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Abstract 

Cell type identification is an indispensable analytical step in single-cell data analyses. To 
address the high noise stemming from gene expression data, existing computational 
methods often overlook the biologically meaningful relationships between genes, opt-
ing to reduce all genes to a unified data space. We assume that such relationships can 
aid in characterizing cell type features and improving cell type recognition accuracy. 
To this end, we introduce scPriorGraph, a dual-channel graph neural network that inte-
grates multi-level gene biosemantics. Experimental results demonstrate that scPrior-
Graph effectively aggregates feature values of similar cells using high-quality graphs, 
achieving state-of-the-art performance in cell type identification.
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Background
Single-cell RNA sequencing (scRNA-seq) is a high-throughput and highly sensitive 
RNA sequencing method that has revolutionized biological research by increasing the 
resolution to the individual cell level, thereby significantly enhancing our understanding 
of cell heterogeneity and the molecular mechanisms that regulate cell behavior [1, 2]. 
This technology has led to a rapid growth in scRNA-seq data, necessitating the analy-
sis of these datasets to extract various types of information. Single-cell data analysis is 
a multi-step process encompassing preprocessing and downstream analysis at both the 
cell and gene levels, with a crucial focus on identifying cell subpopulations, which plays 
a pivotal role in subsequent analyses. In cancer research, pinpointing diverse cancer cell 
subpopulations helps us understand tumor development and treatment responses [3], 
while in immunology research, recognizing various immune cell subtypes enhances our 
understanding of their distinct roles in immune responses [4]. Due to the high noise and 
dimensionality of single-cell data, identifying cell types remains a significant challenge. 
Researchers require a reliable method that leverages established cell labels as a reference 
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to learn from existing data and assign cell type identities to newly generated datasets 
rapidly and accurately, prompting the development of various cell type identification and 
annotation methods.

Currently, single-cell type identification methods fall into three primary categories: 
those based on annotated gene databases, correlation-based approaches, and super-
vised machine learning techniques. Approaches relying on annotated gene databases 
utilize publicly available databases and cell-specific marker genes highly expressed in 
known cell types to label cell types in test datasets. Such methods, like MarkerCount [5], 
scCATCH [6], and scTyper [7], have limitations, such as scarce marker genes for rare cell 
types and potential accuracy issues associated with manually selecting marker gene sets. 
Correlation-based methods rely on feature selection to identify and eliminate irrelevant 
or redundant features from expression data, and errors in this process can affect cell 
classification accuracy. Notable methods in this category include scmap-cell [8], CHE-
TAH [9], and SingleR [10].

Supervised classification methods based on machine learning utilize reference data-
sets to train classifier models for labeling unannotated datasets’ cell types. Typically, 
these methods build models for cell type distributions using features trained on previ-
ously annotated datasets and subsequently employ these models to assign labels to sam-
ples in unannotated datasets. Prominent methods in this category include SingleCellNet 
[11], scPred [12], TOSICA [13], scLearn [14], and Moana [15]. Supervised classification 
methods offer adaptability, scalability, and transferability but face challenges due to the 
inherent noise and sparsity in scRNA-seq data [16] and batch effects [17] arising from 
different operators, experimental protocols, and technical variations that can impact 
model performance.

While supervised classification methods have value in various scenarios, their capabil-
ities and performance are limited, partly because they extract feature information only 
from independent cells, disregarding higher-order relationships between cells. Graph 
convolutional neural networks (GCNs), as graph-based deep learning methods, can 
effectively capture the topological relationships between cells. The application of GCNs 
in single-cell data analysis, introducing methods like scGCN [18], GCN-SC [19], and 
scCDG [20], showcases their capability to learn higher-order cell representations and 
topological relationships for improved cell feature extraction and model performance. 
Nevertheless, the construction of high-quality cell graphs heavily depends on gene 
expression data and lacks support from cell-specific knowledge.

Existing graph-based computational methods, as mentioned above, primarily rely on 
gene expression as cell features, neglecting biologically significant intercellular com-
munication and intracellular gene relationships. Cellular communication, primarily 
achieved through ligand-receptor interactions, is fundamental to coordinating organism 
development, maintaining homeostasis, and sustaining tissue and organ functionality 
[21]. The primary mode of intercellular information transmission involves ligand-recep-
tor interactions. The binding of ligands to receptors leads to changes in the receptor’s 
conformation or activity, triggering a series of intracellular reactions and signaling 
pathways. This process gradually amplifies signals, resulting in a comprehensive array 
of cellular responses. Moreover, pathways, documented in databases such as Human-
cyc [22], INOH [23], and KEGG [24], encompass gene relationships governing common 
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biological processes, including intracellular reactions, metabolism, and signal transduc-
tion. Literatures underscores the pivotal role of intercellular communication, intracellu-
lar reactions, metabolism, and signal transduction pathways in shaping cell functionality. 
For instance, intercellular communication plays a pivotal role in determining hemat-
opoietic stem cell development, with the communication processes substantially influ-
encing the formation of blood cell types [25].

The expression levels of genes within cells can be used to describe various biological 
characteristics, such as cell subtypes and whether a cell has undergone malignancy. We 
refer to this as the “semantic information” of genes. Genes possess multiple semantics, 
with our primary focus directed towards the semantic information pertaining to cell–
cell communication and intracellular biological processes such as genetics and metab-
olism. By integrating cell–cell communication relationships and pathways with gene 
expression data, we acquire multi-level biological semantic information about genes. We 
enhance the interpretative capability of graph convolutional neural networks for scRNA-
seq data through the hierarchical organization of gene biological semantics. Considering 
the high noise in single-cell data and the relatively minor impact of noise on individual 
genes within a pathway, the integration of pathway-based scRNA-seq data makes the 
model less susceptible to noise.

Considering the benefits of integrating pathways and diverse biological information 
into the model, we introduce scPriorGraph, a dual-channel graph convolutional neural 
network. scPriorGraph incorporates various biological prior knowledge into the con-
struction of cell graphs and enables users to choose gene biological semantics that are 
suitable for their specific tasks. The model combines gene-level expression data with the 
chosen gene sets, generating gene set-level expression data, which is used for graph con-
volution construction, thereby integrating intercellular communication and intracellular 
reaction information. The sparsity of scRNA-seq data can affect the graph convolutional 
neural network’s aggregation of feature values for adjacent cells. For instance, a cell with 
a high dropout rate may be forced to associate with other cells with low gene expression 
in constructed graphs, rather than those that are truly biologically similar. In such cases, 
the graph convolutional neural network may include lower-quality expression informa-
tion, affecting the model’s prediction capability. To address this challenge, we introduce a 
graph-augmentation technique based on global cell similarity into the model to enhance 
feature aggregation, thereby obtaining higher-quality graph embeddings.

Results
scPriorGraph model

scPriorGraph is an automatic cell-type annotation method that fuses various biological 
prior knowledge using a dual graph convolutional network (see Fig. 1). The model uti-
lizes cell k-nearest neighbor graphs to construct graph convolution layers, incorporating 
the hierarchical information of gene biological semantics during the construction pro-
cess. One is intercellular communication information, which is obtained by generating a 
ligand-receptor network from a set of ligand-receptor gene pairs. Using Metapath-based 
random walks on this network, we acquire ligand-receptor pathway information and 
generate gene sets based on this pathway information. The other type of prior knowl-
edge involves user-customizable intracellular gene pathways, which typically encompass 



Page 4 of 29Cao et al. Genome Biology          (2024) 25:207 

information about various genes cooperating to accomplish specific biological processes. 
Users can choose pathway based on their specific needs. These two types of information 
are integrated into the generation of cell-k-nearest neighbor graphs, forming the founda-
tion of the entire scPriorGraph model.

