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Abstract 

Isobaric labeling-based mass spectrometry (ILMS) has been widely used to quantify, 
on a proteome-wide scale, the relative protein abundance in different biological condi-
tions. However, large-scale ILMS data sets typically involve multiple runs of mass spec-
trometry, bringing great computational difficulty to the integration of ILMS samples. 
We present zMAP, a toolset that makes ILMS intensities comparable across mass spec-
trometry runs by modeling the associated mean-variance dependence and accord-
ingly applying a variance stabilizing z-transformation. The practical utility of zMAP 
is demonstrated in several case studies involving the dynamics of cell differentiation 
and the heterogeneity across cancer patients.

Background
Isobaric labeling-based mass spectrometry (ILMS) methods, such as tandem mass tag-
ging (TMT) [1] and isobaric tags for relative and absolute quantitation (iTRAQ) [2, 3], 
have been widely used for quantitative proteomic profiling, showing unique advantages 
in a broad range of biological studies [4–9]. These methods can profile the abundance of 
thousands of proteins in parallel and allow, with the high multiplexing capability (up to 
16), the evaluation of many different biological conditions in a single run of mass spec-
trometry (MS) [10, 11]. In recent years, large-scale proteomic studies have become prev-
alent in which tens or even hundreds of ILMS samples were generated. The large sample 
sizes have facilitated various studies, such as dissecting the dynamics during cell differ-
entiation and the heterogeneity across a large cohort of cancer patients [12–15]. Mean-
while, they have brought new computational challenges to the analysis of ILMS data.

A fundamental problem is that, in a large-scale proteomic study, performing multiple 
MS runs is usually inevitable for achieving the required sample size. With the current 
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ILMS techniques, however, absolute signal intensities from different MS runs are far 
from comparable, posing a huge difficulty for quantitatively integrating ILMS data across 
MS runs [16–18].

Previous studies have developed statistical methods for the differential analysis of 
ILMS data that are generated from multiple MS runs [19–21]. For example, MSstat-
sTMT treats MS runs and biological conditions as random and fixed effects, respectively, 
and it identifies differentially expressed proteins between conditions by fitting linear 
mixed-effects models [19]; msTrawler adopts the same regression technique and further 
accounts for the signal-to-noise ratios of different measurements [21]. These methods, 
however, are specifically designed for the traditional differential analysis and cannot 
allow the application of other integration analyses across MS runs, such as principal 
component analysis (PCA) and unsupervised clustering analysis of samples/proteins.

Other studies tackled this problem by adding a biologically identical reference sam-
ple to each MS run, which was typically designed to be a uniform mixture of protein 
extracts from many different materials. Then, the log2-ratios (M-values) of ILMS intensi-
ties of each sample to those of the corresponding reference sample were calculated and 
were considered as comparable across MS runs. This strategy has been employed by 
many cancer studies to combine the proteomic profiles of a large number of patients, 
with the purpose of systematically identifying differentially expressed proteins between 
tumor tissues and normal tissues adjacent to the tumor (NATs), as well as proteins with 
hypervariable expression across tumors [12, 14, 22, 23]. However, these studies did not 
take the mean-variance dependence [18, 24–26] of ILMS data into account, which may 
compromise the reliability of downstream analysis results. For example, several studies 
used the standard deviation of M-values across samples to rank proteins. Top-ranked 
proteins were then selected as hypervariable ones for exploring the similarity structure 
among the samples [22, 27]. However, the M-values derived from low intensity levels 
could be much more unstable than those derived from high intensities, giving rise to a 
bias towards selecting low-abundance proteins [10, 28]. Besides, the exact number of 
proteins to be selected could only be determined based on practical experience, owing to 
the lack of a statistical model for assessing the associated significances.

We previously developed MAP for identifying differentially expressed proteins 
between a pair of ILMS samples generated from the same MS run [29]. In this study, we 
present zMAP, a computational toolset that significantly extends the capability of MAP 
to accommodate to features of large-scale data sets. The key step of zMAP is to calcu-
late the M-values of each sample against the corresponding reference sample and scale 
the results by estimated signal variability, which is obtained by modeling the mean-vari-
ance dependence of ILMS intensities separately for each MS run. The primary rationale 
behind this variance stabilizing z-transformation is using relative abundance compared 
to a biological invariant to improve the comparability across MS runs, while accounting 
for the different reliability of M-values derived from different intensity levels.

Results
Workflow of zMAP module

Given a large-scale ILMS data set, zMAP toolset transforms each ILMS intensity into 
a z-statistic that essentially assesses the statistical significance of the deviation of this 
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measurement from that (of the same protein) in the corresponding reference sample. 
The final p-value for a certain protein is derived by integrating the associated statistical 
significances in all samples. For this p-value to make biological sense, the reference sam-
ples in all MS runs must be biologically identical, and the corresponding null hypothesis 
is no differential expression between each involved condition and the biological state 
represented by the reference samples. In practice, reference samples are almost always 
designed to be the average of all the involved conditions. In this case, the corresponding 
null hypothesis amounts to no differential expression between each pair of the condi-
tions, and we refer to significant proteins as hypervariable ones.

Two computational modules, named zMAP and reverse-zMAP, have been imple-
mented in the zMAP toolset for handling different scenarios. We first introduce the for-
mer, which is specifically developed for ILMS data sets without real reference samples 
but whose MS runs are all associated with the same biological composition (i.e., they are 
biological replication of each other).

The basic principle of zMAP module is considering the average of the ILMS samples 
from each MS run as a pseudo reference profile for these samples. Then, the M-values of 
each sample against the corresponding reference profile are scaled based on estimated 
signal variances, producing z-statistics for a final integration across MS runs. Unlike 
traditional z-score transformation, which is based on observed variance, zMAP mod-
ule derives the variance estimates by borrowing strength between proteins with similar 
intensity levels and fitting a smooth mean-variance curve (MVC) for each MS run. Fig-
ure 1a depicts the workflow of zMAP module on a single MS run. In detail, after nor-
malizing protein-level ILMS intensities across multiple samples generated by the same 
MS run, zMAP makes a log2 transformation and models the results as following nor-
mal distributions, with the mean and variance parameters linked by an unknown MVC. 
To fit this MVC, a mean-variance scatter plot for all proteins is drawn, and zMAP uses 
a sliding window to scan this plot. In this process, the proteins with similar average 
log2-intensities across samples are grouped together, and a variance estimate is derived 
for each individual window. For the latter part, zMAP performs a quantile regression 
that regresses the observed variances of included proteins against a scaled chi-square 
distribution by fitting a straight line through the origin, and the slope is taken as the 
variance estimate. To avoid the influence of potential hypervariable proteins, which 
can lead to an overestimated variance, only a certain proportion of the proteins with 
the smallest observed variances are used for the quantile regression. Finally, the MVC is 
fitted by regressing the variance estimates from all windows against the corresponding 
intensity levels. Notably, this sliding-window process equipped with the robust quantile 
regression can avoid the requirement of biological replicates within each single MS run 
for MVC fitting.

To demonstrate the practical utility of zMAP module, we applied it to an iTRAQ data 
set regarding human erythropoiesis at both fetal and adult stages [30]. This data set was 
comprised of five replicate MS runs, each of which generated four proteomic profiles 
corresponding to hematopoietic stem/progenitor cells (HSPCs) and proerythroblasts 
(ProEs) at fetal and adult stages (labeled as F0, F5, A0, and A5; Fig. 1b).

We first applied zMAP to the first MS run. In practical analysis, an essential param-
eter for the sliding-window process, denoted by W, is the exact proportion of proteins in 
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each window that are used to perform the quantile regression. The setting of W depends 
directly on the abundance of differentially expressed proteins across samples (Additional 
file 2: Note S1). Here, we tried the default setting (W = 30%) and assessed the goodness 
of fit for each window by calculating the R-squared (R2) statistic. All the R2 values were 
above 0.95 (Additional file 1: Fig. S1a). Besides, zMAP also generated a diagnostic plot 
to summarize the quantile-quantile plots of all windows. Specifically, the observed vari-
ances associated with each window were first ordered and scaled by the corresponding 
variance estimate (i.e., the slope of the fitted line). Then, the scaled variances were aver-
aged across all windows (note that all windows covered the same number of proteins). 
Finally, the results, together with error bars to indicate the variability across windows, 
were plotted against the theoretical quantiles (Additional file 1: Fig. S1b). We found that 
the scaled variances that had been used for the quantile regressions matched well with 
the line y = x , while the other scaled variances, especially the largest ones, deviated 
clearly from the line, suggesting the default setting of W was suitable in this case. In 
practice, this diagnostic plot can be useful for fine-tuning W.

