
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified
the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

SOFTWARE

Le et al. Genome Biology (2024) 25:209
https://doi.org/10.1186/s13059-024-03362-z

Genome Biology

Efficient inference of large prokaryotic
pangenomes with PanTA
Duc Quang Le1,2†, Tien Anh Nguyen1,3†, Son Hoang Nguyen1†, Tam Thi Nguyen4, Canh Hao Nguyen5,
Huong Thanh Phung3, Tho Huu Ho6,7, Nam S. Vo8, Trang Nguyen1, Hoang Anh Nguyen1 and Minh Duc Cao1*    

Abstract 

Pangenome inference is an indispensable step in bacterial genomics, yet its scalability
poses a challenge due to the rapid growth of genomic collections. This paper presents
PanTA, a software package designed for constructing pangenomes of large bacterial
datasets, showing unprecedented efficiency levels multiple times higher than existing
tools. PanTA introduces a novel mechanism to construct the pangenome progressively
without rebuilding the accumulated collection from scratch. The progressive mode
is shown to consume orders of magnitude less computational resources than existing
solutions in managing growing datasets. The software is open source and is publicly
available at https://​github.​com/​amrom​ics/​panta and at 10.​6084/​m9.​figsh​are.​23724​705.

Background
Prokaryotic genomes are known for enormous intraspecific variability owing to great
variation events such as horizontal gene transfers, differential gene losses, and gene
duplication [1]. This led to the introduction of the pangenome concept as a methodology
to investigate the diversity of bacterial genomes [2]. Since its inception in 2005,
pangenome analysis has been an indispensable tool in microbial genomics studies [3]
and has generated novel biological insights in bacterial population structures [4, 5],
genetic diversity [6], niche adaptation [7], and genome assembly [8]. Pangenome studies
have also been successfully applied into inferring the evolution of lineages of pandemic
causing pathogens and identifying lineage-specific genetic features [9, 10], investigating
genetic signatures associated with antimicrobial resistance [11], pan-reactome
analyses [12], and therapeutic development including vaccine design [13] and novel drug
discovery [14, 15].

To address the need for pangenome analysis, a plethora of computational tools have
been developed to construct the pangenome of a collection of prokaryotic genomes.
Notable examples include PGAP [16], PanOCT [17], Roary [18], BPGA [19], panX [20],
MetaPGN [21], PIRATE [22], PPanGGOLiN [23], PEPPAN [24], and Panaroo [25].

†Duc Quang Le, Tien Anh
Nguyen and Son Hoang Nguyen
contributed equally to this work.

*Correspondence:
minhduc.cao@gmail.com

1 AMROMICS JSC, Nghe An,
Vietnam
2 Faculty of IT, Hanoi University
of Civil Engineering, Hanoi,
Vietnam
3 Faculty of Biotechnology, Hanoi
University of Pharmacy, Hanoi,
Vietnam
4 Oxford University Clinical
Research Unit, Hanoi, Vietnam
5 Bioinformatics Center, Institute
for Chemical Research, Kyoto
University, Kyoto, Japan
6 Department of Medical
Microbiology, The 103 Military
Hospital, Vietnam Military
Medical University, Hanoi,
Vietnam
7 Department of Genomics
& Cytogenetics, Institute
of Biomedicine & Pharmacy,
Vietnam Military Medical
University, Hanoi, Vietnam
8 Center for Biomedical
Informatics, Vingroup Big Data
Institute, Hanoi, Vietnam

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-024-03362-z&domain=pdf
http://orcid.org/0000-0003-4079-2383
https://github.com/amromics/panta
https://doi.org/10.6084/m9.figshare.23724705

Page 2 of 16Le et al. Genome Biology (2024) 25:209

The core of pangenome construction is the clustering of gene sequences into gene
families. This step is typically performed by first estimating the similarity between
gene sequences by a homology search tool such as CD-HIT [26], BLASTP [27], and
DIAMOND [28] followed by a clustering method such as the commonly used Markov
clustering algorithm (MCL) [29]. The clustering step is also the most computationally
intensive of the pipeline. The gene families are further refined through the identification
of paralogous genes using either a graph-based approach or a tree-based approach. The
resulting gene clusters are then classified into core or accessory genes based on their
prevalence in the collection.

Advances in high-throughput sequencing technologies have recently enabled the
exponential growth of microbial genomics data in public databases and in research
laboratories around the world. The Genbank database stores hundreds of thousands of
genomes for common bacterial species, and the numbers are fast-growing. While these
resources contain rich sources of population genomics information, pangenome analysis
has not been able to scale with the volume of the data. Most existing pangenome
inference methods take days and require large amounts of memory that are typically
beyond the capacity of a standard computer to construct the pangenome of just a
few thousand isolates. In addition, the genomic databases are growing by nature,
accumulating genomes of isolates collected and sequenced at different time points.
There currently exists no efficient utility to update an existing pangenome when new
genomes become available. In such cases, the pangenomes of the accumulated collection
have to be constructed from scratch over and over, leading to the excessive burden of
computational resources.

In order to address these challenges, we have developed PanTA, an efficient and
scalable pangenome construction tool to keep up with the growth of bacterial genomics
data sources. With vigorous computational experiments, we show that PanTA exhibits
an unprecedented multiple-fold reduction in both running time and memory usage
compared with the current state-of-the-art tools for building the pangenomes of large
collections. Crucially, PanTA allows performing pangenome analysis progressively where
batches of new samples can be added to an existing pangenome without the need to
recompute the accumulated pangenome from scratch. The progressive mode can further
reduce PanTA memory usage by half without affecting running time and pangenome
accuracy. We also show that, PanTA in progressive mode consumed orders of magnitude
less computational resource than existing solutions to manage the pangenomes of
growing microbial datasets. Finally, we demonstrate the utility and practicality of PanTA
by constructing the pangenome of the entire set of high quality Escherichia coli genomes
that have been deposited into RefSeq database to date on a laptop computer.

Results
Overview of the pipeline

PanTA is developed with the aim to build the pangenome of a large collection of
genomes and to add a set of new genomes to an existing pangenome without rebuild-
ing the accumulated pangenome from scratch. The workflow of PanTA pipeline is
summarized in Fig. 1. PanTA takes as input a list of genome assemblies and their
annotations. PanTA then extracts the protein coding regions as specified by the

Page 3 of 16Le et al. Genome Biology (2024) 25:209 	

annotation, and translates them to protein sequences. In the process, it verifies and
filters out coding regions that are incorrectly annotated, e.g., those with ambiguous
bases or with frame length not divisible by 3, that can potentially introduce noise into
the clustering step and the downstream analyses.

