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Abstract 

Pangenome inference is an indispensable step in bacterial genomics, yet its scalability 
poses a challenge due to the rapid growth of genomic collections. This paper presents 
PanTA, a software package designed for constructing pangenomes of large bacterial 
datasets, showing unprecedented efficiency levels multiple times higher than existing 
tools. PanTA introduces a novel mechanism to construct the pangenome progressively 
without rebuilding the accumulated collection from scratch. The progressive mode 
is shown to consume orders of magnitude less computational resources than existing 
solutions in managing growing datasets. The software is open source and is publicly 
available at https://​github.​com/​amrom​ics/​panta and at 10.​6084/​m9.​figsh​are.​23724​705.

Background
Prokaryotic genomes are known for enormous intraspecific variability owing to great 
variation events such as horizontal gene transfers, differential gene losses, and gene 
duplication [1]. This led to the introduction of the pangenome concept as a methodology 
to investigate the diversity of bacterial genomes  [2]. Since its inception in 2005, 
pangenome analysis has been an indispensable tool in microbial genomics studies  [3] 
and has generated novel biological insights in bacterial population structures  [4, 5], 
genetic diversity [6], niche adaptation [7], and genome assembly [8]. Pangenome studies 
have also been successfully applied into inferring the evolution of lineages of pandemic 
causing pathogens and identifying lineage-specific genetic features [9, 10], investigating 
genetic signatures associated with antimicrobial resistance  [11], pan-reactome 
analyses [12], and therapeutic development including vaccine design [13] and novel drug 
discovery [14, 15].

To address the need for pangenome analysis, a plethora of computational tools have 
been developed to construct the pangenome of a collection of prokaryotic genomes. 
Notable examples include PGAP [16], PanOCT [17], Roary [18], BPGA [19], panX [20], 
MetaPGN  [21], PIRATE  [22], PPanGGOLiN  [23], PEPPAN  [24], and Panaroo  [25]. 
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The core of pangenome construction is the clustering of gene sequences into gene 
families. This step is typically performed by first estimating the similarity between 
gene sequences by a homology search tool such as CD-HIT  [26], BLASTP  [27], and 
DIAMOND [28] followed by a clustering method such as the commonly used Markov 
clustering algorithm (MCL)  [29]. The clustering step is also the most computationally 
intensive of the pipeline. The gene families are further refined through the identification 
of paralogous genes using either a graph-based approach or a tree-based approach. The 
resulting gene clusters are then classified into core or accessory genes based on their 
prevalence in the collection.

Advances in high-throughput sequencing technologies have recently enabled the 
exponential growth of microbial genomics data in public databases and in research 
laboratories around the world. The Genbank database stores hundreds of thousands of 
genomes for common bacterial species, and the numbers are fast-growing. While these 
resources contain rich sources of population genomics information, pangenome analysis 
has not been able to scale with the volume of the data. Most existing pangenome 
inference methods take days and require large amounts of memory that are typically 
beyond the capacity of a standard computer to construct the pangenome of just a 
few thousand isolates. In addition, the genomic databases are growing by nature, 
accumulating genomes of isolates collected and sequenced at different time points. 
There currently exists no efficient utility to update an existing pangenome when new 
genomes become available. In such cases, the pangenomes of the accumulated collection 
have to be constructed from scratch over and over, leading to the excessive burden of 
computational resources.

In order to address these challenges, we have developed PanTA, an efficient and 
scalable pangenome construction tool to keep up with the growth of bacterial genomics 
data sources. With vigorous computational experiments, we show that PanTA exhibits 
an unprecedented multiple-fold reduction in both running time and memory usage 
compared with the current state-of-the-art tools for building the pangenomes of large 
collections. Crucially, PanTA allows performing pangenome analysis progressively where 
batches of new samples can be added to an existing pangenome without the need to 
recompute the accumulated pangenome from scratch. The progressive mode can further 
reduce PanTA memory usage by half without affecting running time and pangenome 
accuracy. We also show that, PanTA in progressive mode consumed orders of magnitude 
less computational resource than existing solutions to manage the pangenomes of 
growing microbial datasets. Finally, we demonstrate the utility and practicality of PanTA 
by constructing the pangenome of the entire set of high quality Escherichia coli genomes 
that have been deposited into RefSeq database to date on a laptop computer.

