for such unreferenced variants. We illustrate this with splicing alterations 
in uveal melanoma. Mutation of the SF3B1 splice factor in uveal melanoma induces 
aberrant splicing of hundreds of genes [20]. We retrieved aberrant splice junctions 
observed in SF3B1-mutated patients and created 51 nucleotides probes for 849 so called 
neojunctions (see the “Methods” sections). These sequences were then quantified in 
CCLE (Fig. 4C). All cell lines harboring known oncogenic SF3B1 mutations presented 
significantly elevated neojunction expression, consistent with genome-wide SF3B1-
induced alterations. Another SF3B1 mutation with elevated neojunctions was A745V 
in NCIH358_LUNG, suggesting this mutation may also disrupt splicing, although this 
is not documented in the current literature. Moreover, five cell lines with no SF3B1 
mutation behaved like SF3B1 hotspot mutants, suggesting alterations in the same splic-
ing pathway in these cells. This included two lung and two endometrial tumors, which 
are tumors where SF3B1 and related SUGP1 mutations are documented [21, 22]. Inter-
estingly, two of these cell lines had impairing mutations in SUGP1 (Additional file  2: 
Table S7). This illustrates how a Reindeer index can be utilized to evaluate a complex 
transcriptome signature composed of aberrant transcripts and identify cells altered in 
similar pathways.

Transferring probes across datasets

Finally, we assessed how reliably probes designed from one dataset could be used for 
querying other datasets. We used the above Depmap-derived probes to query two can-
cer sample datasets with known ground truth. Mutations were queried in a lung adeno-
carcinoma dataset (N = 77) [23] and fusions in a leukemia dataset (N = 148) [24–26]. 
Overall, we found that mutations and fusions in the independent datasets were reliably 
identified with > 90% recall and precision (Additional file  1: Fig. S8, Additional file  2: 
Table S8).

Discussion
We describe here the first practical implementation of a web server for reference-free, 
quantitative queries in an RNA-seq dataset of over 1000 samples. The service runs on a 
standard computer using less than 25 Gb memory and 250 Gb SSD storage. It was tested 
with a variety of input queries including full-length mRNAs and RNA elements that are 
not usually represented in curated RNA-seq databases, such as transposable elements, 
fusions, neo-splice junctions, and mutated RNAs. When using the system to retrieve 
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known mutation and fusions events, precision and recall were above 0.9 for oncogenic 
events. Furthermore, a large fraction of inferred false positives were shown to be likely 
true events filtered out in the reference database.

Reindeer count accuracy was high in spite of the conversion of read counts into aggre-
gated k-mer counts at indexing and their subsequent conversion to query-level counts 
when processing query results. Count correlation with state-of-the-art quantification 
methods were always above 0.8 (Pearson CC) for full-length mRNAs, fusion transcripts, 
and transposable elements and above 0.9 after masking non-specific k-mers from 
queries.

A lesson learnt during this study was the importance of “query engineering,” i.e., 
proper probe design, masking, and post-processing. Query design involves selecting the 
right “probes” to ensure returned hits do not include unspecific sequences. With our 
default k-mer size of 31 nucleotides, optimal probes were 61-nt fragments around muta-
tions or 51-nt fragments around splice or fusion junctions. Query masking involved 
removal of non-specific (non-unique and low complexity) k-mers from queries. This 
provided important gains in count accuracies for all types of queries. Furthermore, this 
considerably reduced the number of false positives when querying local events such as 
mutations. The query design and masking methods introduced herein could serve as 
guidelines to users of k-mer-based indexes in general.

Post-processing of query results first involves deciding how many k-mers in a query 
must be matched to accept a hit. This step is only important for local event detection 
(mutations, fusions, splice junctions), in order to accomodate possible SNPs around 
events. We identified the optimal setting whereby flanking SNPs minimally interfered 
with mutation calling while retaining a high specificity. The second post-processing 
step is the conversion of Reinder k-mer counts into TPM-like or raw-count-like values. 
Averaging k-mer counts provided count estimates that were remarkably similar to TPM, 
while summed counts were highly correlated to raw counts, albeit with a conversion 
factor.