The core of the pipeline is the clustering of all genes in the collection into gene
clusters, which represent the gene families in the collection. PanTA first runs
CD-HIT [26] to group similar protein sequences together, and essentially reduces
the set of all protein sequences to a smaller set of representative sequences from
the groups. The default thresholds for sequence identity and gene length difference
are set to 98% and 70% respectively, and the values can be adjusted by users. The
representative sequence of each group is the longest sequence of the group. PanTA
then performs an all-against-all alignment of the representative sequences with
DIAMOND [28] or optionally BLASTP [27]. The resulting pairwise alignments are
filtered to retain those that pass certain thresholds of sequence identity (default at
70%), alignment length ratios, and length difference ratios. These alignments are
inputted into Markov clustering (MCL) [29] that clusters the representative sequences
into homologous groups of genes. Each protein sequence is then assigned to the gene
cluster its representative sequence belongs to.

Fig. 1  The schematic depict of PanTA workflow. The flowchart of PanTA pipeline in both single and
progressive modes. In single model, the gene clustering process involves the reduction of protein sequences
to representative gene sequences using CD-HIT, the all-against-all alignment of the representative sequences
by DIAMOND, and the MCL clustering. In progressive mode, new protein sequences are first matched
with the existing representative sequences and only unmatched sequences are reduced to form new
groups. Pairwise alignments are performed only between new representative sequences against existing
representative sequences and among new representative sequences

Page 4 of 16Le et al. Genome Biology (2024) 25:209

While the clustering strategy employed by PanTA is similar to that of recent
pangenome tools such as Roary [18], PIRATE [22], and Panaroo [25], we optimize the
pipeline configurations that speed up the process without compromising the clustering
accuracy. Notably, during the sequence grouping stage, PanTA runs CD-HIT only once
at sequence identity 98% which is similar to Panaroo, instead of conducting multiple
rounds of grouping at differing sequence identity levels as Roary and PIRATE. It also
uses the word size of 5, which is suitable for such a high level of sequence identity. This
word size, also used by PIRATE, enables CD-HIT to operate much faster than Panaroo’s
use of word size of 2 and, at the same time, produces similar sequence grouping. We also
found DIAMOND significantly faster than BLASTP for the all-against-all alignment at
the same level of sensitivity, confirming the previous report [28].

PanTA can run in progressive mode where it adds new genomes into an existing
pangenome without rebuilding the pangenome from scratch. In this mode, PanTA uses
CD-HIT-2D, a tool in the CD-HIT suite [26] to match new protein sequences extracted
from the new samples to the representative sequences from the existing groups. The
protein sequences that are matched to an existing group are assigned to the groups and
by proxy, to the existing gene cluster. Only unmatched sequences are subject to CD-HIT
to create new groups (Fig. 1). By running CD-HIT clustering solely on the new genes
in the added batch, PanTA significantly reduces the running time and memory usage
over grouping all genes in the accumulated collection. Similarly, during the all-against-
all alignment step, PanTA first performs alignment of the representative sequences of
the new groups against the representative sequences of the existing groups. It then runs
the all-against-all alignment of only the new representative sequences, that is, those not
aligned to the existing groups to the defined sequence identity threshold. The two sets
of alignments after filtering are combined and then subject to MCL clustering. With
this strategy, PanTA reduces the number of sequences in the grouping and alignment
steps which are the most resource-intensive steps of the whole pipeline. As a result, the
process is significantly accelerated.

Finally, PanTA provides options to perform post-processing steps, including splitting
paralogous clusters and multiple alignment of genes in each cluster. For split paralogs,
PanTA employs the conserved gene neighborhood (CGN) approach as described in [18].
Sequences of each gene cluster are aligned using MAFFT [30] at both DNA and protein
levels. PanTA then generates output reports according to the standards set out by Roary,
which include a spreadsheet detailing the presence and absence of each gene in each
isolate as well as a summary of pangenome statistics.

PanTA is significantly more efficient than existing pangenome inference tools

We evaluated the performance of PanTA and compared it with that of existing pange-
nome construction methods on collections of bacterial genomes. We sourced the
genomes of isolates from three bacterial species Streptococcus pneumoniae, Pseu-
domonas aeruginosa, and Klebsiella pneumoniae that are known for carrying resistance
to multiple antibiotics. These three species were chosen to cover a range of genome sizes
and CG content as well as both gram-positive and gram-negative. We selected 600 S.
pneumoniae, 800 P. aeruginosa, and 1500 K. pneumoniae isolates to create three data-
sets, named Sp600, Pa800, and Kp1500, respectively (Table 1). We downloaded their

Page 5 of 16Le et al. Genome Biology (2024) 25:209 	

genome assemblies from the RefSeq database [31] and ran Prokka [32] to generate the
gene annotations of these genomes in gff3 format. The gffs files were then used as input
for the pangenome construction process.

We compared PanTA to the pangenome inference methods that are currently
considered state-of-the-art in terms of scalability. Specifically, we included in the
comparison Roary [18], PIRATE [22], PPanGGOLiN [23], and Panaroo [25]. Other
pangenome construction methods such as panX [20], COGSoft [33], and PEPPAN [24]
were reported to be prohibitively expensive for application to thousands of genomes [24,
25] and hence were excluded from the comparison. We ran all the competing tools
using their default and recommended parameters. To evaluate the performance of the
tools with varying input sizes, we ran them on subsets of these collections, gradually
increasing in size. All computational experiments were conducted on a laptop computer
with a 20 hyper-thread CPU (Intel Core i7-1280P) and 32 Gb of memory, running
Ubuntu Linux 22.0. All methods are parallelized with multi-threading, and we ran them
on 20 threads, the number of CPU cores of the computer. We recorded the wall time and
peak memory usage of all the runs for comparison.

Most pangenome inference methods have an option to split paralogs where clusters
containing paralogous genes are identified and subsequently split into true ortholog
clusters. However, they have different definitions of paralogous clusters, and employ
different paralog splitting strategies, leading to varying levels of splitting rigorousness.
The most rigorous strategy is employed by Roary which considers a cluster paralogous
if it contains more than one gene from the same genome. It then uses conserved gene
neighborhood information to split homologous groups. This split paralog strategy is
also performed by PanTA. PIRATE and Panaroo consider a pair of genes paralogs if they
exhibit over 98% sequence identity from the CD-HIT pre-clustering step, resulting in
significantly fewer paralogs compared to Roary and PanTA. PPanGGOLiN does not
provide the option to split paralogs. Because of the differences in the rigorousness of
the tools, we ran the competing tools with the same base configuration, that is without
split paralog option. We also excluded the post-processing step that performs multiple
alignment of gene clusters, as these tools eventually call a multiple alignment method
such as MAFFT [30] for this task.