Results
Overview of the pipeline

PanTA is developed with the aim to build the pangenome of a large collection of 
genomes and to add a set of new genomes to an existing pangenome without rebuild-
ing the accumulated pangenome from scratch. The workflow of PanTA pipeline is 
summarized in Fig.  1. PanTA takes as input a list of genome assemblies and their 
annotations. PanTA then extracts the protein coding regions as specified by the 
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annotation, and translates them to protein sequences. In the process, it verifies and 
filters out coding regions that are incorrectly annotated, e.g., those with ambiguous 
bases or with frame length not divisible by 3, that can potentially introduce noise into 
the clustering step and the downstream analyses.

The core of the pipeline is the clustering of all genes in the collection into gene 
clusters, which represent the gene families in the collection. PanTA first runs 
CD-HIT  [26] to group similar protein sequences together, and essentially reduces 
the set of all protein sequences to a smaller set of representative sequences from 
the groups. The default thresholds for sequence identity and gene length difference 
are set to 98% and 70% respectively, and the values can be adjusted by users. The 
representative sequence of each group is the longest sequence of the group. PanTA 
then performs an all-against-all alignment of the representative sequences with 
DIAMOND  [28] or optionally BLASTP  [27]. The resulting pairwise alignments are 
filtered to retain those that pass certain thresholds of sequence identity (default at 
70%), alignment length ratios, and length difference ratios. These alignments are 
inputted into Markov clustering (MCL) [29] that clusters the representative sequences 
into homologous groups of genes. Each protein sequence is then assigned to the gene 
cluster its representative sequence belongs to.

Fig. 1  The schematic depict of PanTA workflow. The flowchart of PanTA pipeline in both single and 
progressive modes. In single model, the gene clustering process involves the reduction of protein sequences 
to representative gene sequences using CD-HIT, the all-against-all alignment of the representative sequences 
by DIAMOND, and the MCL clustering. In progressive mode, new protein sequences are first matched 
with the existing representative sequences and only unmatched sequences are reduced to form new 
groups. Pairwise alignments are performed only between new representative sequences against existing 
representative sequences and among new representative sequences
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While the clustering strategy employed by PanTA is similar to that of recent 
pangenome tools such as Roary [18], PIRATE [22], and Panaroo [25], we optimize the 
pipeline configurations that speed up the process without compromising the clustering 
accuracy. Notably, during the sequence grouping stage, PanTA runs CD-HIT only once 
at sequence identity 98% which is similar to Panaroo, instead of conducting multiple 
rounds of grouping at differing sequence identity levels as Roary and PIRATE. It also 
uses the word size of 5, which is suitable for such a high level of sequence identity. This 
word size, also used by PIRATE, enables CD-HIT to operate much faster than Panaroo’s 
use of word size of 2 and, at the same time, produces similar sequence grouping. We also 
found DIAMOND significantly faster than BLASTP for the all-against-all alignment at 
the same level of sensitivity, confirming the previous report [28].

PanTA can run in progressive mode where it adds new genomes into an existing 
pangenome without rebuilding the pangenome from scratch. In this mode, PanTA uses 
CD-HIT-2D, a tool in the CD-HIT suite [26] to match new protein sequences extracted 
from the new samples to the representative sequences from the existing groups. The 
protein sequences that are matched to an existing group are assigned to the groups and 
by proxy, to the existing gene cluster. Only unmatched sequences are subject to CD-HIT 
to create new groups (Fig. 1). By running CD-HIT clustering solely on the new genes 
in the added batch, PanTA significantly reduces the running time and memory usage 
over grouping all genes in the accumulated collection. Similarly, during the all-against-
all alignment step, PanTA first performs alignment of the representative sequences of 
the new groups against the representative sequences of the existing groups. It then runs 
the all-against-all alignment of only the new representative sequences, that is, those not 
aligned to the existing groups to the defined sequence identity threshold. The two sets 
of alignments after filtering are combined and then subject to MCL clustering. With 
this strategy, PanTA reduces the number of sequences in the grouping and alignment 
steps which are the most resource-intensive steps of the whole pipeline. As a result, the 
process is significantly accelerated.

Finally, PanTA provides options to perform post-processing steps, including splitting 
paralogous clusters and multiple alignment of genes in each cluster. For split paralogs, 
PanTA employs the conserved gene neighborhood (CGN) approach as described in [18]. 
Sequences of each gene cluster are aligned using MAFFT [30] at both DNA and protein 
levels. PanTA then generates output reports according to the standards set out by Roary, 
which include a spreadsheet detailing the presence and absence of each gene in each 
isolate as well as a summary of pangenome statistics.

