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Abstract 

Background:  During aging, the human methylome undergoes both differential 
and variable shifts, accompanied by increased entropy. The distinction between vari-
ably methylated positions (VMPs) and differentially methylated positions (DMPs), their 
contribution to epigenetic age, and the role of cell type heterogeneity remain unclear.

Results:  We conduct a comprehensive analysis of > 32,000 human blood methy-
lomes from 56 datasets (age range = 6–101 years). We find a significant propor-
tion of the blood methylome that is differentially methylated with age (48% DMPs; 
FDR < 0.005) and variably methylated with age (37% VMPs; FDR < 0.005), with consider-
able overlap between the two groups (59% of DMPs are VMPs). Bivalent and Polycomb 
regions become increasingly methylated and divergent between individuals, while qui-
escent regions lose methylation more uniformly. Both chronological and biological 
clocks, but not pace-of-aging clocks, show a strong enrichment for CpGs undergoing 
both mean and variance changes during aging. The accumulation of DMPs shifting 
towards a methylation fraction of 50% drives the increase in entropy, smoothen-
ing the epigenetic landscape. However, approximately a quarter of DMPs exhibit 
anti-entropic effects, opposing this direction of change. While changes in cell type 
composition minimally affect DMPs, VMPs and entropy measurements are moderately 
sensitive to such alterations.

Conclusion:  This study represents the largest investigation to date of genome-wide 
DNA methylation changes and aging in a single tissue, providing valuable insights 
into primary molecular changes relevant to chronological and biological aging.

Background
All humans experience similar aging symptoms with chronological time; however, 
the degree and speed at which these changes occur varies between individuals, lead-
ing to inter-individual differences in the time of onset and severity of age-associated 
disease and disability (i.e., individuals who are the same chronological age will dif-
fer in their “biological” age) [1]. Aging is initiated at the basic level of biological 
organization and is hypothesized to be underpinned by 12 interconnected hallmarks 
[2], including alterations to the epigenome, a focus of this research [2]. Specifically, 
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the age-associated changes in DNA methylation (DNAm), which accrues numer-
ous, widespread changes. Of importance are two distinct linear changes: differ-
ential and variable patterns of DNAm. Age-associated differentially methylated 
positions (DMPs) capture age-related DNAm changes that are shared between indi-
viduals, whereas age-associated variably methylated positions (VMPs) capture DNAm 
changes that diverge between people over the lifespan [3]. It is therefore plausible that 
at the epigenetic level, two individuals with identical chronological ages (and patterns 
of DMPs) may display divergent patterns across VMPs. Albeit DMPs and VMPs are 
not mutually exclusive (i.e., a CpG can be both a DMP and a VMP), both features may 
contribute to age-associated DNAm changes, but in fundamentally different ways. 
Insights into epigenetic aging can also be drawn from quantifying the changes at the 
whole methylome level using single measurements of entropy, a probability formula 
that estimates the amount of information in a set of CpGs averaged across a popula-
tion of cells [3]. In blood, an increase in entropy over time implies increasing age-
related “methylation disorder,” implying the methylome loses information with age 
[3]. Entropy can summarize all the age-related changes in DNAm using a single value, 
for a sample at a particular age, making it a highly useful in capturing the entirety of 
the age-related changes in the methylome. Previous literature has shown that DMPs 
shifting towards a methylation fraction of 50% drive entropy [4, 5], but there are also 
subsets of DMPs that trend away from the mean and may oppose or counteract the 
effect [6].

The vast majority of studies have solely investigated DMPs, including epigenetic 
clocks, which may favor DMPs for accuracy of prediction. However, focusing only on 
patterns of DMPs is limiting when trying to understand aspects of biological aging, par-
ticularly when making sense of why individuals of the same age display vastly different 
aging rates. Yet our knowledge of the extent to which the methylome is differentially 
and variably methylated with age is limited, since much of our understanding to date 
has been drawn from smaller, isolated datasets, such as Slieker et al. (~ 3000 samples) 
and Hannum et al. (~ 650 samples) [4, 7]. Another complexity in human studies is that 
cohorts are also highly heterogenous in their characteristics (e.g., sex distribution, dis-
ease status, ethnicity, age), making it challenging to generalize findings drawn from 
individual cohorts. Furthermore, detecting DMPs and especially VMPs requires a large 
sample size and a broad age range, so it is possible that important epigenetic aging pat-
terns have been missed in previous studies due to insufficient statistical power. Moreo-
ver, no studies to date have investigated the contribution of VMPs to changes in entropy.

To address these gaps, we performed a large-scale epigenome-wide association study 
(EWAS) meta-analysis of age in whole blood. Leveraging the statistical power from 
56 whole blood datasets of > 32,000 samples, we quantified the age-associated DNAm 
changes, distinguishing between shared changes (DMPs) and divergent changes (VMPs) 
over the life course. In addition, we sought to understand how entropy changes and how 
DMPs and VMPs contribute to these entropy dynamics, including those linear changes 
that trend towards and away from the mean. We also explored the effect of cellular 
heterogeneity on these age-associated signatures, since bulk tissue analyses reflect the 
aggregate cell type DNAm changes as well as age-related changes in cellular composi-
tion. We performed cell type correction in addition to an unadjusted analysis [8].
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With unprecedented statistical power and a comprehensive investigation of epigenetic 
signatures of aging in blood, our study shows the sheer scale of differential and variable 
methylation in human aging, with important implications for chronological and biologi-
cal aging. Such insights will serve as a foundation for studying the effects of lifestyle, die-
tary, or pharmaceutical interventions on aging signatures, an approach that was recently 
shown by our group to successfully capture the rejuvenating effects of exercise training 
on age-associated DMPs in muscle [9].

Results
Methodology overview

Briefly, the first step in the methodology was to gather existing DNAm datasets from 
public open access and controlled access data repositories, to assemble an exhaustive 
database of DNAm profiles in blood (Fig. 1, Additional file 1: Fig. S1). We collected 56 
whole blood datasets with a combined sample size of 32,136 samples (Additional file 1: 
Fig. S1, Additional file 2: Table S1) [10–63]. This large database of human methylomes 
spanned a broad age range (6–101 years) and laid a solid foundation to quantify DMPs, 
VMPs, and entropy in each dataset.

