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Abstract 

In this work, we extend vcfdist to be the first variant call benchmarking tool to jointly 
evaluate phased single-nucleotide polymorphisms (SNPs), small insertions/deletions 
(INDELs), and structural variants (SVs) for the whole genome. First, we find that a joint 
evaluation of small and structural variants uniformly reduces measured errors 
for SNPs (− 28.9%), INDELs (− 19.3%), and SVs (− 52.4%) across three datasets. vcfdist 
also corrects a common flaw in phasing evaluations, reducing measured flip errors 
by over 50%. Lastly, we show that vcfdist is more accurate than previously published 
works and on par with the newest approaches while providing improved result 
interpretability.
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Background
Prior to the invention of DNA sequencing, structural variants (SVs) larger than 3 Mb 
were observed using a microscope as early as 1959 [1, 2]. Following the initial sequenc-
ing of the human genome in 2001 using short read technologies [3], however, the focus 
of most research investigations shifted to single-nucleotide polymorphisms (SNPs) and 
small insertions and deletions (INDELs). It quickly became apparent that SNPs are the 
most common form of genetic variation, accounting for the approximately 0.1% differ-
ence in genomic sequence between two individuals [4], or about 3.1 million SNPs. Short-
read technologies were well-poised to investigate these differences, due to their short 
read lengths but high per-base accuracy. It has since been determined that though SVs 
and INDELs are less common than SNPs, due to their larger size they account for a fur-
ther 1.4% difference in genome composition between individuals [5], or about 43.2 mil-
lion bases.

A few years later, in 2009, the first tools to identify structural variants from short-
read alignments were developed  [6–8]. Although short-read based structural vari-
ant callers remain widely used, they have relatively low recall (10–70%) due to the 
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inherent difficulties of identifying large insertions and deletions from mapped short 
reads  [9]. The accurate detection of structural variants was greatly assisted by the 
development of new long-read sequencing technologies around 2014, most notably 
from Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)  [10, 
11]. Although early iterations of each technology had much lower per-base accuracy 
rates of around 85% [10, 11], longer read lengths led to unambiguous read mappings 
and more accurate structural variant calls  [12]. Since then, accuracy has improved 
and both PacBio and ONT can sequence reads above 15 Kb with 99 to 99.9% accu-
racy, rivaling the accuracy of short reads [13, 14]. As shown in Fig. 1, this has led to 
the recent development of variant calling pipelines built from long-read sequencing 
data [13].

Once small and structural variants have been called, accurate comparison of variant 
call files (VCFs) is important for (1) genome-wide association studies (GWAS)  [18, 
19], (2) precision medicine [20], (3) variant annotation and effect prediction [21, 22], 
(4) sequencing and variant calling pipeline benchmarking  [15, 16], and (5) variant 
database curation [23, 24]. In short, accurate VCF comparison is necessary for study-
ing the impacts of genetic variants, for understanding the performance of variant call-
ing methods, and for making decisions based on an individual’s genetic composition. 
This information can then be used to identify mutations that cause genetic diseases, 
to select the best variant calling pipeline for clinical usage, to develop targeted drugs, 
and to direct future research and funding.

Although small and structural variant calls can now be made from the same analy-
sis pipeline, the current standard practice for VCF benchmarking involves separat-
ing small variants (smaller than 50 bp) from structural variants (larger than 50 bp) 
prior to benchmarking (see Fig.  1). This 50-bp threshold was selected for historical 
and technical reasons related to the limitations of short-read sequencing, not because 
a 50-bp threshold is biologically significant in any way  [8, 9]. Short-read sequenc-
ing’s variant calling performance is lower for INDELs larger than 50-bp because the 
mappability of a 150-bp read containing such a large variant is significantly reduced. 
For this reason, variants below and above this size threshold have been historically 
evaluated separately. Prematurely categorizing variant calls into small and structural 

Fig. 1  a Until recently, small and structural variants were called separately using different pipelines because 
they required different DNA sequencing technologies: short reads cannot be unambiguously mapped to 
call many structural variants accurately, and long reads were not accurate enough for precise small variant 
calling. b Due to recent improvements in long-read sequencing accuracy, whole genome sequencing 
(WGS) pipelines can now identify both small and structural variants (SVs) from the same sequencing data. 
It is still standard practice to evaluate these variant call categories separately, however, using vcfeval [15] for 
small variants and Truvari bench [16] for large INDELs and SVs. c We propose joint benchmarking of small 
and structural variant calls in this work, by extending vcfdist [17] to evaluate SVs. By comparing query and 
truth variants across size categories, vcfdist is able to detect a greater number of equivalent truth and query 
variants. This improves benchmarking accuracy, as shown in Fig. 2
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variants prior to benchmarking has a significant impact on measured variant calling 
performance (see Fig.  2), since several smaller variants are frequently equivalent to 
one or several larger variants.

The variant call file (VCF) format was first defined in 2011, and a simple exact variant 
comparison engine was released at the same time as part of vcftools  [25]. vcfeval was 
introduced by Real Time Genomics (RTG) in 2015 and is capable of handling equivalent 
variant representations  [15]. It was designed to evaluate unphased small variant calls, 
requires exact matches, and evaluates variants up to 1000 bp in size. vcfeval has stood 
the test of time, being the recommended small variant calling evaluator by the Global 
Alliance for Genomics and Global Health (GA4GH) in 2019 [26, 27]. In 2023, vcfdist was 
released to evaluate locally phased small variant calls from long-read sequencing pipe-
lines, relaxing vcfeval’s requirement that variants match exactly [17].