Figure 2a shows the computational resources in wall time and peak memory against
the size of the genome collection for the competing pangenome inference methods on
the three datasets. Additional file 1: Fig. S1 shows the differences in the number of folds
in resources required by each tool against PanTA. We noted that PIRATE crashed when
inferring the pangenomes for the sets of 1200 and 1500 K. pneumoniae genomes and
PPanGGOLiN ran out of memory (32 Gb) in constructing the pangenomes for 800 P.

Table 1  Characteristics of the three datasets to evaluate pangenome construction tools

Dataset Species Number of
genomes

Genome size Ave. gene
number

CG content Gram

Sp600 S. pneumoniae 600 2.0 Mb 2.0k 40% Positive

Pa800 P. aeruginosa 800 6.1 Mb 6.0k 67% Negative

Kp1500 K. pneumoniae 1500 5.4 Mb 5.1k 57% Negative

Page 6 of 16Le et al. Genome Biology (2024) 25:209

aeruginosa genomes and for 900 or more K. pneumoniae genomes. Hence, the results for
these runs are not included in the comparison. We observed that all methods exhibited
an approximately linear increase in time and memory usage against the input size. Strik-
ingly, we found PanTA was significantly faster than the competing methods across three
datasets by a large margin (Fig. 2a, top panel). Specifically, it took under 2 min to build
the pangenome for 600 S. pneumoniae genomes and 0.168 h and 0.207 h to build the
pangenomes for 800 P. aeruginosa and 1500 K. pneumoniae genomes, respectively. The
next fastest method is PPanGGOLiN, which took between 1.8 and 2.2 times longer than
PanTA on the small dataset Sp600, and the fold difference increased to 2.3–2.7 times in
the Pa800 dataset and 3.0–4.5 times in the Kp1500 dataset (Additional file 1: Fig. S1).
Panaroo took much longer, over 10 times longer than PanTA for the larger datasets
Pa800 and Kp1500. Roary was the slowest, about 15 times slower than PanTA in most
cases.

In terms of memory usage, PanTA was also the most memory-efficient, requiring only
5.1 Gb of memory for all 1500 K. pneumoniae genomes. Panaroo used more than twice
as much memory (11.8 Gb) for the same dataset, and generally the fold difference tended
to increase with larger datasets. PIRATE exhibited similar memory usage profiles, but
it was unable to construct the pangenomes for 1200 and 1500 K. pneumoniae genomes.
Roary consumed 22.4 Gb of memory for the Kp1500 dataset, which is 4.4 times more
than PanTA. While PPanGGOLiN was the second fastest, about twice as slow as PanTA,
it required the most memory, about 7 times more than PanTA for the large datasets.
Specifically, it required 26.3 Gb and 23.1 Gb of memory for analyzing 600 genomes of
P. aeruginosa and K. pneumoniae respectively; it also encountered memory issues when
analyzing configurations with more than 600 genomes of these species.

Figure 2b compares the numbers of core genes and of accessory genes in the
pangenomes inferred by the completing methods. The numbers of genes are also
shown in Additional file 1: Table S1. Note that for the Pa800 and Kp1500 datasets,
PPanGGOLiN did not complete constructing the pangenomes beyond 600 genomes.

Fig. 2  The performance of PanTA and existing tools on the three data collections. a Wall time and memory
usage among the competing tools at various dataset sizes. Note that PPanGGOLiN and PIRATE were unable
to complete the pangenome construction for some large datasets. b The number of core genes and
accessory genes of the pangenomes constructed by all the tools. c The concordance in Adjusted Rand Index
between the gene clustering and the grouping by gene annotation

Page 7 of 16Le et al. Genome Biology (2024) 25:209 	

We show the statistics from the pangenome constructed from the 600 genomes of each
species for a fair comparison of all five methods. We observed that the pangenomes
produced by Panaroo and PanTA contained a consistent number of gene families as
the result of the same sequence identity threshold (70%). Roary, which used a higher
threshold (95%), resulted in many more gene clusters in its inferred pangenomes. On the
other hand, PIRATE applied a series of thresholds ranging from 50 to 95% giving rise to
the smallest number of gene clusters. All the methods however inferred similar numbers
of core genes, in that PanTA pangenomes reported within 5% of core genes with the
corresponding pangenomes produced by the other methods (Fig. 2b).

We further assessed the accuracy of the pangenomes constructed by competing
methods. While there is no established benchmark to assess the accuracy of pangenome
inference methods, we used the degree of concordance of the gene family clustering and
the gene annotations. We collected all genes in the collection of genomes annotated by
Prokka to a known gene family, that is, excluding genes that are marked as hypothetical
protein. In other words, the benchmark considered genes that were aligned by Prokka
to the same gene family in the common protein databases (such as UniProt, HMM,
and species-specific databases) to be in the same cluster. We note that the average
proportions of hypothetical genes in a sample were 0.391 (std = 0.014), 0.409 (std =
0.018), and 0.262 (std = 0.020) for S. pneumoniae, P. aeruginosa, and K. pneumoniae
respectively. Concordance was assessed by calculating the Adjusted Rand Index
(ARI) [34], which is a measure of similarity between clustering results. An ARI value
of 1.0 indicates a perfect match between two clusterings, while a value of 0.0 indicates
random grouping. The ARI of the competing methods on the three datasets is presented
in Fig. 2c. We found that the gene clustering by PIRATE was markedly different from
that inferred from gene annotation, indicated by the low ARI values (Fig. 2c). We
attribute this discordance to the use of a series of sequence identity thresholds ranging
from 50 to 95% by PIRATE during gene clustering, as opposed to a fixed threshold for
gene annotation by Prokka. Among all the methods that use a fixed sequence identity
threshold, PanTA had comparable ARI scores with others while being significantly faster,
which urderscores the efficiency of the approach.