Our analysis began with identifying the linear age-related DNAm changes at indi-
vidual CpGs (i.e., DMPs and VMPs). To identify DMPs, we completed an independent 
EWAS by fitting a linear model for each dataset, regressing DNAm against age and other 
covariates that are known to modulate DNAm levels (i.e., sex, ethnicity, batch, body 
mass index (BMI)) (Additional file 2: Table S1). We then extracted the summary statis-
tics (i.e., the age-related change in DNAm level) from each EWAS and conducted an 
inverse variance-based fixed-effects meta-analysis of differential methylation andage. To 

Fig. 1  Overview of methodology. Raw DNAm profiles from the 27 K, 450 K, and EPIC Illumina Array platforms 
were sourced from open-access and controlled access databases, including ArrayExpress, GEO, EGA, dbGaP, 
and independent labs. The DNAm profiles of 32,136 samples were collected and pre-processed, for both 
males and females, from 56 datasets in whole blood (first panel). The relationship between age and average 
DNAm, or the relationship between age and DNAm variance, or the relationship between age and entropy 
was estimated in each dataset independently (second panel). For each CpG and for entropy, summary 
statistics were then meta-analyzed across datasets to identify DMPs and VMPs and to determine whether 
entropy was significantly associated with age. We performed a meta-analysis of age for DMPs, VMPs, and 
entropy, by pooling the results from the independent EWAS (third panel). We then performed a functional 
analysis of the DMPs and VMPs to interpret the findings, including pathway analysis, and enrichment in 
chromatin states (fourth panel)
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identify VMPs, we followed a similar approach, using the Breusch-Pagan test for hetero-
scedasticity in each independent dataset, which models the change in DNAm variance 
as a function of age. The summary statistics extracted from the independent EWAS (i.e., 
the age-related change in DNAm variance) were then pooled using a sample size-based 
fixed-effects meta-analysis of variable methylation and age. We then compared age-
related CpGs that were only DMPs (homoscedastic DMPs), those that were only VMPs 
(constant VMPs), and those that were both DMPs and VMPs (DMPs-VMPs). Finally, we 
compared DMPs that carried different degrees of information, as defined by Shannon 
entropy: we compared DMPs that trend towards the mean (entropic DMPs) with those 
that trend away from the mean towards fully methylated and unmethylated states (anti-
entropic DMPs).

Finally, we performed a comprehensive entropy analysis by looking at genome-wide 
Shannon entropy. We took the same statistical approach as with the DMP and VMP 
analyses described above: first, we estimated the strength of the association between 
age and Shannon entropy in each independent cohort; then, we pooled these effect sizes 
across the different cohorts using a fixed-effects meta-analysis to obtain an overall meta-
analysis effect size of change in entropy per decade of age (Additional file 2: Table S2). 
We also calculated entropy on the age-related CpGs (i.e., the complete list of DMPs and 
VMPs) and the remaining non-age-related CpGs, and meta-analyzed the results to com-
pare the change in entropy with age at age-related CpGs vs non-age-related CpGs, eval-
uating whether it is these age-related shifts driving changes in entropy. Then, we took a 
more granular approach and investigated whether different classes of DMPs and VMPs 
contribute differently to entropy measurements (homo-DMPs, constant VMPs, DMPs-
VMPs, or entropic vs anti-entropic DMPs). This allowed us to confirm whether it is the 
differential or variable shifts in DNAm that increase entropy, or both.

Throughout the pipeline, we compared these different classes of age-related changes 
in terms of genomic location (chromatin states profiled in PBMCs [64], annotated thank 
to a comprehensive annotation of the Illumina Methylation arrays [65]), biological path-
ways (gene ontology (GO) terms, human phenotype ontology (HPO) terms, canoni-
cal pathways (CP), expression signatures of genetic and chemical perturbations (CGP), 
and immunologic signatures (C7)), and overrepresentation in various epigenetic clocks 
(chronological age: Horvath’s pan-tissue clock [66], Hannum’s clock [4], the blood clock 
developed by Zhang et al. [67], the centenarian clock [68], and the mammalian universal 
clock [69]; biological age: PhenoAge [70]; pace of aging: DunedinPoAm [71], Dunedin-
PACE [72]). We also explored the effect of cellular heterogeneity on these age-associated 
signatures. CpGs that determine cell identity are typically lowly methylated in a given cell 
type, while being highly methylated in other cell types, and the overall methylation frac-
tion in bulk tissue at those cell-type-specific CpGs would be highly sensitive to changes 
in the relative proportions of different cell types. Aging is associated with an increase in 
monocytes, neutrophils, basophils, NK cells, CD4 + and CD8 + T memory cells, with a 
concomitant decrease in naïve B cells, T-regulatory cells, CD4 + and CD8 + naïve T cells 
[73]. We deconvoluted the proportions for granulocytes, monocytes, natural killer cells 
(NK), CD4 + T cells, CD8 + T cells, and B cells for each sample using a reference-based 
method [74], and repeated all the above-mentioned analyses after adjusting the linear 
model for blood cell type proportions.
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Aging is associated with widespread changes in DNAm levels and increases in DNAm 

variance in blood

With the unprecedented statistical power granted by > 32,000 samples from 56 datasets, 
we found that nearly half of all tested sites (333,300 CpGs) were DMPs (48%) at a strin-
gent FDR < 0.005. Two-thirds of DMPs (66%) decrease in DNAm levels (“hypoDMPs”), 
while the remaining third increase in DNAm levels with age (“hyperDMPs”) (Fig. 2A). 
HyperDMPs increase by an average of 0.027% methylation fraction per year of age, 
noting a maximum increase of 0.46% per year of age for cg26079664, and hypoDMPs 
decrease by an average of − 0.034% per year of age, with the maximum decrease 
of − 0.55% per year of age for cg10501210. Our meta-analysis identified DMPs that were 
highly consistent across datasets. For example, cg16867657, which is in the promoter of 
ELOVL2 and has been associated with aging in a plethora of studies [75–78], was esti-
mated to gain 0.45% DNAm per year of age across the different datasets (Fig. 2B).

There was an inverse correlation between the overall methylation fraction of a CpG and 
the direction of change during aging: DMPs whose DNAm levels were usually high (> 75% 
on average) were overwhelmingly hypoDMPs, while DMPs whose DNAm levels were 
usually low (< 25% on average) were overwhelmingly hyperDMPs (Additional file 1: Fig. 
S2). In contrast, DMPs with intermediate DNAm levels trend equally frequently towards 

Fig. 2  Meta-analyses of EWAS in blood to identify DMPs. A A volcano plot displaying the meta-analysis effect 
size (x-axis) and significance (y-axis) for the 696,228 tested CpGs in the differential methylation meta-analysis 
of age in blood. The strongest associations have the smallest p values and will be the highest points on 
the plot. Hypomethylated (hypoDMP), hypermethylated (hyperDMP), and non-DMPs are represented by 
the colors in the legend. DMPs are classified at a false discovery rate (FDR) < 0.005. The “ceiling” of extremely 
significant p values is an artifact of the software that cannot handle numbers smaller than 2.2 × 10−16. B A 
forest plot of a highly significant CpG (cg16867657), FDR < 2.2 × 10−16. The dataset and sample size are on 
the left side of the plot, with the corresponding effect size and errors represented by the point and error 
bars. The meta-analysis effect size (0.45% change per year of age) is represented by the purple polygon. The 
methylation plots for this CpG from three independent blood cohorts, including GSE40279, GSE152026, and 
Jackson Heart Study (JHS), are displayed on the far right, with age on the x-axis and methylation fraction (MF) 
as a percentage on the y-axis. Each point on the plot represents a single sample
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high and low DNAm levels. For example, in the BIOS dataset (n = 1408) [20], 21% of 
DMPs were considered to have an “intermediate” methylation level, of which 40% gained 
methylation with age, and 60% lost methylation with age (Additional file 1: Fig. S2).