Most structural variant calling evaluators similarly allow inexact variant matches. Tru-
vari bench, for example, considers two structural variants equivalent if they are located 
nearby on the reference, are of similar total size, overlap one another, and have a 70% 
similar sequence  [16]. Although Truvari bench is able to perform whole genome SV 
comparison, it ignores small INDELs under 50 bp by default and is not currently recom-
mended for evaluating SNPs [16]. Truvari’s refine module extends Truvari bench using 
an alignment algorithm (WFA  [28], MAFFT  [29], or POA  [30]) to harmonize phased 

Fig. 2  We evaluated three phased HG002 whole genome sequencing (WGS) variant callsets (described 
in Additional File 1: Table S1) on the whole-genome GIAB-Q100 benchmarking BED regions for small and 
structural variants using vcfdist. We show that compared to existing methodologies, which evaluate small 
variants (in purple) and structural variants (in red) separately, evaluating all variants at once (in green) leads 
to higher measured performance for each variant category. a False negative rate (FNR) and b false discovery 
rate (FDR) decrease when all variants are evaluated together, across all datasets. This occurs because correctly 
determining variant equivalence sometimes requires considering variants from multiple categories. Please 
note that results are plotted on a logarithmic scale
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query and truth VCF variant representations for benchmarking INDELs and SVs at least 
5 bp in size [31].

In this work, we extend vcfdist to be the first tool to jointly evaluate phased SNP, 
INDEL, and SV calls for whole-genome datasets. Doing so required major internal 
restructuring and improvements to vcfdist to overcome scalability issues relating to 
memory and compute requirements. We show that performing a joint analysis of all 
variant sizes leads to better measured overall accuracy than when evaluating small and 
structural variants separately, reducing measured false negative and false positive vari-
ant calls by 28.9% for SNPs, by 19.3% for INDELs, and by 52.4% for SVs of over 50 bases. 
We find that vcfdist’s alignment-based analysis obtains more accurate results than vcfe-
val or Truvari bench and similar accuracy results to Truvari refine, but provides more 
interpretable results because the representation of evaluated truth and query variants 
is unchanged. Finally, we jointly evaluate SNP, INDEL, and SV phasing and show that 
between 42.6% and 92.2% of all phasing flip “errors” that popular phasing analysis tool 
WhatsHap reports are false positives. Differing variant representations cause variants to 
appear incorrectly phased, though they are not. These false positive flip errors then lead 
to false positive switch errors, which will significantly affect downstream tertiary analy-
ses. We demonstrate that vcfdist is able to avoid these errors in phasing analysis by using 
alignment-based variant comparison.

Results
Joint evaluations allow variant matches across size categories and increase measured 

performance

In order to understand the impact of jointly benchmarking small and structural vari-
ants on measured accuracy, we evaluated three whole genome sequencing (WGS) data-
sets with vcfdist using several different variant subsets from the truth and query VCFs. 
More information on these WGS datasets can be found in the “Methods” section and 
Additional File 1: Table S1. Figure 2 shows that compared to existing methodologies, 
which evaluate small variants (in purple) and structural variants (in red) separately, 
jointly evaluating all variants (in green) leads to lower measured error rates for each 
variant category.

In Fig. 2, the hifiasm-dipcall dataset uses alignment parameters which are identical to 
the draft benchmark Q100-dipcall VCF. As a result, it sees the lowest rates of improve-
ment from a joint evaluation of small and structural variants: a 4.6% reduction in SNP 
errors, a 1.2% reduction in INDEL errors, and a 24.9% reduction in SV errors. The 
hifiasm-GIAB-TR VCF uses the same assembly as hifiasm-dipcall with very different 
alignment parameters and therefore sees great benefits from a joint evaluation: a 62.5% 
reduction in SNP errors, a 34.8% reduction in INDEL errors, and a 75.3% reduction 
in SV errors. The Q100-PAV VCF lies somewhere between these two extremes, with a 
19.5% reduction in SNP errors, a 21.7% reduction in INDEL errors, and a 57.0% reduc-
tion in SV errors. A visualization of the alignment parameters used for each dataset is 
included in Additional File 1: Fig. S1.

These performance improvements originate from cases where multiple smaller vari-
ants are found to be nearly or exactly equivalent to one or several larger variants. Fig-
ure 3 shows an example where this occurs and a joint evaluation of small and structural 
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variants improves measured performance. A similar example containing sequence 
information in VCF format is provided in Additional File 1: Fig. S2.

Sophisticated variant comparison techniques result in better phasing evaluations

To understand joint phasing evaluation accuracy, we compare vcfdist to WhatsHap, a 
current standard for phasing evaluation [32, 33]. WhatsHap’s compare module performs 
one-to-one variant comparisons between truth and query VCFs to evaluate phasing cor-
rectness. For each heterozygous query variant, WhatsHap searches for an identical truth 
variant and notes whether that truth variant has the same or opposite phasing of the 
corresponding query variant. Within each phase block, WhatsHap then uses a simple 
dynamic programming algorithm to minimize the total number of flip errors (in which 
the phase of a single variant is mismatched) and switch errors (in which the phases of all 
following variants are mismatched)  [32]. Although WhatsHap’s approach seems intui-
tively correct, it breaks down in repetitive regions of the genome where differing variant 
representations can result in false positive reported flip errors. Table 1 clearly shows that 
WhatsHap reports far more switch and flip errors than vcfdist on the exact same variant 
calls, particularly for the Q100-PAV and hifiasm-GIAB-TR datasets.