Some limitations of the current Reindeer framework must be acknowledged. (i) Rein-
deer index building is a separate action that is computer intensive and involves resolving 
a few technical challenges, such as read quality control and trimming. (ii) Real-time que-
ries are available to web users thanks to preloaded indexes. Tools for pre-loading indexes 
are provided in the “Methods” section. However, local instances will have to load indexes 
into memory first, which may take several minutes before queries are processed. (iii) 
Query design may require running an independent tool such as the Kmerator Suite [27] 
prior to submitting queries. This may be further integrated into the server after enough 
user experience is gathered.

Conclusion
Reference-free indexes provide a direct access to unprocessed RNA-seq data, enabling 
biologists to ask questions that would otherwise require resource-intensive pipelines. 
Beyond obvious applications such as verifying the tissue or tumor specificity of novel 
biomarkers, Reindeer’s quantitative indexes allow to carry out sophisticated experiments 
by simultaneously querying oncogenic alleles, RNA isoforms, repeats, etc., and process 
the resulting count table to uncover novel functional interactions. We hope to expand 
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the Transipedia server to include an increasing number of public datasets to facilitate 
this type of experiment.

Methods
Updates to Reindeer

Since its initial publication [8], Reindeer has been enhanced with a socket mode to 
facilitate remote server queries. This improvement enables the efficient management of 
indexes from various collections and ensures rapid query responses. Reindeer utilizes an 
efficient k-mer hashing structure to map k-mers to their respective counts in each sam-
ple, alongside a matrix that represents the abundance of indexed objects across samples. 
Through extensive testing, we observed that the primary bottleneck in many use cases 
was the loading of the index into RAM, while the actual querying process is quickly 
expedited thanks to the hashing structure. As a result, Reindeer’s default algorithm was 
transitioned from relying predominantly on in-RAM queries to disk-based queries. 
This shift involves the ability to serialize the count matrix of Reindeer, its most expen-
sive part, onto the disk in a compressed format. Conversely, the hashmap has a reduced 
footprint thanks to an efficient hash function and co-encoded keys. Consequently, we 
updated Reindeer to only load the hashmap into RAM in the initial phase, and read lines 
of the count matrix only when necessary, markedly reducing the total time required for 
conducting intensive queries, especially when running on SSD. 

Building and using Reindeer indexes

Building codes for the web and local server environment are described in https://​github.​
com/​Trans​ipedia/​publi​cation-​ccle. For RNA-seq data sources, see Data Availability and 
Table S9. CCLE RNA-seq raw fastq files were retrieved from Gene Expression Ominibus 
dataset GSE36139. Fastq files were first checked for sequence quality using FastQC (ver-
sion 0.11.9), MultiQC (version 1.9) and KmerExplor [27] for contaminations and library 
information. Cutadapt (version 1.18) was used for low-quality trimming (-q 10,10), 
excluding sequences shorter than 31 nt after trimming (-m 31). Adapter sequence 
removal was deemed unnecessary in the studied datasets. Fastq files were then pro-
cessed by bcalm v2.3.0 (https://​github.​com/​GATB/​bcalm). For the CCLE dataset, k-mers 
with counts < 4 were excluded (option -abundance-min 4). Bcalm files were then used 
as input to Reindeer v1.02 (https://​github.​com/​kamim​rcht/​REIND​EER). Indexes for the 
web server were built using the on-disk option. For querying, indexes were copied to 
an SSD drive (applies to the web server too). All query times were obtained using the 
rdeer-client software running on a local index and include count aggregations for 
multi-probe queries.