Due to the presence of challenges like high noise and sparsity in single-cell sequencing 
data, the generated cell graphs can be influenced by low-quality data. To enhance the 
cell graphs, we introduced a positive pointwise mutual information (PPMI) matrix [26] 
in the model to embed global consistency information. After generating two cell k-near-
est neighbor graphs, we performed random walks on the nodes of each graph, sampled 
nodes along the paths, and obtained a frequency matrix, F. Based on matrix F, we com-
puted the PPMI matrix. Pointwise mutual information is commonly used to measure the 
correlation between two entities. In our model, if cells A and B appear together more 
frequently along a path, we consider them to be more correlated. We generated a PPMI 
matrix for each cell graph and created corresponding graph convolution layers. Dur-
ing model training, we included the minimization of mean squared errors between the 
graph convolution layer outputs of the cell graph and the PPMI matrix as part of the loss 
function. This approach allows our model to consider both local and global similarity 
information for nodes, introducing additional, previously undiscovered potential rela-
tionships among different cells, which cannot be adequately represented by cell graphs 
alone.

scPriorGraph employs a supervised learning approach, leveraging known cell type 
datasets for training. It utilizes graph convolutional layers to aggregate neighboring cell 
expression data, mapping high-dimensional cell expression data to a lower-dimensional 
space. Following training completion, the model is applied to the expression information 

Fig. 1  Overview of scPriorGraph. scPriorGraph is a dual-channel graph neural network that integrates 
multi-level gene biological semantic information. Initially scPriorGraph extracts intercellular communication 
information from ligand-receptor network using random walks. Subsequently, it obtains intracellular gene 
interaction information from a pathway database. These two sets of information are separately integrated 
with scRNA-seq data, resulting in multi-level gene biological semantics, and two cell k-nearest neighbor 
(KNN) graphs are constructed based on different semantic information. To augment the graphs, scPriorGraph 
utilizes the Positive Pointwise Mutual Information (PPMI) matrix to capture the global similarity of cells. 
Integrating various biological prior knowledge, scPriorGraph can provide accurate cell type annotations for 
unknown cells
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of a new dataset for cell type prediction, facilitating the transfer of cell labels from 
known datasets to new datasets.

Enhancing cross‑batch prediction and mitigating batch effects with scPriorGraph

In single-cell sequencing, batch effects refer to variations in sample outcomes arising 
from different experimental conditions, operators, reagents from different companies, 
different batches of reagents, distinct sequencing runs, and other factors. In this context, 
it specifically denotes the differences between training and testing samples. In single-
cell sequencing data analysis, when the training dataset and the testing dataset origi-
nate from different sequencing platforms, species, or developmental time points, biases, 
and distinctions between the training and testing data may emerge, posing challenges to 
data analysis and interpretation. This situation also demands higher model adaptability. 
Therefore, we designed three categories of experiments, encompassing cross-platform, 
cross-species, and cross-development-time scenarios, to evaluate the model’s adapt-
ability, generalization capabilities, and its ability to ameliorate batch effects when con-
fronted with data from diverse sources.

In the cross-platform experiments, we selected the human pancreatic dataset and the 
peripheral blood mononuclear cell (PBMC) dataset [27]. The human pancreatic dataset 
comprises sequencing data from the Baron Human [28], Muraro [29], Segerstolpe [30], 
and Xin [31] platforms. Based on this human pancreatic dataset, we designed 12 paired 
reference-query dataset experimental schemes. These experiments were divided into 
four groups according to the specific reference dataset used. The PBMC dataset includes 
sequencing data for PBMCs from the 10Xv2, 10Xv3, CEL-Seq, Drop-Seq, inDrop, Seq-
Well, and Smart-Seq2 platforms. Based on the PBMC dataset, we designed 30 paired 
reference-query dataset experimental schemes, which were categorized into five groups 
depending on the particular reference dataset employed.

We utilized different evaluation metrics, including Accuracy Score (Acc), Weighted 
F1 Score, Cohen’s Kappa, and Cross-Category Average Accuracy, to comprehensively 
compare the performance across models. In the context of the human pancreas dataset, 
scPriorGraph consistently demonstrated superior or comparable performance across 
four evaluation metrics when contrasted with the other eight methods in Fig.  2a and 
Additional file  1: Table. S1-S4. In experiments employing the Segerstolpe dataset as a 
reference, enabling cell type predictions for the Baron Human, Muraro, and Xin data-
sets, scPriorGraph, while not topping the list in individual sub-experiments, ultimately 
achieved the highest group’s mean accuracy (Acc = 0.981) with singleCellNet when the 
results of these three sub-experiments were considered together. This illustrates the 
heightened versatility of scPriorGraph relative to other methods across varying datasets. 
The stability and elevated performance of scPriorGraph were further affirmed through 
visual analysis, as illustrated in Fig. 2a.

To thoroughly assess the performance of scPriorGraph relative to other methods, we 
executed a series of cross-platform experiments using the PBMC dataset. Considering 
that the prediction task for the Human Pancreas dataset is relatively simple, resulting in 
close comparison results for some methods, we introduced more methods, bringing the 
total to 20 for this comparison in the series of PBMC experiments, which include sciBet 
[32], scGPT [33], scANVI [34], expiMap [35] with treeArches [36], scPoli [37], simple 
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linear SVM, Seurat [38], scBert [39], scClassify [40], scType [41], scTyper [7], CellAnn 
[42], and the 8 methods previously used in human pancreatic experiments. The evalua-
tion metrics demonstrate in Fig. 2b and the Additional file 1: Table. S5-S8 that scPrior-
Graph achieved superior prediction performance.

In the five comparative experiments conducted on the PBMC dataset, scPriorGraph 
achieved top performance in three out of the five categories (10Xv3 platform, Drop-Seq 

Fig. 2  Comparison of scPriorGraph with other methods in cross-platform experiments. a Comparison of 
the performance of scPriorGraph and other comparative methods on the human pancreatic dataset using 
Accuracy, F1 Scores, Cohen’s Kappa, and Cross-category Average Accuracy. b Comparison of the performance 
of scPriorGraph and other comparative methods on the PBMC dataset using Accuracy. c Comparison of our 
model and three other methods in their classification performance on cross-platform data using t-SNE plots. 
The t-SNE plots are generated from models’ embeddings and are colored based on the true cell types of the 
query dataset. d Analysis of intra-type variability within cells using differentiation and proliferation scores. e 
UMAP projection of the raw data, the first graph convolution layer output from the model, and the second 
graph convolution layer output from the model when using PBMC Drop-Seq data for training and PBMC 
CEL-Seq data for prediction
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platform, and inDrop platform), while scPred and Seurat led in the 10Xv2 platform 
and CEL-Seq platform, respectively. In addition, scPriorGraph demonstrated a higher 
median accuracy and better stability in the scatter box plot compared to other methods, 
reflecting the overall superior performance of our approach (see Fig. 2b). It is worth not-
ing that several methods exhibited a substantial drop in predictive performance when 
faced with certain datasets. For instance, the CHETAH method produced notably infe-
rior results when the reference dataset was derived from the 10xv2, 10xv3, and CEL-Seq 
platforms. Similarly, the scmapCell method’s performance significantly lagged behind 
other comparative methods when employing the Drop-Seq platform as the reference 
dataset. In contrast, scPriorGraph showed no substantial performance disparities when 
compared to other methods. Figure 2b highlights the concentration and consistency of 
results achieved by scPriorGraph relative to the other methods. We further compared 
the cross-platform experimental results with those reported in [40] using the same 
PBMC datasets and found that the performance distribution of our selected comparison 
methods across different reference-query pairs showed similar patterns.