After the sliding-window process, the variance estimates and average log2-intensities 
of all windows were subject to a regression procedure to fit the MVC. Based on previous 

Fig. 1  Applying zMAP module to ILMS samples generated by a single MS run. a The workflow of zMAP 
module. b The experiment design of each MS run for the iTRAQ data set regarding human erythropoiesis at 
fetal and adult stages. HSPC, hematopoietic stem and progenitor cell; ProE, proerythroblast. c Mean-variance 
scatter plot of all proteins, with colors indicating the BH-adjusted p-values derived for identifying 
hypervariable proteins. All detected hemoglobin subunits are explicitly marked. d, e For each sample, the 
associated (d) traditional z-scores or (e) z-statistics derived by zMAP are plotted against the corresponding 
theoretical quantiles of the standard normal distribution. f For the hemoglobin subunits and a list of 
housekeeping proteins, heat maps showing their traditional z-scores and z-statistics derived by zMAP in all 
samples. The associated chi-square statistics and BH-adjusted p-values are also displayed
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studies of iTRAQ data [24, 31, 32], an exponential decay function was fitted, with an 
R2 of 0.996. zMAP next identified hypervariable proteins among the four conditions by 
calculating the ratio of the observed variance of each protein to the corresponding vari-
ance indicated by the MVC, which was obtained by applying the exponential function 
to the average log2-intensity of the protein. This ratio followed a scaled chi-square dis-
tribution under the null hypothesis of no differential expression between each pair of 
conditions, and a p-value was accordingly derived. As an evaluation of zMAP, we spe-
cifically examined the results regarding all known subunits of hemoglobin (the HBA2 
subunit was excluded because none of the five MS runs had detected it). It was found 
that zMAP deemed all these subunits as significant hypervariable proteins (BH-adjusted 
p-value < 1e − 7 for each of them; Fig. 1c).

Finally, zMAP transformed the log2-intensities of each protein by subtracting its aver-
age log2-intensity and dividing the results by the standard deviation implied by the 
MVC. The only difference between this z-transformation and the traditional z-score 
transformation is that the latter uses observed standard deviation as the scaling factor, 
which may cause a compression of biologically meaningful signal changes across sam-
ples. Here, we tried both transformations and aligned the results with the standard nor-
mal distribution separately for each sample (Fig.  1d, e). The empirical distributions of 
traditional z-scores were even more concentrated around zero than the standard normal 
distribution, while those of the z-statistics derived by zMAP were relatively more long-
tailed, suggesting an improved statistical power for identifying hypervariable proteins. 
We further examined the transformation results of the hemoglobin proteins and a list 
of housekeeping proteins (Fig. 1f ). For the traditional transformation, the intensity dif-
ferences among samples were considerably compressed for both classes of proteins. In 
comparison, the zMAP transformation dramatically increased the sensitivity to biologi-
cally meaningful intensity differences without sacrificing the specificity. Specifically, all 
the hemoglobin proteins were upregulated during human erythropoiesis at fetal and/or 
adult stage. Consistent with previous research [33, 34], HBE1, HBG1, HBG2, and HBZ 
were mainly expressed at the fetal stage; HBB and HBD were mainly expressed at the 
adult stage; HBA1 was highly expressed at both stages. We applied zMAP separately to 
each of the other four MS runs and found similar results (Fig. 2a).

Integrating proteomic profiles across MS runs and detecting proteins important for human 

fetal erythropoiesis

A hierarchical clustering of all samples from the total five MS runs was performed based 
on the Pearson correlation coefficient (PCC) between each pair of them. When the PCCs 
were calculated by using original (untransformed) log2-intensities, the samples were per-
fectly clustered by their MS runs of origin, indicating severe batch effects (Additional 
file 1: Fig. S2a). By contrast, the samples were clustered by their biological labels when 
the z-statistics derived by zMAP were used (Additional file 1: Fig. S2b).

We next benchmarked zMAP against two other methods for integrating these samples, 
which were respectively based on traditional z-scores and centered log2-intensities. The 
latter was equivalent to the M-values of each sample against the corresponding pseudo 
reference profile. Similar to the z-statistics of zMAP, both traditional z-scores and 
centered log2-intensities have led to a hierarchical clustering result that was perfectly 
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consistent with the biological labels of samples, suggesting an effective removal of batch 
effects (Additional file 1: Fig. S2c, d).

We performed PCA on all the samples by using separately the measurements provided 
by each method. It was found that the samples were well clustered by their biological 
labels in the two-dimensional PC plot generated by zMAP (Fig. 2b). Moreover, the F0 
and A0 clusters were relatively close to each other, and two separate differentiation tra-
jectories starting from them could be depicted in the plot, corresponding to HSPC-to-
ProE differentiation at fetal and adult stages respectively. In comparison, the PC plots 
produced by the other two methods did not distinguish between different biological 
labels as clearly as did the zMAP plot (Fig. 2c, d). In particular, the F0 and A0 samples 
tended to mix with each other.

For a more quantitative evaluation of the methods, we assessed the consistency 
between each pair of samples with the same biological label, based on the measurements 
provided by each method. Each biological label was associated with five samples from 
five different MS runs, and we calculated the PCC between each pair of them. In each 
case, the PCC derived based on the z-statistics of zMAP was higher than those from the 
other two methods (Fig. 2e, f ).

Fig. 2  Using different statistics to integrate ILMS samples across MS runs. a For the hemoglobin subunits 
and the housekeeping proteins, heat maps showing their traditional z-scores and z-statistics derived by 
zMAP for all the five MS runs. The associated chi-square statistics and BH-adjusted p-values are also displayed. 
b–d Two-dimensional PC plots generated by performing PCA on all samples from all MS runs. Each plot 
corresponds to a kind of measurements for integrating ILMS samples across MS runs. e, f For each kind 
of measurements, the PCC between each pair of samples with the same biological label was calculated. 
The PCCs derived from the z-statistics of zMAP are compared to those from (e) traditional z-scores and (f) 
centered log2-intensities
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As a general technical problem of iTRAQ experiments, ratio compression has been 
suggested to arise from contamination during precursor ion selection by co-eluting pep-
tides [24, 35]. These peptides contribute a background value equally to each reporter ion 
signal, leading to an increase in the intensity levels and a shrinkage of observed intensity 
fold changes across samples. For the same protein, the influence of ratio compression 
can be different across MS runs, resulting in different degrees to which the observed 
variance of log2-intensities is diminished. In the data set about human erythropoiesis, 
we observed, for specific proteins, that the observed variances in different MS runs were 
strongly negatively correlated with the average log2-intensities, and that such correlation 
was effectively eliminated when the observed variances were scaled based on the cor-
responding MVCs (Additional file 1: Fig. S3a, b). Globally, the median PCC (for all pro-
teins) between observed variances and average log2-intensities was − 0.34, and it became 
0.09 when the scaled variances were used (Additional file 1: Fig. S3c).

We next used zMAP to identify hypervariable proteins based on all samples gener-
ated by the total five MS runs. This analysis could be performed in either an unsuper-
vised or a supervised manner. For the former, the chi-square statistics derived by zMAP 
along with the associated numbers of degrees of freedom were summed across MS runs, 
producing p-values that assessed the overall expression variability of each protein (see 
“Methods”). In total, we identified 2290 significant hypervariable proteins (BH-adjusted 
p-value < 0.05; Additional file  2: Note S2). A hierarchical clustering of these proteins 
revealed quite a few meaningful protein expression patterns (Fig. 3a). For example, the 
largest cluster comprised 591 proteins whose expression was decreased during human 
erythropoiesis at both fetal and adult stages. GO enrichment analysis showed that these 
proteins were significantly enriched in several biological processes, including regulation 
of actin filament length, regulation of cellular component size, and glycolytic process. All 
of them were associated with stem cell maintenance and self-renewal [36, 37]. Another 
example cluster consisted of 316 proteins that were specifically upregulated during adult 
erythropoiesis. These proteins were enriched in biological processes related to ATP and 
nucleoside synthesis. Consistently, it has been reported that many ATP synthesis genes 
are subject to post-transcriptional regulation in adult ProEs [30].