In contrast to WhatsHap, vcfdist performs full alignment of all nearby truth and 
query variants (a “supercluster”) and is able to discover equivalencies in variant 

Fig. 3  An example from the Q100-PAV HG002 variant callset (chr1:3,287,250-3,287,700 
on GRCh38) where using vcfdist to jointly evaluate small and structural variants improves measured 
performance. Single-nucleotide polymorphisms (SNPs) are marked with black crosses, and deletions are 
represented as red rectangles. A joint evaluation of all variants discovers that truth and query haplotypes are 
identical, despite variant representation differences. The truth VCF contains a 145 base deletion, whereas the 
query VCF contains a 47 base deletion, a 1 base deletion, and a 97 base deletion. By prematurely categorizing 
variants prior to evaluation into small and structural variants, this equivalence cannot be determined and 
variants would be classified as false positive (FP) and false negative (FN) variant calls instead of true positives 
(TP). Only by jointly evaluating the small and large deletions can vcfdist detect that such complex variants are 
in fact equivalent

Table 1  Comparison of WhatsHap compare and vcfdist phasing evaluations relative to the Q100-
dipcall truth VCF on the whole-genome GIAB-Q100 BED

WhatsHap consistently reports more switch and flip errors than vcfdist. We demonstrate in Additional File 1: Fig. S3 that 
most of these supposed phasing errors are actually correctly phased and provide an example in Fig. 4

Dataset Tool Measured switch errors Measured 
flip errors

hifiasm-dipcall WhatsHap 610 396

vcfdist 494 390

Q100-PAV WhatsHap 324 433

vcfdist 6 52

hifiasm-GIAB-TR WhatsHap 1074 1004

vcfdist 494 396
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representations. As a result, vcfdist reports far fewer phasing errors. The Q100-PAV 
VCF contains the fewest switch and flip errors, likely because it was produced using 
the same verkko assembly as the draft benchmark Q100-dipcall VCF. For the hifiasm-
dipcall and hifiasm-GIAB-TR VCFs, vcfdist reports nearly identical switch and flip 
error rates. We believe this is because they were both produced using the same hifi-
asm scaffold [34]. In comparison, WhatsHap reports a much higher combined switch 
and flip error rate for the hifiasm-GIAB-TR VCF than for the hifiasm-dipcall VCF. 
We expect this is because the variant representation used by the hifiasm-GIAB-TR 
callset differs significantly from that used by the draft benchmark Q100-dipcall VCF, 
whereas the parameters used by the hifiasm-dipcall VCF are identical (Additional File 
1: Fig. S1).

In Additional File 1: Fig.  S3, we present an extensive comparison of the switch and 
flip errors reported by WhatsHap and vcfdist. We find that 42.6% of flip errors reported 
by WhatsHap proved to be false positives, since the truth and query sequences match 
exactly when all neighboring variants are considered. An example is shown in Fig.  4, 
where WhatsHap reports a flip error within a complex variant even though both truth 
and query haplotypes match exactly. A further 49.6% of the flip errors reported by What-
sHap were not classified as flip errors by vcfdist due to insufficient evidence. Since there 
was no ground truth for these instances, we manually examined 16 random cases from 
each dataset (48 in total) where the ground truth was unknown. We found that classify-
ing flip errors with WhatsHap resulted in 43 false positives, 4 true negatives, and 1 true 
positive. In comparison, classifying flip errors with vcfdist resulted in 40 true negatives, 7 
false positives, and 1 false negative when compared to a manual examination. As can be 
seen in Table 1, these excess false positive flip error calls by WhatsHap artificially inflate 
the reported switch error rate as well, which will significantly impact tertiary analyses.

Fig. 4  a The variant call file (VCF) for an example WhatsHap false positive flip error call. Each VCF record 
shows the variant chromosome (CONTIG) and positions (POS) in addition to the reference (REF) and 
alternate (ALT) alleles and their genotypes (GT), the benchmarking decision (BD), and benchmarking credit 
(BC). In isolation, the two-base deletions at position 32,653,659 (the red and blue variants) appear to be the 
same variant (because POS, REF, and ALT match) phased differently between the truth and query VCFs (i.e., 
a flip error). b The resulting haplotype sequences. When this supposed flip error is considered in the context 
of the surrounding variants, vcfdist is able to determine that the two sets of truth and query variant calls are 
equivalent because both truth and query haplotype sequences are exactly the same. Both truth haplotypes 
contain an extra T at position 32,653,666 and one fewer T at positions 32,653,658-9. As a result, it is clear that 
no such flip error has occurred and differences between the truth and query VCF are due solely to differing 
variant representations
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vcfdist enables highly accurate comparisons with reasonable runtime

Next, we compare vcfdist to previously published works vcfeval  [15] and Truvari 
bench [16], designed for evaluating small and structural variants, respectively. We also 
benchmark the performance of Truvari’s refine module, a recently developed exten-
sion which realigns truth and query variants to one another using MAFFT [29], wave-
front alignment (WFA) [28], or partial-order alignment (POA) [30] for more accurate 
benchmarking. Truvari refine achieves similar accuracy to vcfdist but changes the 
total counts of truth and query variants, making comparisons across different evalu-
ation tools and pipelines difficult (see Table 3 for an example). All current versions of 
Truvari do not evaluate SNP accuracy, since Truvari was designed for SV evaluation.

At the other end of the spectrum, vcfeval only evaluates variants smaller than 1000 
bases. For this reason, we restrict the maximum variant size to 1Kb in Fig. 5. As vari-
ant length increases in Fig. 5, vcfeval reports an increasingly high error rate compared 
to vcfdist (90.6% higher for SNPs, 128% higher for INDELs, and 321% higher for SVs). 
This is because vcfeval requires truth and query variants to match exactly (which 
is less likely for larger variants), whereas vcfdist and Truvari do not. A more leni-
ent matching heuristic will lead to strictly fewer false positives and false negatives in 
Fig. 5. To avoid falsely inflating vcfdist’s performance, we set vcfdist’s credit threshold 
to 70% in order to match Truvari’s sequence similarity threshold of 70% as closely as 
possible. We additionally standardize the method of variant counting across all tools 
in Fig. 5 to be consistent with vcfdist because otherwise differences in counting credit 
for partial allele matches would dominate the results (see Table 4).