HypoDMPs were overrepresented in quiescent chromatin regions and those weakly 
repressed by Polycomb complexes, while hyperDMPs were overrepresented in biva-
lent promoters and enhancers as well as regions repressed by Polycomb complexes 
(χ2 test p value < 2.2e −16) (Additional file 1: Fig. S3A). Despite being located in distinct 
chromatin states, hypoDMPs and hyperDMPs were found in similar genes (Fisher’s 
exact test p value < 2.2e −16) (Additional file  1: Fig. S3B), for example, signal transduc-
tion and signaling (GO), developmental conditions (HPO), and naïve to memory T-cell 
(C7, immunologic gene set). With the exception of the universal pan-mammalian clock, 
all chronological and biological clocks were enriched for hyperDMPs, and all but the 
Hannum clock for hypoDMPs, with no difference in enrichment for these two classes of 
DMPs in biological vs chronological clocks (Fisher’s exact test FDR < 0.005, Additional 
file 1: Fig. S3C). Pace of aging clocks did not show any enrichment for DMPs (Fisher’s 
exact test FDR > 0.005, Additional file 1: Fig. S3C).

These results remain largely unchanged when the meta-analysis was adjusted for 
cellular heterogeneity (Pearson’s correlation of meta-analyses effect sizes = 0.94, p 
value < 2.2e −16) (Additional file 1: Fig. S4A).

We then meta-analyzed the same 56 whole blood datasets to identify changes in meth-
ylation variability (VMPs) during aging. We identified 243,958 VMPs (37% of tested 
CpGs) at FDR < 0.005, nearly all of which increased in variance (99% of VMPs). The mag-
nitude of the age-related changes in variance is small, for example, the average increase 
in variance across all datasets for the most significant VMP, cg21899500, is 0.01% per 
year of age (Fig. 3A). There was a large overlap between DMPs and VMPs (i.e., a CpG site 
whose average DNAm level changed during aging was also more likely to see its vari-
ance increase with age; Fischer’s exact test p value < 2.2 × 10−16). We identified 196,192 
DMPs-VMPs, 137,108 homoscedastic DMPs (i.e., DMPs only), and 47,766 constant 
VMPs (i.e., VMPs only) (Fig.  3B). Among the DMP-VMPs, 73,357 (37%) increased in 
both average methylation and variance, and 122,835 (63%) decreased in average meth-
ylation but increased in variance.

We compared the distributions of homoscedastic DMPs, constant VMPs, and 
DMPs-VMPs in different chromatin states profiled in PBMCs [64]. Constant VMPs 
were enriched in enhancers and Polycomb regions, DMPs-VMPs in bivalent promot-
ers and enhancers as well as Polycomb regions, and homoscedastic DMPs were in 
quiescent regions (χ2 test p value < 2.2e −16) (Additional file  1: Fig. S5A). The three 
classes of age-related changes were related to a plethora of pathways, very similar to 
hypo and hyperDMPs (Additional file  1: Fig. S5B). All chronological and biological 
clocks were strongly enriched for DMPs-VMPs, while pace of aging clocks was not 
enriched for any kind of age-related CpGs (Additional file 1: Fig. S5C). Homoscedas-
tic DMPs were overrepresented in the pan-tissue clock but depleted in Zhang et al.’s 
clock. Constant VMPs were depleted in two chronological clocks but were overrepre-
sented in the PhenoAge.

We repeated the VMP meta-analysis after adjusting for blood cell type composi-
tion and as for the DMP analysis, results remained largely unchanged (Pearson’s 
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correlation of meta-analyses Z score = 0.93, p value < 2.2e −16) (Additional file  1: 
Fig. S4B). However, VMPs seemed to be more sensitive than DMPs to confounding 
by cell type proportions, as more than a third of VMPs (37%) were only significant 
in the meta-analysis not adjusted for cell types. With that said, an additional 5913 
CpGs were classified as VMPs (4%) only after we adjusted for cell types. We identified 
159,166 VMPs (22% of tested CpGs) after correcting for cell type composition.

Fig. 3  Meta-analyses of EWAS in blood to identify VMPs. A A forest plot of the top VMP (cg21899500), 
FDR < 2.2 × 10−16, that is hypermethylated with age and increases in variance with age. The dataset and 
sample size are on the left side of the plot, with the corresponding effect size and errors represented by the 
point and error bars. The methylation plots for this CpG from three independent blood cohorts, including 
GSE40279, GSE152026, and Jackson Heart Study (JHS), are displayed on the far right, with age on the x-axis 
and methylation fraction (MF) as a percentage on the y-axis. Each point on the plot represents a single 
sample. B Venn diagram of the overlap between DMPs and VMPs. The numbers in each circle represent the 
number of CpGs that are DMPs only (left), both DMPs and VMPs (middle), and VMPs only (right). The arrows 
point to an example of each category of age-related CpG displayed as a methylation plot, with age on the 
x-axis and methylation fraction (MF) as a percentage on the y-axis. Each point represents a single sample
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Entropy increases in the aging blood methylome, driven by the cumulative changes 

in differential but not variable methylation at entropic CpGs

We determined whether the aging blood methylome increases in entropy (“chaos”) with 
age, and what type of epigenetic changes underpin this phenomenon. Entropy captures 
the amount of information encoded by the epigenome: if a CpG is highly (~ 100%) or 
lowly (~ 0%) methylated, this implies that said CpGs is highly “predictable” over all 
cells in a given sample; conversely, if a CpG has a methylation fraction closer to 50%, 
it is deemed “unpredictable” across cells within a sample. As the methylation state of 
genes determines cellular identity and therefore cellular function, entropy (i.e., “chaos”) 
increases when multiple CpGs throughout the genome drift towards a methylation frac-
tion of 50%. An entropy of 0 means that every CpG is either methylated at 0% or 100%, 
and an entropy of 1 means that every CpG is methylated at exactly 50% [3]. In these 
two opposite scenarios, the methylome of a cell is either entirely predictable, or entirely 
unpredictable.