Alternatively, the hypervariable analysis could be conducted in a supervised manner in 
which the samples were grouped by their biological labels. Here, we tried a simple com-
putational pipeline for selecting hypervariable proteins across the four conditions. First, 
the z-statistics associated with each protein were averaged separately within each group. 
Then, the standard deviation of the average z-statistics was used to rank all proteins, and 
we selected top 0.5% as hypervariable ones (Fig.  3b). We further clustered these pro-
teins and found that the vast majority of them had elevated expression specifically in one 
or two conditions (Fig.  3c). Similar results were observed when different cutoffs were 
applied to the selection of hypervariable proteins (Additional file 1: Fig. S4). Previously, 
we had studied the dynamics of protein expression during human erythroid differentia-
tion at adult stage [30]. Here, we focused on fetal erythropoiesis and selected four pro-
teins for further exploration, which were PNMT, CHI3L1, S100A9, and S100A8. All of 
them showed a potential to promote erythroid differentiation at fetal stage: the expres-
sion of PNMT and CHI3L1 was concentrated in F5; S100A9 and S100A8 were mainly 
expressed in F0 and F5, with the expression in the latter being even higher than in the 
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former (Fig. 3c). To assess whether these proteins were required for fetal erythropoie-
sis, we employed an in vitro differentiation assay of human fetal HSPCs into ProEs, and 
utilized short hairpin RNA (shRNA) to separately knock down the four proteins in fetal 
HSPCs on day 0 (Fig. 3d). Upon the depletion of each protein, we observed significantly 
suppressed erythroid differentiation. Specifically, fetal HSPCs with PNMT, CHI3L1, 
S100A9, or S100A8 knock-down generated much fewer CD71+CD235+ ProEs on day 
6 (Fig. 3e; Additional file 1: Fig. S5), suggesting these genes play an indispensable role in 
the maturation of human fetal erythroid cells.

Workflow of reverse‑zMAP module

The practical applicability of zMAP module is limited. For example, in cancer studies 
with a large cohort of patients, different MS runs are typically designed to handle differ-
ent individuals. The zMAP module is not applicable in such cases because the pseudo 
reference profiles constructed by it for different MS runs are not biologically identical, 
owing to the heterogeneity across patients. Another practical concern is that, when the 
number of conditions involved in each single MS run is large (such as in 8-plex iTRAQ 
and 11-plex TMT platforms), the differential proteins between samples can be abundant 

Fig. 3  Simultaneously comparing ILMS samples from all MS runs. a Heat map showing the z-statistics of 
significant hypervariable proteins identified from the unsupervised comparison analysis. These proteins 
were clustered into 12 groups. Representative biological processes for most groups (from GO enrichment 
analysis) are displayed. b In the supervised comparison analysis, ranking all proteins by the standard deviation 
of average z-statistics in the four biological conditions. Top 0.5% were selected as hypervariable proteins. c 
Heat map showing the z-statistics of these hypervariable proteins. Proteins that were detected in only one or 
two MS runs are not displayed. d Using qRT-PCR to measure the mRNA expression levels of S100A8, S100A9, 
CHI3L1, and PNMT in human fetal HSPCs under different conditions. NC, negative control. e Assessing the 
progress of erythroid differentiation under different conditions based on the expression of CD71 and CD235 
(accessed via flow cytometry). Two biological replicates using different shRNAs were incorporated. KD, 
knock-down
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and the proportion of proteins that are suitable to use for the quantile regression in each 
sliding window can be very small, leading to unreliable variance estimates. Besides, fit-
ting a single MVC for a large number of samples may not be flexible enough to allow for 
the variation of mean–variance trend across samples.

In the above scenarios, we recommend adopting the experiment design of adding a 
true reference sample to each MS run, which has been widely adopted by many can-
cer proteomic studies [23, 38] and is also the only requirement for applying the reverse-
zMAP module. The basic principle of reverse-zMAP module is to fit sample-specific 
MVCs by separately comparing each sample to the corresponding reference sample, 
for which the M-values of all proteins are calculated and a sliding window is used to 
group proteins with close intensity levels (Fig. 4a). In each window, the M-values of the 
enclosed proteins are approximately considered as following the same normal distri-
bution, and the associated parameters are estimated by applying a quantile regression 
against the standard normal distribution. In detail, this regression is achieved by fitting a 
straight line, and the intercept and slope of it are taken as the mean and standard devia-
tion estimates, respectively (similar to the zMAP module, the M-values are ordered and 
only the middle 50%, by default, are used to fit the line). Next, the standard deviation 
estimates from all windows are gathered to fit an MVC, and the mean estimates are used 
to model the trend of M-values along the range of intensity levels, producing an M-A 
curve that essentially serves as a baseline for correcting for normalization biases. Finally, 
the M-values of all proteins are transformed into z-statistics, with the M-A curve and 
MVC used for centering and scaling them, respectively (see “Methods”).

In order to benchmark reverse-zMAP, we collected a TMT data set that comprised 
three replicate MS runs [39], such that we could compare different methods for 

Fig. 4  Benchmarking for the reverse-zMAP module. a The workflow of reverse-zMAP module. b, c For the 
ovarian carcinoma data set, the PCC between each pair of samples with the same biological context was 
calculated. The PCCs derived from the z-statistics of reverse-zMAP are compared to those from (b) M-values 
and (c) traditional z-scores
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integrating samples across MS runs by evaluating the consistency between replicate 
samples after applying the corresponding transformations. Each MS run generated 11 
samples, profiling the proteomes of 7 low-grade serous ovarian carcinoma (LGSOC) cell 
lines, a uniform mixture of protein extracts from these LGSOC cell lines, a uniform mix-
ture of 5 high-grade serous ovarian carcinoma (HGSOC) cell lines, and a uniform mix-
ture of all the 12 ovarian carcinoma cell lines (two replicates for this mixture).

We then considered the LGSOC-mixed sample in each MS run as internal reference 
and accordingly applied the reverse-zMAP module. Similar to the previous benchmark-
ing analysis, we have also used M-values and traditional z-scores to integrate samples 
across MS runs. The former was derived by comparing each sample to the correspond-
ing reference sample, and the latter was derived by applying z-score transformation to 
all the M-values (from all MS runs) associated with each protein. Finally, we calculated 
the PCC between each pair of samples with the same biological context, based on the 
different kinds of signal measurements. It was found that the PCC derived based on the 
z-statistics of reverse-zMAP was always higher than those from M-values and traditional 
z-scores (Fig. 4b, c).

Applying reverse‑zMAP to a TMT data set about human hepatocellular carcinoma (HCC)

We applied reverse-zMAP to a TMT data set that profiled the proteomes of 159 hepatitis 
B virus (HBV)-related HCC patients [23]. This data set comprised 33 MS runs, each of 
which generated 11 samples corresponding to the tumor tissues and NATs of 5 patients 
plus a reference sample (samples of 6 patients were later excluded in the original study 
because of low quality; Additional file 1: Fig. S6). A mixture of equal amounts of protein 
extracts from the tumor tissues and NATs of 50 patients was used to generate the refer-
ence sample in each MS run.

When applying reverse-zMAP, we examined the goodness of fit for the associated 
regressions. For all pairwise comparisons, the quantile regressions performed in the slid-
ing-window process all achieved an R2 value above 0.99, and the median R2 values for 
the associated fitting of M-A curves and MVCs were 0.87 and 0.72, respectively (Addi-
tional file 1: Fig. S7). Note that the observed mean–variance trend varied considerably 
across samples and was typically not as regular as observed on the previous iTRAQ 
data set (Additional file 1: Fig. S8; Additional file 2: Note S3). We therefore used natu-
ral cubic spline interpolation for the fitting of all MVCs (and also the fitting of all M-A 
curves). After transforming all M-values into z-statistics, we examined their distribution 
separately for each sample. Specifically, the z-statistics associated with each sample were 
ordered and were plotted against the corresponding theoretical quantiles of the standard 
normal distribution. It was found that the middle 50% of the z-statistics matched very 
well with corresponding theoretical quantiles, while the z-statistics at the two ends had 
even larger absolute values than corresponding theoretical quantiles (Additional file 1: 
Fig. S9).

We next identified hypervariable proteins for this data set. For each protein, the sum 
of squares of all the associated z-statistics was compared to a chi-square distribution, 
producing a p-value that assessed the overall expression variability of the protein. In 
total, 3097 significant hypervariable proteins were identified (Bonferroni-adjusted 
p-value < 0.01), and most of them showed consistently increased/decreased expression 
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in tumor tissues compared to NATs (Additional file 1: Fig. S10). We further performed 
PCA on all the 159 pairs of samples by using z-statistics of the hypervariable proteins 
as features (Fig. 5a). In the two-dimensional PC plot, samples originated from different 
MS runs were mixed together, indicating the associated batch effects were effectively 
removed.