PanTA is significantly more efficient than existing pangenome inference tools

We evaluated the performance of PanTA and compared it with that of existing pange-
nome construction methods on collections of bacterial genomes. We sourced the 
genomes of isolates from three bacterial species Streptococcus pneumoniae, Pseu-
domonas aeruginosa, and Klebsiella pneumoniae that are known for carrying resistance 
to multiple antibiotics. These three species were chosen to cover a range of genome sizes 
and CG content as well as both gram-positive and gram-negative. We selected 600 S. 
pneumoniae, 800 P. aeruginosa, and 1500 K. pneumoniae isolates to create three data-
sets, named Sp600, Pa800, and Kp1500, respectively (Table  1). We downloaded their 
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genome assemblies from the RefSeq database [31] and ran Prokka [32] to generate the 
gene annotations of these genomes in gff3 format. The gffs files were then used as input 
for the pangenome construction process.

We compared PanTA to the pangenome inference methods that are currently 
considered state-of-the-art in terms of scalability. Specifically, we included in the 
comparison Roary  [18], PIRATE  [22], PPanGGOLiN  [23], and Panaroo  [25]. Other 
pangenome construction methods such as panX [20], COGSoft [33], and PEPPAN [24] 
were reported to be prohibitively expensive for application to thousands of genomes [24, 
25] and hence were excluded from the comparison. We ran all the competing tools 
using their default and recommended parameters. To evaluate the performance of the 
tools with varying input sizes, we ran them on subsets of these collections, gradually 
increasing in size. All computational experiments were conducted on a laptop computer 
with a 20 hyper-thread CPU (Intel Core i7-1280P) and 32 Gb of memory, running 
Ubuntu Linux 22.0. All methods are parallelized with multi-threading, and we ran them 
on 20 threads, the number of CPU cores of the computer. We recorded the wall time and 
peak memory usage of all the runs for comparison.

Most pangenome inference methods have an option to split paralogs where clusters 
containing paralogous genes are identified and subsequently split into true ortholog 
clusters. However, they have different definitions of paralogous clusters, and employ 
different paralog splitting strategies, leading to varying levels of splitting rigorousness. 
The most rigorous strategy is employed by Roary which considers a cluster paralogous 
if it contains more than one gene from the same genome. It then uses conserved gene 
neighborhood information to split homologous groups. This split paralog strategy is 
also performed by PanTA. PIRATE and Panaroo consider a pair of genes paralogs if they 
exhibit over 98% sequence identity from the CD-HIT pre-clustering step, resulting in 
significantly fewer paralogs compared to Roary and PanTA. PPanGGOLiN does not 
provide the option to split paralogs. Because of the differences in the rigorousness of 
the tools, we ran the competing tools with the same base configuration, that is without 
split paralog option. We also excluded the post-processing step that performs multiple 
alignment of gene clusters, as these tools eventually call a multiple alignment method 
such as MAFFT [30] for this task.

Figure 2a shows the computational resources in wall time and peak memory against 
the size of the genome collection for the competing pangenome inference methods on 
the three datasets. Additional file 1: Fig. S1 shows the differences in the number of folds 
in resources required by each tool against PanTA. We noted that PIRATE crashed when 
inferring the pangenomes for the sets of 1200 and 1500 K. pneumoniae genomes and 
PPanGGOLiN ran out of memory (32 Gb) in constructing the pangenomes for 800 P. 

Table 1  Characteristics of the three datasets to evaluate pangenome construction tools

Dataset Species Number of 
genomes

Genome size Ave. gene 
number

CG content Gram

Sp600 S. pneumoniae 600 2.0 Mb 2.0k 40% Positive

Pa800 P. aeruginosa 800 6.1 Mb 6.0k 67% Negative

Kp1500 K. pneumoniae 1500 5.4 Mb 5.1k 57% Negative
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aeruginosa genomes and for 900 or more K. pneumoniae genomes. Hence, the results for 
these runs are not included in the comparison. We observed that all methods exhibited 
an approximately linear increase in time and memory usage against the input size. Strik-
ingly, we found PanTA was significantly faster than the competing methods across three 
datasets by a large margin (Fig. 2a, top panel). Specifically, it took under 2 min to build 
the pangenome for 600 S. pneumoniae genomes and 0.168 h and 0.207 h to build the 
pangenomes for 800 P. aeruginosa and 1500 K. pneumoniae genomes, respectively. The 
next fastest method is PPanGGOLiN, which took between 1.8 and 2.2 times longer than 
PanTA on the small dataset Sp600, and the fold difference increased to 2.3–2.7 times in 
the Pa800 dataset and 3.0–4.5 times in the Kp1500 dataset (Additional file 1: Fig. S1). 
Panaroo took much longer, over 10 times longer than PanTA for the larger datasets 
Pa800 and Kp1500. Roary was the slowest, about 15 times slower than PanTA in most 
cases.