Fig. 5  Comparison of vcfdist with prior works vcfeval and Truvari bench (and its unpublished refine 
variants) in terms of measured a false negative rate (FNR) and b false discovery rate (FDR) on the GIAB-Q100 
BED, which contains benchmarking regions covering 90.3% of the human genome. Note that Truvari does 
not evaluate SNP accuracy, and that all results are plotted on a logarithmic scale
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Figure 5 shows that vcfdist measures lower false negative and discovery rates for all 
variant sizes across all three datasets when compared to previously published works Tru-
vari bench and vcfeval. It is able to accomplish this by allowing inexact matches, evalu-
ating groups of variants simultaneously, and allowing variant matches to occur across 
size categories. In comparison to Truvari refine, vcfdist achieves a similar improvement 
in benchmarking accuracy but without modifying the variant representations during 
benchmarking, and evaluating SNPs in addition to INDELs and SVs. Despite vcfdist’s 
advantages, we find that Truvari refine currently scales better with variant size, since 
it uses more memory-efficient alignment algorithms. We plan to incorporate wavefront 
alignment into the next release of vcfdist, but for now the maximum recommended vari-
ant length is 10 Kb. For more details on the advantages of WFA, see [28, 35]. Table 2 
shows the runtimes of vcfdist, vcfeval, Truvari bench, and Truvari refine on our server; 
configuration details are provided in the “Methods” section.

Both Truvari and vcfdist perform alignment-based evaluation, which allows detection 
of variant calls that are mostly but not exactly correct. By default, Truvari considers a 
variant to be a true positive when the sequence similarity (percent of matching bases 
divided by total sequence length) exceeds 70%. We set vcfdist’s default credit threshold 
(minimum percent reduction in edit distance when the reported variant is present) to 
70% to match this. In practice, this is only slightly more stringent than Truvari’s crite-
rion (see “Different thresholds” in Table 4). This is crucial for identifying large structural 
variants that are less likely to be called perfectly. In contrast, vcfeval finds matching sub-
sets of truth and query variants that result in the exact same haplotype sequence. This 
computation would be less expensive if not for the fact that vcfeval does not assume 
the input VCFs are phased. Because there are 2n possible phasings for n heterozygous 
variants, vcfeval’s runtime depends more closely on the number and representation of 
variants than either Truvari or vcfdist. As a result, vcfeval has a wide range of runtimes. 
It is also important to note that when the number of nearby heterozygous variants is too 
large, vcfeval fails to compare these variants. This happened for 9712 variants (0.20%) 
on the hifiasm-dipcall VCF, for 21,886 variants (0.45%) on the Q100-PAV VCF, and for 
136,073 variants (2.50%) on the hifiasm-GIAB-TR VCF.

The runtimes of vcfdist and Truvari, on the other hand, depend closely on the size 
of the sequences to be aligned. Truvari reduces total runtime by evaluating variants 
in two stages; only complex regions are passed on to Truvari’s refine module for more 
sophisticated evaluation. vcfdist segments contigs into independent superclusters using 

Table 2  Runtime results for vcfdist, vcfeval, Truvari bench, and Truvari refine in (h:)mm:ss format

GIAB-Q100 BED Runtime

hifiasm-dipcall Q100-PAV hifiasm-GIAB-TR

vcfdist 52:19 1:04:56 59:22

vcfeval 14:40 50:39 46:18

Truvari bench 10:03 10:59 10:46

Truvari refine (MAFFT) 14:10 23:08 22:36

Truvari refine (WFA) 12:26 1:13:53 1:24:03

Truvari refine (POA) 11:57 21:47 24:39
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Table 3  Comparison of tools evaluating the chr6:32,664,600-32,664,899 region of the 
HLA-DQB1 gene

All three query VCFs called both haplotype sequences exactly correct; the resulting sequences are shared in Additional 
File 1: Fig. S4. As a result, there should be no false negative (FN) or false positive (FP) variant calls counted, and the number 
of truth VCF true positives (TP) should be consistent across all three datasets. The only tool that correctly ascertains this is 
vcfdist. SNP results for Truvari are marked with a * because Truvari does not evaluate SNPs

SNP results INDEL results SV results

Truth Query Truth Query Truth Query Total

TP FN TP FP TP FN TP FP TP FN TP FP FN FP

vcfdist hifiasm-dipcall 32 0 32 0 2 0 2 0 2 0 2 0 0 0

Q100-PAV 32 0 66 0 2 0 3 0 2 0 0 0 0 0

hifiasm-GIAB-TR 32 0 71 0 2 0 1 0 2 0 0 0 0 0

vcfeval hifiasm-dipcall 14 0 14 0 2 0 2 0 2 0 2 0 0 0

Q100-PAV 13 0 13 4 1 0 0 0 2 0 0 0 0 4

hifiasm-GIAB-TR 12 0 12 4 0 0 0 0 2 0 0 0 0 4

Truvari bench hifiasm-dipcall * * * * 2 0 2 0 2 0 2 0 0 0

Q100-PAV * * * * 2 0 2 1 0 2 0 0 2 1

hifiasm-GIAB-TR * * * * 1 1 1 0 0 2 0 0 3 0

Truvari refine hifiasm-dipcall * * * * 2 0 2 0 2 0 2 0 0 0

Q100-PAV * * * * 3 0 3 0 0 0 0 0 0 0

hifiasm-GIAB-TR * * * * 3 0 3 0 0 0 0 0 0 0

Table 4  A comparison of INDEL and SV variant calling evaluation by vcfdist, vcfeval, and Truvari, 
restricting to chr20 of the GIAB-TR tandem repeats BED

SNPs were excluded because they were not evaluated by Truvari. Prior to evaluation, truth and query VCFs were normalized 
using Truvari phab. This means that the Truvari results reported in this figure are largely equivalent to Truvari refine (MAFFT). 
Variants that were not evaluated uniformly by the three tools are categorized and counted. Each category is described in 
greater detail within the manuscript text and an example provided in Additional File 1: Fig. S6

Category Count Allele 
match

Different 
thresholds

Complex 
variant

Pick 
single

Flip error Backtracking 
tie

Variant 
overlap

all agree 
FP

451

only vcfe-
val calls TP

5 5

only 
Truvari 
calls TP

256 223 12 12 9

only 
vcfdist 
calls TP

23 10 13

all agree 
TP

35,376

only 
vcfeval 
calls FP

662 346 307 1 8

only 
Truvari 
calls FP

1 1

only 
vcfdist 
calls FP

52 2 37 6 6 1
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heuristics or a bidirectional wavefront algorithm (biWFA) [36], as shown in Additional 
File 1: Table S2.