It was also observed that the tumor samples and NAT samples were largely separated 
from each other along the PC1 dimension, suggesting the PC1 score might have the 

Fig. 5  Applying reverse-zMAP to an HCC TMT data set. a Performing PCA on all samples of the HCC data set, 
with the z-statistics (derived by reverse-zMAP) of hypervariable proteins as features. b Venn diagram showing 
the overlap among PC1-correlated proteins, prognosis-related ones, and hypervariable ones. c Plotting the 
log-hazard ratio of each protein against the PCC between its z-statistics and the PC1 scores of samples. Colors 
indicate the BH-adjusted p-values for identifying prognosis-related proteins. d Hierarchical clustering of all 
patients based on the PC1 scores of their tumor samples. The patients were accordingly classified into three 
groups. The p-value associated with each clinical feature was derived by applying ANOVA to comparing 
PC1 scores. e Kaplan–Meier curves for the three groups of HCC patients. The p-value assessed the survival 
difference across the groups and was derived by applying log-rank test. f Violin plots showing the z-statistics 
of NPC1 in all NAT samples and different groups of tumor samples. The p-values were derived by applying 
t-test. g Dividing all patients into two groups based on the median expression of NPC1 in their tumor tissues 
and assessing the survival difference between the groups. h Using western blot to measure the expression 
of NPC1 in HepG2 cell line under different conditions. i, j Using MTT assay, transwell migration assay, and 
plate clone formation experiment to quantitatively assess the influence of NPC1 knock-down on the cell 
proliferation, migration, and colony forming ability of HepG2 cell line, respectively. Three biological replicates 
were generated for each experiment. k Heat map showing the GSVA scores of biological pathways associated 
with differential activity across sample groups. The average GSVA score of each pathway in each sample 
group is also displayed. The differential pathways were identified by applying limma to comparing GSVA 
scores (BH-adjusted p-value < 0.05)
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potential to quantitatively assess tumorigenesis and even the stage of tumor progression, 
with respect to the proteomic landscape. To further explore the role of PC1, we defined 
PC1-correlated proteins based on the PCC between z-statistics and PC1 scores. In total, 
we found 1638 positively correlated proteins (PCC > 0.5) and 1488 negatively correlated 
ones (PCC <  − 0.5), which corresponded very well to upregulated and downregulated 
proteins in tumor tissues, respectively (Additional file 1: Fig. S11a). Pathway enrichment 
analysis showed that the positively correlated proteins were enriched in several pathways 
related to genetic information processing, such as spliceosome, cell cycle, and mismatch 
repair, while the negatively correlated proteins were enriched in metabolic pathways 
associated with normal liver function, such as retinol metabolism [40, 41], drug metabo-
lism [42], and fatty acid degradation [43] (Additional file 1: Fig. S11b). These results sug-
gested excessive cell proliferation and the disorder of liver metabolism in HCC tumor.

We next evaluated the prognostic association of the PC1-correlated proteins. We first 
defined prognosis-related proteins by performing a regression of the overall survival 
time of the patients on the expression intensities of each protein. More specifically, a 
Cox proportional hazards model was separately fitted for each protein, with its z-sta-
tistics in tumor samples as the only predictor [44]. In total, we defined 585 prognosis-
related proteins (BH-adjusted p-value < 0.05), including 335 prognosis-favorable proteins 
(hazard ratio < 1) and 250 prognosis-unfavorable ones (hazard ratio > 1). A significant 
overlap was observed between these prognosis-related proteins and the PC1-correlated 
ones: 69.6% of the prognosis-related proteins were also PC1-correlated (Fig.  5b). As a 
comparison, only 3.9 and 0.8% of the prognosis-related proteins were identified as PC2 
and PC3-correlated ones, respectively (Additional file 1: Fig. S12a). Further examination 
revealed that the prognosis-favorable proteins remarkably overlapped with the PC1-
negatively correlated proteins, while most of the prognosis-unfavorable proteins were 
PC1-positively correlated ones (Additional file 1: Fig. S12b). We also globally examined 
this relationship in a more quantitative manner: the log-hazard ratio of each protein was 
plotted against the PCC between its z-statistics and the PC1 scores. A strong positive 
correlation between these two statistics was observed (Fig. 5c).

Intriguingly, the PC1 scores of the tumor samples were significantly associated with 
several key clinical features of the HCC patients (Fig.  5d). For example, patients with 
tumor thrombus got significantly larger PC1 scores than the others (p-value = 5e − 3). 
Similar results were also observed on patients with high alpha-fetoprotein (AFP) level. 
These observations strongly implied the clinical implication of PC1. We next made a 
classification of all the HCC patients based on the PC1 scores of their tumor samples, 
producing three subgroups of patients (Fig. 5d). A clear survival difference was observed 
between these subgroups (Fig.  5e), with the corresponding p-value being even more 
significant than those resulting from the classifications based on TNM or BCLC stage 
(Additional file 1: Fig. S13). Specifically, the patients in group III showed clearly worse 
prognosis and also much higher frequency of tumor thrombus than those in groups I 
and II (Fig. 5d, e), suggesting PC1 could contribute to elucidating the molecular events 
underlying HCC progression.

Following this speculation, we tried identifying HCC progression-related proteins 
based on the protein expression profile across the subgroups of patients as well as the 
prognostic association. We selected four proteins for further exploration, including two 
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potentially oncogenic ones (NPC1 and UBE2C) and two potential tumor suppressors 
(PIPOX and MMAA) (Fig. 5f, g; Additional file 1: Fig. S14). As an independent verifica-
tion, we collected RNA expression data of 363 HCC patients from the TCGA database 
[45]. For each of the four proteins, a significant survival difference was observed when 
the patients were divided into two groups based on the median RNA expression level of 
the corresponding gene (Additional file 1: Fig. S15). We also experimentally explored the 
roles of NPC1 and UBE2C in two HCC cell lines (HepG2 and Huh7). For NPC1, shRNA 
was used to knock down its expression in both cell lines, which resulted in significant 
suppression of cell proliferation, migration, and colony forming ability (Fig. 5h–j; Addi-
tional file 1: Fig. S16a-c). For UBE2C, we established its overexpression in the two cell 
lines and observed significant increases of all the three indexes (Additional file  1: Fig. 
S16d-i). These results confirmed that elevated expression of the two genes contributed 
to the proliferation and invasion of HCC cells.

Applying various downstream analyses on the z‑statistics of reverse‑zMAP

In practice, a common downstream analysis is to assess the overall enrichments of pro-
tein sets based on the abundance of individual proteins. Here, we used biological path-
ways collected from the KEGG database [46] to define protein sets of interest. The GSVA 
method [47] was then applied to the z-statistic matrix produced by reverse-zMAP for 
the HCC TMT data set, which quantified the activity of each biological pathway in each 
sample. Finally, the pathways exhibiting differential activity across sample groups were 
identified and clustered (Fig. 5k).

It was observed that many of the identified pathways had stepwise increased/decreased 
activity from NAT samples to tumor samples in groups I–III, showing a good correlation 
with the PC1 scores. Example pathways with decreased activity across the sample groups 
included many liver function-related ones, such as bile secretion, retinol metabolism, 
and vitamin B6 metabolism; examples with increased activity included those related to 
cell proliferation or cancer, such as cell cycle, mismatch repair, transcriptional misreg-
ulation in cancer, and viral carcinogenesis (Fig. 5k). Notably, a few NAT samples were 
associated with even larger PC1 scores than some tumor samples in group I. Concord-
antly, compared to the other NAT samples, these samples showed clearly lower activ-
ity of many liver function-related pathways (e.g., bile secretion and retinol metabolism) 
and much higher activity of several cancer-related pathways (e.g., viral carcinogenesis) 
(Additional file 1: Fig. S17).

We further dug into the NAT samples with excessively large PC1 scores. It was noted 
that these samples, compared to the other NAT samples, displayed clearly higher activ-
ity of Jak-STAT signaling pathway and leukocyte transendothelial migration (Additional 
file 1: Fig. S18a). The former has been implicated in the pathogenesis of inflammation 
[48], and the latter is vital for innate immunity and inflammation response [49]. Inspired 
by these observations, we examined the serum gamma-glutamyl transferase (GGT) con-
centrations, a commonly used biomarker for hepatitis, of the HCC patients. Intriguingly, 
all the patients whose NAT samples had excessively large PC1 scores were associated 
with abnormally high levels of serum GGT (Additional file  1: Fig. S18b). Together, 
these findings suggested the high-PC1 NATs could be in a state of severe inflammation, 
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providing proteome-level insights into the progression from HBV-infected liver tissue to 
HCC.