In terms of memory usage, PanTA was also the most memory-efficient, requiring only 
5.1 Gb of memory for all 1500 K. pneumoniae genomes. Panaroo used more than twice 
as much memory (11.8 Gb) for the same dataset, and generally the fold difference tended 
to increase with larger datasets. PIRATE exhibited similar memory usage profiles, but 
it was unable to construct the pangenomes for 1200 and 1500 K. pneumoniae genomes. 
Roary consumed 22.4 Gb of memory for the Kp1500 dataset, which is 4.4 times more 
than PanTA. While PPanGGOLiN was the second fastest, about twice as slow as PanTA, 
it required the most memory, about 7 times more than PanTA for the large datasets. 
Specifically, it required 26.3 Gb and 23.1 Gb of memory for analyzing 600 genomes of 
P. aeruginosa and K. pneumoniae respectively; it also encountered memory issues when 
analyzing configurations with more than 600 genomes of these species.

Figure  2b compares the numbers of core genes and of accessory genes in the 
pangenomes inferred by the completing methods. The numbers of genes are also 
shown in Additional file  1: Table  S1. Note that for the Pa800 and Kp1500 datasets, 
PPanGGOLiN did not complete constructing the pangenomes beyond 600 genomes. 

Fig. 2  The performance of PanTA and existing tools on the three data collections. a Wall time and memory 
usage among the competing tools at various dataset sizes. Note that PPanGGOLiN and PIRATE were unable 
to complete the pangenome construction for some large datasets. b The number of core genes and 
accessory genes of the pangenomes constructed by all the tools. c The concordance in Adjusted Rand Index 
between the gene clustering and the grouping by gene annotation
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We show the statistics from the pangenome constructed from the 600 genomes of each 
species for a fair comparison of all five methods. We observed that the pangenomes 
produced by Panaroo and PanTA contained a consistent number of gene families as 
the result of the same sequence identity threshold (70%). Roary, which used a higher 
threshold (95%), resulted in many more gene clusters in its inferred pangenomes. On the 
other hand, PIRATE applied a series of thresholds ranging from 50 to 95% giving rise to 
the smallest number of gene clusters. All the methods however inferred similar numbers 
of core genes, in that PanTA pangenomes reported within 5% of core genes with the 
corresponding pangenomes produced by the other methods (Fig. 2b).

We further assessed the accuracy of the pangenomes constructed by competing 
methods. While there is no established benchmark to assess the accuracy of pangenome 
inference methods, we used the degree of concordance of the gene family clustering and 
the gene annotations. We collected all genes in the collection of genomes annotated by 
Prokka to a known gene family, that is, excluding genes that are marked as hypothetical 
protein. In other words, the benchmark considered genes that were aligned by Prokka 
to the same gene family in the common protein databases (such as UniProt, HMM, 
and species-specific databases) to be in the same cluster. We note that the average 
proportions of hypothetical genes in a sample were 0.391 (std = 0.014), 0.409 (std = 
0.018), and 0.262 (std = 0.020) for S. pneumoniae, P. aeruginosa, and K. pneumoniae 
respectively. Concordance was assessed by calculating the Adjusted Rand Index 
(ARI)  [34], which is a measure of similarity between clustering results. An ARI value 
of 1.0 indicates a perfect match between two clusterings, while a value of 0.0 indicates 
random grouping. The ARI of the competing methods on the three datasets is presented 
in Fig. 2c. We found that the gene clustering by PIRATE was markedly different from 
that inferred from gene annotation, indicated by the low ARI values (Fig.  2c). We 
attribute this discordance to the use of a series of sequence identity thresholds ranging 
from 50 to 95% by PIRATE during gene clustering, as opposed to a fixed threshold for 
gene annotation by Prokka. Among all the methods that use a fixed sequence identity 
threshold, PanTA had comparable ARI scores with others while being significantly faster, 
which urderscores the efficiency of the approach.