An example of benchmarking interpretability for the HLA‑DQB1 gene

The results of variant call benchmarking tools such as vcfeval, Truvari, and vcfdist are 
frequently used in downstream tertiary analyses. In order to compare the interpretabil-
ity of these tools, we evaluated the chr6:32,664,600-32,664,899 region of the 
HLA-DQB1 gene, since it is known to cause difficulties during analysis arising from dif-
fering variant representations. The HLA-DQB1 gene is part of a family of genes called 
the human leukocyte antigen (HLA) complex and plays an essential role in the human 
immune system. Deleterious mutations in HLA-DQB1 are highly associated with com-
mon autoimmune diseases such as celiac disease [37] and multiple sclerosis (MS) [38].

We found through a manual examination that all three query VCFs called both hap-
lotype sequences in this region exactly correct. A summary of these results is shown in 
Table 3, and the resulting sequences are included in Additional File 1: Fig. S4. Although 
all sequences were the same, there were significant differences in how this genetic varia-
tion was represented. Compared to the first Q100-dipcall haplotype, the Q100-PAV and 
hifiasm-GIAB-TR VCFs chose to represent a 169-base insertion and a 168-base deletion 
as a 1-base insertion and 34 SNPs. Relative to the second Q100-dipcall haplotype, the 
hifiasm-GIAB-TR VCF chose to represent a 1-base insertion and 1-base deletion as 5 
SNPs. These differences account for the wide range of query true positive variant counts 
in Table 3.

Note that because both truth sequences were called exactly correct, there should be no 
false negative (FN) or false positive (FP) variant calls counted, and the number of truth 
VCF true positives (TP) should be consistent across all three datasets. vcfdist correctly 
counts all variants, as expected. vcfeval correctly counts the SVs but fails to evaluate 
a large number of the SNP and INDEL variants because there are too many heterozy-
gous variants in close proximity. It excludes these variants from the analysis and pro-
ceeds with a warning that the region is too complex to be evaluated. Truvari bench does 
not evaluate the SNPs and fails to identify several of the INDELs and SVs. This failure 
occurs because it discards the SNPs prior to evaluation and therefore does not discover 
the two cases where numerous SNPs are equivalent to an insertion and deletion. Truvari 
refine also does not evaluate SNPs. It is able to detect that all variant calls are correct, 
though it does convert both query and truth SVs to an INDEL for the Q100-PAV and 
hifiasm-GIAB-TR datasets.

Validation of vcfdist

Lastly, we compare vcfdist to existing variant calling evaluation tools in order to verify 
its correctness. Following variant normalization (described in the “Methods” section), 
we organize all variants evaluated by vcfdist, vcfeval, and Truvari in Table 4. 57,865 SNPs 
in this region are excluded from Table  4 because they were not evaluated by Truvari; 
we include these results in Additional File 1: Fig. S5a. An additional 723 INDELs and 
SVs occurring at the border of the GIAB-TR BED regions are excluded because they 
were only analyzed by some of the VCF comparison tools. Variants are then categorized 
based on the apparent reason for differences in evaluated correctness between the three 
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tools and counted. An example from each of the seven discovered categories is shown in 
Additional File 1: Fig. S6 and described in further detail below.

Firstly, all three tools handle allele matches differently, which accounts for the major-
ity of differences in Table 4. Truvari will match a query homozygous variant to a truth 
heterozygous variant and consider both to be true positives. vcfeval will perform the 
same match but consider the variants to be a false positive and false negative. vcfdist 
will match the heterozygous variant to one haplotype of the homozygous variant, con-
sider both to be true positives, and then consider the second haplotype of the query 
homozygous variant to be a false positive. None of these methods is best; rather, each 
has strengths for certain applications. We caution that users consider these performance 
differences based on their downstream goals.

The second most common area of disagreement between tools stems from the fact 
that they have different thresholds for considering variant calls to be true positives. For 
example, vcfeval requires variants to match exactly, whereas vcfdist requires variants to 
have a partial credit score above 0.7 and Truvari requires a sequence similarity above 0.7. 
For certain edge cases, such as where a length three deletion is called length four, even 
Truvari and vcfdist may differ.

The next most common differences are intentional implementation differences 
between the tools. In particular, vcfdist refuses to split a complex variant into multiple 
variants and consider only a subset of those to be correct. Truvari, by default, only allows 
a variant to participate in one match (with the —-pick single parameter), regardless 
of allele count. vcfeval is the only tool that does not enforce local phasing and allows flip 
errors of nearby variants to occur.

Lastly, there are rare cases where unintentional implementation differences lead to 
slightly differing results. Not all backtracking algorithms behave identically, leading to 
cases in which different algorithms will adjudicate which of a pair of variants is a false 
positive differently. There are also differences due to directly adjacent or overlapping 
variants. For example, only vcfeval allows two separate insertions at the same exact loca-
tion on the same haplotype and Truvari evaluates spanning deletions, whereas vcfeval 
and vcfdist do not.

Discussion
In this paper, we demonstrate that evaluating small and structural variants together is 
necessary for discovering equivalent sets of truth and query variant calls. Furthermore, 
we show that intelligent variant comparison, which is able to identify equivalent vari-
ant representations, is important for accurate phasing analyses. We then show that 
vcfdist is now able to scale to whole-genome analysis of phased SNPs, INDELs, and 
SVs with improved accuracy over prior work. Lastly, we describe and explain the differ-
ences between vcfdist and prior work as they relate to our variant calling benchmarking 
results.