We concluded here that the variation of PC1 score across NAT samples made bio-
logical sense as well as that across the tumor samples. Since the PC1 scores were derived 
from the z-statistics of the hypervariable proteins, this conclusion implied a potential 
advantage of unsupervised hypervariable analysis over traditional differential analysis: 
in addition to the differences between sample groups, hypervariable analysis may also 
capture the heterogeneity within each group. In the original study of the HCC patients, 
1274 differentially expressed proteins between the tumor and NAT samples were 
identified, 1113 (87.4%) of which were also identified as hypervariable proteins in this 
study (Additional file  1: Fig. S19a). We then clustered the proteins uniquely identified 
as hypervariable ones and found that two of the resulting clusters were associated with 
clear expression heterogeneity across the NAT samples (these two clusters were referred 
to as C4 and C5, which comprised 176 and 241 proteins, respectively). Consistent with 
the above speculation of hepatitis, both C4 and C5 showed elevated expression levels 
specifically in the NAT samples with excessively large PC1 scores and were also signifi-
cantly enriched in biological pathways that suggest activated immune and inflammatory 
responses (Additional file 1: Fig. S19b). For example, the C4 proteins were enriched in 
the pathway of ECM-receptor interaction, and it has been suggested that the deposition 
and remodeling of ECM can enhance local immune response to chronic hepatitis tis-
sue [50]; the C5 proteins were enriched in neutrophil extracellular trap formation and 
leukocyte transendothelial migration, which are crucial for innate immunity and inflam-
mation response [51, 52]. In order to more quantitatively dissect the expression heter-
ogeneity of the two protein clusters, we hierarchically clustered all NAT samples into 
two subgroups based on their PC1 scores, which successfully isolated the NAT samples 
with excessively large PC1 scores (NAT II group, 12 samples) from the others (NAT I 
group, 147 samples). We then calculated for each sample the average z-statistic across 
C4/C5 proteins, as an overall expression evaluation for the protein cluster. It was found 
that the expression of both C4 and C5 was considerably higher in NAT II than in NAT I 
and the three subgroups of tumor samples, while the differences among NAT I and the 
tumor subgroups were not as distinct (Additional file 1: Fig. S19c, d). Since NAT II only 
accounted for a small proportion (7.5%) of all NAT samples, the overall expression dif-
ference between all NAT and tumor samples was also not distinct (especially for the C4 
cluster, to which the corresponding t-test p-value was only 0.31 even with such a large 
sample size (159 vs. 159); Additional file 1: Fig. S19c, d), which explained why the associ-
ated proteins had not been identified as differential ones in the original study.

As another demonstration of the utility of the z-statistics derived by reverse-zMAP, we 
constructed a protein co-expression network for the HCC patients based on the z-statis-
tics of their tumor samples. In this network, each protein pair associated with a positive 
and significant partial correlation coefficient (PTCC) was considered to be co-expressed 
(see “Methods”). We then specifically took out the sub-network consisting of the hyper-
variable proteins and identified co-expression modules from it. Finally, we performed 
functional annotation for each module by identifying enriched biological pathways.

It was found that most of the modules were significantly enriched within one or 
more pathways, suggesting the proteins belonging to the same module had coordinated 
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functions (Additional file 1: Fig. S20a). We also noticed that the expression of the pro-
teins in the same module tended to have consistent correlations with the PC1 scores 
(Additional file 1: Fig. S20b). For example, there were two modules enriched within the 
cell cycle pathway, and all their members had previously been identified as PC1-posi-
tively correlated proteins.

Associating z‑statistics with the mutation landscapes of the HCC patients

To search for potential driver mutations of proteomic variation across the HCC patients, 
we performed a quantitative trait locus (QTL) analysis that was aimed at identifying sig-
nificant gene-protein associations, in the sense that the abundance of the protein was 
significantly associated with the mutation status of the gene. For each candidate gene-
protein pair, the z-statistics of the protein in tumor samples were linearly regressed 
against the (non-silent somatic) mutation indicators of the gene, with the age and gen-
der variables properly accounted for by treating them as covariates. One hundred twelve 
genes with non-silent somatic mutations in at least 10 HCC patients were used for this 
analysis, resulting in 2031 significant gene-protein associations in total (BH-adjusted 
p-value < 0.05). Notably, the vast majority (98.3%) of these associations were attributed 
to 5 genes, which were CTNNB1, TP53, AXIN1, TSC2, and RB1 (Fig. 6a). For these 5 
hotspot genes, we evaluated their associations with the PC1 scores. Both AXIN1 and 
TSC2 showed a tendency to mutate at tumor samples with relatively large PC1 scores, as 
suggested by two analysis results: (i) the tumor samples harboring AXIN1/TSC2 muta-
tions had significantly larger PC1 scores than the other tumor samples (Fig. 6b); (ii) the 
mutation rate of AXIN1/TSC2 among the tumor samples in group III was significantly 
higher than in the other two groups (Additional file 1: Fig. S21). No significant PC1 asso-
ciation was observed on the other 3 genes. We also examined the prognostic associa-
tions of the 5 genes. It was found that only TP53 and TSC2 were linked with a significant 
survival difference between mutated and non-mutated patients (Fig. 6c; Additional file 1: 
Fig. S22). Together, these observations implied an important role of TSC2 mutation in 
HCC.

The HCC patients harboring TSC2 mutations had worse survival than the others. 
Moreover, the protein expression of TSC2 itself significantly decreased in those TSC2-
mutated tumor samples (Fig.  6d), suggesting TSC2 could be a tumor suppressor for 
HCC. To further explore this speculation, we assessed the prognostic associations of 
the proteins whose expression was significantly associated with TSC2 mutation as iden-
tified in the previous QTL analysis. By examining the fitted Cox models (Fig.  5c), we 
found that almost all the proteins with increased expression from the mutation of TSC2 
(referred to as class I proteins) were prognosis-unfavorable, and almost all the proteins 
with decreased expression (referred to as class II proteins) were prognosis-favorable 
(Fig. 6e). GO enrichment analysis indicated the class I proteins were enriched within the 
biological process of response to amino acid starvation. Related proteins included quite 
a few belonging to the family of V-ATPases (Fig. 6f ), which plays a vital role in modulat-
ing autophagy, cell invasion, and cell death [53]. Previous studies have also shown that 
the inhibition of V-ATPases considerably restrained the growth, migration, and invasion 
of cancer cells [54]. The class II proteins were enriched within the process of cell–cell 
junction organization. The dysregulation of this process can lead to the loss of cell–cell 
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Fig. 6  Associating z-statistics of reverse-zMAP with mutation landscapes of the HCC patients. a 
Two-dimensional plot displaying the significant gene-protein associations, with Y and X axes representing 
the locations of proteins and mutated genes in the genome, respectively. The total number of proteins 
associated with each mutated gene is also displayed. For a specific gene-protein association, Beta > 0 
suggests the protein has increased expression with the mutation of the gene, and vice versa. b The 
(non-silent somatic) mutation states of each hotspot gene in all the HCC patients. The p-values were derived 
by applying Wilcoxon rank sum test to comparing PC1 scores. c Assessing the survival difference between 
the patients with and without TSC2 mutation. The p-value was derived by applying log-rank test. d Violin 
plots showing the z-statistics of TSC2 in different groups of samples. The p-values were derived by applying 
t-test. e Scatter plot of BH-adjusted p-values against hazard ratios for the proteins whose expression is 
significantly associated with TSC2 mutation (both the p-values and the hazard ratios are from the previous 
fitting of Cox models). These proteins were divided into class I (Beta > 0) and class II (Beta < 0) proteins. f Heat 
map showing the z-statistics of selected class I/II proteins in tumor samples. g Classifying HCC patients of the 
TCGA cohort into three subgroups based on the average RNA expression levels corresponding to the two 
classes of proteins. K-means method was used for this classification. The z-scores associated with each RNA 
were calculated based on log2-FPKM values derived from RNA-seq data. h Assessing the survival difference 
among the three subgroups of TCGA HCC patients by applying log-rank test. i Using western blot to measure 
the expression of TSC2 in HepG2 cell line under different conditions. j, k Using MTT assay, transwell migration 
assay, and plate clone formation experiment to quantitatively assess the influence of TSC2 knock-down on 
the cell proliferation, migration, and colony-forming ability of HepG2 cell line, respectively. Three (MTT assay, 
transwell migration assay) or two (plate clone formation experiment) biological replicates were generated
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adhesion and the onset of epithelial-mesenchymal transition, a crucial event promoting 
cancer cell invasion and metastasis in various types of solid tumors [55–59].

For an independent verification, we again turned to the RNA expression data of the 
TCGA HCC cohort. For each of the two classes of proteins, the corresponding RNA 
expression levels in the tumor tissue of each patient were averaged. The resulting two 
average values were then used as features to classify the patients, producing three sub-
groups of patients (referred to as G1, G2, and G3; Fig. 6g). For these subgroups, G1 was 
associated with the lowest and highest RNA expression for the proteins of class I and II 
respectively, G3 was associated with the highest and lowest RNA expression for the pro-
teins of class I and II respectively, and G2 was associated with intermediate RNA expres-
sion for both classes of proteins. Consistently, we found a significant survival difference 
between these subgroups, with G1 and G3 having the best and worst survival curves, 
respectively (Fig. 6h).

We have also used shRNA to knock down TSC2 in two HCC cell lines (HepG2 and 
Huh7) that expressed wild-type TSC2 (Fig. 6i; Additional file 1: Fig. S23a). For both cell 
lines, the knock-down of TSC2 has led to significant improvements of cell proliferation, 
migration, and colony-forming ability (Fig. 6j, k; Additional file 1: Fig. S23b, c), confirm-
ing the tumor suppressor role of TSC2 in HCC cells.

