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Abstract 

Background:  Polygenic risk score (PRS) is a major research topic in human genetics. 
However, a significant gap exists between PRS methodology and applications in prac-
tice due to often unavailable individual-level data for various PRS tasks including model 
fine-tuning, benchmarking, and ensemble learning.

Results:  We introduce an innovative statistical framework to optimize and benchmark 
PRS models using summary statistics of genome-wide association studies. This frame-
work builds upon our previous work and can fine-tune virtually all existing PRS models 
while accounting for linkage disequilibrium. In addition, we provide an ensemble learn-
ing strategy named PUMAS-ensemble to combine multiple PRS models into an ensem-
ble score without requiring external data for model fitting. Through extensive simula-
tions and analysis of many complex traits in the UK Biobank, we demonstrate that this 
approach closely approximates gold-standard analytical strategies based on external 
validation, and substantially outperforms state-of-the-art PRS methods.

Conclusions:  Our method is a powerful and general modeling technique that can 
continue to combine the best-performing PRS methods out there through ensemble 
learning and could become an integral component for all future PRS applications.
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Background
Genetic risk prediction is a main focus in human genetics research and a key step 
towards precision medicine [1–3]. Continued success in genome-wide association stud-
ies (GWAS) in the past decade has facilitated the development of polygenic risk scores 
(PRS) that aggregate the effects of millions of single-nucleotide polymorphisms (SNPs) 
for many complex traits [4–6]. Compared to earlier statistical methods that require indi-
vidual-level data for model training [7–10], PRS which only relies on GWAS summary 
data is much more generally applicable due to the wide availability of GWAS summary 
statistics. Although earlier PRS models struggled to produce accurate prediction results, 
recent and more sophisticated PRS methods have achieved substantially improved pre-
diction accuracy through statistical regularization and biological data integration [11–
17]. In numerous studies, PRS has shown promising performance in stratifying disease 
risk and great potential in informing early lifestyle changes or medical interventions 
[18–21].

Despite the progress, several lingering challenges create a significant gap between 
PRS methodology and applications. A main recurring issue we highlight (and address) 
throughout the paper is that PRS modelers often assume the existence of independent 
individual-level datasets that can be used for additional model tuning. But in practice, 
GWAS summary statistics are used for PRS model training, meaning that conventional 
sample splitting schemes cannot be used. Additional datasets that are independent from 
both training and testing samples also rarely exist. This suggests that model-tuning sam-
ples will have to come from the precious testing dataset which inevitably reduces the 
sample size and statistical power in downstream applications.

This disconnection between impractical method requirements and limited data avail-
ability can lead to a variety of problems. For example, many PRS methods have tuning 
parameters that could substantially swing model performance when not chosen properly 
[12–15, 22–24]. Conventionally, these parameters need to be fine-tuned on a separate 
dataset with individual-level genotypes and phenotypes. Although some recent meth-
ods employ fully Bayesian or empirical Bayesian techniques to bypass model fine-tuning 
[25–27], these hyperparameter-free PRS do not always outperform fine-tuned mod-
els, trading predictive accuracy for computational feasibility [28, 29]. Second, no PRS 
method universally outperforms all other approaches. The empirical performance of a 
PRS model depends on GWAS sample size, genetic architecture of the phenotype, qual-
ity of GWAS summary statistics, and heterogeneity between training and testing samples 
[30–33]. Thus, it is of great interest to systematically and impartially benchmark various 
PRS methods for each trait, ideally in an independent dataset [11, 30, 34]. Third, several 
recent studies have employed ensemble learning which combines multiple PRS models 
via another regression [28, 29] and showed improved PRS accuracy in both within- and 
cross-ancestry prediction applications [35–37]. This brute-force approach has shown 
superior performance compared to any single PRS method but is data-demanding—the 
second level regression model needs to be fit on a separate dataset. Finally, we note that 
it may be of interest to combine all these tasks in practice, e.g., benchmarking an ensem-
ble learner that combines multiple PRS models which all need to be tuned separately, 
which really seems like an impossible task.
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In this paper, we seek a solution to these problems. We base our statistical framework 
on PUMAS, a method we recently introduced to perform Monte Carlo cross-validation 
(MCCV) using GWAS summary statistics [38]. We have shown that PUMAS can effec-
tively fine-tune PRS models with clumped SNPs [39] and similar approaches have since 
been adopted in other applications [40–42]. Here, we first demonstrate that PUMAS can 
now fine-tune and benchmark state-of-the-art PRS models without SNP pruning. Sec-
ond, we introduce an extension to the PUMAS framework named PUMAS-ensemble 
which is an innovative strategy to perform ensemble learning using GWAS summary 
data alone. Taken together, we showcase a sophisticated statistical framework for fine-
tuning, benchmarking, and combining PRS models using GWAS summary statistics 
as input. We demonstrate the performance of our approach through extensive simula-
tions and analysis of 21 complex traits in UK Biobank (UKB). On average, the PUMAS-
ensemble ensemble PRS achieves a 8.93% relative gain in predictive R2 compared to 
LDpred2-auto and a 17.68% gain compared to PRS-CS-auto, respectively. We also apply 
our method to 31 well-powered GWAS with publicly available summary statistics and 
provide a catalog of ensemble PRS with benchmarked predictive performance.

Results
Method overview

First, we present an overview of the PUMAS-ensemble workflow. Statistical details and 
technical discussions are presented in the “Methods” section. For illustration, first we 
assume individual-level data is available. In this case, we would divide the samples into 
4 independent sets for PRS training, model fine-tuning, constructing ensemble PRS, 
and benchmarking model performance, respectively (Fig. 1A). The main goal of our new 
approach is to mimic this procedure when only summary statistics are available. Using 
PUMAS, we could sample marginal association statistics for a subset of individuals in 

Fig. 1  Workflow of PRS construction and evaluation. A Conventional approach divides the entire 
individual-level dataset to different subset of samples for each of 4 stages of PRS analysis. B PUMAS-ensemble 
directly partitions the full summary-level data to corresponding summary statistics for different analytical 
purposes
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the GWAS [38]. Doing this repeatedly, we could divide the full GWAS summary data 
to corresponding training, tuning, ensemble learning, and testing summary statistics 
(Fig. 1B). Using these four sets of sub-sampled summary statistics, we train a series of 
PRS models, fine-tune each PRS model to select the besting tuning parameters, apply 
PUMAS-ensemble to combine PRS models through linear regression, and finally eval-
uate the predictive performance of PRS models. The entire procedure only requires 
GWAS summary statistics and linkage disequilibrium (LD) references as input.

Simulation results

We performed simulations using imputed genotype data from UKB to demonstrate that 
PUMAS and PUMAS-ensemble can fine-tune, combine, and benchmark PRS models. 
We included 100,000 independent individuals of European descent and 944,547 Hap-
Map3 SNPs in the analysis. We simulated phenotypes with heritability of 0.2, 0.5, and 
0.8 and randomly assigned causal variants under sparse and polygenic settings to mimic 
different types of genetic architecture (Methods). We performed GWAS and obtained 
marginal association statistics. We then implemented PUMAS and PUMAS-ensemble 
to conduct a 4-fold MCCV to train, optimize, and evaluate lassosum, PRS-CS, LDpred2, 
and an ensemble PRS which combines all three methods and SDPR [22, 25, 26, 43]. For 
comparison, we also implemented a MCCV procedure using individual-level UKB data. 
We partitioned the UKB dataset into 4 mutually exclusive datasets. We used datasets 1 
and 2 to train and fine-tune each PRS method, then used the third dataset to fit a regres-
sion to combine multiple PRS. We evaluated each PRS method in the fourth dataset and 
reported PRS prediction accuracy quantified by R2 . We describe implementation details 
of both summary-statistics-based and individual-level-data-based MCCV in “Methods”.