When taking all CpGs into account (both age- and non-age-related CpGs), we 
observed a very small but significant increase in entropy of 0.0005 per decade of age 
(p value < 0.0001), with substantial heterogeneity between cohorts (I2 = 88%) (Additional 
file 1: Fig. S6).

As an increase in entropy with age reflects a drift towards a methylation fraction of 
50% over multiple CpGs, we hypothesized that the increase in entropy would be driven 
by age-related CpGs (DMPs and/or VMPs). We re-calculated entropy in each sam-
ple from each dataset, but only considering the methylation levels at age-related CpGs 
(Additional file 2: Table S2). As a “control,” we also re-calculated entropy in each sample 
from each dataset, but only considering the methylation levels of non-age-related CpGs. 
In line with our hypothesis, we found that non-age-related CpGs do not contribute to the 
global increase in entropy with age, with a meta-analysis effect size of − 0.0003 change in 
entropy per 10 years of age (p value < 0.0001, I2 statistic 46%) (Fig. 4A). In contrast, age-
related CpGs increase in entropy by 0.002 per decade of age (p value < 0.0001, I2 statistic 
85%) (Fig. 4A). Moreover, the baseline entropy (i.e., the entropy value at the youngest age 
in a particular dataset) for the non-age-related sites is lower than the baseline entropy 
for the age-related sites (Fig. 4B). This can be explained by the fact that there are more 
CpGs with intermediate methylation levels among age-related sites (~ 20%), than non-
age-related sites (~ 1%).

To dissect the respective contributions of differential or variable methylation 
to changes in entropy, we calculated entropy for two datasets with a large sam-
ple size and broad age range (BIOS and FHS) [20, 23] (Additional file  2: Table  S1) 
on homoscedastic DMPs, DMPs-VMPs, and constant VMPs (Additional file  1: Fig. 
S7A, Additional file 2: Table S3), and regressed entropy against age in each category. 
DMPs-VMPs display the largest significant increase in entropy during aging. We also 
observed that entropy significantly increases at homoscedastic DMPs, however, is 
lower both overall and at baseline than for DMPs-VMPs, which reflects the type of 
CpG affected by differential methylation or by a change in variance. While both DMPs 
and VMPs affect CpGs whose methylation levels start at high or low levels, VMPs 
have a greater proportion of CpGs with intermediate DNAm levels at baseline (~ 28% 
of VMPs are intermediately methylated vs ~ 20% of DMPs). While the overall entropy 
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at CpGs that are only VMPs (i.e., constant VMPs) is high, we observed a decrease in 
entropy at those sites that was significant in only one of the two examined datasets 
(Additional file 1: Fig. S7A, Additional file 2: Table S3), suggesting that it is the dif-
ferential shifts in DNAm towards the mean that contribute to the overall increases in 
entropy with age.

To further our investigation into the contribution of DMPs to changes in entropy, 
we used the BIOS blood dataset [20], which has a large sample size and distribution of 
samples across a large age range (Additional file 1: Fig. S1, Additional file 2: Table S1). 
Although the majority of DMPs (~ 73%) converge to the mean with age, one third of 
DMPs (~ 27%) diverge away from the mean towards high and low methylation frac-
tions (Fig. 5A). To determine this effect on entropy, we then recalculated entropy on 
the converging and diverging DMPs, respectively. Remarkably, we found a highly sig-
nificant increase in entropy in the converging sites of 0.005 increase in entropy per 
decade of age (p value < 2.2e −16), and a stark contrast with the diverging sites, which 
significantly decrease entropy with age, and could be considered “anti-entropic” since 
they become more predictable with age (Fig. 5B). We validated these results in a sec-
ond dataset, GSE128235 [13], and found highly concordant results in both the pro-
portion of DMPs that converge to (72%) and diverge from (28%) the mean with age, 
but also the significant increase in entropy at the converging sites of 0.005 per decade 
of age (p value < 2.2e −16), and significant decrease in entropy of − 0.004 per decade of 
age at the diverging sites (p value < 2.2e −16).

Fig. 4  Meta-analysis of entropy and age. A A forest plot of the two meta-analyses comparing the changes 
in entropy between the non-age-related CpGs (left) and the age-related CpGs (right) identified in blood. 
The meta-analyses effect sizes are represented by the orange and light green polygons. On the x-axes is the 
change in entropy per decade of age (left: − 0.0003 change in entropy per 10 years of age (p value < 0.0001); 
right: 0.002 per decade of age (p value < 0.0001)), and on the y-axes are the effect sizes and standard error 
measurements from the independent epigenome-wide association study (EWAS). The dataset name, 
sample size (N), and age ± sd (standard deviation) are to the left of the forest plot. B Three graphs with 
entropy (y-axis) plotted against age (x-axis) for the age-related CpGs and non-age-related CpGs from three 
independent blood datasets, GOLDN, GSE87571, and GSE197674
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Fig. 5  Contribution of differential methylation to changes in entropy with age. A A pie chart of the 
proportion of DMPs that are entropic and converge to the mean (blue) and the proportion of DMPs that are 
anti-entropic and diverge from the mean (red) for the BIOS dataset in blood. The arrows point to hypothetical 
graphs that illustrate the aggregate regression lines for the CpGs that converge (left) and diverge (right) with 
age. B In the far left (blue) and far right (red) panels are the methylation plots for two CpG sites, respectively, 
that are highly or lowly methylated in young (blue) and converge to the mean with age, and two methylation 
plots that are intermediately methylated in young (red) and diverge from the mean with age. The center plot 
displays the entropy (y-axis) value plotted against age for the converging (blue) and diverging (red) DMPs 
in the BIOS dataset. C Distribution of entropic (blue) and anti-entropic differentially methylated positions 
(DMPs) (red) and non-DMPs (gray) in chromatin states from peripheral blood mononuclear cells (PBMCs). The 
grids under the graph represent the residuals from the χ2 tests, with the size of the blocks in the grid being 
proportional to the cell’s contribution. Sky blue indicates overrepresentation or enrichment in the chromatin 
state, and navy represents underrepresentation or depletion in the chromatin state
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We then investigated the distribution of the entropic DMPs, anti-entropic DMPs, 
and non-DMPs in chromatin states of PBMCs (Fig. 5C), noting that entropic DMPs are 
overrepresented in bivalent promoters and enhancers, regions bound by Polycomb pro-
teins, and quiescent states (χ2 test p value < 2.2e −16). In contrast, anti-entropic DMPs 
are overwhelmingly found at regions of strong transcription and enhancers (χ2 test p 
value < 2.2e −16) (Fig. 5C).