Identifying hypervariable proteins across tumor samples only

In large-scale cancer studies, researchers may be interested specifically in the proteomic 
heterogeneity across tumor tissues from different patients. In this case, reverse-zMAP 
is applicable as long as the reference samples are designed to be a mixture of protein 
extracts from tumor tissues only. As an illustration, we have applied reverse-zMAP to 
a TMT data set about pediatric brain cancer (PBC) [38]. This data set profiled the pro-
teomes of 218 tumor tissue samples from 199 patients representing 7 different histologi-
cal diagnoses of PBC (Fig. 7a). A reference TMT sample was generated in each MS run 
by using a uniform mixture of representative tumor tissue samples.

After identifying significant hypervariable proteins (3130 proteins in total, with BH-
adjusted p-value < 0.05), we picked out the ones with detected expression in at least 
half of the 218 samples and used the z-statistics of these proteins to classify the sam-
ples. A consensus clustering method [60] was applied, which resulted in 7 subgroups of 
PBC samples associated with distinct molecular characteristics and significantly differ-
ent survival outcomes (Fig.  7a, b). Notably, this proteome-based classification showed 
a statistically significant consistency with the histological diagnoses (chi-square test 
p-value = 8.4e − 45), which was also implied by the fact that 72.8% of the hypervaria-
ble proteins were covered by differentially expressed proteins (identified by msTrawler) 
between any pair of histological types (Additional file 1: Fig. S24). For instance, subgroup 
7 had the smallest group size and was associated with the worst survival curve among 
all the subgroups. Consistently, all the 5 PBC samples in this subgroup were histologi-
cally diagnosed as high-grade glioma (HGG), which is generally associated with rather 
bad prognosis [61]. On the other hand, PBC samples of the same histological type could 
still have distinct protein expression characteristics and be classified into different sub-
groups. For example, the samples diagnosed as ependymoma were primarily distrib-
uted in subgroups 3 and 4. By performing a hierarchical clustering for the hypervariable 
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proteins, we observed several protein clusters with distinct expression levels between 
the two subgroups of samples, including a protein cluster that was significantly enriched 
in the biological pathways of DNA replication and cell cycle (Fig. 7a). The overall expres-
sion of this protein cluster was clearly higher in subgroup 4 than that in subgroup 3, 
which was consistent with the survival difference between the two subgroups (Fig. 7b). 
Intriguingly, this survival difference was still significant when we specifically picked out 
the ependymoma samples (Fig.  7c), suggesting different molecular characteristics of 
PBC samples with the same histological diagnosis could be biologically meaningful.

In practice, label-free proteomic quantification methods are also frequently used in 
large-scale cancer studies [13, 62]. This technique, unlike ILMS, enables the generation 
of unlimited samples without introducing any labels [63]. In principle, reverse-zMAP 
can be applied to label-free proteomic data sets by treating all the included samples as 

Fig. 7  Identifying hypervariable proteins across tumor samples only. a Heat map showing the z-statistics of 
significant hypervariable proteins across the PBC tumor samples. Only the proteins with detected expression 
in at least half the samples are displayed. Representative biological pathways for the protein clusters (from 
KEGG enrichment analysis) are also shown. b Kaplan–Meier curves showing overall survival (OS) for patients 
associated with the 7 subgroups of the PBC tumor samples. The p-value was derived by applying log-rank 
test. c Kaplan–Meier curves for the PBC tumors diagnosed as ependymoma in subgroups 3 and 4. d Heat 
map showing the z-statistics of significant hypervariable proteins identified across the tumor samples of the 
HCC label-free data set. e Kaplan–Meier OS curves for the 3 subgroups of the HCC tumors
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from a single MS run (the zMAP module is not applicable because the distribution of 
missing values is not consistent across label-free samples, resulting in different num-
bers of degrees of freedom associated with the observed variances of different proteins). 
Here, we collected a label-free data set that profiled the proteomes of 101 early-stage 
HCC tumor samples [13]. For identifying hypervariable proteins across these samples, 
reverse-zMAP required a reference profile representing the “average” proteomic land-
scape of them. Such a proteomic sample, however, had not been designed for the data 
set. We therefore created a pseudo reference profile by averaging the 101 samples, in the 
same manner as achieved by the zMAP module (see also “Discussion”). Next, reverse-
zMAP was applied to transforming the M-values of each sample against the pseudo 
reference profile into z-statistics. It was found that the signal measurements of this 
label-free data set were associated with clear mean–variance dependence, as suggested 
by large variability of M-values derived from low intensity levels (Additional file 1: Fig. 
S25a). This dependence was effectively diminished by the z-transformation of reverse-
zMAP (Additional file 1: Fig. S25b).

In total, 2567 significant hypervariable proteins were identified by reverse-zMAP 
(BH-adjusted p-value < 0.05). We next picked out the ones with detected expression in 
all the 101 samples and used the z-statistics of these proteins to classify the samples, 
which produced 3 subgroups of samples with distinct protein expression signatures and 
significantly different survival outcomes (Fig.  7d, e). We also performed a hierarchi-
cal clustering for the significant hypervariable proteins, resulting in 3 protein clusters 
enriched in different biological pathways (Fig. 7d). One of the clusters was enriched in 
metabolic pathways associated with normal liver function, including drug metabolism 
[42], metabolism of xenobiotics by cytochrome P450 [64], and retinol metabolism [40]. 
Consistently, this protein cluster exhibited the highest and lowest overall expression in 
the sample subgroups with the best (subgroup 2) and worst (subgroup 1) survival curves, 
respectively. Another protein cluster was enriched in the pathway of DNA replication 
and showed, consistently, the lowest overall expression in subgroup 2.

Discussion
In the study, we developed zMAP toolset to facilitate the analysis of large-scale ILMS 
data sets. It calculates the M-values of each sample against the corresponding (pseudo) 
reference profile and accounts for the different uncertainty of these M-values by mod-
eling the associated mean–variance dependence, from which a variance stabilizing 
z-transformation is devised to improve the comparability of ILMS intensities across MS 
runs. The transformed z-statistics, as a new kind of measurements of protein abundance, 
can be directly used to integrate samples from multiple MS runs and perform a variety 
of downstream analyses on them. Besides the identification of hypervariable proteins, 
we have shown in the study that the z-statistics can be effectively used for PCA, clus-
tering of proteins/samples, association analysis with survival/mutation data of cancer 
patients, GSVA, and construction of co-expression network.

A Web-based application of zMAP toolset is provided at http://​bioin​fo.​cemps.​ac.​cn/​
shaol​ab/​zMAP, with many of the downstream analyses available for users to choose 
from (Fig. 8). Both the zMAP and reverse-zMAP modules have been implemented in 

http://bioinfo.cemps.ac.cn/shaolab/zMAP
http://bioinfo.cemps.ac.cn/shaolab/zMAP
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this application. In practice, these two modules are expected to be sufficient for han-
dling most cases, yet there are indeed scenarios where neither of them is applicable.

Firstly, the reverse-zMAP module can only be used to identify hypervariable pro-
teins around the biological state represented by the internal reference samples (since 
the reference profiles employed by zMAP module are created by averaging real sam-
ples, users can select only the samples across which the hypervariable proteins are 
of interest as the input of zMAP module, provided the requirement for applying this 
module is satisfied). For example, if the internal reference samples of a cancer data 
set are generated from a mixture of both NATs and tumor tissues of different patients 
(just as those of the HCC TMT data set), then reverse-zMAP is not able to directly 
identify the hypervariable proteins specifically across the tumor samples. The sec-
ond point regards the applicability to label-free proteomic data sets. As previously 
mentioned, our toolset can be applied to such a data set by treating all the included 
samples as from a single MS run. The application of zMAP module, however, is hin-
dered by the distribution of missing values, which is not consistent between different 
samples. Applying reverse-zMAP, on the other hand, requires a real reference sample 
(better represent the average of the other samples) for its statistical model to rigor-
ously hold. Such a reference sample is not always available for a practical label-free 

Fig. 8  The overall structure of a Web server based on the zMAP toolset
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data set. If that is the case, reverse-zMAP is still applicable by averaging the included 
samples to create a pseudo reference profile (just as for the HCC label-free data set), 
only that it will cause a flaw in the theoretical derivation of the exact null distribu-
tion of the final chi-square statistic associated with each protein. This flaw might bias 
the resulting p-values, though the effect should be very weak when the sample size is 
large. For future studies, we shall put effort into addressing the above concerns and 
widening the application scope of zMAP toolset.

Conclusions
zMAP has been presented as a computational toolset for analyzing large-scale ILMS 
data sets that involve multiple MS runs. The z-statistics derived by zMAP greatly 
improve the comparability between different MS runs and can be effectively used for a 
variety of downstream analyses. The wide applicability of zMAP as well as its advantages 
over existing methods has been demonstrated on several real proteomic data sets.