PanTA progressively builds pangenome

We next evaluated the performance of PanTA in progressive mode where it updates an 
existing pangenome when new samples are added without the need of rebuilding the 
pangenome from scratch. For each of the aforementioned datasets, we ran PanTA to 
construct the pangenome of the smallest partition and progressively added the genomes 
of the subsequent partitions into the pangenome. We noticed Panaroo also offered a 
similar functionality, namely Panaroo-merge, that merges the pangenomes of multiple 
collections together. For comparison, we ran Panaroo on each partition of the dataset, 
and then applied Panaroo-merge to merge the partition collections together. In these 
experiments, we collected the wall times for each pangenome as the sum of the wall 
time of each step and the peak memory usage as the maximum amount of memory at 
each step. Figure 3 presents the computational resources consumed by both methods on 
the three datasets. We also included the resources needed by both methods when com-
puting the pangenomes from scratch as part of the comparison. As presented in Fig. 3, 
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Panaroo-merge improved memory usage by 20% over Panaroo at the cost of 70% longer 
running time. On the other hand, PanTA in progressive mode saved memory usage by 
half while maintaining a similar running time over the single mode. All in all, PanTA in 
progressive mode consumed only 25% and 15% of the amount of memory required by 
Panaroo and Panaroo-merge, respectively, while was 10 and 17 times faster.

We analyzed the concordance of the pangenomes constructed by the two modes 
by calculating the ARIs between the two clusterings. In this calculation, we used all 
the genes present in the collection instead of only the annotatable genes. As shown 
in Fig.  3b, PanTA in progressive mode produced almost identical clusterings to that 
in single mode (ARI > 0.99 for Sp600 and Pa800 and > 0.975 for the Kp1500). The 
pangenomes produced by the two versions of Panaroo are much less concordant, with 
ARI values of 0.93, 0.92, and 0.89 for the three datasets, respectively.

We posed a hypothetical scenario that the datasets were generated in specified batches, 
each at a different time point. This reflects the nature of collecting and sequencing bac-
terial isolates in most research laboratories, infectious disease surveillance centers, and 
healthcare facilities. We further posited that the computational costs were measured by 
the time required to run on a computer with specific CPU and memory configurations, 
similar to those offered by a cloud computing service. We then measured the cumulative 
computation resources in CPU hours required to compute the pangenomes each time a 
batch became available. For all methods, including Panaroo and PanTA in single mode, 
the computation resources would include that for recomputing the pangenomes from 
scratch. Panaroo-merge would only need to compute the pangenome of the new batch 
and then merge the pangenome of the batch to the existing pangenome. PanTA in pro-
gressive mode would add the new batch of genomes to the pangenome. Figure 4 shows 
the fold differences of all the methods against PanTA-progressive. As expected, PanTA-
progressive required only a small fraction of computing resources compared to all other 
methods after a few batches. The two methods that could complete the construction of 
the pangenome in the Kp1500 dataset, Roary and Panaroo, respectively consumed 45.2 

Fig. 3  Performance of PanTA in progressive mode. a Comparison of computation times and memory 
usage of PanTA and Panaroo in single and progressive/merge modes. b The number of gene families and 
core genes inferred by PanTA and Panaroo in single and progressive modes. c Concordance in Adjusted 
Rand Index of pangenomes constructed in single and progressive modes by PanTA and by Panaroo. PanTA 
in the two modes produced near identical pangenomes while the pangenomes inferred by Panaroo and 
Panaroo-merge had lower concordance
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and 30.4 times more CPU-hours than PanTA-progressive, in addition to 11.7 and 6.1 
times more memory. Although PPanGGOLiN was only 4.5 times slower than PanTA in 
constructing the pangenome of 600 K. pneumoniae genomes, the total time to compute 
the initial pangenome and recompute the updated pangenome was 6.9 folds higher than 
that of PanTA-progressive after two batches. The actual computational cost was even 
much higher considering that PPanGGOLiN required > 14.5 times as much memory. 
PIRATE required approximately 25–30 times more CPU hours and 3–5 times more 
memory compared to PanTA-progressive after processing 3–4 batches across the three 
datasets. PanTA-progressive also saved 60–70% of both CPU hours and memory usage 
compared to PanTA single mode.