As variant calling performance improves and increasingly complex clusters of vari-
ants are evaluated, minor differences in the implementations of evaluation tools such 
as Truvari, vcfeval, and vcfdist begin to significantly impact the results. Currently, the 
way each tool handles partially correct variant calls differs greatly. Partial correctness 
can occur in many ways: a single insertion is called mostly but not entirely correct, a 
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homozygous variant is called heterozygous (genotype error), a deletion is called with the 
incorrect length, a heterozygous variant is called on the wrong haplotype (flip error), or 
only a subset of several variants that comprise a complex variant are called. In Table 4, 
we show that differences in how these cases are handled lead to significant differences in 
the reported summary metrics (Fig. 5). Ideally, as a community we would define a stand-
ard methodology to handle each of these cases and clearly delineate how to count and 
categorize these errors. While the GA4GH Benchmarking Team set an initial standard 
for counting small variant genotype errors as both FPs and FNs, and report a separate 
metric for number of genotype errors, we will need new standards for complex small 
and structural variants [26]. In the absence of a standardized approach, it is important 
that users of variant calling evaluation tools understand how each tool handles these 
cases, and the impact that may have on their results.

In this work, we have revisited some of the earlier design decisions we made in vcfdist 
v1. Although we still believe that total alignment distance is a useful supplementary met-
ric to precision and recall curves, we now skip this computation by default, and allow 
re-enabling it with the —-distance parameter. We believe that stratifying precision 
and recall curves by variant size offers many of the same benefits, with a more easily 
interpretable result. We have also replaced variant calling partial credit with a credit 
threshold —-credit-threshold [0.7]. Partial credit is still calculated, but rather 
than assigning partial false and true positives (which is unnecessarily complicated and 
non-intuitive), we allow the user to select a partial credit threshold above which variants 
are considered true positives and below which variants are considered false positives. 
This more closely aligns with the behavior of other structural variant calling benchmark-
ing tools such as Truvari. Lastly, vcfdist no longer realigns truth and query variants to a 
standard normalized representation by default. We found this behavior to be undesirable 
in Truvari refine because it complicates comparisons with other pipelines or datasets. 
vcfdist still retains this capability, however, which can be enabled using —-realign-
query and —-realign-truth. Although we no longer enable this feature by default, 
we urge individuals benchmarking variant calling pipelines to be aware of the variant 
representations used in their truth and query VCFs.

At the moment, vcfdist is designed to compare phased variants from a single sam-
ple query VCF to a truth VCF. We plan to extend vcfdist in the near future to handle 
unphased variant calls as well, since many genomic datasets do not contain phasing 
information. Along a similar vein, we would like for vcfdist to be able to work with 
multi-sample population VCFs for use in genome wide association studies (GWAS). We 
believe joint evaluation of small and structural variants will be incredibly valuable in this 
context. In order to make this a reality, we will need to continue to improve the efficiency 
of vcfdist. The alignment-based calculation of precision and recall will need to be shifted 
to a wavefront alignment based implementation  [28], and when large or many nearby 
variants are present, we may need to sacrifice accuracy in order to improve efficiency.

Conclusions
Recent improvements in long-read sequencing accuracy have enabled calling phased 
small and structural variants from a single analysis pipeline. Despite this, the current 
standard tools for variant calling evaluation are only designed for either small (vcfeval) 
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or large (Truvari) variants. In this work we extend vcfdist―previously a small variant 
calling evaluator―to evaluate structural variants, making it the first benchmarking 
tool to jointly evaluate phased single-nucleotide polymorphisms (SNPs), small inser-
tions/deletions (INDELs), and structural variants (SVs) for the whole genome.

We find that a joint evaluation reduces measured false negative and false positive var-
iant calls across the board: by 28.9% for SNPs, 19.3% for INDELs, and 52.4% for SVs 
over 50 bases. Building on vcfdist’s alignment-based evaluation, we also jointly analyze 
phasing accuracy. vcfdist identifies that 43% to 92% of all flip errors called by standard 
phasing evaluation tool WhatsHap are false positives due to differences in variant rep-
resentations. Lastly, we compare the accuracy of vcfdist to prior works and demonstrate 
that it is able to find more true positive variant matches than vcfeval and Truvari bench. 
We find that vcfdist performs similarly to Truvari refine, while also providing more eas-
ily interpretable results.

Methods
All scripts described below are available in the GitHub repository https://​github.​com/​
TimD1/​vcfdi​st [39] in the analysis-v2/ subdirectory.

Datasets

Q100‑dipcall VCF

The v0.9 Q100-dipcall draft benchmark VCF and its associated GIAB-Q100 BED con-
taining small and structural variants were used as the ground truth VCF throughout this 
manuscript  [13]. They were created during a collaboration between the Telomere-to-
Telomere Consortium (T2T, https://​sites.​google.​com/​ucsc.​edu/​t2two​rking​group/​home), 
the Human Pangenome Reference Consortium (HPRC, https://​human​pange​nome.​org/), 
and the Genome in a Bottle Consortium (GIAB, https://​www.​nist.​gov/​progr​ams-​proje​
cts/​genome-​bottle) in an attempt to establish a diploid whole genome benchmark that 
is perfectly accurate. The term “Q100” refers to a Phred quality score [40] of 100 or one 
error per ten billion bases (i.e., zero expected errors per human genome). The v0.9 draft 
benchmark contains many errors, but improvements are still being made towards this 
ultimate goal. A combination of data from Oxford Nanopore Technologies (ONT), 
Pacific Biosciences high-fidelity sequencing (HiFi), Strand-Seq, and Hi-C were used in 
combination with the trio-based verkko assembler  [13] and manual review to create a 
high-quality assembly. Lastly, dipcall [41] was used to generate a VCF of this assembly 
relative to the GRCh38 reference FASTA.