Methods
The zMAP module

We first detail how the zMAP module handles ILMS data generated by a single MS 
run. Given protein-level intensities of a set of n samples generated from the same MS 
run, zMAP first normalizes them based on trimmed total intensities [29]. Let Sji denote 
log2-normalized intensity of protein i in sample j . zMAP assumes all Sji independently 
follow normal distributions, with the mean and variance parameters linked by an 
unknown MVC (denoted by f (·) ). Formally, for each protein i that is not associated with 
hypervariable expression across the n samples, we have

 where µi and σ 2
i  are unknown parameters representing the mean expression of protein i 

and the associated intensity variability, respectively.
To fit the MVC, zMAP calculates the sample mean intensity and sample variance for 

each protein i by

Then, the Vi of all proteins are plotted against the corresponding Si , and zMAP uses 
a sliding window to scan this plot from left to right. By default, the number of pro-
teins covered by each window is fixed to 400, and the step size for moving the window 
is 100 proteins (the default settings were adopted throughout the whole study). Since 
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the proteins grouped in the same window are expected to have similar mean expression, 
zMAP makes an approximation by deriving a single variance estimate for each window. 
For each non-hypervariable protein i , 

we havewhere χ2
n−1 refers to the chi-square distribution with n− 1 degrees of freedom. 

Accordingly, zMAP derives the variance estimate for a specific window by performing 
a quantile regression, in which the enclosed Vi are ordered and are linearly regressed 
against the corresponding theoretical quantiles of χ2

n−1/(n− 1) . To avoid the influ-
ence of underlying hypervariable proteins, only a certain proportion (30% by default) 
of the smallest Vi are used for this regression. The method of least squares is used to fit 
a straight line through the origin, and the fitted slope is taken as the variance estimate.

zMAP next fits the global MVC by regressing the variance estimates from all win-
dows against the corresponding average Si (the average Si associated with each window 
is calculated over the proteins used for the quantile regression). Two optional meth-
ods have been designed for the MVC fitting, which are suited to iTRAQ and TMT 
data respectively. The first method fits an exponential decay function in the form of 
σ 2

= exp(θ1 + θ2 · µ)+ θ3 , based on the least squares criterion. If the fitted θ3 is nega-
tive, it is set to 0 and the other two parameters are re-estimated. The second method 
employs natural cubic spline interpolation to fit the MVC. The number of degrees of 
freedom is set to 3, and the number of knots is set to 3 or 4, depending on which setting 
leads to the better R2.

Finally, zMAP performs a z-transformation of all Sji based on the fitted MVC:

It also identifies potential hypervariable proteins by comparing the sample variance 
of each protein with the corresponding variance implied by the MVC. Formally, the key 
statistic for protein i , named χ2-statistic, is calculated as Qi = (n− 1)Vi/f

(

Si
)

 , which is 
subsequently compared to the χ2

n−1 distribution for deriving a p-value (i.e., the upper-
tailed probability).

For integrating zMAP results across MS runs, the z-statistic matrices are simply con-
catenated. Besides, the key statistics for each protein, along with the associated num-
bers of degrees of freedom, are summed, producing a p-value that assesses the overall 
expression variability of the protein. The results of applying zMAP to the iTRAQ data 
set regarding human erythropoiesis are given in Table S1 in Additional file 3.

In vitro erythroid differentiation of human fetal HSPCs

Primary human fetal CD34+ HSPCs were purchased from iXCells Biotechnologies. Fetal 
erythroid lineages were generated in vitro using a two-phase suspension culture system 
as described previously [65]. Briefly, human fetal CD34+ HSPCs were firstly expanded 
in StemSpan SFEM medium (StemCell Technologies Inc.) with 1 × CC100 cytokine 
mix (StemCell Technologies Inc.) and 2% penicillin/streptomycin for 6 days. Cells were 

(5)Vi ∼ σ 2
i ·

χ2
n−1

n− 1
,

(6)Z
j
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√
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Si
)

.
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maintained at a density of ~ 5 × 105 cells/ml with media changes every 2 days during the 
initial expansion stage. Expanded HSPCs were collected on day 6 and differentiated in 
StemSpan SFEM medium supplied with 1 U/ml erythropoietin, 5 ng/ml IL-3, 20 ng/ml 
SCF, 2 μM dexamethasone, and 1 Μμ estradiol and 2% penicillin/streptomycin for addi-
tional 6 days. Cells were maintained at a density of less than 1 × 106 cells/ml by supple-
menting cultures with fresh media every 2 days.

shRNA targeting human S100A8, S100A9, CHI3L1, and PNMT were subcloned into 
the lentiviral pLKO.1-puro vector by EcoRI and AgeI sites. Insertion of shRNA was vali-
dated by Sanger sequencing. Cells transduced with empty vector were used as control.

Erythroid differentiation of fetal HSPCs on day 6 was analyzed on FACSfortessa (BD 
Biosciences) for CD71 and CD235a expression using the antibodies conjugated to phy-
coerythrin (PE) and fluorescein isothiocyanate (FITC), respectively. Dead cells were 
excluded by DAPI staining. Erythroid lineages were defined by cell surface markers for 
CFU-E (CD71+CD235a−), Erythroblast (CD71+CD235a+), and mature erythroid cells 
(CD71−CD235a+). Data were analyzed by using FlowJo 7.6.1.

The reverse‑zMAP module

We detail here how reverse-zMAP integrates ILMS samples across MS runs. Sup-
pose there is a biologically identical reference sample in each MS run. Reverse-zMAP 
achieves the integration by separately comparing each sample to the corresponding ref-
erence sample and transforming the resulting M-values into z-statistics.

Given protein-level intensities of an ILMS sample generated from some MS run and 
the corresponding reference sample, reverse-zMAP first normalizes these two samples 
based on trimmed total intensities33. Let ri and Si denote log2-normalized intensities of 
protein i in the reference sample and the other one, respectively. Let Mi = Si − ri be 
the M-value of protein i . Reverse-zMAP assumes the Mi of all non-differential proteins 
independently follow normal distributions, with the mean and variance parameters 
modeled as functions of ri (all ri are treated as non-stochastic in the statistical framework 
of reverse-zMAP). Formally, for each non-differential protein i , we have

Here, f (·) is an unknown MVC; g(·) is referred to as an M-A curve and is essentially 
used to account for normalization biases.

To fit the two curves, the Mi of all proteins are plotted against the corresponding ri , 
and reverse-zMAP applies the same sliding-window procedure as used by the zMAP 
module to scanning this plot. For each specific window, the enclosed proteins are asso-
ciated with similar ri , and reverse-zMAP makes an approximation by deriving a single 
estimate of the corresponding g(ri) and f (ri) . For this estimation, the Mi of the enclosed 
proteins are ordered and are linearly regressed against the corresponding theoretical 
quantiles of the standard normal distribution. To avoid the influence of differential pro-
teins, only the middle 50% (by default) of the Mi are used for this regression. The least 
squares method is adopted to fit a straight line. The fitted intercept is taken as the esti-
mate of g(ri) , and the square of the slope is the estimate of f (ri).

Next, reverse-zMAP pools the f (ri) estimates from all windows and regresses them 
against the corresponding average ri . The same MVC fitting procedure as used by the 

(7)Mi ∼ N
(

g(ri), f (ri)
)
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zMAP module is adopted for this regression. For fitting g(·) , the g(ri) estimates are 
pooled and the natural cubic spline interpolation method is applied. Finally, reverse-
zMAP applies a z-transformation to each Mi by

To integrate ILMS samples across MS runs, reverse-zMAP repeatedly applies the 
above procedure to each (non-reference) sample. The resulting z-statistic vectors are 
then combined to get the final z-statistic matrix. After that, the z-statistics associated 
with each protein are squared and summed, and the result is compared to the corre-
sponding chi-square distribution to get a p-value. The results of applying reverse-zMAP 
to the TMT data sets about serous ovarian carcinoma cell lines, HCC patients, PBC 
patients, and the HCC label-free data set are given in Tables S2-S5 in Additional file 3.

Pathway enrichment analysis for the PC1‑correlated proteins

Gene sets of biological pathways were downloaded from the Molecular Signatures Data-
base (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb) [66]. Fisher’s exact test was used to 
evaluate the enrichment of PC1-positively/negatively correlated proteins within each 
biological pathway, with the background protein set limited to those proteins that were 
detected in at least half of the TMT samples.

Classification for the HCC TMT data set

The HCC patients were hierarchically clustered based on the PC1 scores of their tumor 
samples. We first invoked the cluster.hierarchy.linkage function of the scipy 
package to generate a linkage matrix, with the parameter setting method = “com-
plete”. Then, the linkage matrix was passed to the cluster.hierarchy.fclus-
ter function, with criterion = “maxclust” to form flat clusters. The number of 
clusters was empirically set to 3.