We hypothesized that cell type heterogeneity would bias age-related changes in 
entropy estimates upwards (i.e., the increase in entropy with age would be inflated 
because of changes in cell type % with age). We first repeated the analyses after adjust-
ing the DNAm profiles for blood cell types in each dataset (see “Methods”). There was a 
moderate correlation of 0.53 (p value = 2.9e −5) between the effect sizes (i.e., the change 
in entropy per decade of age) before vs after adjustment for cell type proportions (Addi-
tional file  1: Fig. S8A), and half of the datasets displaying effect sizes that declined in 
magnitude after adjusting for cell type proportions (Additional file  1: Fig. S8B). How-
ever, the overall meta-analysis effect size remained unchanged after adjustment (0.0005 
change in entropy per decade of age) (Additional file 1: Fig. S8C).

We then looked at age-related changes in entropy in datasets containing isolated cell 
types, speculating that if age-related changes in entropy were solely driven by changes 
in cell type %, we would fail to see an increase in entropy in these datasets. We looked 
at monocytes (GSE56046 [79]), CD4 + T cells (GSE59065 [80], GSE56581 [81] and 
GSE137593 [82]), CD8 + T cells (GSE59065 [80]), and B cells (GSE137594 [83]) (Addi-
tional file 2: Table S4). In nearly all datasets, we failed to detect any change in entropy 
during aging, but both CD4 + T and CD8 + T cells in GSE59065 displayed a marked 
increase in entropy during aging (Additional file 2: Table S4). Finally, we took advantage 
of the unique design of dataset GSE184269 [84] that contains both mixed and sorted 
blood cells from the same individuals (naïve B cells, naïve CD4 + T cells, naïve CD8 + T 
cells, NK cells, monocytes, and granulocytes in GSE184269 [84]), speculating that if 
age-related changes in entropy were solely driven by changes in cell type %, PBMCs 
would show higher entropy levels than sorted cell types. Entropy was markedly higher 
in PBMCs than NK, naïve CD4 + T, naïve CD8 + T, and naïve B cells, but the highest 
entropy levels were in the heterogeneous class of granulocytes that comprise baso-
phils, eosinophils, and neutrophils (Additional file 1: Fig. S9). These results suggest that 
changes in cell type composition during aging partially account for age-related increases 
in entropy. Moreover, the measure of entropy that we have used may be extremely sen-
sitive to confounders that induce relatively small shifts in the global DNA methylation 
distribution.

Discussion
We demonstrated that during aging, large proportions of the blood methylome slowly 
shift in mean methylation levels, and about half of them also become increasingly diver-
gent between individuals as they get older. Our results are robust and replicable, owing 
to the unparalleled statistical power generated from > 32,000 samples in 56 independent 
cohorts. Importantly, these age-related changes occur largely independently of changes 
in the relative proportions of different blood cell types during aging. Considering the 
widespread distribution of these DNAm changes, aging appears to affect most molecular 
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pathways, from development, metabolism, and cell-signaling to homeostatic processes. 
Shannon entropy increases in the blood methylome during aging due to the presence of 
DMPs and because the majority of DMPs trend towards intermediate methylation levels 
of 50%. This implies that during aging, it becomes increasingly difficult to predict the 
methylation state of any given blood cell, in agreement with the smoothening of the epi-
genetic landscape. However, the overall increase in entropy is small in magnitude, and 
we uncovered that roughly one third of DMPs, particularly those enriched at enhancers 
and regions of active transcription, are “anti-entropic.”

While we know from previous studies that DMPs are a feature of aging in blood [4, 78, 
85–89], our findings are unparalleled, revealing the sheer magnitude and omnipresence 
of these differential shifts that may have been previously underappreciated. Moreover, 
our study is 38 times larger than the largest known study of VMPs in blood [7]. Unlike 
previously reported [7], we noted a significant overlap between DMPs and VMPs (i.e., 
many CpGs change in both average methylation and variance with age). We also show 
that the increase in entropy is driven by the differential shifts that trend from high and 
low methylation fractions in young, to intermediate methylation states at older ages; also 
referred to as the “smoothening of the epigenetic landscape,” however, intermediately 
methylated CpGs that drift away from the mean towards fully methylated and unmethyl-
ated states decrease entropy, exhibiting “anti-entropic” properties. It has been proposed 
that “anti-entropic” CpGs could represent genes that become increasingly regulated [6], 
a theory worth investigating further. Since the majority of DMPs are entropic, the net 
global effect is an increase in entropy with age.

In alignment with previous studies, we identified key processes related to develop-
ment, differentiation, and cell-signaling are altered during aging [3]. The promoters 
and bodies of actively transcribed genes were fairly unaffected by epigenetic aging. 
In contrast, our results support previous evidence of age-related gains in methyla-
tion and variance at important regulatory regions, particularly bivalent domains that 
harbor both active and inactive histone marks and regions repressed by the Polycomb 
complex [3]. Bivalent regions prepare key developmental genes to be switched on dur-
ing differentiation in specific cells, such as embryonic stem cells [90]. The epigenetic 
clock starts ticking upon differentiation [91], and some gains in methylation may lead 
to loss of hematopoietic stem cell plasticity. However, these age-related epigenetic 
changes could affect all cell types in a tissue, not just stem cells. Bivalent promoters 
and poised enhancers are not exclusive to stem cells, and bivalency has been proposed 
to be a major reversible signature that distinguishes between cell types in adult tissues 
[90]. This would make sense, as epigenetic clocks work well in a plethora of tissues, 
even those that do not have many known stem cells [92]. Age-related hypermethyla-
tion may therefore hinder all cells from robustly maintaining their identity into old 
age, a process shared among individuals during chronological aging, but that happens 
at different rates between people. Age-related loss of cellular identity has been pre-
viously reported in gene expression signatures in different somatic tissues of mice, 
whereby the transcription profiles diverge during development and converge during 
aging [93]. This phenomenon has also been observed in human tissues based on gene 
expression data, whereby 40% of the tissues lose their cellular identity during aging 
[94]. A similar idea is described in a recent study as “ex-differentiation,” whereby aged 
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cells lose their ability to maintain their identity due to epigenetic changes at develop-
mental genes [95]. It is therefore plausible that environmental insults (i.e., sedentary 
behavior, sun exposure, toxins, inflammation, injury) could accelerate or exacerbate 
these changes via metabolic stress, damage to the extracellular matrix (ECM), and 
mitochondrial biogenesis [96], and these would be detected as VMPs. The stochastic-
ity or variability may be a good indicator of cumulative damage of the environment or 
non-specific damage, whereby the epigenome is adapting to changing environmental 
cues [97]. It is therefore somewhat puzzling that both chronological and biological 
clocks were strongly enriched for those CpGs that show changes in average and vari-
ance during aging (DMPs-VMPs). Intuitively, chronological clocks, whose objective 
is to predict time elapsed since birth, should contain an overwhelming number of 
homoscedastic DMPs as those carry less “noise” between individuals as they get older. 
Furthermore, the age-related sites we identified were not enriched in pace-of-aging 
clocks: while those clocks do not measure biological age per se and rather the speed 
at which one ages across different organ systems, we expected some overlap with age-
related sites as the biological processes controlling the rate of aging should be some-
what related to the biological processes controlling biological age.