Gene expression quantification benchmark

The SEQC/MAQC-III dataset [9] provides both RNA-seq and qRT-PCR values for 1000 
genes across 16 reference samples. We used the 16 Illumina files and the pre-processed 
Taqman-raw.txt file from Chisanga et  al. [28], retrieved from https://​github.​com/​
ShiLab-​Bioin​forma​tics/​GeneA​nnota​tion. RNA-seq data was processed as above. Gene 
expression was quantified with Kallisto (version 0.46.1) using the v108 Ensembl tran-
scriptome (cdna+ncrna), followed by tximport [29] for computing gene-level raw counts 

https://github.com/Transipedia/publication-ccle
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and TPM values. The Reindeer index was generated from trimmed fastq files using cut-
adapt -q 10,10 -m 31. Reindeer gene expression estimates were obtained using 
Ensembl v108 canonical transcripts as input, subject to the following processing steps.

Query preparation

Queries were pre-processed to remove non-specific and low complexity k-mers. When 
“masking” is specified, non-specific parts of query sequences were deleted using the 
Kmerator software (https://​github.​com/​Trans​ipedia/​kmera​tor) [27]. Kmerator takes as 
input a genome index and a fasta file of query sequences or a list of gene names. By 
default any k-mer in the query that is present more than once in the genome is deleted. 
The optional parameter –max-on-transcriptome X requires that k-mers be pre-
sent at most X times in the transcriptome annotation file (Ensembl v108 was used).

Low complexity masking discards k-mers meeting any of the following conditions:

•	 Containing a ≥ 6− nt homopolymer, or
•	 3-mer complexity defined as ((number of distinct 3-mers in k-mer)/(total number of 

3-mers in k-mer)) below 0.55 in k-mer. This cutoff was determined from the analysis 
of complexity distribution in four independent datasets (Additional file 1: Fig. S9).

Processing of query results

Reindeer queries return a series of triplets bi − ei : qi , each corresponding to a monotig 
(Additional file  1: Fig. S1 and Additional file  3: Supplementary Methods) matched by 
the query sequence. A ∗ symbol for qi means that the monotig does not have enough 
k-mers (with non-zero counts) for reporting a reliable result. This minimum k-mer pres-
ence criteria is provided as a percentage in the −P parameter. The default −P value (40%) 
was used unless otherwise specified. Query abundance (Fig. 2A–C and Additional file 1: 
Fig. S2, left) was computed as the mean, median, maximum, and sum values of monotig 
counts. Mean, median, and sum were weighted by the number of k-mers in each mono-
tig. The maximum value was calculated in the trivial way as it is not affected by k-mer 
multiplicities. For masked queries (Fig. 2D–F, Fig. 4A, B, Additional file 1: Fig. S2 right, 
Additional file 1: Fig. S6, Additional file 1: Fig. S7 and Additional file 1: Fig. S10A), sub-
strings were queried separately by Reindeer and the resulting counts were merged per 
original query (this option is available on the web server; however, it is only possible 
with mean abundance counting).

RNA mutations

Fifty highly mutated cancer genes were extracted from CCLE [30], TCGA [31], and 
hematological malignancies [32] (Additional file 2: Table S10). RNA-seq derived muta-
tions within these genes were retrieved from the DepMap Public 22Q2 MAF mutation 
file (file CCLE_mutations.tsv, field RNAseq_AC) and converted into VCF for-
mat. This represented 3685 mutations, herein referred to as “all Depmap.” A subset of 
960 probable cancer drivers was further selected based on field CosmicHotSpot in 
the mutation file. The probe selection process for mutations is described in Additional 
file 1: Fig. S3A. For each mutation, a 61 nt-long probe centered on the mutation and its 

https://github.com/Transipedia/kmerator
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wildtype 61 nt-long counterpart were produced with vcf2seq https://​github.​com/​Bio2M/​
vcf2s​eq. Mutant probes were masked using Kmerator with the –chimera option that 
deletes any k-mer present in the reference genome or transcriptome, and wild-type 
probes were masked with the –max-on-transcriptome 100 option that only 
deletes non-unique k-mers on the genome and > 100 occurrences on the transcriptome. 
Probes were also masked for low complexity elements as described above. At the end 
of the masking process, about 2% and 1% of probes were deleted from the “all Depmap” 
and hotspot probe sets, respectively (Table 3). To assess putative false positive calls, we 
selected 12 samples corresponding to 78 FPs and performed variant calling using the 
Crac alignment software [13] combined to CracTools (http://​crac.​gforge.​inria.​fr/). We 
also directly parsed fastq files using CountTags (https://​github.​com/​Trans​ipedia/​count​
Tags), extracted corresponding reads, and aligned them to the hg38 reference genome 
using Blat [33]. Additional file 2: Table S4 reports putative false positives evaluated as 
true positives through either method.