PanTA progressively builds pangenome

We next evaluated the performance of PanTA in progressive mode where it updates an
existing pangenome when new samples are added without the need of rebuilding the
pangenome from scratch. For each of the aforementioned datasets, we ran PanTA to
construct the pangenome of the smallest partition and progressively added the genomes
of the subsequent partitions into the pangenome. We noticed Panaroo also offered a
similar functionality, namely Panaroo-merge, that merges the pangenomes of multiple
collections together. For comparison, we ran Panaroo on each partition of the dataset,
and then applied Panaroo-merge to merge the partition collections together. In these
experiments, we collected the wall times for each pangenome as the sum of the wall
time of each step and the peak memory usage as the maximum amount of memory at
each step. Figure 3 presents the computational resources consumed by both methods on
the three datasets. We also included the resources needed by both methods when com-
puting the pangenomes from scratch as part of the comparison. As presented in Fig. 3,

Page 8 of 16Le et al. Genome Biology (2024) 25:209

Panaroo-merge improved memory usage by 20% over Panaroo at the cost of 70% longer
running time. On the other hand, PanTA in progressive mode saved memory usage by
half while maintaining a similar running time over the single mode. All in all, PanTA in
progressive mode consumed only 25% and 15% of the amount of memory required by
Panaroo and Panaroo-merge, respectively, while was 10 and 17 times faster.

We analyzed the concordance of the pangenomes constructed by the two modes
by calculating the ARIs between the two clusterings. In this calculation, we used all
the genes present in the collection instead of only the annotatable genes. As shown
in Fig. 3b, PanTA in progressive mode produced almost identical clusterings to that
in single mode (ARI > 0.99 for Sp600 and Pa800 and > 0.975 for the Kp1500). The
pangenomes produced by the two versions of Panaroo are much less concordant, with
ARI values of 0.93, 0.92, and 0.89 for the three datasets, respectively.

We posed a hypothetical scenario that the datasets were generated in specified batches,
each at a different time point. This reflects the nature of collecting and sequencing bac-
terial isolates in most research laboratories, infectious disease surveillance centers, and
healthcare facilities. We further posited that the computational costs were measured by
the time required to run on a computer with specific CPU and memory configurations,
similar to those offered by a cloud computing service. We then measured the cumulative
computation resources in CPU hours required to compute the pangenomes each time a
batch became available. For all methods, including Panaroo and PanTA in single mode,
the computation resources would include that for recomputing the pangenomes from
scratch. Panaroo-merge would only need to compute the pangenome of the new batch
and then merge the pangenome of the batch to the existing pangenome. PanTA in pro-
gressive mode would add the new batch of genomes to the pangenome. Figure 4 shows
the fold differences of all the methods against PanTA-progressive. As expected, PanTA-
progressive required only a small fraction of computing resources compared to all other
methods after a few batches. The two methods that could complete the construction of
the pangenome in the Kp1500 dataset, Roary and Panaroo, respectively consumed 45.2

Fig. 3  Performance of PanTA in progressive mode. a Comparison of computation times and memory
usage of PanTA and Panaroo in single and progressive/merge modes. b The number of gene families and
core genes inferred by PanTA and Panaroo in single and progressive modes. c Concordance in Adjusted
Rand Index of pangenomes constructed in single and progressive modes by PanTA and by Panaroo. PanTA
in the two modes produced near identical pangenomes while the pangenomes inferred by Panaroo and
Panaroo-merge had lower concordance

Page 9 of 16Le et al. Genome Biology (2024) 25:209 	

and 30.4 times more CPU-hours than PanTA-progressive, in addition to 11.7 and 6.1
times more memory. Although PPanGGOLiN was only 4.5 times slower than PanTA in
constructing the pangenome of 600 K. pneumoniae genomes, the total time to compute
the initial pangenome and recompute the updated pangenome was 6.9 folds higher than
that of PanTA-progressive after two batches. The actual computational cost was even
much higher considering that PPanGGOLiN required > 14.5 times as much memory.
PIRATE required approximately 25–30 times more CPU hours and 3–5 times more
memory compared to PanTA-progressive after processing 3–4 batches across the three
datasets. PanTA-progressive also saved 60–70% of both CPU hours and memory usage
compared to PanTA single mode.

It is expected that the pangenome inference methods in single mode required higher
and higher accumulated computational resources than PanTA-progressive did as more
batches of data became available. We examined the resources consumed by Panaroo-
merge which employs a similar approach to PanTA-progressive. Indeed, the increase of
fold difference between Panaroo-merge and PanTA-progressive was much slower than
other methods in single mode. However, it exhibited a large factor of fold difference, and
the factor tended to increase with the genome size: 6–7X for S. pneumoniae (genome
size 2.1 Mb), 15X for K. pneumoniae (5.6 Mb), and > 20X for P. aeruginosa (6.1 Mb).

Building the pangenome of a growing genome collection

The primary goal of PanTA is to analyze and manage the extensive and fast-growing
collections of microbial genomes. We demonstrate this utility by applying PanTA to
a realistic and expanding collection of bacterial genomes. To this end, we collected
all Escherichia coli genomes that were deposited into the RefSeq database [31] during
the three years 2020, 2021, and 2022. E. coli is one of the most well-studied model
prokaryotic organisms and is known for its genotypic diversity and pathogenic for both
humans and animals [35]. After removing outliers, we obtained a dataset of 12,560
genomes (the “Methods” section). To demonstrate the growing nature of the dataset, we
grouped the samples based on the quarters in which they were released. Table 2 shows
the breakdown of the samples.

Fig. 4  The fold difference in computational resources for both CPU time (top panel) and memory (bottom
panel) between existing methods and PanTA-progressive

Page 10 of 16Le et al. Genome Biology (2024) 25:209

We ran PanTA to build the initial pangenome of the genomes collected in the first
quarter. We then progressively add genomes from subsequent quarters into the col-
lection. For comparison with PanTA in single mode, we also ran PanTA on the accu-
mulated data at each quarter. As shown in Fig. 5, PanTA in progressive mode needed
only 16.6 Gb of memory to construct the pangenome for over 12000 E. coli genomes
while the single mode consumed 30.1 Gb of memory. Both modes exhibited similar
running times, around 6.5 h.

Encouraged by the scalability of PanTA, we proceeded to build the pangenome for
the entire set of E. coli genomes from the RefSeq database. We downloaded all E. coli
genomes that were released prior to 2020, and after filtering outliers, we obtained
15,625 genomes in addition to the previously collected set (the “Methods” section).
We divided these genomes into batches of maximum 1000 genomes each and
iteratively added these batches into the E. coli pangenome with PanTA-progressive.
In effect, we constructed the pangenome of all 28,275 high-quality E. coli genomes
from the RefSeq database. For this experiment, we used another laptop computer
equipped with a 32-core CPU and 64 Gb of memory. Strikingly, the pangenome of
E. coli species was inferred on a laptop computer with a total time of 32 h, including

Table 2  Number of E. coli samples deposited into RefSeq database between 2020 and 2022 by
quarter

Quarter #isolates #isolates accum.