Q100‑PAV VCF

The same verkko assembly [13] was then used by researchers at the National Institute of 
Standards and Technology (NIST, https://​nist.​gov) to generate a second VCF using the 
Phased Assembly Variant Caller (PAV) [42]. For this reason, the Q100-PAV variant phas-
ings match very closely with the Q100-dipcall phasings, as can be seen in Table 1. Note 
that by default, PAV merges some non-identical haplotypes, resulting in inexact variant 
calls.

https://github.com/TimD1/vcfdist
https://github.com/TimD1/vcfdist
https://sites.google.com/ucsc.edu/t2tworkinggroup/home
https://humanpangenome.org/
https://www.nist.gov/programs-projects/genome-bottle
https://www.nist.gov/programs-projects/genome-bottle
https://nist.gov
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hifiasm‑dipcall VCF

The hifiasm-dipcall VCF was created by the HPRC using a combination of ONT ultra-
long (UL), HiFi, Hi-C, and Bionano optical mapping data [34]. First, the trio-based hifi-
asm assembler  [43] was used to create the initial assembly using HiFi and Hi-C data. 
Bionano optical mapping data was used to verify these scaffolds, and a combination of 
manual variant curation and polishing with ONT-UL data was used to generate the final 
assembly [34]. Lastly, dipcall [41] was used to generate a VCF of this assembly relative to 
the GRCh38 reference FASTA.

hifiasm‑GIAB‑TR VCF

The v4.20 hifiasm-GIAB-TR VCF and its associated GIAB-TR BED were generated 
by the Genome In A Bottle Consortium (GIAB) using the same hifiasm assembly, 
in addition to custom scripts that use minimap2 and paftools  [44]. The methodology 
is described in detail in  [31] and was part of an effort to create a high-quality tandem 
repeat benchmark. Because the same hifiasm assembly was used, the phasing analysis 
results of hifiasm-GIAB-TR closely match hifiasm-dipcall in Table 1, but the variant rep-
resentation is much different than the other VCFs, as shown in Additional File 1: Fig. S1 
(see https://​github.​com/​ACEng​lish/​adotto/​discu​ssions/4 for details).

Preprocessing

Prior to evaluation, multi-allelic variants were split using bcftools norm v1.17 [45] with 
the -m-any parameter. Where required, the HG002 sample was extracted from the 
original VCF into a single-sample VCF using bcftools query.

Separate vs. joint evaluation of small and structural variants

For each dataset, each subset (small variants (SNPs and INDELs) only, structural vari-
ants only, and all variants) of variants was first extracted into a separate VCF using 
bcftools view v1.17  [45]. SVs were defined as insertions or deletions greater than or 
equal to 50 base pairs in size. INDELs are below this size threshold. vcfdist v2.5.0 [46] 
was used to compare each VCF to the Q100-dipcall ground truth within the GIAB-
Q100 benchmarking regions. Scripts available in the small_sv_all/ directory of our 
GitHub repository [39] were used to calculate and plot the false negative and false dis-
covery rates for each variant categorization within each VCF. The results are shown in 
Fig. 2.

Description of vcfdist phasing analysis

The original vcfdist v1 release contained an experimental phasing analysis algorithm 
that was untested and unready for production. In this work, we extended the origi-
nal algorithm, described in  [17], to perform a proper evaluation of phasing. First, we 
added support for phase blocks using the input VCFs’ FORMAT:PS fields. Unlike most 
other tools, vcfdist allows the ground truth VCF to contain phase sets as well. Using the 
reported phase sets, vcfdist now correctly identifies switch and flip errors. In addition to 
reporting detailed switch and flip error information, vcfdist also calculates several useful 
summary metrics such as phase block NG50 (breaking regions on new phase blocks), 
switch NGC50 (breaking regions on new phase blocks and switch errors), and switchflip 

https://github.com/ACEnglish/adotto/discussions/4
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NGC50 (breaking regions on new phase blocks, switch errors, and flip errors). The 
NG50 metric reports the largest region such that all regions of that size and larger cover 
at least 50% of the genome. Lastly, we added a phasing threshold so that variant clus-
ters are considered unphased unless one phasing significantly improves the cluster’s edit 
distance from the ground truth versus the other phasing. The default value is set at ——
phasing-threshold [0.6], or 60% reduction in edit distance, although the results 
from Additional File 1: Fig. S3c suggest that a higher threshold may be appropriate.

Phasing analysis comparison with WhatsHap

First, because WhatsHap does not allow providing a BED file to mask analysis regions, 
we use bcftools filter v1.7 [45] to restrict all three VCFs to the GIAB-Q100 benchmark-
ing BED regions. We then performed phasing analyses using WhatsHap v2.1  [32] and 
vcfdist v2.5.0  [46]. We then used several scripts, available in the phasing/ directory 
of our GitHub repository [39], to compare and plot the resulting flip and switch errors 
reported by each tool. The results are shown in Additional File 1: Fig. S3 and Table 1. In 
Additional File 1: Fig. S3, a random subset of 16 clusters with unknown phasing from 
each VCF was selected and manually examined in order to define a ground truth and 
compare vcfdist’s and WhatsHap’s performances on this subset of cases.

Accuracy comparison of variant calling evaluation tools

In order to determine the differences in variant evaluation between vcfdist, vcfe-
val, Truvari bench, and Truvari refine, we evaluated all three datasets using each tool 
on the GIAB-Q100 BED. We ran vcfdist v2.5.0 [17] with -l 1000 to limit the maxi-
mum SV length because vcfeval does not consider variants larger than 1000 bases. 
We ran rtg vcfeval v3.12.1  [15] with the following parameters: —-ref-overlap 
—-all-records —-vcf-score-field=QUAL. We ran Truvari bench v4.2.1 with 
the following command line options: —-no-ref a —-sizemin 1 —-sizefilt 

1 —-sizemax 1000 —-pick single —-typeignore —-dup-to-ins. We 
then ran Truvari refine v4.2.1 using —-regions candidate.refine.bed from the 
previous Truvari bench step with the following parameters: —-use-original-vcfs 
—-use-region-coords —-recount —-align <method> where <method> 
was WFA, MAFFT, and POA. We then merged results from Truvari refine and bench 
by subtracting the candidate.refine.bed (used by Truvari refine) from the GIAB-
Q100 BED using bcftools subtract v1.17, evaluating the remaining regions with Truvari 
bench, and then merging the results. Lastly, we used several scripts, available in the vs_
prior_work/ directory of our GitHub repository [39], to compare and plot the false 
negative and false discovery rates of each tool. These results are shown in Fig. 5.