Figure 2c indicates that, in experiments involving the PBMC dataset, specifically with 
the inDrop-10xv3 and inDrop-10xv2 reference-query data pairs, scPriorGraph demon-
strated excellent cell type identification performance. The training procedure involved 
reference datasets, and embeddings were obtained by inputting the query datasets into 
the model. Notably, in both the inDrop-10xv3 and inDrop-10xv2 experiments, scPred 
failed to effectively differentiate between the categories of CD4 + T cells, cytotoxic T 
cells, and B cells. SingleR, while capable of distinguishing B cells in the inDrop-10xv3 
experiment, still encountered challenges in separating CD4 + T cells from cytotoxic T 
cells. Similarly, the CHETAH method also struggled to distinguish CD4 + T cells from 
cytotoxic T cells. In contrast, t-SNE projections generated by scPriorGraph revealed 
distinct boundaries between all cell types, although a minor overlap of CD4 + T Cells 
remained within the cytotoxic T cell-enriched region. In the Muraro-Baron and Baron-
Segerstolpe experiments, t-SNE plots produced by scPriorGraph effectively discrimi-
nated all four cell types. Relative to other comparative methods, scPriorGraph’s t-SNE 
plots exhibited tighter clustering of cells within the same type, with greater separation 
between cell clusters of different types. This outcome underscores that, despite the dis-
parate origins of the reference and query datasets from distinct sequencing platforms, 
scPriorGraph successfully captured the distinctive features of various cell types based on 
their gene expression profiles. Consequently, it achieved precise cell type classification, 
a finding further validated by accuracy scores. To investigate the association between 
intra-cell type variability and cell states, we utilized the AUCell method to assess expres-
sion levels across individual cells for gene sets pertinent to cell states, as defined by Can-
cerSEA [43]. By visualizing cells based on their AUCell scores in Fig. 2d, we observed 
significant intra-group variability in the expression of gene sets related to differentiation 
and proliferation among CD4 + T cells. This suggests that the cell states linked to differ-
entiation and proliferation may play a role in the observed internal variability within this 
cell type.

The proposed model incorporates two graph convolutional layers: the first layer 
aggregates features from one-hop neighboring cells to create an embedding, while the 
second layer extends this aggregation to features from cells at a two-hop distance. 
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When applied to the PBMC Drop-Seq and PBMC CEL-Seq datasets as a training-
test pair, both the original data and the extracted graph embeddings from each graph 
convolutional layer are projected onto UMAP plots. Figure 2e clearly illustrates that, 
prior to training, there are well-defined boundaries between the two datasets, indicat-
ing significant differences between them. However, as the model aggregates features 
from both batches, the visualizations in the embeddings obtained from the first graph 
convolutional layer show a reduction in the distance between the datasets. Further-
more, the embeddings from the second graph convolutional layer visually depict the 
convergence of the two datasets on the UMAP plot. This observation underscores the 
effective capacity of scPriorGraph in mitigating batch effects.

The cross-species experiments were divided into two parts: one involved the mutual 
prediction of human brain cells and mouse brain cells, and the other entailed the 
mutual prediction of human pancreatic cells and mouse pancreatic cells. The data-
sets we used were MouseALM (GSE115746 [44]), HumanMTG (phs001790 [45]), and 
Pancreas (GSE84133 [28]). MouseALM provides a detailed depiction of the diver-
sity of cell types in two regions of the mouse brain: the visual cortex (VISp) and the 
anterior lateral motor cortex (ALM). HumanMTG focuses on cell types in the human 
middle temporal gyrus (MTG). We used the MouseALM and HumanMTG datasets 
to conduct a cross-species experiment on brain tissue cells. For the pancreatic sin-
gle-cell data, we downloaded the Pancreas dataset to construct separate datasets for 
human and mouse pancreatic cells. For the cross-species experiments, we designed 
four paired reference-query datasets, each consisting of one dataset composed of 
mouse data paired with another composed of human data. The results of these experi-
ments can be found in Additional file 1: Table. S9.

In the cross-temporal experiments, where reference and query datasets were cho-
sen from samples collected at different developmental stages, we utilized data from 
[46] to construct three distinct datasets. These are designated as CrossTemporal_T1 
(GSM3852753, embryonic stage E13.5), CrossTemporal_T2 (GSM3852754, embry-
onic stage E14.5), and CrossTemporal_T3 (GSM3852755, embryonic stage E15.5). The 
results can be found in Additional file 1: Table. S10.

Our method demonstrated outstanding performance across a range of experiments. 
In the cross-species experiment using Pancreas dataset, we achieved the highest 
average accuracy (Acc = 0.96) among eight methods. For the cross-species experi-
ment involving MouseALM and HumanMTG datasets, our method ranked second 
in average accuracy (Acc = 0.53). In the cross-temporal experiment, the result shown 
in Fig. 3a demonstrates that our method again secured the highest average accuracy 
(Acc = 0.93). In the cross-species experiment, where human pancreatic data were 
used to predict murine pancreatic data within Pancreas dataset, scPriorGraph dem-
onstrated the highest performance among all methods (Acc = 0.96). A chord diagram 
was employed to illustrate the alignment between the predicted data categories by 
our model and the true categories for murine data. The chord diagram in Fig.  3b 
demonstrated that our model accurately assigned categories for the majority of cells, 
reaffirming the precision of our predictions. Notably, in the cross-temporal experi-
ment for the CrossTemporal_T2-CrossTemporal_T3 pair, scPred exhibited perfor-
mance comparable to our model, as shown in Fig. 3d. However, Fig. 3c, depicted as a 
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heatmap, highlighted our method’s superior accuracy in cell classification compared 
to scPred.

To quantify the batch effect correction capability of scPriorGraph, we selected 
cross-platform datasets of PBMC and human pancreas as benchmarks to assess the 
ability of scPriorGraph to correct batch effects. The Average Silhouette Width (ASW) 
was used to evaluate the effectiveness of batch effect correction. Lower batch ASW 
scores and higher cell type ASW scores indicate better batch correction performance. 
Specific experimental results are displayed in the tables below. From Table 1, it is evi-
dent that scPriorGraph possesses a certain ability to correct batch effects.