Overall, we observed highly consistent results between PUMAS/ PUMAS-ensemble 
and MCCV for both quantitative and binary phenotypes (Fig. 2; Additional file 1: Fig. 
S1-S7; Additional file 2, 3, 4, and 5: Table. S1-S4). In addition, summary statistics-based 
approaches can closely approximate R2 values obtained from model-tuning and bench-
marking techniques using individual-level data. PUMAS-ensemble also constructed 
scores that were highly concordant with ensemble PRS built from individual-level data 
which universally outperformed all PRS models used as input. During the revision, we 
also added simulation analysis for MegaPRS [40] which also yields similar ensemble 
score performance (Additional file 1: Fig. S8-S10; Additional file 6 and 7: Table. S5-S6). 
Computation-wise, PUMAS’s subsampling step can execute in parallel for each chro-
mosome and our benchmarking results suggest that PUMAS/PUMAS-ensemble are 
scalable for GWAS summary statistics including millions of SNPs (Additional file  8: 
Table. S7).

We conducted two additional analyses to demonstrate the validity of PUMAS’s sub-
sampling framework. First, we benchmarked PUMAS against the subsampling approach 
implemented in MegaPRS [40], which uses “pseudo summary statistics” for param-
eter tuning, and the gold standard approach MCCV based on individual-level data 
(Methods). We found consistent subsampling results from both approaches compared 
to MCCV (Additional file  1: Fig. S11; Additional file  9: Table. S8). In addition, while 
PUMAS’s subsampling framework assumes weak individual SNP effects, we observed 
robust performance of PUMAS under extremely sparse genetic architecture with large 
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SNP effects (Additional file 1: Fig. S12; Additional file 10: Table. S9). These results high-
light the robustness of PUMAS’s summary statistics subsampling scheme under differ-
ent genetic architecture.

PUMAS can fine‑tune and benchmark PRS methods

Next, we demonstrate that PUMAS effectively fine-tunes PRS models and performs 
accordantly with the gold standard external validation approach based on individual-
level data. We applied PUMAS to 16 quantitative traits, 4 diseases, and 1 ordinal trait 
in UKB [44] (Additional file 11 and 12: Table. S10-S11). After quality control, the UKB 
dataset contained 375,064 independent individuals and 1,030,187 SNPs (Methods). We 
applied a 9-to-1 data split to hold out 10% of the samples for external validation, and 
performed GWAS for all traits using 90% of the samples. We applied 4-fold MCCV 
implemented in PUMAS to train and fine-tune three PRS models (i.e., LDpred2, lasso-
sum, and PRS-CS which have been demonstrated to achieve high prediction accuracy 
in a recent benchmark study [22, 25, 26, 29]) using only summary statistics. For external 
validation, we trained PRS models using the full summary statistics and calculated PRS 
prediction accuracy on the holdout dataset. We report the best tuning parameters for 

Fig. 2  Comparison of PUMAS-ensemble and MCCV in UKB simulation. A, C Simulation results for quantitative 
traits. B, D Simulation results for binary traits with balanced case–control ratio. Proportion of causal variants is 
0.1% in A and B, and 20% in C and D. The heritability is set to be 0.5 in all panels. Models that do not require 
fine-tuning are shown on the left side of each panel. Y-axis: predictive R2 across 4 repeats of MCCV; X-axis 
(left to right): tuning-free models: LDpred2-auto (green box), PRS-CS-auto (blue box), and SDPR (dark-blue 
box). lassosum models (red boxes) with tuning parameter settings: s = 0.2 and λ = 0.005, s = 0.2 and λ = 0.01, 
s = 0.5 and λ = 0.005, s = 0.5 and λ = 0.01, s = 0.9 and λ = 0.005, s = 0.9 and λ = 0.01. LDpred2 models (green 
boxes): non-infinitesimal with p = 0.1, non-infinitesimal with p = 0.01, non-infinitesimal with p = 0.001, and 
infinitesimal model. PRS-CS (blue boxes): φ = 0.01 and 0.0001. Finally, the purple box shows the results of 
ensemble PRS. Results for remaining simulation settings are summarized in Additional file 1: Fig. S1-S10 and 
Additional file 2, 3, 4, 5, 6, and 7: Table. S1-S6
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LDpred2, lassosum, and PRS-CS and corresponding R2 obtained from both PUMAS and 
external validation.

Our summary-statistics-based approach showed highly consistent model-tuning per-
formance for all analyzed traits compared to external validation (Fig. 3, Additional file 1: 
Fig. S13-S33; Additional file 13 and 14: Table. S12-S13). Among 21 traits, PUMAS and 
external validation selected the same best tuning parameters 21, 18, and 11 times for las-
sosum, LDpred2, and PRS-CS, respectively. When the model tuning results were differ-
ent between PUMAS and external validation, both approaches still selected models with 
very similar prediction accuracy. Indeed, PUMAS provided precise R2 estimates for all 
models compared to external validation, advocating the use of our summary-statistics-
based approach for PRS model benchmarking. In addition, it is noteworthy that empiri-
cal and full Bayesian approaches (i.e., LDpred2-auto and PRS-CS-auto) did not always 

Fig. 3  Comparing PUMAS results with external validation. Four panels show the model-tuning results for A 
height, B monocyte count, C coronary artery disease, and D high blood pressure. Y-axis: average predictive 
R
2 across 4-fold replications from PUMAS; X-axis: predictive R2 evaluated by external validation on the holdout 

dataset. Each data point represents a PRS model with different tuning parameters and the shape of data 
points indicates three different PRS methods: LDpred2, PRS-CS, and lassosum. The best tuning parameter 
setting suggested by PUMAS for each PRS method is highlighted and colored. The dashed red line is fitted 
regression line between PRS R2 from PUMAS and external validation. Pearson correlations between two sets 
of results are shown in each panel. Detailed model-tuning results for all 21 traits are summarized in Additional 
file 1: Fig. S13-S33 and Additional file 13 and 14: Table. S12-S13
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outperform other fine-tuned PRS models even within the UKB cohort, demonstrating 
the necessity of PRS model tuning for optimizing out-of-sample prediction.

We also observed that the parameter-tuning results are accordant with the ana-
lyzed traits’ genetic architecture. For both height and monocyte count, PUMAS accu-
rately selected the best tuning parameters based on external validation (Fig. 3A,B), but 
the selected models were not the same between these two traits. Height is known to 
be extremely polygenic with more than 12,000 independent GWAS signals in the lat-
est GWAS [45]. In comparison, fewer loci have been found to significantly associate 
with monocyte count [46]. Our model-tuning results suggest that polygenic prediction 
models fit best for height (e.g., LDpred2-Infinitesimal and PRS-CS with φ = 0.01 ) while 
sparser PRS models with stronger regularization (e.g., PRS-CS with φ = 0.0001 ) provide 
better prediction accuracy for monocyte count.

Finally, PUMAS can also effectively estimate predictive R2 for binary traits (Fig. 3C,D). 
To calculate interpretable R2 for binary outcomes, PUMAS first transforms GWAS sum-
mary statistics obtained from logistic regressions to the linear regression scale, and then 
computes R2 on the observed scale [47–49]. To show that such transformation is valid, 
we trained two sets of PRS models using both transformed and original logistic regres-
sion summary statistics for 4 disease traits and observed nearly identical PRS perfor-
mance between two approaches (Additional file 1: Fig. S29-S32; Additional file 14: Table. 
S13). Details in the implementation of binary trait analysis and summary statistics trans-
formation are presented in “Methods”.

Ensemble learning via PUMAS‑ensemble substantially improves PRS prediction accuracy

Here we apply PUMAS-ensemble, the ensemble learning extension of PUMAS, to 
UKB traits and show that ensemble PRS has superior prediction accuracy compared to 
each PRS method and our summary statistics-based approach is comparable to ensem-
ble learning results based on individual-level data. We constructed linearly combined 
scores of lassosum, PRS-CS, LDpred2, and SDPR. Using individual-level data, we split 
the 10% UKB holdout dataset into two equally sized subsets. We fitted a multiple regres-
sion on the first holdout set to aggregate the best-performing PRS models trained and 
tuned from GWAS summary statistics, and then evaluated the ensemble score’s predic-
tion accuracy using the second holdout set. For comparison, we implemented PUMAS-
ensemble to conduct 4-fold MCCV to perform ensemble learning using summary 
statistics alone and assessed its performance on the second holdout set.