Q1-2020 534 534

Q2-2020 713 1247

Q3-2020 830 2077

Q4-2020 1109 3186

Q1-2021 1166 4352

Q2-2021 694 5046

Q3-2021 1411 6457

Q4-2021 866 7,323

Q1-2022 1645 8,968

Q2-2022 1233 10,201

Q3-2022 1214 11,415

Q4-2022 1145 12,560

Fig. 5  Computational resources for constructing the pangenome for E. coli 

Page 11 of 16Le et al. Genome Biology (2024) 25:209 	

the time to build the pangenome from the past 3 years. The peak memory recorded
during the pangenome construction was 39.9 Gb.

Discussion
Bacteria are among the most diverse life forms on earth, evidenced by the high level
of variability of gene content across strains in a species. It is therefore possible but
undesirable to use the genome of a single isolate as the reference to represent a clade.
Pangenome analysis offers an alternative approach where all gene families of the clade
constitute the pangenome that represents the total diversity of the clade.

Most computational methods for pangenome construction usually apply clustering of
gene sequences. These methods in most cases run multiple times of CD-HIT clustering
on different levels of sequence similarity in order to achieve stability of clustering. In
developing PanTA, we use only one round of CD-HIT clustering and yet we obtain the
near identical pangenomes with existing tools on the same sequence identity threshold.
PanTA is shown to be multiple times faster than and requires less than half of the
memory consumed by the current state of the arts.

The bacterial genome collections are growing by nature as more and more genomes are
routinely sequenced in laboratories as well as in research and medical settings around
the world. PanTA addresses the complexity of rebuilding pangenomes by providing the
progressive mode where new genomes are added to an existing pangenome. By utilizing
the group membership information of the existing clustering, PanTA needs to compare
the genes in the new genomes with only existing groups and thereby are significantly
faster than rebuilding the pangenomes from scratch. Interestingly, we found that
building the pangenome progressively from batches of genomes takes a similar amount
of time to build from the whole collection, while reducing the memory requirements by
half. The scalability of PanTA is demonstrated by the ability to construct the pangenome
for the E. coli species from the entire set of 28000 genomes from RefSeq database on
a laptop computer in an unprecedented 32-h timeframe. More strikingly, PanTA can
construct the pangenome progressively when new samples are added into the collection,
without recomputing the accumulated collection from scratch. PanTA in progressive
mode is shown to consume orders of magnitude less computational resources than
existing solutions in analyzing growing data collections. This makes PanTA practically
suitable for analysis of the large collections of bacteria in the sequencing ages.

PanTA is designed to be compatible with existing pangenome tools and as such it
can be seamlessly integrated into existing bacteria genomics analysis pipelines [36,
37]. Specifically, it takes as input the annotations in GFF3 format, a standard set by
Prokka [32], and followed by the modern annotation tools including DFAST [38], PGAP
[31], and Bakta [39]. The outputs of PanTA including gene family memberships and gene
alignment are also formatted according to the standards in the field. The gene clustering
produced by PanTA can also be the foundation for constructing the population graph-
based pangenome representation. The graph-based pangenome presentation has been
employed for error-correction by Panaroo and for depiction of overall genomic diversity
by PPanGGOLiN. This features will be considered to be implemented in the future
releases of PanTA.

Page 12 of 16Le et al. Genome Biology (2024) 25:209

Methods
Pangenome pipeline

PanTA accepts input genomes in GFF3 files which store gene annotations in gff format
followed by the genome assembly in fasta format. This format is the output from
Prokka [32] and has been popularized for the pangenome analysis started by Roary [18].
Each genome is associated with a unique ID which can be input by the user or generated
by PanTA. The ID of each contig in the genome, as well as each annotated coding
sequence, must be unique. Coding sequences are extracted and translated into protein
sequences. Coding sequences that are less than 120 nucleotides in length or lack both
a start and stop codon are excluded. Protein sequences containing more than 5% of
unknown amino acids are also removed. Next, a fast sequence grouping is performed
using CD-HIT [26] with an identity threshold of 98%. The representative sequences
from CD-HIT are compared all-against-all by DIAMOND [28] or BLASTP [27]. The
e-value threshold is set to 10e−6 by default. To reduce the time required for all-against-
all alignment, the list of representative sequences is divided into smaller chunks of up
to 20,000 sequences to enable parallel matching. The identified matches are filtered to
retain those with sequence identity above a threshold (default at 70%). The DIAMOND
result is then input into MCL [29], which uses a normalized bit score for clustering with
an inflation value of 1.5. Finally, the removed sequences in the CD-HIT step are merged
back into the MCL clusters. The detailed parameters of the tools are listed as follows.

•	 CD-HIT: cd–hit –s 0.98 –c 0.98 –T <number_thread> –M 0 –g 1 –d 256
•	 DIAMOND: diamond blastp –p <number_thread> – –evalue 1e–06 – –outfmt

6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue
bitscore qlen slen – –max–target–seqs 2000

•	 BLASP: blastp –query <chunked_file> –db <blast_db> –evalue 10–e6 –num_threads
1 –outfmt “6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send
evalue bitscore qlen slen” –max_target_seqs 2000

•	 MCL: mcxdeblast –m9 – –score r – –line–mode=abc <input> | mcl – – –abc –I 1.5
–te <num_thread>

Add samples pipeline

First, the protein sequences of the new samples are compared and matched with
CD-HIT’s representative sequences from the previous collection. This is performed by
CD-HIT-2D with the identity threshold of 98%. The protein sequences that are matched
to a representative sequence are assigned to the represented group. The unmatched
sequences are clustered by CD-HIT to create new groups with new representative
sequences. The new representative sequences are then subject to all-against-all
alignment by the alignment method of choice, i.e., DIAMOND or BLASTP. The new
representative sequences are also aligned against the existing representative sequences.
The two sets of alignments are then filtered according to the criteria and then combined
with the existing set of alignments in the pangenome. Finally, MCL is applied to the
combined set of alignments as described above.