To assess the computational efficiency of the proposed method, we conducted per-
formance tests on the PBMC dataset using a consistent hardware setup (NVIDIA 

Fig. 3  Comparison of scPriorGraph with other methods in cross-species experiments and cross-temporal 
experiments. a Comparison of the average accuracy of our method with other methods in the experiments 
GSE84133, phs001790-GSE115746, and GSE132188. b Chord diagram illustrating the accuracy of 
scPriorGraph in predicting different cell types when using human pancreatic data to predict mouse 
pancreatic data sourced from GSE84133. The proportions of the sectors represent the distribution of cell 
types in the dataset. The right side of the diagram represents the real data, while the left side represents 
the predicted data. c Comparison of cell type prediction accuracy between scPriorGraph and scPred in the 
GSM3852754-GSM3852755 experiment using a heatmap. d Performance comparison of various methods 
in the cross-temporal experiments. e Comparation of computational time across different methods. f 
Comparison of memory usage across different methods
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GeForce RTX 4090 GPU, Intel Core i9-13900KF CPU, and 96 GB of RAM). We com-
pared scPriorGraph with other methods in terms of speed and memory usage, as 
depicted in Fig. 3e and f. Although scPriorGraph ranked in the middle to lower tier 
for runtime, it demonstrated lower memory consumption than most Python-based 
methods in the comparative analysis.

Revealing cell types across different patients and disease states with scPriorGraph

Single-cell sequencing technology has found widespread applications and holds great 
promise in the medical field. Currently, this technology is being used in the research of 
various diseases, including cancer, osteoarthritis, and atherosclerosis. In cancer research, 
for example, researchers utilize the sequencing of cancerous cells to gain a deeper under-
standing of the genetic evolution and molecular mechanisms underlying clonal diver-
sity within and between cancer subpopulations. This knowledge aids in designing more 
precise drug combinations to enhance drug effectiveness and reduce toxicity, all while 
addressing tumor heterogeneity. To assess the model’s potential in the context of down-
stream medical analysis, clinical data was collected for performance evaluation. The 
clinical data primarily originates from the Human Artery dataset and the Human Bone 
dataset. Based on these datasets, we designed experiments involving cross-patient and 
cross-disease-state analyses. Cross-patient experiments entailed reference and test data 
derived from different patients, while cross-disease-state experiments involved reference 
and query data from healthy and diseased tissues, respectively. These cross-patient and 
cross-disease-state experiments enable us to evaluate the model’s applicability and reli-
ability when dealing with data samples obtained from diverse conditions. Importantly, 
they hold significant practical value, especially in clinical applications where it is often 
challenging to rapidly and accurately determine the subtype information of cells within 
collected samples due to various constraints. If our model can predict cell types based on 
annotated samples from different patients or from various regions of the same patient, it 
would be of immense significance for medical research.

In the Human Artery dataset, we utilized data from GSE159677 [47], comprising 
six experimental groups. Among them, AtheroscleroticCore-1 (GSM4837523) and 
ProximalAdjacent-1 (GSM4837524) represented sequenced data from patient 1, with 
afflicted and non-afflicted tissues. Similarly, AtheroscleroticCore-2 (GSM4837525) and 

Table 1  Quantitative measurement of batch effect correction

Reference Query ASW Score (Cell type) ASW Score (Batch)

RAW​ scPriorGraph RAW​ scPriorGraph

10Xv3 10Xv2 0.182 0.223 0.060  − 0.011

10Xv3 CEL-Seq 0.230 0.437 0.109 0.165

10Xv3 Drop-Seq 0.112 0.184 0.357 0.171

10Xv3 inDrop 0.090 0.242 0.380 0.140

10Xv3 Seq-Well 0.026 0.091 0.325 0.078

10Xv3 Smart-Seq2 0.390 0.626 0.150  − 0.001

Baron Human Muraro 0.230 0.794 0.444 0.027

Baron Human Segerstolpe 0.399 0.752 0.326 0.046

Baron Human Xin 0.294 0.804 0.343 0.016
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ProximalAdjacent-2 (GSM4837526) were from patient 2, and AtheroscleroticCore-3 
(GSM4837527) and ProximalAdjacent-3 (GSM4837528) were from patient 3, all with 
afflicted and non-afflicted tissues. We designed six paired reference-query datasets for 
mutual predictions between healthy and diseased data within the same patient. The 
Human Bone dataset was derived from GSE152805 [48], focusing on human osteoar-
thritis data. We selected six datasets, namely, Cartilage-oLT-1 (GSM4626766), Cartilage-
oLT-2 (GSM4626767), Cartilage-oLT-3 (GSM4626768), Cartilage-MT-1 (GSM4626769), 
Cartilage-MT-2 (GSM4626770), and Cartilage-MT-3 (GSM4626771), encompassing 
26,192 chondrocytes from three knee osteoarthritis patients. These cells included 11,579 
from the inner lesion area and 14,613 from the relatively unaffected lateral tibial plateau. 
We used healthy cell data from patients to predict cell types in different patients, leading 
to the design of nine reference-query dataset pairs.

In the cross-patient experiment within the Human Artery dataset, we employed 
ProximalAdjacent-3 to predict the cell types in ProximalAdjacent-1, both from differ-
ent patients. Our method outperformed all seven other comparative methods, achiev-
ing an accuracy of 0.89. The Sankey diagram (see Fig. 4a) illustrated that scPriorGraph 
provided accurate results for most cell types, with only a minor misclassification of NK 
cells as T cells. In contrast, other methods, such as scPred, SingleR, singleCellNet, and 
MarkerCount, exhibited varying degrees of misclassifications and discrepancies. In the 
two sets of heatmaps (see Fig. 4b), the left side demonstrated the cross-patient experi-
ment in the Human Bone dataset, utilizing Cartilage-oLT-1 to predict Cartilage-oLT-3. 
On the right, the cross-disease-state experiment was depicted using Cartilage-oLT-2 to 
predict Cartilage-MT-2. In both experiments, our method displayed notably accurate 
predictions. In the cross-patient experiment, CHETAH misclassified numerous preFC 
cells as FC cells. In the cross-disease-state experiment, scLearn did not accurately pre-
dict the HomC cell category, while CHETAH misclassified multiple cell types.

Improving drug response prediction in cancer cell lines with scPriorGraph

Cancer is a disease driven by genetic mutations that regulate cell functions, especially 
cell growth and division. Current cancer treatments include radiotherapy, chemother-
apy, and targeted therapies. While radiotherapy uses radiation to kill tumor cells and 
chemotherapy employs chemical agents for the same purpose, these approaches can 
harm healthy cells and cause significant side effects. Targeted therapies, designed to 
specifically target tumor growth pathways or molecular markers, offer better precision 
and fewer side effects. However, drug sensitivity varies among patients and cancer cell 
types. With the growing use of sequencing technologies, we have access to more can-
cer cell expression data. The Genomics of Drug Sensitivity in Cancer (GDSC) [49, 50] 
study explores drug responses in cancer cell lines. Using gene expression profiles, we can 
predict how specific cancer cell lines will respond to drugs, aiding medical analysis and 
clinical treatment planning.