It is expected that the pangenome inference methods in single mode required higher 
and higher accumulated computational resources than PanTA-progressive did as more 
batches of data became available. We examined the resources consumed by Panaroo-
merge which employs a similar approach to PanTA-progressive. Indeed, the increase of 
fold difference between Panaroo-merge and PanTA-progressive was much slower than 
other methods in single mode. However, it exhibited a large factor of fold difference, and 
the factor tended to increase with the genome size: 6–7X for S. pneumoniae (genome 
size 2.1 Mb), 15X for K. pneumoniae (5.6 Mb), and > 20X for P. aeruginosa (6.1 Mb).

Building the pangenome of a growing genome collection

The primary goal of PanTA is to analyze and manage the extensive and fast-growing 
collections of microbial genomes. We demonstrate this utility by applying PanTA to 
a realistic and expanding collection of bacterial genomes. To this end, we collected 
all Escherichia coli genomes that were deposited into the RefSeq database  [31] during 
the three years 2020, 2021, and 2022. E. coli is one of the most well-studied model 
prokaryotic organisms and is known for its genotypic diversity and pathogenic for both 
humans and animals  [35]. After removing outliers, we obtained a dataset of 12,560 
genomes (the “Methods” section). To demonstrate the growing nature of the dataset, we 
grouped the samples based on the quarters in which they were released. Table 2 shows 
the breakdown of the samples.

Fig. 4  The fold difference in computational resources for both CPU time (top panel) and memory (bottom 
panel) between existing methods and PanTA-progressive
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We ran PanTA to build the initial pangenome of the genomes collected in the first 
quarter. We then progressively add genomes from subsequent quarters into the col-
lection. For comparison with PanTA in single mode, we also ran PanTA on the accu-
mulated data at each quarter. As shown in Fig. 5, PanTA in progressive mode needed 
only 16.6 Gb of memory to construct the pangenome for over 12000 E. coli genomes 
while the single mode consumed 30.1 Gb of memory. Both modes exhibited similar 
running times, around 6.5 h.

Encouraged by the scalability of PanTA, we proceeded to build the pangenome for 
the entire set of E. coli genomes from the RefSeq database. We downloaded all E. coli 
genomes that were released prior to 2020, and after filtering outliers, we obtained 
15,625 genomes in addition to the previously collected set (the “Methods” section). 
We divided these genomes into batches of maximum 1000 genomes each and 
iteratively added these batches into the E. coli pangenome with PanTA-progressive. 
In effect, we constructed the pangenome of all 28,275 high-quality E. coli genomes 
from the RefSeq database. For this experiment, we used another laptop computer 
equipped with a 32-core CPU and 64 Gb of memory. Strikingly, the pangenome of 
E. coli species was inferred on a laptop computer with a total time of 32 h, including 

Table 2  Number of E. coli samples deposited into RefSeq database between 2020 and 2022 by 
quarter

Quarter #isolates #isolates accum.

Q1-2020 534 534

Q2-2020 713 1247

Q3-2020 830 2077

Q4-2020 1109 3186

Q1-2021 1166 4352

Q2-2021 694 5046

Q3-2021 1411 6457

Q4-2021 866 7,323

Q1-2022 1645 8,968

Q2-2022 1233 10,201

Q3-2022 1214 11,415

Q4-2022 1145 12,560

Fig. 5  Computational resources for constructing the pangenome for E. coli 
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the time to build the pangenome from the past 3 years. The peak memory recorded 
during the pangenome construction was 39.9 Gb.

Discussion
Bacteria are among the most diverse life forms on earth, evidenced by the high level 
of variability of gene content across strains in a species. It is therefore possible but 
undesirable to use the genome of a single isolate as the reference to represent a clade. 
Pangenome analysis offers an alternative approach where all gene families of the clade 
constitute the pangenome that represents the total diversity of the clade.

Most computational methods for pangenome construction usually apply clustering of 
gene sequences. These methods in most cases run multiple times of CD-HIT clustering 
on different levels of sequence similarity in order to achieve stability of clustering. In 
developing PanTA, we use only one round of CD-HIT clustering and yet we obtain the 
near identical pangenomes with existing tools on the same sequence identity threshold. 
PanTA is shown to be multiple times faster than and requires less than half of the 
memory consumed by the current state of the arts.