Page 13 of 16Le et al. Genome Biology (2024) 25:209 	

•	 CD-HIT-2D cd–hit–2d –i <existing_group> –i2 <new_sequences> –s 0.98 –c 0.98
–T <num_threads> –M 0 –g 1 –d 256

Annotating clusters

For each cluster, PanTA maintains a list of all the gene names and gene products of all
genes in the cluster. It also keeps gene length statistics such as the number of genes,
minimum, maximum, and average gene length in the cluster. The cluster is assigned a
name taken from one of the annotated genes. The gene product for the cluster is the
concatenation of all the gene products of the gene members. PanTA also picks the
longest gene sequence to be the representative sequence for the cluster.

Post‑processing and output

PanTA presents the pangenome following the standard set out by Roary. Specifically, the
presence and absence of genes in each sample are presented in CSV and Rtab formats.
Upon users’ request, PanTA performs multiple sequence alignment of all gene clusters.
Either or both genomic and protein sequences can be aligned. In addition, PanTA stores
the existing all-against-all alignments and the existing CD-HIT groupings for subsequent
analyses.

Performance comparisons of pangenome inference methods

The lists of isolates in the three datasets Sp600, Pa800, and Kp1500, together with their
accession IDs and the URLs of their genome sequences, are provided in the supporting
data (see Availability of data and materials). Their genome sequences were downloaded
and were subject to annotation by Prokka in its recommended parameters (prokka – –
force – –cpus 8 – –addgenes – –mincontiglen 200 – –prefix <accession_id> – –locus
<accession_id> – –genus <genus> – –species <species>). The resulting annotations in
GFF3 format are also provided in the supporting data. The three datasets were split into
batches of 150, 200, and 300 samples respectively based on the order specified in the
lists.

The competing methods Roary, PIRATE, Panaroo, and PPanGGOLiN were installed
with their stable releases via conda. They were run with their parameters as follows:

•	 Roary: roary –p 20 –s –f <output_folder> <list_of_samples>
•	 PIRATE: PIRATE – –para–off –t 20 –z 0 –o <output_folder> –i <folder_containing_

samples>
•	 Panaroo: panaroo – –merge_paralogs –t 20 – –clean–mode strict –o <output_

folder> –i <samples>
•	 Panaroo in merge mode: the pangenome for a new batch of genomes was generated

with the parameters as above, and was merged into the existing pangenome with
the parameters panaroo–merge – –merge_paralogs –t 20 –o <output_folder> –d
<existing_pangenome> <new_batch_pangenome>

•	 PPanGGOLiN: ppanggolin workflow – –anno <sample_list> – –verbose 2 –c 20 –o
<output_folder> – –identity 0.7

•	 PanTA: panta main – –dont–split –o <output_folder> –g <samples>

Page 14 of 16Le et al. Genome Biology (2024) 25:209

•	 PanTA in progressive mode: panta add – –dont–split –c <existing_pangenome> –g
<samples>

Running times and memory usage of the computational experiments were collected
with the time utility, i.e., having /usr/bin/time –v preceding the command line. The
wall time was determined from the “Elapsed” field, whereas memory usage was from
the “Maximum resident set size.” For Panaroo in merge mode and PanTA in progressive
mode, the total time of constructing the pangenome was the sum of the wall times from
all preceding steps, while the memory usage was the maximum.

Data collection for the E. coli dataset

The set of genomes available on RefSeq database was downloaded from https://​ftp.​ncbi.​
nlm.​nih.​gov/​genom​es/​refseq/​assem​bly_​summa​ry_​refseq.​txt (accessed February 22,
2023). We selected only genomes of samples belonging to E. coli species. The genome
sequence (fna file) and genome annotation (GFF file) for each sample were downloaded
and combined to generate a GFF3 format file. Coding sequences that were shorter than
120 bp or contained non-canonical nucleotides were removed. To remove outliers,
we inspected the histograms of genome sizes, number of genes, and N50 statistics
(Additional file 1: Fig. S2) and selected genomes that were between 4.2 Mb and 5.9
Mb long, contained between 4200 and 5500 genes, and having N50 statistics of 50 kb
or higher. These genomes were grouped into quarters based on their release dates. The
Jupyter notebook and the script that was used to download and process the dataset and
to run pangenome construction were provided in the supporting data. The resulting
pangenome of the E. coli species was also included in the supporting data.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​024-​03362-z.

Additional file 1: Table S1. The numbers of core-, accessory- and total genes in the pangenomes constructed by
the completing methods. The gene counts were from the pangenomes of 600 genomes for all the datasets so that
PIRATE and PPanGGOLiN could complete the pangenome construction. Fig. S1. Fold difference between compu-
tational timeand memoryrequired by existing methods against PanTA. Fig. S2. Distributions of the gene number,
genome size and N50 of the Escherichia coli genomes collected from RefSeq database.

Additional file 2: Review history. The peer review history.

Review history
The review history is available as Additional file 2.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team.

Authors’ contributions
MDC, SHN, TN, and HAN conceptualized and designed the project. DQL, TAN, SHN, and MDC implemented the software.
DQL, TAN, SHN, TTN, TN, and MDC performed the experiments and data analysis. CHN, HTP, THH, and NSV managed the
project. DQL, TAN, and MDC drafted the first version of the manuscript. All authors wrote, revised, and approved the final
manuscript.

Funding
This work has been supported by Vingroup Innovation Foundation (VINIF) in project code VINIF.2019.DA11.

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/assembly_summary_refseq.txt
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/assembly_summary_refseq.txt
https://doi.org/10.1186/s13059-024-03362-z

Page 15 of 16Le et al. Genome Biology (2024) 25:209 	

Availability of data and materials
The PanTA software is open source and is publicly available on GitHub at https://​github.​com/​amrom​ics/​panta [40] or
on Figshare at DOI 10.​6084/​m9.​figsh​are.​23724​705 [41] under an MIT license. The software is also distributed via pip. An
official docker container (amromics/panta) is available on Docker Hub at https://​hub.​docker.​com/r/​amrom​ics/​panta [42].
The genome assemblies for datasets were downloaded from RefSeq database [31]. Supporting data and the source code
version used in the manuscript are available on Figshare at DOI 10.​6084/​m9.​figsh​are.​23724​705 [41].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
TN, HAN, and MDC are founders of AMROMICS JSC. DQL, TAN, and SHN are consultants to AMROMICS JSC. All other
authors declare no competing interests.

Received: 21 February 2024 Accepted: 30 July 2024

References
	1.	 McInerney JO, McNally A, O’Connell MJ. Why prokaryotes have pangenomes. Nat Microbiol. 2017;2(4):17040. https://​

doi.​org/​10.​1038/​nmicr​obiol.​2017.​40.
	2.	 Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, et al. Genome analysis of multiple

pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome’’. Proc Natl Acad Sci.
2005;102(39):13950–5. https://​doi.​org/​10.​1073/​pnas.​05067​58102.