Our approach showed almost identical performance compared to individual-level 
data results (Fig.  4A), showcasing PUMAS-ensemble’s ability to benchmark and con-
struct ensemble PRS without requiring additional datasets. In addition, ensemble PRS 
achieved the highest prediction accuracy compared with four input PRS models for all 
traits except diastolic blood pressure (Additional file 1: Fig. S34; Additional file 15: Table. 
S14). The ensemble PRS using individual-level data as input had an average 19.67% 
and 10.76% relative gain in R2 compared to PRS-CS-auto and LDpred2-auto while the 
PUMAS-ensemble ensemble PRS delivered a similar 17.68% and 8.93% R2 increase 
respectively (Fig.  4B), highlighting the substantial gain in prediction accuracy from 
ensemble learning.
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We sought to explore some properties of PUMAS-ensemble in real-world settings. A 
comparison between PUMAS and PUMAS-ensemble suggests that although ensem-
ble learning requires additional splitting of data and reduces training sample size for 
individual PRS models, ensemble scores trained on smaller GWAS training subsets 
outperforms individual fine-tuned PRS, highlighting the benefit of ensemble learning 
(Methods; Additional file 16: Table. S15). Furthermore, we conducted sensitivity analy-
ses to investigate the effect of LD misspecification on PUMAS-ensemble (Methods). We 
observed reduced ensemble PRS performance from PUMAS-ensemble when the LD ref-
erence data mismatches the ancestral population of GWAS samples (Additional file 1: 
Fig. S35-S36; Additional file 17: Table. S16).

Constructing and benchmarking ensemble PRS for 31 complex traits

Finally, we applied PUMAS-ensemble to provide a comprehensive catalog of ensemble 
PRS for 31 publicly available GWAS summary statistics with varying sample size and 
genetic architecture. The detailed information and selecting criteria for GWAS summary-
level data are summarized in Methods and Additional file 18: Table. S17. We employed 
extensive quality controls to pinpoint and calibrate misspecifications in GWAS summary 
statistics following a recent study [31] (Additional file  19: Table. S18). We also trans-
formed logistic summary statistics to linear scale to produce interpretable R2 for binary 
traits [47–49]. For each trait, we reported prediction accuracy of the best-performing 
PRS model and ensemble PRS. The full results of the PRS catalog are presented in Addi-
tional file 20: Table. S19. The predictive performance of ensemble PRS is correlated with 
estimated trait heritability, and the predictive R2 ranged from 3E − 4 to 0.213 across 31 
traits, showing highly diverse predictive performance of genetic risk prediction (Fig. 5). 
We also note that ensemble PRS improved predictive R2 for every trait in the analysis 

Fig. 4  Constructing ensemble PRS for UKB traits. A Comparing two sets of ensemble PRS obtained from 
PUMAS-ensemble and individual-level data. The gray dashed line is the diagonal line. B Comparing ensemble 
PRS with input PRS methods. Y-axis: relative percentage increase in R2 compared to PRS-CS-auto; X-axis: 4 sets 
of PRS models, including the best single PRS suggested by PUMAS, the best single PRS selected based on the 
first individual-level holdout set, the ensemble PRS obtained from PUMAS-ensemble, and the ensemble PRS 
trained from individual-level data. All R2 values were computed using the second half of holdout dataset
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with a median increase of 26.36% compared to PRS-CS-auto (Additional file 1: Fig. S37). 
Among 31 complex diseases and traits, we observed the highest prediction improvement 
for rheumatoid arthritis (113.7%), Alzheimer’s disease (93.0%, 94.3%, and 109.5% on three 
datasets), and post-traumatic stress disorder (70.7%).

Another observation is that the ensemble PRS R2 exceeded the estimated trait herita-
bility for all three Alzheimer’s disease GWAS. To demonstrate that this is not an artifact 
from overestimating predictive R2 , we conducted additional analysis (Methods) using 
IGAP 2019 Alzheimer’s GWAS summary statistics [51] and compared our results with 
external validation based on 2600 Alzheimer’s disease cases and 5200 healthy controls 
in UKB (Additional file 21: Table. S20). The R2 of AD PRS obtained from external vali-
dation also exceeded estimated heritability ( h2=0.072, SE = 0.012) and the results were 
consistent with PUMAS R2 estimation (Additional file  1: Fig. S38; Additional file  22: 
Table. S21). We hypothesized that this is driven by the APOE region which contributes 
an unusually large fraction of AD risk [52–54]. Indeed, after removing 383 SNPs in the 
APOE region from IGAP 2019 AD summary statistics (Methods), we observed a steep 
decline in R2 for both external validation and PUMAS. Both R2 values became substan-
tially lower than the estimated h2 of 0.066 without APOE region (SE = 0.009; Additional 
file 22: Table. S21).

Fig. 5  An ensemble PRS catalog for 31 complex traits. Y-axis: average predictive R2 of PUMAS-ensemble 
ensemble PRS; X-axis: heritability estimates from LD score regression [50]. Size of data points indicates the 
effective sample size of each GWAS. Binary traits and continuous traits are highlighted with different colors. 
Detailed PRS benchmark results are presented in Additional file 20: Table. S19
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Discussion
Fine-tuning and benchmarking PRS models are challenging tasks due to the need of 
external individual-level datasets that are independent from the input GWAS. In this 
work, we extended our PUMAS approach to incorporate LD and fine-tune state-of-
the-art PRS methods. In both simulations and analysis of UKB traits, we observed high 
concordance between PUMAS and results based on external validation using holdout 
samples. In addition, we presented a novel framework named PUMAS-ensemble to per-
form ensemble learning and create combined PRS using only GWAS summary statis-
tics. We showed that ensemble PRS created by PUMAS-ensemble closely approximates 
scores built from holdout samples. Further, these ensemble scores substantially outper-
formed state-of-the-art PRS methods for complex traits we analyzed in the study. Finally, 
we applied PUMAS-ensemble to a collection of publicly available GWAS summary sta-
tistics and provided a comprehensive catalog of benchmarked and optimized PRS.

Our work presents several major advances that will impact future PRS applications. 
First, our method fills an important gap between PRS methodological research and its 
real-world applications. Currently, many PRS methods still have tuning parameters and 
grid search on external individual-level datasets remains the most common technique 
for fine-tuning these models. In practice, this kind of data can either be impossible to 
obtain, or need to be split from testing samples which could hurt statistical power in 
PRS applications [32]. Our method provides a universal solution to PRS model fine-tun-
ing. It is also noteworthy that some recent PRS methods such as MegaPRS [40] can also 
conduct model fine-tuning. MegaPRS bases its framework on GWAS z-scores and uses 
the LD matrix for summary statistics subsampling. On the other hand, PUMAS uses 
unstandardized SNP effect estimates and standard errors as inputs, and also considers 
GWAS regression residual variances in addition to LD for summary statistics partition-
ing. In practice, directly modeling GWAS standard errors and regression residual vari-
ances can be crucial when handling meta-analytic GWAS summary statistics [31] and 
when the trait of interest has a sparse genetic architecture. Second, model benchmarking 
is another major challenge in the field which conventionally relies on external valida-
tion data. Comprehensive and unbiased benchmarking allows researchers to compare 
the effectiveness of different PRS methods for particular traits of interest, and impor-
tantly, estimate PRS predictive accuracy without using testing samples. We note that 
although some advanced PRS approaches do not require model fine-tuning anymore, 
no existing methods could benchmark model performance using a single set of GWAS 
summary data, which is crucial for model selection, power calculation, and study design. 
Our approach now provides a solution to this problem. Third, the ensemble learning 
approach which combines multiple predictive models through a second-level regression 
has been viewed as a highly effective but data-demanding approach [28, 29, 33]. A major 
advance in this study is the introduction of PUMAS-ensemble which allows ensem-
ble learning on GWAS summary statistics. We note that this approach not only show-
cased a substantial gain over existing PRS methods, but is generally applicable to future 
PRS developments. If a future PRS approach shows promising improvements com-
pared to older methods, that new approach can also be incorporated into the ensem-
ble PRS. In our view, PUMAS-ensemble is not a competing approach for any existing 
PRS model, but instead is a flexible and general modeling technique that combines the 
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best-performing methods out there and should be applied to all future PRS applications. 
It is important to note that our implemented software allows users to specify how they 
wish to split the GWAS summary statistics into subsets. In practice, we recommend that 
researchers customize data partitioning of summary statistics tailored towards their 
analytical needs.