The same methodology was used to evaluate the example complex variant in the HLA-
DQB1 gene for each tool. Scripts are available in the hla/ directory of our GitHub 
repository [39], and results are shown in Table 3.

Validation of vcfdist

In order to validate the correctness of vcfdist’s reported variant calling results, we needed 
a way to compare how vcfdist classified a single variant to the classifications reported 
by prior works vcfeval and Truvari refine (MAFFT) for that same variant. We chose to 
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compare against Truvari refine instead of Truvari bench because it is more accurate [31]. 
Unfortunately, Truvari refine changes the representations of the input truth and query 
variants, making it difficult to compare benchmarking results across tools. Instead of 
directly using Truvari refine, we used an equivalent workflow that involves normalizing 
variant representations using Truvari phab (which internally uses MAFFT) followed by 
Truvari bench evaluation. This approach enabled us to directly compare the decisions 
made by vcfdist, vcfeval, and Truvari on the exact same set of variants while also ena-
bling Truvari to be more accurate.

We first normalized chr20 of the GIAB-TR BED from each of our three VCFs with the 
truth VCF using Truvari v4.2.1 phab (MAFFT). We then converted these VCFs into sin-
gle sample VCFs of the desired format and split up multi-allelic variants using bcftools 
reheader, norm, and view v1.18 [45]. Afterwards, we evaluated each VCF using vcfdist 
v2.5.0  [17], vcfeval v3.12.1  [15], and Truvari bench v4.2.1  [16]. Scripts available in the 
phab_cm/ directory of our GitHub repository  [39] were used to run and summarize 
the evaluations. The results are presented in Table 4, Additional File 1: Fig. S5, and Addi-
tional File 1: Fig. S6.

Improvements to the vcfdist clustering algorithm

A naive variant comparison algorithm would compare each query variant to a single ref-
erence variant individually in order to discover matches. While this approach works for 
the majority of variant calls, there are cases where several query variants are equiva-
lent to one or many truth variants (Additional File 1: Fig. S7a). Several examples of this 
are shown in Additional File 1: Fig. S8. This is especially true for repetitive regions of 
the genome, or as the representations of the truth and query VCFs diverge. In order for 
a benchmarking tool to recognize these cases of complex equivalency, all the variants 
involved must be evaluated at once in a group or “cluster.”

The default clustering algorithm employed by vcfdist discovers all cases in which vari-
ants could participate in a complex match and groups those variants together into a sin-
gle cluster. vcfdist achieves this by first initializing each cluster to a single variant. Next, 
the leftmost and rightmost reference positions that can be reached by aligning through 
each cluster with an alignment cost less than or equal to the cost of the current variant 
representation are recorded. If the reach of a cluster overlaps with the reach of a neigh-
boring cluster, the two clusters are merged. This occurs until all clusters have stabilized.

In order to handle structural variants, vcfdist’s original clustering algorithm (described 
briefly above and in greater detail in [17]) was required to undergo significant changes 
to improve efficiency and reduce memory usage. Firstly, the bidirectional Smith-Water-
man-Gotoh [47] algorithm used to calculate cluster left and right reaches was converted 
to a wavefront alignment based [28] equivalent in order to reduce memory usage from 
O(n2) to O(n). Next, the alignment cost of each cluster was recalculated (and lowered, 
when possible) following each cluster merge in order to reduce unnecessary cluster 
growth in following iterations. The left and right reaches of each cluster were cached 
across iterations and only recalculated following a merge. A greedy merging strategy was 
employed to merge multiple clusters at once when possible. Cluster reaches were cal-
culated using iterative reach doubling to avoid unnecessary computation. Lastly, multi-
threading support was added for clustering.
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Comparison of vcfdist clustering methods

vcfdist v2.5.0 was run with “gap n” clustering for n = (10, 100, 500) in addition to the 
default biWFA clustering using the command line options —-cluster gap 10. Wall 
clock runtime was measured using the GNU time command on an Intel Xeon E5-2697 
v3 CPU, with 56 threads and 64GB RAM. Scripts used to calculate the cluster sizes 
shown in Additional File 1: Table S2 from vcfdist’s verbose outputs are available in the 
clustering/ directory of our GitHub repository [39].

Extending vcfdist to evaluate structural variants

In order to evaluate larger structural variants using vcfdist, we made several changes 
such as introducing command line parameter —-largest [5000] to control the size 
of variants evaluated by vcfdist. We also added summary metric reporting for struc-
tural variants separately from INDELs and added the —-sv-threshold [50] flag 
to control the threshold for this classification. In addition to the numerous clustering 
efficiency improvements mentioned above, we decreased the memory usage of the pre-
cision and recall calculations. Since each cluster can be evaluated independently, we 
also added multi-threading and work balancing based on cluster size for all intra-cluster 
computations.

Runtime comparison of variant calling evaluation tools

Variants larger than 1000 bp were pre-filtered using bcftools view v1.17 and inver-
sions were filtered using GNU grep v2.20 because otherwise they significantly impact 
the runtime of Truvari refine (even when excluded from the analysis with —-size-
max 1000). Wall clock runtime was measured using the GNU time command on an 
Intel Xeon E5-2697 v3 CPU, with 56 threads and 64GB RAM. The scripts with the exact 
parameters used to run each tool are available in the vs_prior_work/ directory of 
our GitHub repository [39]. The results are shown in Table 2.
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