	3.	 Kim Y, Gu C, Kim HU, Lee SY. Current status of pan-genome analysis for pathogenic bacteria. Curr Opin Biotechnol.
2020;63:54–62. https://​doi.​org/​10.​1016/j.​copbio.​2019.​12.​001.

	4.	 Pinto M, González-Díaz A, Machado MP, Duarte S, Vieira L, Carriço JA, Marti S, et al. Insights into the population
structure and pan-genome of Haemophilus influenzae. Infect Genet Evol. 2019;67:126–35. https://​doi.​org/​10.​1016/j.​
meegid.​2018.​10.​025.

	5.	 Freschi L, Vincent AT, Jeukens J, Emond-Rheault J-G, Kukavica-Ibrulj I, Dupont M-J, Charette SJ, et al. The Pseu-
domonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and
pathogenicity. Genome Biol Evol. 2019;11(1):109–20. https://​doi.​org/​10.​1093/​gbe/​evy259.

	6.	 Cai H, McLimans CJ, Beyer JE, Krumholz LR, Hambright KD. Microcystis pangenome reveals cryptic diversity within
and across morphospecies. Sci Adv. 2023;9(2):1–11. https://​doi.​org/​10.​1126/​sciadv.​add37​83.

	7.	 Lu Q-F, Cao D-M, Su L-L, Li S-B, Ye G-B, Zhu X-Y, Wang J-P. Genus-wide comparative genomics analysis of neisseria
to identify new genes associated with pathogenicity and niche adaptation of Neisseria pathogens. Int J Genomics.
2019;2019:1–19. https://​doi.​org/​10.​1155/​2019/​60157​30.

	8.	 Do VH, Nguyen SH, Le DQ, Nguyen TT, Nguyen CH, Ho TH, Vo NS, Nguyen T, Nguyen HA, Cao MD. Pasa: leveraging
population pangenome graph to scaffold prokaryote genome assemblies. Nucleic Acids Res. 2023. https://​doi.​org/​
10.​1093/​nar/​gkad1​170.

	9.	 Domman D, Quilici M-L, Dorman MJ, Njamkepo E, Mutreja A, Mather AE, Delgado G, et al. Integrated view of Vibrio
cholerae in the Americas. Science. 2017;358(6364):789–93. https://​doi.​org/​10.​1126/​scien​ce.​aao21​36.

	10.	 Chung The H, Karkey A, Pham Thanh D, Boinett CJ, Cain AK, Ellington MJ, Baker KS, et al. A high-resolution genomic
analysis of multidrug-resistant hospital outbreaks of Klebsiella pneumoniae. EMBO Mol Med. 2015;7(3):227–39.
https://​doi.​org/​10.​15252/​emmm.​20140​4767.

	11.	 Kavvas ES, Catoiu E, Mih N, Yurkovich JT, Seif Y, Dillon N, Heckmann D, et al. Machine learning and structural analysis
of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat Commun.
2018;9(1):4306. https://​doi.​org/​10.​1038/​s41467-​018-​06634-y.

	12.	 Seif Y, Kavvas E, Lachance J-C, Yurkovich JT, Nuccio S-P, Fang X, Catoiu E, et al. Genome-scale metabolic reconstruc-
tions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat Commun. 2018;9(1):3771. https://​doi.​
org/​10.​1038/​s41467-​018-​06112-5.

	13.	 Zeng L, Wang D, Hu N, Zhu Q, Chen K, Dong K, Zhang Y, et al. A novel pan-genome reverse vaccinology approach
employing a negative-selection strategy for screening surface-exposed antigens against leptospirosis. Front Micro-
biol. 2017;8. https://​doi.​org/​10.​3389/​fmicb.​2017.​00396.

	14.	 Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R. Systematic discovery of antiphage
defense systems in the microbial pangenome. Science. 2018;359(6379). https://​doi.​org/​10.​1126/​scien​ce.​aar41​20.

	15.	 Bhardwaj T, Somvanshi P. Pan-genome analysis of Clostridium botulinum reveals unique targets for drug develop-
ment. Gene. 2017;623:48–62. https://​doi.​org/​10.​1016/j.​gene.​2017.​04.​019.

	16.	 Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. PGAP: pan-genomes analysis pipeline. Bioinformatics. 2012;28(3):416–8.
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btr655.

	17.	 Fouts DE, Brinkac L, Beck E, Inman J, Sutton G. PanOCT: automated clustering of orthologs using conserved
gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res.
2012;40(22):172. https://​doi.​org/​10.​1093/​nar/​gks757.

https://github.com/amromics/panta
https://doi.org/10.6084/m9.figshare.23724705
https://hub.docker.com/r/amromics/panta
https://doi.org/10.6084/m9.figshare.23724705
https://doi.org/10.1038/nmicrobiol.2017.40
https://doi.org/10.1038/nmicrobiol.2017.40
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1016/j.copbio.2019.12.001
https://doi.org/10.1016/j.meegid.2018.10.025
https://doi.org/10.1016/j.meegid.2018.10.025
https://doi.org/10.1093/gbe/evy259
https://doi.org/10.1126/sciadv.add3783
https://doi.org/10.1155/2019/6015730
https://doi.org/10.1093/nar/gkad1170
https://doi.org/10.1093/nar/gkad1170
https://doi.org/10.1126/science.aao2136
https://doi.org/10.15252/emmm.201404767
https://doi.org/10.1038/s41467-018-06634-y
https://doi.org/10.1038/s41467-018-06112-5
https://doi.org/10.1038/s41467-018-06112-5
https://doi.org/10.3389/fmicb.2017.00396
https://doi.org/10.1126/science.aar4120
https://doi.org/10.1016/j.gene.2017.04.019
https://doi.org/10.1093/bioinformatics/btr655
https://doi.org/10.1093/nar/gks757

Page 16 of 16Le et al. Genome Biology (2024) 25:209

	18.	 Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, et al. Roary: rapid large-scale prokaryote
pan genome analysis. Bioinformatics. 2015;31(22):3691–3. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv421.

	19.	 Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6(1):24373.
https://​doi.​org/​10.​1038/​srep2​4373.

	20.	 Ding W, Baumdicker F, Neher RA. panX: pan-genome analysis and exploration. Nucleic Acids Res. 2018;46(1):5.
https://​doi.​org/​10.​1093/​nar/​gkx977.