We collected gene expression and drug response data from the GDSC data-
base through CaDRReS-Sc [51]. This dataset includes gene expression profiles 
from 1018 cell lines across 17,737 genes and drug response data for 1074 cell lines 
exposed to 226 different drugs. After data filtering, we selected 985 cell lines and 
17,419 genes for further analysis, followed by threefold, fivefold, and tenfold 
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cross-validation experiments. The performance evaluation metric for assessing the 
correlation between predicted values and actual values was the Spearman correla-
tion coefficient. The comparison methods we selected are CaDRReS-Sc, DREEP 
[52], beyondcell [53], and SCAD [54]. In the testing phase, scPriorGraph achieved 
the highest Spearman correlation coefficient value of 0.738 (see Fig.  5a and Addi-
tional file  1: Table. S11), with an average of 0.670 for the fivefold cross-validation. 
In Fig.  5b, the Spearman correlation coefficients obtained from threefold, fivefold, 
and tenfold cross-validation experiments indicate that scPriorGraph outperformed 
the other methods. The supervised training-based models, including scPriorGraph, 

Fig. 4  Comparison of scPriorGraph with other methods in clinical data experiments. a In the cross-patient 
experiments, scPriorGraph and other methods were compared for the accuracy of cell classification using a 
Sankey diagram. The left side of the diagram represents the true cell types, and the right side represents the 
predicted cell types. b Accuracy of classification displayed using heatmaps, with the y-axis representing the 
true cell types and the x-axis representing the predicted cell types. Darker colors indicate a higher number 
of cells assigned to that type. The data on the left half of the plot is sourced from cross-patient experiment 
GSM4626766-GSM4626768, while the data on the right half is sourced from cross-disease-state experiment 
GSM4626767-GSM4626770
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CaDRReS-Sc, and SCAD, demonstrated superior performance compared to methods 
such as beyondCell and DREEP, which are dependent on the enrichment analysis of 
drug feature sets. To more comprehensively evaluate the performance of the model, 
we employed leave-one-out cross-validation, with the distribution of predicted 
Spearman correlation scores presented in Fig. 5c. Most results fell within the 0.7–0.9 
range, and the mean Spearman correlation coefficient was 0.78, higher than previ-
ous cross-validation results. We further test scPriorGraph on another dataset of sci-
Plex3 [55], focusing on the prediction of single-cell drug responses for five drugs at 
four different dosages. We followed the original dataset’s train-test split and used 
the proliferation index as the prediction target. In the experiments, we obtained an 
average Spearman correlation value of 0.584 across all experiments involving five 
drugs at four dosage levels. The detailed results are included in Additional file  1: 
Table. S12.

We selected cell lines with the top-10 smallest sum of predicted IC50 values or 
mortality rates, and visualized the predicted IC50 values and corresponding cancer 
cell mortality rates at specific drug concentrations, as shown in Fig.  5d and e. Fur-
thermore, we utilized Uniform Manifold Approximation and Projection (UMAP) to 
illustrate the differences between model predictions and actual drug responses, as 
displayed in Fig. 5f. By comparing the predicted IC50 values with the actual values for 
cell lines treated with Tretinoin, we observed that scPriorGraph was generally able to 
accurately classify cells as either sensitive or resistant to the drug. The mean squared 
error (MSE) between the predicted and actual values presented in Fig. 5f was calcu-
lated to be 10.036.

Fig. 5  Performance analysis of scPriorGraph in drug response prediction. a Regression analysis using 
actual drug response data and predicted data. b Comparison of average Spearman’s correlation coefficient 
between scPriorGraph, CaDRReS-Sc, SCAD, beyondcell, DREEP in 3-fold, 5-fold, and 10-fold cross-validation 
experiments. c The distribution of Spearman correlation values from the leave-one-out cross-validation 
results of scPriorGraph on the GDSC dataset. d Visualization of the model’s predicted Half-Maximal Inhibitory 
Concentration (IC50) values. e Visualization of predicted cell death percentages at a given drug dosage. 
f UMAP projection for comparing the predicted and actual responses of cell lines to the drug using 
scPriorGraph



Page 14 of 29Cao et al. Genome Biology          (2024) 25:207 

Refining pathway and ligand‑receptor network‑level analysis with scPriorGraph

Our model integrates hierarchical genetic biological semantic information, acquires 
intercellular communication data through ligand-receptor interactions, and captures 
intracellular gene interaction information via pathways. Users can choose pathway data-
base based on their specific needs. In our experiments, we opted for the KEGG pathway 
database, which encompasses manually curated pathway maps illustrating molecular 
interactions, reactions, and network relationships. It is categorized into seven major 
sections: Metabolism, Genetic Information Processing, Environmental Information 
Processing, Cellular Processes, Organismal Systems, Human Diseases, and Drug Devel-
opment. In our study, we focused on pathways associated with gene interactions and 
network relationships that play a role in various physiological activities within cells, 
such as metabolism and immunity. For instance, in Fig.  6a, the pathway “hsa00010” 
pertains to the glycolysis and gluconeogenesis of glucose in humans, while the pathway 
“hsa00640” relates to the metabolism of citric acid in humans. By integrating pathways 

Fig. 6  Single-cell analysis in pathway and ligand-receptor network-level. a Dot plot illustrating pathway-level 
expression variability across different cell clusters. In the plot, lighter colors indicate higher average 
expression levels, while larger dot sizes represent higher expression proportions in clusters. The pathways 
utilized are sourced from the KEGG pathway database, and the scRNA-seq data is derived from GSE159677. b 
Feature plots illustrating the expression variability of pathways within the scRNA-seq dataset. c Visualization 
of Ligand-Receptor Interactions Used for Constructing Intercellular Networks. d Comparing cell cluster 
similarity with embedded hierarchical information. The thickness and color of the lines represents the level of 
similarity
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into scRNA-seq data, we gained insights into pathway expression across different cell 
types. The dot plot in Fig. 6a visualizes pathway expression across different cell types, 
with dot colors denoting distinct expression levels, and dot sizes indicating expression 
proportions. Notably, hsa00010 exhibits higher average expression levels in Fib cells, 
while hsa00640 demonstrates higher average expression levels in EC and Fib cells. Fur-
thermore, while hsa00010 shows consistently high expression proportions across vari-
ous cell types, hsa00640 exhibits higher expression proportions in EC and Fib cells, and 
lower proportions in other cell types. We attempted to further confirm the correlation 
between specific pathways and cell types highlighted in Fig.  6a by consulting existing 
literature. Notably, pathway hsa00500, which is related to human starch and sucrose 
metabolism, showed a significantly higher level of expression in Mast cells, as depicted 
in Fig.  6a and evidenced by [56]. Additionally, elevated expression levels of pathway 
hsa00020, associated with the human Citric Acid Cycle (TCA Cycle), were observed in 
mesenchymal stem cells, as confirmed by [57].

Single-cell RNA sequencing data is typically sparse and noisy, and using genes as cell 
features may negatively impact the model due to low expression levels and proportions. 
However, utilizing pathways as cell features significantly improves this issue, with noise 
in individual genes having a lesser impact on the entire pathway. In Fig. 6b, a tSNE plot 
visually represents pathway expression across the entire dataset. Cell colors and contour 
lines in the plot depict pathway expression, revealing the distribution of pathways like 
hsa00040 and hsa05031 and their varying expression levels across the dataset. In Fig. 6c, 
the left diagram shows a network composed of ligand-receptor gene pairs, while the 
right diagram displays the top 10 ligand-receptor gene pairs with the highest Pearson 
correlation coefficients in each cell type. Each color represents a different cell type, and 
the width of the lines between ligand-receptor genes is based on the Pearson correlation 
coefficients calculated from gene expression levels.

The scPriorGraph utilizes two distinct biological prior knowledge, derived from intra-
cellular and intercellular sources, to construct two different cell KNN graphs. Based 
on the same expression data, cell-to-cell similarities vary under different gene seman-
tic information. Figure  6d illustrates the homogeneity and heterogeneity between the 
intracellular and intercellular networks constructed by scPriorGraph, based on the 
GSE132188 dataset. This figure displays two similarity networks, each comprising 12 cell 
types, which are developed using the KEGG Human Pathway Database and the Ligand-
Receptor Interaction Database. These networks exhibit a high degree of similarity. Nota-
bly, the internal similarity within clusters B and D, as well as their similarity with other 
cell types, is consistently maintained. The majority of the members of cluster A also 
show general consistency in their network positioning. However, there are significant 
changes in local similarity patterns observed. One particular example is the change in 
the clustering of cells identified as Prlf. Ductal, which signifies a shift in how these cells 
are grouped when comparing intracellular to intercellular network representations.