In contrast to age-related hypermethylation that was accompanied with large diver-
gence between individuals, age-related hypomethylation was more homogeneous 
across the lifespan and mainly affected quiescent regions, with unclear functional 
consequences. It may reflect tissue-specific operations [3], and comparing our results 
across other tissues would be necessary to confirm this. In blood, hypomethylation 
has been hypothesized to be immunogenic and contribute to inflammation [98]. Our 
pathway enrichment analysis revealed DMGs and VMGs to be associated with abnor-
mal inflammatory cascades, and multiple organ system abnormalities, consistent with 
chronic inflammation as a hallmark of aging [2]. This inflammation is systemic and 
associated with various aging-related phenotypes in multiple tissues.

Cellular heterogeneity in tissues poses a significant challenge in DNAm stud-
ies [8]. We found a high overlap of significant CpGs in both the adjusted and unad-
justed analyses of DMPs and to a lesser extent, VMPs. These represent age-associated 
DNAm changes that are either present in all underlying subtypes, or only in a pre-
dominant subtype [78], a finding that overlaps with previous studies [7, 99]. While 
majority of the age-associated changes seem independent of changes in cell composi-
tion, about one third of VMPs were significant only in the unadjusted analyses, likely 
capturing variability related to changes in cell composition with age. It has been sug-
gested that the increase in “transcriptional noise” underlying a loss of cell identity 
lacks sufficient evidence and may instead be related to the age-related changes in cell 
composition [98]. As such, these VMPs may be capturing an important phenotype of 
aging in blood (and potentially other tissues), such as the remodeling of the immune 
system cell type composition [100]. Importantly, performing cell type correction is 
recommended in addition to an unadjusted analysis [8], particularly in aging studies, 
since increasing cellular heterogeneity could reflect an important biological process 
or age-related phenotype. Future work should also endeavor to identify age-related 
changes within individual cell types [101], to understand the relative contribution of 
different cellular compartments in age-related diseases.
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The significance of our cohort substructure, comprising extensive individual datasets 
with samples spanning a wide age range (6–101 years old), was evident when attempting 
to detect all kinds of age-related changes. Detecting VMPs using the Breusch-Pagan test 
for heteroscedasticity necessitated not only large sample sizes and a broad age range, 
but also possibly individuals at the “upper limit” of old age. Interestingly, a recent pre-
print in mouse blood showed that the variance of DNAm increased only at very old ages 
[97], implying that previous human studies may have been limited due to small sam-
ple sizes, narrow age ranges, and a scarcity of very old individuals, hindering investiga-
tions into variance or stochasticity with age [88]. In contrast, the standard linear model 
used to detect DMPs is less sensitive to the characteristics of the dataset substructure. 
However, the age range in the datasets was skewed, with varying sex distributions, dis-
eases statuses, and other factors that could influence the effect of age on the methylome. 
For instance, age-related changes might be more pronounced in different ethnicities or 
sexes, introducing some variability. Given the substantial sample size, we see this het-
erogeneity as a strength more than a weakness, because it implies that the DMPs, VMPs, 
and entropy we detected hold true for a broad range of individuals and could be consid-
ered “universal” markers of aging. Moreover, we utilized multiple versions of the Illu-
mina arrays to maximize the inclusion of CpGs across the various datasets. CpGs in the 
850 K encompass all those from both the 450 K and the 27 K platforms, ensuring con-
servation across platforms. Despite not achieving a perfect overlap across datasets, each 
CpG is individually meta-analyzed, and this approach optimizes the sample size for each 
meta-analysis. One caveat to note is that the ethnic representation of the samples was 
overwhelmingly white, clearly highlighting the need to obtain a better representation of 
ethnicities in DNAm profiles.

In conclusion, using an unparalleled cohort of methylomes in humans, we provide a 
comprehensive picture of the global age-related changes observed in blood. Future work 
could focus on assessing the effect of longevity interventions, such as exercise, nutrition, 
and supplementation, on these age-related signatures in vivo humans.

Methods
This study was conducted as a large-scale, multi-tissue EWAS meta-analysis of age. Bio-
informatics techniques were applied to analyze and interpret large amounts of existing 
epigenomic data. By exploiting the power of meta-analysis, we overcome many limi-
tations of “omics” research. Specifically, very large sample sizes are required to detect 
changes with small effect sizes, which is the case of age-related changes in DNAm 
profiles [102]. Our approach was therefore robust for identifying subtle, yet highly 
reproducible shifts in DNAm that accrue over chronological time in a wide variety of 
populations (e.g., males/females, conditioned/healthy individuals).

Data mining

To create the repository of blood DNAm datasets, we have carried out a comprehen-
sive data mining enterprise collecting the methylomes of 32,136 human blood samples 
from 56 datasets, profiled on the Illumina Methylation array platforms (27 K, 450 K, and 
EPIC) (Fig.  1, Additional file  2: Table  S1). This includes 49 open-access datasets from 
Gene Expression Omnibus (GEO) repository and 1 from ArrayExpress, 4 datasets from 
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the controlled access database of Genotypes and Phenotypes (dbGaP), 1 dataset from 
the controlled access European Genome-Phenome Archive (EGA), and 1 dataset from 
a controlled access independent repository (Additional file 2: Table S1). Datasets with 
fewer than 30 samples or an age standard deviation < 5 were excluded, as low age vari-
ability and low sample size severely impairs the ability of the linear models to detect age-
related patterns reliably. Samples with a cancer diagnosis were also excluded, as cancer 
samples show highly unusual DNAm patterns that would likely skew the analysis [66].