The bacterial genome collections are growing by nature as more and more genomes are 
routinely sequenced in laboratories as well as in research and medical settings around 
the world. PanTA addresses the complexity of rebuilding pangenomes by providing the 
progressive mode where new genomes are added to an existing pangenome. By utilizing 
the group membership information of the existing clustering, PanTA needs to compare 
the genes in the new genomes with only existing groups and thereby are significantly 
faster than rebuilding the pangenomes from scratch. Interestingly, we found that 
building the pangenome progressively from batches of genomes takes a similar amount 
of time to build from the whole collection, while reducing the memory requirements by 
half. The scalability of PanTA is demonstrated by the ability to construct the pangenome 
for the E. coli species from the entire set of 28000 genomes from RefSeq database on 
a laptop computer in an unprecedented 32-h timeframe. More strikingly, PanTA can 
construct the pangenome progressively when new samples are added into the collection, 
without recomputing the accumulated collection from scratch. PanTA in progressive 
mode is shown to consume orders of magnitude less computational resources than 
existing solutions in analyzing growing data collections. This makes PanTA practically 
suitable for analysis of the large collections of bacteria in the sequencing ages.

PanTA is designed to be compatible with existing pangenome tools and as such it 
can be seamlessly integrated into existing bacteria genomics analysis pipelines  [36, 
37]. Specifically, it takes as input the annotations in GFF3 format, a standard set by 
Prokka [32], and followed by the modern annotation tools including DFAST [38], PGAP 
[31], and Bakta [39]. The outputs of PanTA including gene family memberships and gene 
alignment are also formatted according to the standards in the field. The gene clustering 
produced by PanTA can also be the foundation for constructing the population graph-
based pangenome representation. The graph-based pangenome presentation has been 
employed for error-correction by Panaroo and for depiction of overall genomic diversity 
by PPanGGOLiN. This features will be considered to be implemented in the future 
releases of PanTA.
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Methods
Pangenome pipeline

PanTA accepts input genomes in GFF3 files which store gene annotations in gff format 
followed by the genome assembly in fasta format. This format is the output from 
Prokka [32] and has been popularized for the pangenome analysis started by Roary [18]. 
Each genome is associated with a unique ID which can be input by the user or generated 
by PanTA. The ID of each contig in the genome, as well as each annotated coding 
sequence, must be unique. Coding sequences are extracted and translated into protein 
sequences. Coding sequences that are less than 120 nucleotides in length or lack both 
a start and stop codon are excluded. Protein sequences containing more than 5% of 
unknown amino acids are also removed. Next, a fast sequence grouping is performed 
using CD-HIT  [26] with an identity threshold of 98%. The representative sequences 
from CD-HIT are compared all-against-all by DIAMOND  [28] or BLASTP  [27]. The 
e-value threshold is set to 10e−6 by default. To reduce the time required for all-against-
all alignment, the list of representative sequences is divided into smaller chunks of up 
to 20,000 sequences to enable parallel matching. The identified matches are filtered to 
retain those with sequence identity above a threshold (default at 70%). The DIAMOND 
result is then input into MCL [29], which uses a normalized bit score for clustering with 
an inflation value of 1.5. Finally, the removed sequences in the CD-HIT step are merged 
back into the MCL clusters. The detailed parameters of the tools are listed as follows.

•	 CD-HIT: cd–hit –s 0.98 –c 0.98 –T <number_thread> –M 0 –g 1 –d 256
•	 DIAMOND: diamond blastp –p <number_thread> –  –evalue 1e–06 –  –outfmt 

6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue 
bitscore qlen slen – –max–target–seqs 2000

•	 BLASP: blastp –query <chunked_file> –db <blast_db> –evalue 10–e6 –num_threads 
1 –outfmt “6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send 
evalue bitscore qlen slen” –max_target_seqs 2000

•	 MCL: mcxdeblast –m9 – –score r – –line–mode=abc <input> | mcl – – –abc –I 1.5 
–te <num_thread>

Add samples pipeline

First, the protein sequences of the new samples are compared and matched with 
CD-HIT’s representative sequences from the previous collection. This is performed by 
CD-HIT-2D with the identity threshold of 98%. The protein sequences that are matched 
to a representative sequence are assigned to the represented group. The unmatched 
sequences are clustered by CD-HIT to create new groups with new representative 
sequences. The new representative sequences are then subject to all-against-all 
alignment by the alignment method of choice, i.e., DIAMOND or BLASTP. The new 
representative sequences are also aligned against the existing representative sequences. 
The two sets of alignments are then filtered according to the criteria and then combined 
with the existing set of alignments in the pangenome. Finally, MCL is applied to the 
combined set of alignments as described above.
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•	 CD-HIT-2D cd–hit–2d –i <existing_group> –i2 <new_sequences> –s 0.98 –c 0.98 
–T <num_threads> –M 0 –g 1 –d 256