Evaluating scPriorGraph model robustness with ablation experiments

To validate the model’s performance under various parameter settings, we con-
ducted tests with different values of k and α . Here, k represents the proportion of 
neighbors in the k-nearest neighbor graph relative to all cells, and α denotes the ratio 
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of cross-entropy loss in the total loss function. Figure 7a illustrates the comparison 
of accuracy for different k values across various reference-query dataset pairs. It 
is evident that k values in the range of 0.05 to 0.1 yielded the best results for most 
experiments. In Fig. 7b, we compare the accuracy of different α values for the refer-
ence-query dataset pairs. This analysis reveals that α values between 0.3 and 0.5 gen-
erally led to the best performance.

Fig. 7  Validating model robustness by adjusting model parameters and structure. a Differences in model 
performance under various neighbor node ratios. b Comparative performance of the model under different 
loss function weights. c Comparative performance of the model after removal of various components on the 
Human Pancreas dataset. d Comparative performance of the model after removal of various components 
on the Human Artery dataset. e Comparative performance of the model after substituting with different 
pathways. f Performance comparison of different strategies for consider intercellular communication. g 
Performance comparison on difference sizes of reference datasets. h Comparison of prediction accuracies 
using pathway databases across different species
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In order to assess the contributions of individual components of our model, we 
conducted ablation experiments. Ablation experiments were conducted using the 
Human Pancreas dataset and the Human Artery dataset. Figure 7c and d displays the 
performance of five models: the full model, a model without graph enhancement, a 
single-graph model that solely uses k-nearest neighbor graphs generated from path-
way information, another single-graph model using k-nearest neighbor graphs gen-
erated from ligand-receptor pathway information, and model that build cell graphs 
using only gene expression data. As the model is simplified by removing compo-
nents, the results show a corresponding decrease in performance.

Our model employs two graphs, each incorporating pathway and ligand-receptor 
pathway information. In the field of biology, there exist various pathway databases 
from different sources such as KEGG, Reactome [58], Wikipathways [59], and more. 
These databases encompass pathways from diverse species and biological processes, 
and selecting different pathways can yield different model results. Figure 7e demon-
strates the performance of the model with the use of different databases, including 
de novo pathway [60] database generated from Biase [61] data. The data indicate 
that Reactome Human pathways generally produce superior results compared to 
other pathways.

To assess the effectiveness of the graph neural network implemented in scPrior-
Graph, we conducted a series of experiments where we substituted the original cell 
graph, which incorporated ligand-receptor information, with a cell graph generated 
by CellphoneDB [62]. Additionally, we explored the performance of a higher-order 
graph neural network, MixHop [63], by constructing two variants: MixHop (path-
way) and MixHop (Ligand-Receptor), using the same graphs as those used in scPri-
orGraph. To evaluate the impact of the choice of gene set, we replaced the original 
ligand-receptor gene set with Reactome. Figure 7f presents the comparative perfor-
mance of these four models alongside scPriorGraph. The results indicate that the 
cell graphs developed using the ligand-receptor gene set are of high quality. Further-
more, scPriorGraph demonstrated effective utilization of inter-cellular relationships 
to accurately predict cell types, showcasing its robustness and the potential advan-
tages of integrating detailed molecular interactions in cell type classification.

To investigate the impact of reference size and coverage on model performance, 
we conducted experiments using the Human Artery dataset. We employed random 
sampling at three different proportions—100, 70, and 50%—both on the overall 
training set and internally within different cell types of the training set. Predictions 
were then made on the same query dataset. We observed varying degrees of change 
in various performance metrics as the sampling ratio was altered, as depicted in 
Fig. 7g.

To evaluate the impact of pathway databases from different species on the per-
formance of scPriorGraph, we conducted multiple experiments using the Human 
Artery dataset. We evaluated model performance by taking the average accuracy of 
predictions across different pathway databases. As shown in Fig.  7h, human path-
ways from WikiPathways demonstrated a significant improvement compared to 
mouse pathways. This discrepancy in performance likely stems from the species-
specific nature of the gene expression data used in the model.
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Discussion
In this study, we developed scPriorGraph, a dual-channel graph neural network that 
integrates multi-level gene biological semantic information, providing accurate, batch-
effect-insensitive cell type identification across platforms, species, and temporal 
dimensions. scPriorGraph combines biological prior knowledge with scRNA-seq data 
to establish high-quality cell relationships. To obtain cell relationships that cannot be 
inferred solely from the expression matrix due to self-expression sparsity, scPriorGraph 
employs mutual information matrices to calculate global cell similarities for graph aug-
mentation. Leveraging the incorporation of biological prior knowledge and graph aug-
mentation techniques, scPriorGraph achieves high-quality graph embeddings for tasks 
such as cell type identification and drug response prediction. scPriorGraph demon-
strates excellent performance in cell type identification and drug response prediction 
compared to existing methods in the field.

Obtaining high-quality graphs is paramount for graph neural networks. In prior 
research, graph neural networks have been applied to the field of single-cell data anal-
ysis, encompassing tasks such as cell classification, clustering, and dropout imputa-
tion. However, current methods predominantly rely on expression matrices to generate 
graphs, with limited consideration given to incorporating prior biological knowledge 
into graph construction to enhance graph quality, consequently improving model per-
formance. Given the complementarity of intra-cellular and inter-cellular information, 
scPriorGraph simultaneously accounts for intra-cellular gene interactions and inter-cel-
lular communication. By incorporating multi-level gene biological semantic information 
into the model, the predictive capability of the model has been significantly enhanced. 
The model acquires intra-cellular gene interaction information through pathways, ena-
bling users to customize gene collaboration information by switching between different 
pathways according to the specific task.

In our experiments, we conducted various tests to validate the ability of scPriorGraph 
in batch-effect correction across platforms, species, and temporal dimensions, as well 
as its potential applications in clinical data processing. By making minor modifications 
to the model, we enabled it to predict drug responses in cancer cell lines. Our model 
achieved superior results compared to state-of-the-art methods in the field, indicating 
that the graph embeddings generated by scPriorGraph through the dual-channel graph 
convolution layers are of high quality, and scPriorGraph holds the potential for applica-
tion in other single-cell analysis domains.

Our experiments reveal that the selection of the reference dataset and pathway data-
base significantly impacts the predictive performance of scPriorGraph. Specifically, 
when we use human scRNA data for testing (see Fig. 7h), pathways related to humans 
from databases such as WikiPathways, Reactome, and KEGG generally outperform 
those related to mice. It is advisable to choose a pathway database that matches the spe-
cies of the dataset to achieve better model performance. Since scPriorGraph is based 
on supervised learning, it cannot predict cell types that are not present in the reference 
dataset. Therefore, selecting a comprehensive reference dataset that includes all relevant 
cell types is crucial. If the reference dataset lacks certain cell types, unless a threshold is 
set, scPriorGraph will classify them as one of the known types from the reference, which 
can affect the accuracy of the predictions. Additionally, as evidenced by the results in 
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Fig. 7g, the amount of data is also critical. To ensure robustness, each cell type in the ref-
erence dataset should have at least 50 samples. Furthermore, the sequencing data should 
generally contain more than 2000 genes to provide a rich set of pathway-level features. 
An imbalance in cell types or insufficient gene numbers can reduce the effectiveness of 
the model. For rare cell types, the reference dataset should have at least 20 cells to sup-
port model training. Finally, selecting reference data from patients who share the same 
gender, are of a similar age, are at comparable stages of the disease, and have had their 
samples sequenced using the same platform as the query data can effectively enhance 
prediction accuracy.