Pre‑processing

Datasets with raw DNAm data available were pre-processed, normalized, and filtered 
using the R statistical software (www.r-​proje​ct.​org), and following the ChAMP [65] pipe-
line. Methylated and unmethylated signals or IDAT files were used for the pre-process-
ing. In accordance with the default parameters of the champ.load function, any sample 
with > 10% of probes with a detection p value > 0.01 was removed [74]. All probes with 
missing β values (a detection p value > 0.01), with a bead count < 3 in at least 5% of sam-
ples, non-CG probes and probes aligning to multiple locations were filtered out. Probes 
located on the sex chromosomes were also filtered out in datasets containing both males 
and females, as well as probes mapping to single nucleotide polymorphisms (SNPs) [65]. 
Additional cross-hybridizing probes identified by Pidsley et al. [103] were also filtered 
out [7]. The methylation β values obtained were calculated as the ratio of the methylated 
probe intensity and the overall intensity, as follows:

The type I and type II probe designs that are generated from the 450  K and EPIC 
Illumina arrays were normalized using the champ.norm function [74]. We explored 
the technical and biological sources of variation in each dataset using a singular value 
decomposition method provided by the champ.SVD function [74]. The ComBat func-
tion from the sva package was used to adjust for technical variation from the slide and 
position on the slide if this information was available [104]. We could not perform batch 
correction if this information was unavailable. Finally, samples whose annotated sex was 
discordant with predicted sex (according to the getSex function from the minfi pack-
age) were removed [105]. Any missing information required for pre-processing, includ-
ing raw IDAT files, batch information, detection p values, or the age of the samples, was 
requested from the corresponding authors at the time of pre-processing (Additional 
file 2: Table S1). We used the pre-processed matrices for datasets that we were unable to 
preprocess ourselves due to missing information (Additional file 2: Table S1).

Statistical framework

DMPs

To identify DMPs, we performed an EWAS in each dataset using linear regression mod-
els and moderated Bayesian statistics, as implemented in the limma package [106, 107]. 
A linear model was fitted for each dataset independently. DNAm was regressed against 
age and other dataset-specific covariates (i.e., sex, batch, body mass index (BMI)) (Addi-
tional file 2: Table S1), when this information was available (see below for the inclusion/

Beta value =
intensity of methylated allele

(intensity of unmethylated allele + intensity of methylated allele + 100)

http://www.r-project.org


Page 16 of 24Seale et al. Genome Biology          (2024) 25:240 

exclusion criteria of covariates). If a dataset included repeated measures of the same 
individual or related individuals (e.g., twins), we added a random effect to the model 
(using the duplicateCorrelation function of the limma package). Linear models were 
performed using M values (a logit transformation of β values), which have more favora-
ble statistical properties for differential analysis [108].

To then compare the effect of cell type heterogeneity on age-associated DNAm 
changes, we repeated all linear models adjusting for cell type proportions in whole 
blood. We applied the champ.refbase method, as implemented in the ChAMP package, 
to estimate the cell type proportions for granulocytes, monocytes, NK cells, CD4 + T 
cells, CD8 + T cells, and B cells, for each sample [74]. We then repeated the linear model 
for each blood dataset including the 5 largest cell types to remove the confounding effect 
of cell type proportion on DMPs.

To assess whether the direction of DNAm with age (hypo/hyper) depends on the base-
line DNAm levels, we classified DMPs in “high,” “intermediate,” and “low” methylation 
categories using a large dataset (BIOS) [20]. In this dataset and for each DMP, we cal-
culated the average MF and classified a DMP as “high” if MF ≥ 75%, “low” if MF ≤ 25%, 
and the remainder “intermediate.” This categorization was made separately for young 
(i.e., < 30 y.o.) and old (> 60 y.o.) individuals, and we assessed whether the DMP trended 
from “high” in young to “intermediate” or “low” in old, etc.

VMPs

Age-associated VMPs were identified using the Breusch-Pagan test for heteroscedas-
ticity, which is a two-way regression that models the change in DNAm variance as a 
function of age (i.e., it tests if the variance in DNAm levels (adjusted for covariates) is 
dependent on age) [3, 109]. DNAm was first regressed against age and other confounders 
for each dataset (i.e., the linear model to identify DMPs) to obtain residuals. The residu-
als were then extracted from this model and squared. We ran the Shapiro–Wilk test to 
remove CpGs where residuals strongly deviated from normality (i.e., DNAm sites that 
are associated with SNPs not filtered out during pre-processing) [4], and subsequently 
regressed the squared residuals of the remaining markers against age. All analyses were 
repeated and corrected for cell types to compare the effect of cell type heterogeneity on 
age-associated VMPs.

Entropy

Shannon entropy ranges between 0 and 1, taking its maximum value when the methyla-
tion fraction in a given set of CpGs, measured over a population of cells, is 50%. Shan-
non entropy was calculated for each sample in each dataset, using a probability formula 
adapted to handle DNAm data [3, 4, 7].

To calculate the genome-wide Shannon entropy, a linear model is fitted for each dataset 
on the logit transformed M values, adjusting for dataset covariates where appropriate (e.g., 
sex, BMI, batch). Age was not included in this model, as we did not want to remove the 
effect of age on the β values. The mean M values from the original matrix were added to the 
residuals from the linear model, and then transformed back to obtain adjusted β values, as 
the Shannon entropy formula has been adapted specifically to handle β values.
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Using the adjusted β values, genome-wide Shannon entropy was computed for each 
sample in each dataset according to the formula [3, 4]:

where MFi is the methylation fraction (e.g., beta value) for the ith CpG probe and N is 
the total number of CpGs.

To calculate the effect of age on Shannon entropy, a linear model was fitted for each 
dataset regressing age against entropy and recorded the summary statistics for each 
dataset (Additional file 2: Table S2), as follows:

Since genome-wide entropy captures the complexity of the entire system in a single 
measure, we sought to determine the contribution of the various features of aging that 
may be driving genome-wide changes in entropy. To do so, we then repeated the analysis 
by calculating entropy for each sample, in each dataset, in each tissue, on all the age-
associated CpGs identified from the meta-analyses below (i.e., a complete list of both 
DMPs and VMPs), as well as the non-age-associatedCpGs (i.e., the complete list of non-
DMPs and non-VMPs). We then repeated the above steps calculating entropy CpGs that 
were only DMPs, CpGs that were both DMPs andVMPs, CpGs that were only VMPs 
(Additional file 2: Table S3), entropic DMPs, and anti-entropic DMPs. We also re-cal-
culated entropy on all measurements and corrected for cell type heterogeneity, to com-
pare the effect of cell type composition on age-associated changes in entropy (Additional 
file 2: Table S2), as follows:

In addition, we calculated entropy for datasets from sorted cell types on the genome-
wide set of CpGs, only on the age-associated CpGs, and on the non-age-associated CpGs 
(Additional file 2: Table S4).

Adjusting for covariates

We took careful consideration when adjusting for disease-specific covariates in our lin-
ear models to ensure that we did not unnecessarily remove the effect of age on DNAm.