Annotating clusters

For each cluster, PanTA maintains a list of all the gene names and gene products of all 
genes in the cluster. It also keeps gene length statistics such as the number of genes, 
minimum, maximum, and average gene length in the cluster. The cluster is assigned a 
name taken from one of the annotated genes. The gene product for the cluster is the 
concatenation of all the gene products of the gene members. PanTA also picks the 
longest gene sequence to be the representative sequence for the cluster.

Post‑processing and output

PanTA presents the pangenome following the standard set out by Roary. Specifically, the 
presence and absence of genes in each sample are presented in CSV and Rtab formats. 
Upon users’ request, PanTA performs multiple sequence alignment of all gene clusters. 
Either or both genomic and protein sequences can be aligned. In addition, PanTA stores 
the existing all-against-all alignments and the existing CD-HIT groupings for subsequent 
analyses.

Performance comparisons of pangenome inference methods

The lists of isolates in the three datasets Sp600, Pa800, and Kp1500, together with their 
accession IDs and the URLs of their genome sequences, are provided in the supporting 
data (see Availability of data and materials). Their genome sequences were downloaded 
and were subject to annotation by Prokka in its recommended parameters (prokka – –
force – –cpus 8 – –addgenes – –mincontiglen 200 – –prefix <accession_id> – –locus 
<accession_id> – –genus <genus> – –species <species>). The resulting annotations in 
GFF3 format are also provided in the supporting data. The three datasets were split into 
batches of 150, 200, and 300 samples respectively based on the order specified in the 
lists.

The competing methods Roary, PIRATE, Panaroo, and PPanGGOLiN were installed 
with their stable releases via conda. They were run with their parameters as follows:

•	 Roary: roary –p 20 –s –f <output_folder> <list_of_samples>
•	 PIRATE: PIRATE – –para–off –t 20 –z 0 –o <output_folder> –i <folder_containing_

samples>
•	 Panaroo: panaroo –  –merge_paralogs –t 20 –  –clean–mode strict –o <output_

folder> –i <samples>
•	 Panaroo in merge mode: the pangenome for a new batch of genomes was generated 

with the parameters as above, and was merged into the existing pangenome with 
the parameters panaroo–merge –  –merge_paralogs –t 20 –o <output_folder> –d 
<existing_pangenome> <new_batch_pangenome>

•	 PPanGGOLiN: ppanggolin workflow – –anno <sample_list> – –verbose 2 –c 20 –o 
<output_folder> – –identity 0.7

•	 PanTA: panta main – –dont–split –o <output_folder> –g <samples>
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•	 PanTA in progressive mode: panta add – –dont–split –c <existing_pangenome> –g 
<samples>

Running times and memory usage of the computational experiments were collected 
with the time utility, i.e., having /usr/bin/time –v preceding the command line. The 
wall time was determined from the “Elapsed” field, whereas memory usage was from 
the “Maximum resident set size.” For Panaroo in merge mode and PanTA in progressive 
mode, the total time of constructing the pangenome was the sum of the wall times from 
all preceding steps, while the memory usage was the maximum.

Data collection for the E. coli dataset

The set of genomes available on RefSeq database was downloaded from https://​ftp.​ncbi.​
nlm.​nih.​gov/​genom​es/​refseq/​assem​bly_​summa​ry_​refseq.​txt (accessed February 22, 
2023). We selected only genomes of samples belonging to E. coli species. The genome 
sequence (fna file) and genome annotation (GFF file) for each sample were downloaded 
and combined to generate a GFF3 format file. Coding sequences that were shorter than 
120 bp or contained non-canonical nucleotides were removed. To remove outliers, 
we inspected the histograms of genome sizes, number of genes, and N50 statistics 
(Additional file  1: Fig. S2) and selected genomes that were between 4.2 Mb and 5.9 
Mb long, contained between 4200 and 5500 genes, and having N50 statistics of 50 kb 
or higher. These genomes were grouped into quarters based on their release dates. The 
Jupyter notebook and the script that was used to download and process the dataset and 
to run pangenome construction were provided in the supporting data. The resulting 
pangenome of the E. coli species was also included in the supporting data.
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