Our study has several limitations. First, we have constrained most statistical analy-
sis in this study to the European ancestral population. PRS is known to transfer poorly 
in terms of prediction accuracy for non-European populations which could exacerbate 
the disparity in genomic medicine between ancestral groups [55, 56]. While we con-
ducted sensitivity analysis to demonstrate less robust ensemble model training due to 
LD misspecification, it is an important future direction to systematically optimize and 
benchmark PRS for diverse ancestral populations which would require incorporation of 
multiple sets of ancestry-specific GWAS and LD references. Although we did not exten-
sively explore this topic in this paper, our recent work introduced parallel ideas to tackle 
the challenges in multi-ancestry genetic risk prediction [42]. Second, we did not inves-
tigate the effect of assortative mating on PUMAS and PUMAS-ensemble in this study. 
Assortative mating is known to affect LD structure in human genome, bias heritability 
estimation [57], and affect PRS accuracy [58]. The extent to which assortative mating 
influences our results requires further investigation. Third, analyses in this study were 
limited to GWAS summary statistics computed from independent samples. It remains 
to be investigated whether application of these approaches will be affected if the input 
GWAS summary statistics were obtained from linear mixed models with related sam-
ples or family-based designs [59–61]. Future work will focus on developing statistical 
methods to correct for sample relatedness or demonstrate robustness to these issues. 
That said, we expect PRS model-tuning to remain valid even with sample relatedness 
since the inflation in R2 should be uniform across various tuning parameter settings, 
although biases may be introduced to the predictive R2 which could affect benchmarking 
efforts. Fourth, PUMAS/PUMAS-ensemble uses R2 on the observed scale [49] to evalu-
ate PRS accuracy for binary traits but AUC is adopted for classification more frequently. 
Although we have shown in an earlier work [38] that AUC and R2 demonstrated highly 
consistent performance for PRS model fine-tuning, it remains future work to incorpo-
rate summary-statistics-based AUC estimator [62] into the PUMAS framework. Fur-
thermore, our current analyses focused only on PRS derived from lassosum, PRS-CS, 
LDpred2, SDPR, and MegaPRS based on HapMap3 SNPs. While it serves to support the 
superiority of ensemble PRS as a proof of concept, more genetic variants and more PRS 
methods need to be jointly modeled and evaluated in the future, including scores that 
leverage auxiliary information including functional annotation [13, 14] or multiple phe-
notypes [15, 17, 63]. Particularly for multi-trait PRS models, extending PUMAS to con-
duct multi-GWAS subsampling while modeling sample overlap between these GWAS 
summary statistics may be necessary. Finally, collinearity among PRS models could arise 
when using multiple regression to combine a large number of scores since some PRS 
methods tend to yield similar results. Therefore, another future direction is to incor-
porate variable selection strategies into our ensemble learning framework, including 
penalized regression that has been employed in ensemble models based on individual-
level data [35–37]. It also remains an interesting but challenging task to fit non-linear 
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ensemble PRS models using only GWAS summary statistics for incorporating machine 
learning ensemble methods such as XGBoost [64] used in Multi-PGS [63].

Conclusions
We presented a sophisticated statistical framework to fine-tune, combine, and bench-
mark PRS methods using only GWAS summary statistics. This is a statistically novel and 
computationally efficient approach with flexible implementation that can handle a vari-
ety of applications. We have demonstrated its performance through careful and com-
prehensive analyses, and we argue that this framework presents highly innovative and 
generally applicable features that should become the default in many future PRS studies.

Methods
Sampling distribution of summary statistics

We adopt a commonly used linear model framework to quantify the relationship 
between a quantitative trait and SNP genotypes:

Here, Y  denotes the trait, X = (X1, . . . ,Xp) denotes the genotypes of p SNPs, β ∈ R
p 

denotes their true effect sizes, and ǫ denotes the random error that is independent from 
X and follows a normal distribution with mean zero and some variance σ 2

e  . Let y and 
x = (x1, ..., xp) denote the observed values for Y  and X from N  independent individuals. 
For simplicity, we assume both y and xj ( j = 1, . . . , p ) are centered. Then, GWAS sum-
mary statistics can be denoted as:

Where ǫj = y − xjβj are the residuals from the marginal linear regression between the 
trait and the j-th SNP. To train, fine-tune, combine, and benchmark PRS models, inde-
pendent datasets are required to avoid overfitting. We have previously proposed a flexi-
ble statistical framework to generate training and fine-tuning datasets when only GWAS 
summary statistics are available [38]. Here, we generalize this statistical framework in 
two different directions. First, we allow our method to incorporate LD information. We 
note that this extension is similar to some recent work built on our initial PUMAS paper 
[40, 42]. Second, we allow the method to partition full GWAS summary statistics into 
more than two datasets for various analytical purposes. Let y(s) and x(s) denote pheno-
type and genotype data for any arbitrary subset of N  individuals with sample size N (s) . 
When N  is large enough, we have previously shown that by central limit theorem [38]:

Y = Xβ+ ǫ

(1)β̂j =
(
xTj xj

)−1(
xTj y

)

(2)SE
(
β̂j

)
=

√√√√ ǫ̂
T
j ǫ̂j

(N − 1)xTj xj

xTy ∼ N
(
NE

(
XTY

)
,NVar

(
XTY

))
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where XTY = (X1Y , ...,XpY )T . Then, given the observed summary-level data from 
GWAS, the conditional distribution of summary statistics of a subset of GWAS samples 
is

Where �̂ is the observed variance–covariance matrix for XTY  . To subsample sum-
mary statistics x(s)T y(s) , we need to estimate xTy and �̂ first. Recall formula (1) for mar-
ginal regression coefficient estimation, xTj y can be calculated using β̂j and xTj xj which 
is proportional to SNP variance and can be estimated by minor allele frequency (MAF) 
reported from GWAS or imputed from LD reference panel. On the other hand, deriving 
� is more complicated and we discuss how �̂ is estimated using summary statistics and 
an LD reference panel in the following section.

Estimate variance–covariance matrix of summary statistics

Let D denote the SNP correlation matrix and djk denote the correlation between the j-th 
and the k th SNPs. Let � be the true covariance matrix of summary statistics with diago-
nal and off-diagonal elements denoted as �j and �jk , respectively. For convenience, we 
write Y = Xβ+ ǫ = X1β1 + ...+ Xpβp + ǫ = Xjβj + ǫj , where ǫj =

∑
i:i �=jXiβi + ǫ . Then 

the diagonal terms of the � can be written as

We partition all SNPs in the genome into 2 sets. Let S1 be the index set that contains all 
SNPs that are independent from the j-th SNP and S2 be the set with all remaining SNPs 
that are in LD with the j-th SNP. Then we can further expand �j by

We can simplify �j based on two commonly made assumptions. First, any given 
SNP should be in linkage equilibrium with the vast majority of SNPs in the genome. 
Therefore, we can safely assert |S1| ≫ |S2| . Second, each individual SNP’s effect on 
the phenotype is typically very small such that the products of any effect sizes are 

x(s)
T
y(s) ∼ N(N (s)E(XTY ),N (s)Var(XTY ))

(3)x(s)
T
y(s)|xTy ∼ N

(
N (s)

N
xTy,

(
N − N (s)

)
N (s)

N
�̂

)

�j = Var(XjY )