In this study, for the first time, we introduced intra-cellular interactions and inter-cel-
lular information propagation into graph neural network for cell type identification. To 
address the sparsity inherent in scRNA-seq data, we incorporated the graph augmenta-
tion technique based on global cell similarity into this domain. Currently, the landscape 
of cell type identification is diverse, encompassing various aspects such as temporal 
dynamics, diseases, and developmental states. In the future, we aim to expand our data-
sets to cover a wider range of cell type identification scenarios, making our model appli-
cable to any situation where cells can be discretely categorized, including cell subtypes 
or customized cell states. We will also continue to expand our model into more single-
cell data analysis domains, further facilitating various downstream analyses with biologi-
cal significance.

Conclusions
Selecting an appropriate subset from the high-dimensional gene list is a critical task 
in the computational realm of single-cell cell type prediction. We firmly believe that 
knowledge of gene interactions, both within and between cells, from both intracel-
lular and intercellular perspectives, represents valuable and complementary data that 
can significantly enrich the pursuit of this computational goal. In an effort to explore 
this challenge, our study introduces scPriorGraph, a novel dual-channel graph neural 
network seamlessly integrating multi-layered gene biological semantic information. It 
equips us with an efficient, robust, and batch-effect-insensitive capability for cell type 
identification. Acknowledging the complementary nature of intracellular and inter-
cellular information, scPriorGraph leverages ligand-receptor networks to embark 
on random walks to gather intercellular communication insights. Simultaneously, it 
taps into pathway data to extract intracellular gene interaction information, harmoni-
ously amalgamating these facets into a dual-channel graph structure. Moreover, users 
have the flexibility to selectively integrate gene biological semantic information into 
the model to align it precisely with the unique requirements of diverse classification 
tasks. To supplement cellular relationships that may elude conventional cell graphs, 
scPriorGraph employs advanced graph-enhancement techniques based on mutual 
information matrices. We conducted a comprehensive series of experiments, encom-
passing cross-platform, cross-species, cross-development stages, cross-patient, and 
cross-disease state analyses, to rigorously evaluate the model’s performance. In com-
parisons with a range of methodologies, scPriorGraph emerged as a superior per-
former in terms of stability and accuracy. Furthermore, we enhanced our model by 
substituting the classifier layer with a fully connected regression layer, enabling it to 
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process IC50 values for predicting drug responses in cancer cell lines. The promis-
ing results illuminate the model’s potential for expansion into diverse domains. Our 
future objectives encompass a broader application of the model in an array of cell 
type identification scenarios and a deeper exploration of its capabilities in the analysis 
of scRNA-seq data.

Methods
Obtaining intercellular communication information through random walks

scPriorGraph is a dual-graph neural network that combines both intra-cellular and inter-
cellular information. The model incorporates two k-nearest neighbor (KNN) graphs, 
each capturing intercellular ligand-receptor pathway information and intracellular path-
way information, which are referred to as A1 and A2 , respectively. To extract ligand-
receptor path information, we constructed a ligand-receptor heterograph from a series 
of ligand-receptor gene pairs, and collected path information through random walks 
within the network. The ligand-receptor heterograph is defined as G = (V ,E,T ) , where 
V  represents the nodes of ligands and receptors in the graph, E represents the edges 
connecting the ligand and receptor nodes, and T  is a set encompassing the categories 
of nodes and edges. In order to effectively collect path information on the heterograph, 
we designed a meta-path-based random walk. The meta-path schema is defined as 
V1

R1
→ V2

R2
→ · · ·

Rl−2
→ Vl−1

Rl−1
→ Vl . The probability of moving at the ith step is as follows:

where N (vi) represents the neighbors of node vi . We initiated the random walker from 
ligand nodes, collecting 707 path information by random walking on the ligand-receptor 
heterograph. These paths encapsulate the communication processes between intercellu-
lar ligands and receptors, and will serve as the foundation for constructing cell graph A1.

The pathway information utilized in our method is extracted from databases such 
as KEGG [24], Reactome [58], WikiPathways [59], and others, which encompass gene 
pathway information related to various cellular responses and biological activities. In 
addition to the aforementioned three databases, we also provide a pathway database 
generated using algorithms. The pathway information retrieved from the pathway 
database will form the basis for constructing cell graph A2.

Integrating expression data with biological information

Once we have acquired ligand-receptor paths and pathways, the next step is to inte-
grate this data with expression data for the generation of cell graphs A1 and A2 . To 
assess the enrichment of gene sets (ligand-receptor path information or pathways) in 
single-cell RNA sequencing data, we employed the AUCell [64] method. The AUCell 
method utilizes the area under the curve (AUC) to determine whether a gene set is 
enriched in the gene expression of each cell. By examining the distribution of AUC 
scores across cells, we can obtain the expression patterns of features associated with 
the gene set in the cells.

(1)p(vi+1|vi) =
1

|N (vi)|
, (vi+1, vi) ∈ E

0, (vi+1, vi) /∈ E
,
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Integrating features at the gene level and features at the gene set level

To merge the cell-level features and gene set-level features during the generation of 
cell k-nearest neighbor graphs, we employed the Similarity Network Fusion (SNF) [65] 
method. SNF is an effective approach for integrating different networks. In order to 
integrate patient similarity networks from different data sources, such as amalgamating 
patient similarity graphs derived from mRNA expression data and those derived from 
DNA methylation, SNF constructs corresponding similarity networks for each data type 
and utilizes a non-linear fusion approach to integrate these networks into a unified simi-
larity network. Given SNF’s capability to merge data with different metric, we applied 
it to integrate gene-level expression information and gene set-level expression informa-
tion. Let W (i, j) denote the similarity matrix between cell i and cell j , and the definition 
of the normalized weight matrix P is as follows:

The local similarity matrix represented as a KNN graph is expressed as follows:

where Ni represents the set of neighboring cells for cell i . SNF sets the similarity of cell i 
to its non-neighboring cells to zero in this manner. SNF employs the following formula 
to iteratively update the similarity matrices corresponding to each data type:

The matrix output by SNF after iteration is as follows:

We constructed k-nearest neighbor graphs, A1 and A2, based on the similarity matri-
ces output by the SNF method and employed them for the creation of graph-based con-
volution, ConvA1 and ConvA2.

Graph augmentation based on positive pointwise mutual information

The KNN graphs A1 and A2 aggregate expression information of similar cells, but they still 
have limitations. For instance, when the gene expression information is too sparse, it may 
result in low-quality graphs. To overcome this, we introduce positive pointwise mutual 
information (PPMI) matrix in our model to capture potential relationships between cells 
that were not captured by the KNN graph and enhance the graph. We first calculate the 
frequency matrix F . The frequency matrix F is derived by computing the frequency of two 
nodes appearing in the paths produced by random walks on the graph. When the random 

(2)P(i, j) =

{
W (i,j)

2
∑

k �=iW (i,k)
, j �= i

1
2 , j = i

.