While no official classification of “age-related” exists, 92 conditions have been classi-
fied as “age-related” based upon an exponential increase in incidence with age using a 
two-step mathematical modeling technique [110]. To have a direct view of the relation-
ship between age and each disease/condition present in our datasets (Additional file 2: 
Table  S1), we used the GDB data exploration tool (https://​vizhub.​healt​hdata.​org/​gbd-​
compa​re/).

Based on their classification and the GDB tool, we included the following conditions/
phenotypes as covariates that show no relationship with age, including depression, 
anemia, inflammatory bowel disease/Crohn’s disease, lupus, non-alcohol steatohepati-
tis (NASH)/non-alcoholic fatty liver disease (NAFLD), and asthma, and excluded con-
ditions/phenotypes that show a relationship with age (either increase or decrease in 

Entropy =
1

N ∗ log
2

1

2
i
[ MFi ∗ log2MFi + (1−MFi) ∗ log2(1−MFi)]

Entropy ∼ age

Entropy ∼ age + CD8T + CD4T + NK + Bcell + Gran . . .

https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
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prevalence with age), including progressive supranuclear palsy, Alzheimer’s disease/
dementia, cardiovascular disease, ischemic stroke, Parkinson’s disease, COVID-19, car-
diomyopathy, chronic obstructive pulmonary disease (COPD), schizophrenia, anxiety 
disorders, osteoarthritis, rheumatoid arthritis, multiple sclerosis, psoriasis, type 2 diabe-
tes, and cirrhosis.

Importantly, some diseases did show a relationship with age, but cannot be consid-
ered age-related as they do not depend on age-related functional decline of the body, but 
on age-related differences in behavior (e.g., HIV infection, drug use disorder), and were 
included as covariates. In addition, factors that are not age-related but accelerate or slow 
down aging (e.g., smoking, BMI, hypertension, exercise training, and bariatric surgery) 
were also included as covariates.

Meta‑analyses of DMPs and age

As described above, an EWAS of age was performed in each dataset independently. Each 
EWAS was adjusted for bias and inflation using the empirical null distribution as imple-
mented in bacon [101]. The results from the independent EWAS were then pooled, using 
an inverse variance-based fixed-effects meta-analysis implemented in METAL [111]. 
This approach computes a weighted average of the results, using the individual effect 
size estimates and standard errors extracted from each independent EWAS. The overlap 
in CpGs between datasets was imperfect (not all CpGs were present in all datasets), as 
we used three different Illumina array platforms, and since different CpGs are filtered 
out during the pre-processing of individual datasets. We restricted our analysis to CpGs 
that were present in at least three datasets. Age-associated DMPs were then identified 
using a stringent meta-analysis false discovery rate (FDR) < 0.005. The meta-analysis was 
repeated with datasets adjusted for cell types.

Meta‑analyses of VMPs and age

As for the DMPs, we used METAL to pool results from the independent EWAS, but we 
followed a sample size-based fixed-effects meta-analysis (instead of an inverse variance 
method) [111]. This approach was more appropriate to meta-analyze the χ2 test statistic 
that is the output of the Breusch-Pagan test; it relies on the sample size of each data-
set and the p value at each CpG. We restricted our analysis to CpGs that were present 
in at least 15% of the samples. Age-associated VMPs were identified using a stringent 
meta-analysis FDR < 0.005. The meta-analysis was repeated with datasets adjusted for 
cell types.

Meta‑analyses of entropy and age

To identify the change in entropy with age in each tissue, the summary statistics (i.e., 
effect size and standard error) extracted from the independent entropy regressions were 
pooled using a fixed-effects meta-analysis using the R package metafor [112] (Additional 
file 2: Table S2). We meta-analyzed the summary statistics for the genome-wide entropy 
results, as well as for the age-related CpGs and the non-age-related CpGs. All meta-anal-
yses in blood were repeated for the cell-type corrected analyses, to compare the effect of 
cell heterogeneity on entropy.
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Chromatin state enrichment, pathway analysis, and epigenetic clock CpGs analysis

To aid in the biological interpretation of the identified age-associated methylation 
sites, we tested whether DMPs and VMPs showed any enrichment in chromatin 
states. This was done by comparing the distribution of the blood-specific VMPs and 
DMPs with that of non-VMPs and non-DMPs, respectively, in the different chroma-
tin states profiled in peripheral blood mononuclear cells (PBMCs) from the Roadmap 
Epigenomics Project with a Fischer’s exact test [64].

To gain insights into the cellular and phenotype consequences of aging on the blood 
methylome, we tested whether genes belonging to gene ontology (GO) terms (GO gene 
set in MsigDB), human phenotype ontologies (HPO gene set in MsigDB), canonical 
pathways (CP gene set in MsigDB), expression signatures of genetic and chemical per-
turbations (CGP gene set in MsigDB), and immunological signatures (C7 gene set in 
MsigDB) were enriched among the VMPs and DMPs using the gsameth function from 
the missMethyl package [113]. An improved adaptation of Zhou et al.’s comprehensive 
annotation was used to assign one or more genes to each VMP and DMP [65]. All GO, 
HPO, CP, and CGO terms were deemed significant at an FDR < 0.005 [114, 115].

We also tested whether DMPs and VMPs were particularly over- or underrepresented 
in CpGs that make up the different epigenetic clocks that were developed using elastic 
net. We tested clocks trained to predict chronological age (Horvath’s pan-tissue clock, 
353 CpGs [66]; Hannum’s clock, 71 CpGs [4]; the blood clock developed by Zhang et al., 
514 CpGs [67]; the centenarian clock, 747 CpGs [68]; version 2 of the mammalian uni-
versal clock, 816 CpGs [69]), biological age (PhenoAge, 513 CpGs [70]), and the pace of 
aging (DunedinPoAm, 46 CpGs [71]; DunedinPACE, 173 CpGs [72]). This was done by 
comparing the distribution of the age-related CpGs with that of non-age-related CpGs, 
respectively, among the list of CpGs that make up different clocks, with the help of a χ2 
test. We used a different background of probes for each clock, as each clock was devel-
oped from a different pool of CpGs (e.g., the pan-tissue clock was developed from a pool 
of ~ 21,000 CpGs common to all Illumina HumanMethylation arrays, while Dunedin-
PACE was developed from probes common to the 450 K and EPIC arrays that showed 
good test–retest reliability). Note that we could not perform this enrichment for clocks 
whose list of CpGs is not open-access, such as GrimAge [116], and for clocks that use 
all probes on the Illumina HumanMethylation arrays, such as Altum Age [117], and PC-
based clocks [118]. All χ2 test p values were adjusted for multiple testing and only those 
tests with FDR < 0.005 were deemed significant.

Figures

R studio ggplot2 from the tidyverse package and Cytoscape.
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