= Var[Xj(Xjβj + ǫj)]

= β2
j Var(X

2
j )+ Var(Xjǫj)+ 2βjCov(X

2
j ,Xjǫj)

= β2
j Var(X

2
j )+ Var[Xj(

∑
i:i �=j

Xiβi + ǫ)] + 2β jCov(X
2
j ,Xjǫj)

�j = β2
j Var(X

2
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negligible in practice. Taken together, we can reduce the expansion of �j by discard-
ing SNPs in S2 which eventually allows us to treat Xj and ǫj as independent in practice:

Note that E(X2
j ) can be easily approximated using an MAF-based estimator, denoted 

as σ̂ 2
j  , that may be obtained either from the full GWAS summary statistics or the LD 

reference data. For E(ǫ2j ) , we can estimate its value by standard error of effect size esti-
mation from GWAS summary data using formula (2). In this way we can obtain an esti-
mator of �j as

To estimate off-diagonal terms �jk , we now write Y = Xβ+ ǫ = X1β1 + ...+ Xpβp + ǫ = Xjβj + Xkβk + ǫjk , 
where ǫjk =

∑
i:i/∈{j,k}Xiβ i + ǫ . Under the same assumption where the magnitude of SNP 

effects is very small, we can simplify �jk by:

In a similar fashion, we further partition all SNPs in the genome other than the j-th 
and the k-th SNP into two sets. Let S3 denote the collection of SNPs that are independ-
ent from both the j-th and the k-th SNPs, and S4 includes the remaining SNPs that are 
in LD with either the j-th or the k-th SNP. Based on a similar rationale, we can safely 
assume that |S3| ≫ |S4| . Then, by ignoring SNPs in S4 and thus treating Xj and Xk as 
being independent from ǫjk , we express �jk as:

where E(XjXk) can be directly estimated by the LD correlation matrix and MAF-based 
SNP variance estimator. For E(ǫ2jk) , it is the residual variance from a two-SNP regression 
model and should be smaller than both E(ǫ2j ) and E(ǫ2k ) . In practice, we can approximate 
it by the smaller value between 

ǫ̂Tj ǫ̂j

N−1 and ǫ̂Tk ǫ̂k
N−1

 . Therefore, the numerical approximation for 
�jk becomes:
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2
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2
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Now we can then generate summary statistic from the multivariate normal distribu-
tion in formula (3). Note that our earlier subsampling framework is a special case where 
SNPs are independent and its only difference with the current method is the estimation 
of �̂jk . In the next session, we will discuss how to subsample summary statistics effi-
ciently from a multivariate normal distribution.

Strategy for subsampling summary statistics

Next, we discuss how to partition full GWAS summary statistics into K  independ-
ent subsets of GWAS samples, denoted as x(1)T y(1), . . . , x(K )T y(K ) for K > 2 . When 
K = 2 , formula (3) can be directly applied to divide GWAS summary statistics into 
two independent sets. Otherwise, let N (1), . . . ,N (K ) denote the corresponding sam-
ple size for each subset of individuals and N =

∑K
s=1N

(s) . By formula (3), we can sub-
sample x(1)T y(1) from xTy observed in the complete GWAS summary data. After that, 
we calculate summary statistics excluding N (1) individuals from the first subset as 
x(−1)T y(−1) = xTy − x(1)

T
y(1) . This technique of combining or subtracting independ-

ent sets of summary statistics has been commonly utilized by methods such as METAL 
and Metasubtract [65, 66]. To generate summary statistics for any following subset num-
bered t + 1 (i.e., x(t+1)T y(t+1) ) for t = 1, . . . ,K − 2 , we update the conditional distribu-
tion in (3) with the new “full” GWAS summary statistics and correspondent total sample 
size:
 
 
 
 

Where x(−t)T y(−t) represents summary statistics excluding first t subsets of individu-
als. This subsampling strategy guarantees that every subset is independent from each 
other and avoids overfitting when K > 2 . Finally, for the last subset K  , we can directly 
calculate its summary statistics by x(K )T y(K ) = xTy −

∑K−1
s=1 x(s)

T
y(s) . Together, this is a 

flexible framework for generating summary statistics and can be used for various types 
of PRS analyses as we discuss in later sections.

It is a difficult task to subsample summary statistics for all SNPs in the genome simul-
taneously given the large dimension of genotype and imputed data. Even if PRS mod-
eling is restricted to HapMap3 SNPs, it remains challenging to subsample x(s)T y(s) for 
more than one million SNPs altogether [26]. To efficiently generate data, we partition 
the whole genome into approximately independent LD blocks and subsample sum-
mary statistics for SNPs in each LD block separately [67, 68]. Then �̂ becomes a sparse 
block-diagonal matrix, i.e., �̂ = diag(�̂Di) . Within each LD block, the empirical SNP 
correlation matrix may not always be positive-definite and thus making it impossible 
to randomly generate data from that LD block. A straightforward remedy is to con-
duct eigen decomposition for any �̂Di that is negative definite, manually change nega-
tive eigenvalues to 0’s, and obtain an approximation of �̂Di that is positive semi-definite. 

(5)�̂jk = Ndjk σ̂jσ̂k min
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Note that this may not be the best approach and other methods for estimating LD blocks 
can also be applied [69, 70].

Evaluate predictive performance of PRS

Here, we generalize the summary-statistics-based PRS evaluation scheme proposed in 
our previous work to incorporate LD. We denote PRS as a weighted sum of allele counts 
across many SNPs:

where ω ∈ R
p is a vector of SNP weights, which can be marginal regression coefficients 

from GWAS or post hoc effect size estimates. If individual-level data is available, then R2 
evaluated on any holdout dataset (y(s), x(s)) can be calculated as:

where ŷi is the PRS for the i-th person, y(s) is the mean phenotypic value, and ŷ(s) is 
the mean PRS value in holdout dataset s . On the other hand, we have shown that when 
only summary statistics of the holdout dataset is available and SNPs are independent, 
R2
individual can be approximated by [38]:

given that x(s) , y(s) , and ŷ(s) are centered. In practice, we use the 90% quantile instead of 
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matrix and MAF calculated from the reference panel. Taken together, we have:

Note that similar versions of this formula have been tested and applied in the literature 
[22, 40, 41]. In practice, we can directly calculate PRS on the LD reference genotype data 
and use the sample variance of PRS to replace 
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The PUMAS framework

Given the flexible framework we introduced for subsampling GWAS summary data and 
evaluating PRS based on summary statistics, PUMAS becomes a special case where the 
entire GWAS summary-level data is partitioned into a training and a tuning dataset, 
denoted as x(tr)T y(tr) and x(tn)T y(tn) . PUMAS first draws x(tn)T y(tn) from (3) and then 
calculates x(tr)T y(tr) by xTy − x(tn)

T
y(tn) . For each SNP, the marginal effect size and its 

standard error from the training set can be calculated as

Then these summary statistics from the training dataset can be used to train any PRS 
methods that use GWAS summary statistics as input. R2 of the PRS model assessed on 
the fine-tuning dataset can be approximated by replacing x(s)

T
y(s) with x(tn)T y(tn) and 

changing the corresponding sample size in formula (7). This procedure can be repeated 

k times to implement a k-fold Monte Carlo cross-validation (MCCV) to select the 
best-performing tuning parameter. When there is a set of tuning parameters � in a PRS 
framework, that is, Ŷ (�) = Xω(�) , PUMAS chooses the optimal tuning parameter �̂ by

where R
2

LD denotes the mean R̂2
LD across k-fold MCCV. This cross-validation technique 

also applies to models that are hyperparameter-free or fine-tuned in advance. When the 
goal is to pick the best PRS model among a total of M PRS methods, the best model m̂ 
can be selected by

where �̂m is the besting tuning parameter for PRS framework m.