Fusions

Fusions were retrieved from the DepMap Public 22Q2 fusion table (field CCLE_
fusions.csv). We set the minimum read count supporting a fusion to 4 (same as 
used in the Reindeer index) which retained 14946 fusions. A bed file was generated for 
the left and right sides of junctions and 51 nt-long probes centered on the junction were 
produced using bedtools getfasta[34]. We then selected fusions with junctions at exon 
edges by intersecting fusion coordinates with Gencode V42 exon coordinates (8972 
fusions). K-mers were masked using kmerator –chimera and low-complexity filter 
as above. The complete procedure is shown in Additional file 1: Fig. S3B. A total of 8860 
fusion queries were eventually retained. A subset of 60 known oncogenic fusions was 
selected based on the “Cosmic” label in column annots of the DepMap table. Selected 
fusions were further verified on the Ligea dataportal (http://​hpc-​bioin​forma​tics.​cineca.​
it/​fusion/) which provides fusions predicted in CCLE RNA-seq data by four detection 
algorithms and enables retrieval of the corresponding read sequences.

Transposable element expression

Transposable element quantification was performed in 56 CCLE samples from colon 
cell lines. For comparison with Telescope [17] (V.1.0.3), we selected 1000 ERV loci (4034 
sequences) from the authors’ supplemental data. We then generated query sequences 
based on genomic coordinates (Hg38), and masked non-unique sequences using kmer-
ator with option –max-on-transcriptome 100. Unicity masking deleted 17% of 
k-mers in ERV probes in average. Nonetheless, every locus retained at least one probe 
with enough specific k-mer to be measurable. Telescope runtime was estimated based on 
a run with 16 threads and 48Gb RAM. For tests against REdiscoverTE [18], we retrieved 
genomic locations for 58 ERV families from the adapted REdiscoverTE data available 
at https://​github.​com/​ucsff​ranci​slab/​REdis​cover​TE/. This represented 40,734 loci, which 
were converted to sequences using bedtools, and masked for non-unique k-mers as 
above, resulting in 305,331 probes. Counts were aggregated at the family level.

https://github.com/Bio2M/vcf2seq
https://github.com/Bio2M/vcf2seq
http://crac.gforge.inria.fr/
https://github.com/Transipedia/countTags
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Neo‑splicing events

The coordinates of 1258 abnormal splice junctions associated to SF3B1 mutations 
were retrieved from Table 2 of [20], converted to bed format and lifted to Hg38 using 
overlift (UCSC tools). As in the fusion procedure, we generated a 51-nt long sequence 
centered on the splicing junction and masked any genome or transcriptome k-mer 
(kmerator –max-on-transcriptome 0) and low complexity k-mers, retaining 
849 probes. Probes were quantified in CCLE using the mean method.

Querying across datasets

For independent validation of Depmap-derived probes into independent datasets, we 
built Reindeer indices for 77 lung adenocarcinoma samples (together with 77 matched 
normal samples) [23] and 148 leukemia samples [24–26] and queried them with mini-
mum counts set to 3. Accessions are listed in the Data Availability section. Ground 
truth mutation and fusion calls in each sample were retrieved from the original pub-
lications. Depmap probes were available for 32 mutations (in total 50 ground truth 
mutation-sample pairs) in the lung cancer dataset and 7 fusions (in total 63 ground 
truth fusion-sample pairs) in the leukemia dataset.
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