	21.	 Peng Y, Tang S, Wang D, Zhong H, Jia H, Cai X, Zhang Z, et al. MetaPGN: a pipeline for construction and graphical
visualization of annotated pangenome networks. GigaScience. 2018;7(11):1–11. https://​doi.​org/​10.​1093/​gigas​
cience/​giy121.

	22.	 Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: a fast and scalable pangenomics toolbox for cluster-
ing diverged orthologues in bacteria. GigaScience. 2019;8(10):1–9. https://​doi.​org/​10.​1093/​gigas​cience/​giz119.

	23.	 Gautreau G, Bazin A, Gachet M, Planel R, Burlot L, Dubois M, Perrin A, et al. PPanGGOLiN: depicting microbial diver-
sity via a partitioned pangenome graph. PLOS Comput Biol. 2020;16(3):1007732. https://​doi.​org/​10.​1371/​journ​al.​
pcbi.​10077​32.

	24.	 Zhou Z, Charlesworth J, Achtman M. Accurate reconstruction of bacterial pan- and core genomes with PEPPAN.
Genome Res. 2020;30(11):1667–79. https://​doi.​org/​10.​1101/​gr.​260828.​120.

	25.	 Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G, Lees JA, Gladstone RA, et al. Producing polished
prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020;21(1):180. https://​doi.​org/​10.​1186/​
s13059-​020-​02090-4.

	26.	 Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.
Bioinformatics. 2006;22(13):1658–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btl158.

	27.	 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applica-
tions. BMC Bioinformatics. 2009;10(1):421. https://​doi.​org/​10.​1186/​1471-​2105-​10-​421.

	28.	 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
https://​doi.​org/​10.​1038/​nmeth.​3176.

	29.	 Enright AJ. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–84.
https://​doi.​org/​10.​1093/​nar/​30.7.​1575.

	30.	 Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments.
Bioinformatics. 2018;34(14):2490–2. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty121.

	31.	 Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, et al. RefSeq: expanding the Prokary-
otic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 2021;49(D1):1020–8.
https://​doi.​org/​10.​1093/​nar/​gkaa1​105.

	32.	 Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://​doi.​org/​10.​
1093/​bioin​forma​tics/​btu153.

	33.	 Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A, Koonin EV, Mushegian A. A low-polynomial algorithm
for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics.
2010;26(12):1481–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq229.

	34.	 Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66(336):846–50. https://​
doi.​org/​10.​1080/​01621​459.​1971.​10482​356.

	35.	 Tantoso E, Eisenhaber B, Kirsch M, Shitov V, Zhao Z, Eisenhaber F. To kill or to be killed: pangenome analysis of
Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol. 2022;20(1):146. https://​doi.​org/​10.​
1186/​s12915-​022-​01347-7.

	36.	 Le DQ, Nguyen SH, Nguyen TT, Nguyen CH, Ho TH, Vo NS, Nguyen T, et al. AMRViz enables seamless genomics
analysis and visualization of antimicrobial resistance. BMC Bioinformatics. 2024;25(1):193. https://​doi.​org/​10.​1186/​
s12859-​024-​05792-9.

	37.	 Le DQ, Nguyen TT, Nguyen CH, Ho TH, Vo NS, Nguyen T, Nguyen HA, et al. AMRomics: a scalable workflow to analyze
large microbial genome collection. BMC Genomics. 2024;25(1):709. https://​doi.​org/​10.​1186/​s12864-​024-​10620-8.

	38.	 Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome
publication. Bioinformatics. 2018;34(6):1037–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx713.

	39.	 Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta: rapid and standardized annotation
of bacterial genomes via alignment-free sequence identification. Microb Genomics. 2021;7(11). https://​doi.​org/​10.​
1099/​mgen.0.​000685.

	40.	 Le DQ, Nguyen TA, Nguyen HS, Nguyen TT, Nguyen CH, Phung TH, Ho TH, et al. PanTA source code. GitHub. 2024.
https://​github.​com/​amrom​ics/​panta. Accessed July 2024.

	41.	 Le DQ, Nguyen TA, Nguyen HS, Nguyen TT, Nguyen CH, Phung TH, Ho TH, et al. Supporting data and source code for
“Efficient inference of large prokaryotic pangenomes with PanTA”. Figshare. 2024. https://​doi.​org/​10.​6084/​m9.​figsh​
are.​23724​705.

	42.	 Le DQ, Nguyen TA, Nguyen HS, Nguyen TT, Nguyen CH, Phung TH, Ho TH, et al. PanTA official docker. Docker Hub.
2024. https://​hub.​docker.​com/r/​amrom​ics/​panta. Accessed July 2024.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btv421
https://doi.org/10.1038/srep24373
https://doi.org/10.1093/nar/gkx977
https://doi.org/10.1093/gigascience/giy121
https://doi.org/10.1093/gigascience/giy121
https://doi.org/10.1093/gigascience/giz119
https://doi.org/10.1371/journal.pcbi.1007732
https://doi.org/10.1371/journal.pcbi.1007732
https://doi.org/10.1101/gr.260828.120
https://doi.org/10.1186/s13059-020-02090-4
https://doi.org/10.1186/s13059-020-02090-4
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/nar/30.7.1575
https://doi.org/10.1093/bioinformatics/bty121
https://doi.org/10.1093/nar/gkaa1105
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/bioinformatics/btq229
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1186/s12915-022-01347-7
https://doi.org/10.1186/s12915-022-01347-7
https://doi.org/10.1186/s12859-024-05792-9
https://doi.org/10.1186/s12859-024-05792-9
https://doi.org/10.1186/s12864-024-10620-8
https://doi.org/10.1093/bioinformatics/btx713
https://doi.org/10.1099/mgen.0.000685
https://doi.org/10.1099/mgen.0.000685
https://github.com/amromics/panta
https://doi.org/10.6084/m9.figshare.23724705
https://doi.org/10.6084/m9.figshare.23724705
https://hub.docker.com/r/amromics/panta

	Efficient inference of large prokaryotic pangenomes with PanTA
	Abstract
	Background
	Results
	Overview of the pipeline
	PanTA is significantly more efficient than existing pangenome inference tools
	PanTA progressively builds pangenome
	Building the pangenome of a growing genome collection

	Discussion
	Methods
	Pangenome pipeline
	Add samples pipeline
	Annotating clusters
	Post-processing and output
	Performance comparisons of pangenome inference methods
	Data collection for the E. coli dataset

	References