Combining multiple PRSs with PUMAS‑ensemble

Next, we introduce PUMAS-ensemble, an extension of PUMAS that applies ensem-
ble learning to combine multiple PRS using GWAS summary statistics. To do this, 
PUMAS-ensemble further partitions the full GWAS association results to 4 inde-
pendent sets of summary statistics corresponding to training ( x(tr)

T
y(tr) ), tun-

ing ( x(tn)T y(tn) ), ensemble training ( x(etr)T y(etr) ), and testing ( x(t)T y(t) ) summary 
statistics. Using formula (6), we subsample summary statistics iteratively and compute 
x(tr)

T
y(tr) = xTy − x(tn)

T
y(tn) − x(etr)

T
y(etr) − x(t)

T
y(t) . Like PUMAS, PUMAS-ensem-

ble first conducts k-fold MCCV using training and tuning summary statistics to pick the 
best tuning parameter for each PRS method. Then, it trains each optimal PRS model’s 
weight on the ensemble training data and evaluates the combined PRS on the testing 
summary statistics. A straightforward and intuitive way of combining PRS is through 
multiple linear regression. However, if individual-level genotype and phenotype data is 
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not available, we cannot fit the regression in the conventional way. Below we illustrate 
how to calculate regression coefficients using summary-level data alone. We define the 
multiple linear regression model on the ensemble training dataset as:

where α = [α1α2 . . . αM]
T are PRS weights for M PRS methods. We also define

as the observed PRS matrix with dimension N (etr) ×M , and W = [w1w2 . . .wM] are a 
p×M SNP weights matrix for p SNPs from M methods. To obtain the least squares 
estimator of α , that is α̂ =

(
zTz

)−1
zTy(etr) , we need to estimate zTz and zTy(etr) sepa-

rately. In fact, under the assumption that genotype and phenotype are both centered, we 
can show that:

Where �̂z is the empirical covariance matrix of the PRS matrix z . In practice, we can 
estimate �̂z by calculating PRSs and their sample covariance matrix on a reference LD 
genotype dataset or approximate it by computing WTDW . Taken (8) and (9) together, 
we can estimate PRS weights using only summary statistics. Then we take the average 
PRS weights across k folds, i.e., α = 1

k

∑k
j=1α̂j , and report it as the PRS weight to com-

bine optimized PRSs. Finally, we modify Eq. (7) to calculate predictive R2 for ensemble 
PRS on the testing summary-level data:

In the end, PUMAS-ensemble reports the average prediction accuracy of ensem-
ble PRS across k folds. Note that PUMAS-ensemble can benchmark all PRS models in 
addition to the ensemble PRS on the testing summary statistics since it is independent 
from training and tuning datasets. Given sufficient data for model training, the ensem-
ble learning model should always outperform fine-tuned PRS identified through grid 
search. This is because grid search result is a special case in the ensemble learning, with 
the weight set to be 1 for a particular PRS and 0 for all other PRS models. Instead, the 
ensemble learning approach fits a regression to identify optimal weight values to maxi-
mize the predictive performance of ensemble score. Taken together, PUMAS-ensemble 
is a highly flexible framework to train, fine-tune, combine, and evaluate PRS models 
based on GWAS summary statistics.
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(etr)
2

+ · · · + αM × Ŷ
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ŷ
(etr)
1

ŷ
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Binary phenotypes

There are two challenges when applying PUMAS and PUMAS-ensemble to binary phe-
notypes. First, summary statistics obtained from logistic regression frameworks violate 
the linear regression model assumption in our derivation. Therefore Eqs. (3) and (6) are 
not directly applicable to subsampling summary statistics for binary traits because XTY  
calculation is non-trivial for log odds ratios. Second, squared Pearson correlation 
between a binary outcome and PRS using logistic regression coefficients as input is less 
interpretable and rarely reported. On the other hand, area under the ROC curve (AUC) 
is often the preferred metric to quantify PRS accuracy for binary outcome. AUC calcula-
tion based on summary statistics has been developed but is not yet generalized to handle 
whole genome data, making it difficult to evaluate more sophisticated PRS methods that 
leverage contributions from millions of SNPs when individual-level data is not accessible 
[71]. Here we propose a simple solution that allows us to apply PUMAS and PUMAS-
ensemble to binary phenotypes and report interpretable R2 . For binary traits, R2 on the 
observed scale (i.e., R

2
obs ) has been defined and discussed in the literature as an alterna-

tive metric for evaluating PRS prediction accuracy [49]. R2
obs is the squared correlation 

between PRS and 0–1 status where PRS uses effect sizes estimated from linear probabil-
ity model (LPM, i.e., linear regression between the binary response and SNP allele 
counts) as inputs [72]. If GWAS summary-level data is acquired from linear probability 
model, then PUMAS and PUMAS-ensemble can be directly applied to calculate R2

obs for 
binary traits [60]. When LPM summary statistics are not available, since a single SNP 
has very weak effect on the phenotypic outcome in practice, we can still safely approxi-
mate LPM coefficient estimations using Z-score from logistic regression [47, 48]. Specif-
ically, we can calculate β̂j,LPM ≈ Zj,logistic ×

√
v(1−v)

XT
j Xj

 where Zj,logistic is Z-score for the j th SNP 
from logistic summary statistics and v is the sample prevalence. Then, we can use β̂j,LPM 
and correspondent standard error SE

(
β̂j,LPM

)
≈

√
v(1−v)

XT
j Xj

 to apply PUMAS and PUMAS-
ensemble to dichotomous phenotypes. Eventually, if it is preferred to transform R

2
obs to 

R2 on the liability scale ( R
2
liability) which can be comparable across different studies and 

phenotypes, such transformation has been developed using sample and population prev-
alence [49].

Sample size imputation

In this section, we discuss how to handle sample size misspecification in GWAS sum-
mary statistics when applying our approach. Sample size misspecification is common in 
published GWAS datasets since many studies often do not report SNP-specific sample 
size and only provide a maximum sample size for the entire study. This is sub-optimal 
for PRS training if variant-level samples sizes differ substantially (e.g., in meta-analysis). 
A recent study has extensively investigated sample size misspecification in marginal 
association statistics and observed consistently decreased PRS prediction accuracy when 
the issue is not properly addressed [31]. For PUMAS and PUMAS-ensemble, incorrect 
sample sizes will both affect the quality of subsampled summary statistics and bias the 
estimation of predictive 

R2 . To address this issue, we employed the approach proposed 
in Privé et al. to impute and conduct quality control on variant-specific sample size [31]. 
Specifically, when the summary-level data does not provide sample size information for 
each SNP, we first impute sample size and remove SNPs with imputed sample size 
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smaller than 70% and larger than 110% of reported maximum sample size. For summary 
statistics that provides per-SNP sample sizes, we simply removed variants with sample 
size smaller than 70% of the largest sample size. On the other hand, to make sure for-
mula (7) and (10) work for summary statistics with varying SNP-specific sample sizes, 
we enforce all summary statistics other than training summary statistics to have the 
same sample size for every SNP. We achieve this by subsampling all other summary sta-
tistics first where we can specify subset size and calculate x(tr)

T
y(tr) at last.

PRS training

We trained lassosum, PRS-CS, and LDpred2 models for all PRS analyses in this study 
[22, 25, 26]. lassosum is a penalized regression framework that trains lasso regression 
coefficients for SNPs in each LD blocks with tuning parameters s and � , where s con-
trols the sparsity of LD matrix and � is the penalty term that regularizes shrinkage of 
effect sizes. PRS-CS and LDpred2 are both Bayesian PRS frameworks with different 
prior assumptions for the SNP effect size distribution. PRS-CS has a global shrinkage 
parameter φ that uniformly shrinks its continuous prior distribution for each SNP and 
includes a fully Bayesian approach that automatically learns φ during model fitting. 
LDpred2 is an extension of LDpred that places a point normal prior on SNP effects 
based on tuning parameter p that represents the proportion of causal variants in the 
genome (LDpred non-inf and LDpred2_grid) or a univariate normal prior on all SNPs 
that does not require model-tuning (LDpred/LDpred2-Inf ) [12]. Like PRS-CS, LDpred2 
can also employ an empirical Bayesian approach to optimize p on the training summary 
statistics. For implementation, we trained PRS-CS (v1.0.0) models using UKB European 
LD reference for simulation study and 1000 Genomes European LD reference for real 
data analysis. We followed PGS server pipeline to implement lassosum (R package ‘las-
sosum’ v0.4.5) and LDpred2 (R package ‘bigsnpr’ v1.9.11) [22, 28, 73]. Due to larger com-
putational burden, we implemented LDpred2 on each chromosome separately and only 
used the estimated heritability from LD-score regression as the tuning parameter h2 in 
LDpred2 [50]. For real data analysis in UKB, we constructed both non-sparse and sparse 
versions of LDpred2 models. We employed more shrinkage on LDpred2-auto model 
(shrink_corr = 0.5) and LDpred2_grid models (low_h2 = 0.1*h2) when analyzing pub-
licly available GWAS summary statistics to ensure model convergence. The best tuning 
parameter for lassosum was obtained through grid search. For LDpred2 and PRS-CS, we 
compared grid search with empirical Bayesian models to find the best parameter.