Functional assays of NPC1, UBE2C, and TSC2 in HepG2 and Huh7 cell lines

The human liver cancer cell lines HepG2 and Huh7 were obtained from American Type 
Culture Collection (ATCC). Cells were grown in an incubator at 37 °C under 5% CO2, 
and supplemented in DMEM medium (Gibco) contained with 10% fetal bovine serum 
(Biological Industries) and 100 units/ml penicillin and streptomycin (Gibco).

For the overexpression of UBE2C, the template for PCR of UBE2C was purchased 
from Bio-Research Innovation Center Suzhou (plasmid number, SP-100953). It was then 
inserted into pCDH-CMV vector to construct pCDH-CMV-UBE2C plasmid, which 
was used to overexpress UBE2C in the cells. For the knock-down of NPC1 or TSC2, the 
corresponding shRNA was constructed into PLKO.1 vector. All the plasmids including 
packaging ones were transfected into human embryonic kidney (HEK) 293 T cells using 
lipofectamine 3000 regent (L3000008, Thermo Fisher Scientific) to package and release 
the virus according to the instructions. Then, HepG2 and Huh7 cells were cultured and 
infected with virus to achieve stable overexpression or knock-down.

For the MTT assays, HepG2 and Huh7 cells were seeded in 96-well microplate at a den-
sity of 2 × 103 cells per well in 100 μL culture medium and were detected at 12, 36, 60, 84, 

(8)Zi =
Mi − g(ri)
√

f (ri)
.

https://www.gsea-msigdb.org/gsea/msigdb
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and 108 h respectively. Next, 10 μL of MTT solution (5 mg/ml, Sigma) was added to each 
well, which was then incubated for 4 h. After that, the supernatants containing MTT were 
discarded, and we added 100 μL/well DMSO to dissolve formazan crystals. Finally, the plate 
was recorded at the absorbance of 490 nm. Data were repeated three times.

For the transwell assays, cells were seeded in the upper layer of 12-well Transwell plates 
(Corning) by 10,000 cells per well, which diluted in serum-free DMEM medium contained 
with 2% BSA. DMEM medium contained with FBS was added to the lower layer. After cul-
turing for 20 or 24 h, the cells were fixed with 4% PFA and were stained by crystal violet.

For protein extraction, cells were scraped and lysed in 200 μL RIPA buffer (20 mM Tris–
HCl pH 8.0, 150 mM NaCl, 1% NP40, 1% SDS, 10 mM NaF) containing protease inhibitors 
(aprotinin, pepstatin, leupeptin, vanadate, PMSF). Cell lysates were incubated on ice for 
30 min and were centrifuged at 12,000 g for 10 min at 4 °C, and the supernatant was then 
harvested. Proteins were quantified by using the Pierce™ BCA (Thermo Scientific™), and 
were boiling with SDS loading.

For western blot, samples were separated by 10% SDS-PAGE and were transferred to 
PVDF membrane (Millipore) for 200 mA, 120 min. Then, the membranes were sealed in 
5% defatted milk and were blotted with antibody for 4 °C overnight. On the second day, the 
membranes were rinsed with PBST for 3 × 10 min and were then incubated with second-
ary antibody for 1 h at RT. Finally, the membranes were rinsed with PBST for 3 × 10 min 
to develop by ECL chemiluminescence (Millipore). The first antibodies were UBE2C (San-
taCruz), NPC1 (SantaCruz), TSC2 (Abclonal), HSP90 (CST), Actin (Proteintech). The 
secondary antibodies were purchased from Jackson immune research (115–035-003 and 
111–035-003).

All the data were repeated two or three times, and all the related comparison analyses 
were performed by applying t-test. The marks *, **, and *** suggested a p-value less than 
0.05, 0.01, and 0.001, respectively.

Applying the GSVA method to the z‑statistic matrix of the HCC TMT data set

Gene sets of KEGG pathways were downloaded from the MSigDB. Then, the gsva function 
of the gsva package (v1.44.3) was invoked with the parameter setting kcdf = “none”, 
since the z-transformation performed by reverse-zMAP had made the expression measure-
ments of different proteins comparable with each other.

QTL analysis for the HCC TMT data set

We first picked out the genes that were associated with non-silent somatic mutations in at 
least 10 of the HCC patients, resulting in 112 genes in total. Then, we picked out the pro-
teins whose expression was detected in at least half of the tumor samples, resulting in 8935 
proteins in total. Finally, for each candidate gene-protein pair, we performed a regression 
of the protein expression against the mutation status of the gene using MatrixEQTL [67] 
(v2.3) package in R (v4.2.1), by fitting the following linear model:

Y = α + βX + γ S + δA+ ε,

ε ∼ N
(

0, σ 2I
)

.
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Here, Y  was a vector of the z-statistics (derived by reverse-zMAP) of the protein in 
tumor samples; X was the non-silent somatic mutation indicators of the gene; S and A 
referred to the sex and age variables, respectively; ε was a vector of independent and 
identically distributed noise variables; α , β , γ , and δ were unknown parameters. This 
model was fitted by applying the least squares method, and the null hypothesis β = 0 
was then tested by applying the t-test.

Co‑expression network construction and module detection

A protein co-expression network was constructed for the HCC TMT data set, based on 
the z-statistics (derived by reverse-zMAP) associated with the 159 tumor samples. Only 
the 8935 proteins that were detected in at least half of the tumor samples were used for 
this analysis. First, the KNN method was used to impute missing values in the z-statistic 
matrix. Then, the PTCCs for all protein pairs were calculated by a previously developed 
method for covariance matrix estimation [68]. Finally, the statistical significance of each 
PTCC was assessed based on a mixture model [69], which computed a local FDR esti-
mate to describe the probability of observing it under null hypothesis. Technically, this 
step was done by applying the network.test.edges function in the GeneNet pack-
age (v1.2.16) in R to the estimated PTCCs, with the default parameter settings. For con-
structing the co-expression network, an edge was added to link a protein pair if and only 
if the corresponding PTCC was positive and significant (by default, the local FDR < 0.2).

After constructing this network, we specifically took out the sub-network consisting of 
the identified hypervariable proteins and the associated edges. Module detection for this 
sub-network was performed by the WGCNA [70] package (v1.70–3) in R. Functional 
annotation for each detected module was performed by identifying enriched biological 
processes. In detail, we downloaded GO, Reactome, KEGG, and BioCart gene sets from 
the MSigDB, and Fisher’s exact test was used to search for significantly enriched ones 
(BH-adjusted p-value < 0.05). Associated network visualization was realized by using 
Cytoscape (v3.8.0) [71].

Downstream analyses for the PBC TMT data set

Missing values were imputed by using the mean value of five nearest neighbors with 
the Python function sklearn.impute.KNNImputer (v1.2.1). Consensus cluster-
ing of the PBC samples was performed by using the ConsensusClusterPlus R pack-
age (v1.66). The associated parameter settings were as follows: number of repetitions 
is 1000 bootstraps; pItem = 0.8 (resampling 80% of any sample); pFeature = 1; 
distance = “euclidean”; clusterAlg = “km” (K-means). Hierarchical ward-
linkage clustering of the proteins used for sample clustering was performed based on 
the correlation distance with the Python function scipy.cluster.hierarchy.
fcluster (v1.10.0), with criterion = “maxclust”. For a better visualization of 
the protein expression heat map, smoothing was applied to the corresponding z-sta-
tistic matrix by using the Python function scipy.ndimage.gaussian_filter (v1.10.0), with 
sigma = 1. Pathway enrichment analysis for each protein cluster was performed by using 
the Python function gseapy.enrichr (v0.9.5), with gene_sets = “KEGG_2021_
Human”. Pathways with BH-adjusted p-value < 0.05 were considered to be significant. 
A log-rank test was performed to compare the survival outcomes among the subgroups 
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of PBC samples. The associated Kaplan–Meier survival curves were plotted by using 
the Python function lifelines.KaplanMeierFitter (v0.27.8). For this survival 
analysis, only the patients with a follow-up time shorter than 3600 days and longer than 
5 days, excluding the ones who died because of unknown reasons or reasons other than 
the disease, were involved (resulting in 190 patients in total).

Downstream analyses for the HCC label‑free data set

The HCC samples were classified into three subgroups by using K-means with the 
Python function sklearn.cluster.KMeans (v1.2.1). The significant hypervariable 
proteins with detected expression in at least half of the HCC samples were hierarchically 
clustered by using the same method as applied to the PBC data set. Pathway enrichment 
analysis for each protein cluster and the survival analysis (the log-rank test and the plot-
ting of Kaplan–Meier curves) were conducted with the same methods as well.
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