In addition, we trained SDPR [43] and MegaPRS [40] models for all ensemble PRS 
analyses and PUMAS-ensemble simulation, respectively. SDPR is a recently developed 
Bayesian nonparametric PRS model that is computationally efficient and tuning-free. 
We fitted SDPR models using its latest v0.9.1 release on github with provided 1000 
Genomes Project EUR LD reference. MegaPRS is a flexible Bayesian PRS framework that 
can employ multiple different prior specifications. The MegaPRS model with BayesR 
prior includes 84 sets of tuning parameters that determine the relative weights of various 
Gaussian components. We fitted MegaPRS models using the LDAK software (v5.2) with 
LDAK-thin heritability estimation [74]. We only trained PRS models on HapMap3 SNPs 
in all analyses throughout this study.
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Simulation settings

We conducted simulations using UKB genotype data [44] imputed to the Haplotype Ref-
erence Consortium reference. We removed samples who are not of European ancestry 
and genetic variants with MAF below 0.01, imputation R2 below 0.9, Hardy–Weinberg 
equilibrium test p-value below 1e − 6, or missing genotype call rate greater than 2%. We 
further extracted variants in the HapMap3 SNP list and 1000 Genomes Project Phase III 
LD reference data for European ancestry from PRS-CS. 377,509 samples and 944,547 
variants remained after quality control. Then, we randomly selected 100,000 samples to 
be the training dataset and 1000 samples as the LD genotype reference for our summary-
statistics-based approach. To generate trait values, we simulated true effect sizes from a 
point normal distribution, i.e., βj ∼ (1− p)δ0 + pN(0, h2

Mp ) where p is the proportion of 
causal variants, δ0 is point mass at 0, h2 is the total heritability of the phenotype, and M is 
the total number of SNPs [7, 12]. We did not simulate associations between SNP true 
effects on the allelic scale and MAF since previous analysis has shown minimal differ-
ence in performance between PUMAS and PRS validation using individual-level data 
[38, 74]. We chose p to be 0.1% and 20% corresponding to sparse and polygenic genetic 
models, and h2 = 0.2, 0.5, 0.8 to create a total of 6 simulation settings with various types 
of genetic architecture. Within each setting, we randomly selected causal variants across 
the whole genome. Then we simulated quantitative traits by adding up the SNP allele 
counts weighted by their true effect sizes and randomly generated Gaussian noises 
scaled based on trait heritability. We fitted marginal linear regression in PLINK to obtain 
GWAS summary statistics in each setting [75].

We compared PUMAS-ensemble with 4-fold MCCV. To implement 4-fold MCCV, 
in each fold we randomly selected 60% of all samples to form the training dataset 
(N = 60,000), 20% as the tuning dataset (N = 20,000), 10% as the ensemble training data-
set (N = 10,000), and the remaining 10% as the testing dataset (N = 10,000). We con-
ducted GWAS on the training data and used summary statistics to train PRS models, 
fine-tuned PRS methods on the tuning data, obtained optimized PRSs’ weights in the 
ensemble score by fitting multiple linear regression on the ensemble training data, and 
finally evaluated each PRS model’s predictive R2 on the testing data. For PUMAS-ensem-
ble, we first used all samples (N = 100,000) to fit marginal linear regression and obtained 
the full summary statistics. In a similar fashion, we partitioned the full summary sta-
tistics to training summary data (N = 60,000), tuning summary data (N = 20,000), 
ensemble learning summary data (N = 10,000), and testing summary data (N = 10,000) 
for corresponding PRS analysis. Similarly, we compared PUMAS with 4-fold MCCV 
by using only the training and tuning summary-level and individual-level data for two 
approaches, respectively. We included lassosum, LDpred2, and PRS-CS in all simula-
tion analysis, and added SDPR and MegaPRS in PUMAS-ensemble simulations. In all 
simulations, we used 1000 Genomes Project European LD dataset provided by the PRS-
CS software to subsample summary statistics. lassosum, LDpred2, and MegaPRS model 
training used the holdout UKB LD genotype data (N = 1000) as the LD reference. We 
implemented SDPR, lassosum with s = 0.2, 0.5, 0.9 and � = 0.005, 0.01 , PRS-CS with 
φ = 0.0001, 0.01, auto , and LDpred2 with p = 0.001, 0.01, 0.1, auto , and the infinites-
imal model. For MegaPRS, to ensure robust model convergence in all simulation set-
tings, we included 9 models with distinct tuning parameters {p1,p2,p3,p4} = {0.99,0.01
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,0,0}, {0.95,0.05,0,0}, {0.9,0.1,0,0}, {0.8,0.1,0.05,0.05}, {0.7,0.1,0.1,0.1}, {0.6,0.2,0.1,0.1}, 
{0.5,0.2,0.2,0.1}, {0.4,0.2,0.2,0.2}, {0,0,0,1}. We repeated this procedure four times and 
calculated average R2 to pick the best set of tuning parameters for both approaches.

We conducted additional simulations to demonstrate that PUMAS and PUMAS-
ensemble can be applied to binary traits. For each setting in the quantitative simulation 
study, we dichotomized the continuous phenotype (i.e., true liability value under a liabil-
ity threshold model) using either the median or 90% quantile to acquire balanced (5-to-
5) and unbalanced (1-to-9) case–control ratios. Therefore, we have a total of 12 binary 
simulation settings. We fitted logistic regressions in PLINK to obtain GWAS summary 
statistics in each setting and transformed logistic regression summary statistics to the 
linear scale [47, 48, 75]. We then compared PUMAS/PUMAS-ensemble with MCCV 
using R2 computed on the observed scale (i.e.,R2 between PRS and 0-1 status). 

We conducted two additional simulation analyses for PUMAS’s subsampling scheme. 
First, we investigated the similarity between PUMAS and MegaPRS under two simu-
lation settings with heritability of 0.5 from six quantitative trait simulation scenarios 
described above. Since MegaPRS only uses z-scores as its input and output, we focused 
on z-scores in this simulation. As a benchmark, we compared both approaches with 
MCCV where we randomly selected a subset of individuals and obtained SNP associa-
tion statistics from regression analysis. For each approach, we subsampled SNP z-scores 
based on 75% of samples (total N = 100,000) and repeated this procedure 100 times. 
We summarized the results for randomly selected 5 causal variants and 5 non-causal 
variants in each simulation. Second, we investigated the robustness of PUMAS under 
an extremely sparse simulation setting. We followed the same simulation strategy and 
set number of causal variants to be 10 on chromosome 1 and heritability to be 0.1. For 
both approaches, we subsampled summary statistics based on 75% of individuals and 
repeated this procedure 100 times. We compared the distribution of summary statistics 
generated from PUMAS and MCCV for each causal SNP.

UKB data analysis

We applied our approach to 16 quantitative traits, 4 diseases, and 1 ordinal trait in UKB. 
The list of UKB phenotypes is presented in Additional file  11 and 12: Table. S10-S11. 
The imputed UKB genotype data consists of 375,064 independent individuals of Euro-
pean ancestry and 1,030,187 variants after quality control. We used Hail (v0.2.57) to 
perform linear regression for quantitative and ordinal traits while adjusting for sex, 
age polynomials to the power of two, interactions between sex and age polynomials, 
and top 20 principal components. For 4 disease outcomes, we obtained GWAS sum-
mary statistics via regenie (v3.0.3) accounting for sex, age polynomials to the power of 
3, interactions between sex and age polynomials, and top 10 principal components as 
recommended[76].

We compared PUMAS with external validation using a holdout subset of UKB sam-
ples. For external validation of quantitative traits, we randomly selected 38,521 samples 
with non-missing phenotypic measurements for all traits to form the holdout dataset. 
The remaining samples for each phenotype were used as training data. In this way, we 
implemented an approximately 9-to-1 training–testing split. Similarly for each binary 
and ordinal outcome, we continued to employ a 9-to-1 sample partition while matching 
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the case–control ratio between the training and holdout datasets. Detailed sample size 
information for all traits is included in Additional file 11 and 12: Table. S10-S11. Then, 
we conducted GWAS on the training data and obtained summary statistics. For quanti-
tative and ordinal traits, we computed and evaluated PRS models on the entire holdout 
set and reported predictive R2 between PRS and phenotypes with covariates regressed 
out. For disease traits, we constructed PRS models and calculated R2 on the observed 
scale using both linear probability model summary statistics and logistic model sum-
mary statistics. For all phenotypes, the holdout set of quantitative traits (N = 38,521) 
was also used as LD reference data for PRS model training. For comparison, we applied 
PUMAS to partition the same GWAS summary-level data used in MCCV to 75% train-
ing summary statistics and 25% tuning summary statistics. We used the holdout dataset 
(N = 38,521) for summary statistics subsampling [67] and as the LD reference for las-
sosum and LDpred2 model training. We estimated variance of PRS models based on a 
smaller subset (N = 1000) of the holdout data when evaluating PRS performance. This 
procedure was repeated 4 times and we reported the average R2 for each PRS model. In 
all analyses, we implemented lassosum with s = 0.2, 0.5, 0.9 and � = 0.005, 0.01 , PRS-CS 
with φ = 0.0001, 0.01, auto , LDpred2 with p = 0.001, 0.01, 0.1, auto and the infinitesimal 
model.

Next, we compared PUMAS-ensemble with the training–testing split approach for 
ensemble learning on the holdout dataset. For PUMAS-ensemble, we partitioned full 
GWAS summary statistics into training (60%), tuning (20%), and ensemble training 
(10%) summary statistics to train PRS models based on a grid of tuning parameters, 
select the best tuning parameter setting for each PRS method, and fit a second level 
regression to obtain regression weights for fine-tuned PRS models. We then randomly 
partitioned the holdout dataset into two equally sized subsets. We used PUMAS-ensem-
ble to obtain PRS models’ regression weights and then constructed and evaluated the 
ensemble PRS on the second half of the holdout set. PRS models with negative weights 
were removed from linear combination. In comparison, for the training–testing split 
approach based on individual-level data, we used the first half of the holdout set to fit 
multiple linear regression to obtain regression coefficients for SDPR and fine-tuned las-
sosum, LDpred2, and PRS-CS scores. Then we computed and evaluated the ensemble 
PRS models on the second half of the holdout data. In all analyses, we trained SDPR, 
lassosum with s = 0.2, 0.9 and � = 0.001, 0.01, 0.1 , PRS-CS with φ = 0.0001, 0.01, auto , 
LDpred2 with p = 0.001, 0.01, 0.1, auto and the infinitesimal model. As a secondary 
analysis, we compared performance of PUMAS (70% training, 20% tuning, 10% test-
ing) and PUMAS-ensemble (50% training, 20% tuning, 20% ensemble learning, 10% 
testing) on 16 quantitative traits in UKB. We benchmarked the best PRS model chosen 
by PUMAS and the ensemble score trained by PUMAS-ensemble on the second half of 
UKB holdout dataset.

To investigate how sensitive PUMAS-ensemble is to LD misspecification, we repeated 
PUMAS-ensemble analysis on 16 complex traits in UKB with different LD references. 
Previously, we used UKB LD panel; in this sensitivity analysis, we explored the impact 
of using 1000 Genomes Project Phase III European samples (1KG EUR) and East Asian 
samples (1KG EAS) as the LD reference panel, while keeping everything else unchanged. 
The 1KG LD reference data were prepared from our earlier work [42]. We trained 
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ensemble scores by PUMAS-ensemble using different LD reference panels and evalu-
ated these scores on UKB holdout dataset. Results based on individual-level data were 
used as a benchmark of performance. In addition, we meta-analyzed UKB and Biobank 
Japan [77–79] (BBJ) GWAS summary statistics for 16 complex traits using METAL 
[65] and applied PUMAS-ensemble using either 1KG EUR or 1KG EAS data as the LD 
reference. Sample size information for BBJ GWAS summary statistics is included in 
Additional file 17: Table. S16. Similarly, we compared ensemble scores from PUMAS-
ensemble and individual-level ensemble learning on the UKB holdout dataset. lasso-
sum with s = 0.2, 0.9 and � = 0.001, 0.01, 0.1 , PRS-CS with φ = 0.0001, 0.01, auto , and 
LDpred2 with p = 0.001, 0.01, 0.1, auto and the infinitesimal model were considered for 
ensemble PRS training in this analysis.

Building a catalog of PUMAS‑ensemble ensemble scores

We applied PUMAS-ensemble to a collection of publicly available GWAS summary 
statistics. We selected complex diseases and traits with a minimal case sample size 
of 5000 and a total sample size of 50,000, respectively. We excluded studies that per-
formed GWAS on related samples and retained traits with significant heritability esti-
mation (p-value below 0.05) from LD score regression [50]. In the end, we obtained a 
list of 31 GWAS summary statistics including 23 binary outcomes and 8 complex traits 
as summarized in Additional file 18: Table. S17. For each summary statistics, we kept 
HapMap3 SNPs that passed a series of quality control criteria listed in Additional 
file 19: Table. S18, including transformation of logistic summary statistics and imputa-
tion of per-SNP sample size. Then we applied PUMAS-ensemble to each phenotype to 
implement 4-fold MCCV by partitioning the summary statistics to training (60%), tun-
ing (20%), ensemble training (10%), and testing (10%) datasets. We used 1000 Genomes 
Project Phase III European samples as the LD panel for summary statistics subsam-
pling, PRS model fitting, and benchmarking. We implemented SDPR, lassosum with 
s = 0.2, 0.5, 0.9 and � = 0.005, 0.01 , PRS-CS with φ = 0.0001, 0.01, auto , LDpred2 with 
p = 0.001, 0.01, 0.1, auto and the infinitesimal model. We reported average predictive R2 
of ensemble PRS, the best single PRS model, PRS-CS-auto, and LDpred2-auto on the 
testing summary statistics.

We conducted additional analysis to investigate the validity of predictive R2 of ensem-
ble PRS for Alzheimer’s disease. We used IGAP 2019 Alzheimer’s GWAS summary sta-
tistics to train PRS models and included 2600 Alzheimer’s disease cases of European 
ancestry from the UKB cohort in the external validation dataset [51]. The data fields 
used for Alzheimer’s cases extraction are presented in Additional file 21: Table. S20. We 
randomly selected 5200 independent UKB samples not diagnosed with Alzheimer’s dis-
ease to use as healthy controls to match the case–control ratio in the IGAP 2019 study. 
Together, we obtained a UKB external validation dataset with 7800 samples in total. 
We applied PUMAS to IGAP 2019 GWAS summary-level data and compared its per-
formance with external validation. We compared R2 from both approaches with and 
without removing the APOE region from GWAS summary statistics. We excluded the 
APOE region from PRS analysis by removing variants between base pairs 45,116,911 and 
46,318,605 (hg19) on chromosome 19.
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