(3)S(i, j) =
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walker is located at node xi at a specific time t , we denote this state as s(t) = xi , and the 
probability of transitioning from the current node xi to an adjacent node xj is defined as:

By sequentially setting each node in the graph as the root node and performing ran-
dom walks, we obtain multiple paths. We then sample cell pairs for each path. For 
each sampled cell pair (xn, xm) , in the frequency matrix F  , the corresponding values 
Fn,m and Fm, n are incremented by 1. Using the frequency matrix F  as a basis, we 
compute the Positive Pointwise Mutual Information (PPMI) matrix P ∈ Rn×n as:

The probability pi,j represents the likelihood of cell xi occurring in context cj . Simi-
larly, pi,∗ represents the probability of cell xi in general, and p∗,j represents the likeli-
hood of context cj in general.

Following the statistical concept of independence, if xi is independent of cj , then 
pi,j equals the product of pi,∗ and p∗,j , and in such cases, Pi,j equals 0. However, when 
there is a connection or association between xi and cj , pi,j will be greater than the 
product of pi,∗ and p∗,j . Since we are interested in the case where xi and cj are related, 
we use non-negative pmi values. For each KNN graph, we generated a corresponding 
PPMI matrix for constructing graph-structured convolutions ConvP1 and ConvP2.

Model construction

The scPriorGraph proposed in this study is a dual-graph neural network based on Graph 
Convolutional Networks (GCN). The fundamental concept of GCN is to combine node 
feature information with network topology for propagation. The model typically con-
sists of two steps: local neighborhood feature aggregation and feature transformation. 
In the local neighborhood feature aggregation step, for each node i , GCN aggregates 
and transforms the features of its neighboring nodes to obtain a new feature representa-
tion for that node. In the feature transformation step, GCN employs a learnable linear 
transformation matrix to convert the aggregated feature representation into a new fea-
ture representation, facilitating aggregation and transformation in the subsequent layer.

(7)p
(
s(t + 1) = xj|s(t) = xi

)
=

Ai,j∑
j Ai,j

.

(8)pi,j =
Fi,j∑
i,j Fi,j

;

(9)pi,∗ =

∑
j Fi,j∑
i,j Fi,j

;

(10)p∗,j =

∑
i Fi,j∑
i,j Fi,j

;

(11)Pi,j = max

{
pmii,j = log

(
pi,j

pi,∗p∗,j

)
, 0

}
.
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The primary structure of scPriorGraph consists of ConvA1 and ConvA2 based on 
graphs A1 and A2 , and ConvP1 and ConvP2 for graph augmentation using PPMI matri-
ces P1 and P2 . The cell KNN graph is represented by an adjacency matrix A ∈ R

N∗N  , 
and the expression matrix is denoted as X ∈ R

N×D , where N  represents the number 
of cells, and D signifies the dimension of cell features. The ith hidden layer H (i) for 
ConvA1 and ConvA2 is defined as follows:

where Wi is the weight matrix for the ith layer, and σ(•) represents a non-linear activa-
tion function like ReLU. To account for the self-influence of nodes, we augmented the 
adjacency matrix A with an identity matrix IN ∈ RN×N , resulting in a self-connected 
adjacency matrix Ã = A+ IN . The D̃ matrix is defined as D̃ =

∑
jÃi,j , and D̃− 1

2 ÃD̃− 1
2 

represents the normalized adjacency matrix. Hi−1 is the output of the i-1 layer, with 
H0 = X . Wi denotes the trainable parameters of the network. The ith hidden layer H (i) 
for ConvP1 and ConvP2 , based on PPMI matrices P1 and P2 , is defined as follows:

where P is the PPMI matrix, and D =
∑

jPi,j . To integrate the graph embeddings that 
aggregate both intra-cellular and inter-cellular information in the model, namely the 
outputs of ConvA1 and ConvA2 , we used a linear layer. Let ZA1 and ZA2 represent the out-
puts of ConvA1 and ConvA2 , and the integrated output ZA is defined as follows:

where [•, •] denotes the concatenation operation, the dimensions of ZA are the same as 
ZA1 and ZA2 . The softmax activation function is defined as softmax(xi) =

1
Z
exp(xi) , with 

Z =
∑

i exp(xi) . The model employs cross-entropy to define the supervised training loss 
function. Assuming there are c cell type labels for prediction, the dimensions of the soft-
max output ZA are ZA ∈ R

N×c . For multi-class problems, the cross-entropy is defined as 
follows:

where N  is the number of cells, c is the number of categories, yij ∈ {0, 1} , where 
yij is equal to 1 if the ith sample belongs to category j, and equal to 0 otherwise. 
pij is the probability assigned by the model for sample i to belong to category j, with ∑C

j=1pij = 1, i = 1,2, · · · ,N . 
In order to incorporate graph-enhanced information into the model, the model is trained 

in a supervised manner for ConvA1 and ConvA2 , while also using the outputs of ConvA1 and 
ConvA2 to train ConvP1 and ConvP2 . LMSE(ConvA1,ConvP1) and LMSE(ConvA2,ConvP2) 
represent the loss functions obtained by training ConvP1 and ConvP2 in an unsupervised 
manner. The model minimizes the above functions to integrate graph-enhanced informa-
tion into the final model output. The definition of LMSE is as follows:

(12)Hi = Conv
i

A(X) = σ(D̃− 1
2 ÃD̃− 1

2Hi−1Wi),

(13)Hi = Conv
i

P(X) = σ(D− 1
2 PD− 1

2Hi−1Wi),

(14)ZA = softmax(σ (Linear([ZA1,ZA2]))),

(15)LCE = −
1

N

∑N

i=1

∑c

j=1
yijlog

(
pij

)
,
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where ZA represents the output of the merged graph embeddings generated by ConvA1 
and ConvA2 , and ZP represents the output of ConvP1 or ConvP2 . In addition to the two 
aforementioned loss functions, to ensure that the graph embeddings of the model output 
maintain the relationships between cells in the original graph structure, we incorporated 
a graph reconstruction loss in the model. The definition of the graph reconstruction loss 
is as follows:

where the MSE function is defined as MSE = 1
n

∑n
i=1 (Ai − Ri)

2 , where Ai represents 
the original graph, and Ri represents the reconstructed graph. We partition the loss 
function into two parts based on whether it is a graph reconstruction loss. The model’s 
final loss function is defined as the weighted sum of the two loss functions:

In this way, the model is able to consider both intracellular and intercellular informa-
tion during training, along with the PPMI matrix information used for augmenting the 
graph structure.

Datasets
scRNA‑seq data

We selected the human pancreas dataset and peripheral blood mononuclear cell (PBMC) 
dataset, which comprise a collection of multi-platform sequencing data for cross-plat-
form experiments. The human pancreas dataset comprises sequencing data from the 
Baron Human [28], Muraro [29], Segerstolpe [30], and Xin [31]. The PBMC [27] data-
set includes sequencing data for PBMCs from the 10Xv2, 10Xv3, CEL-Seq, Drop-Seq, 
inDrop, Seq-Well, and Smart-Seq2 platforms.

In the context of cross-species experiments concerning the cerebral cortex, the human 
and mouse datasets we employed originated from GSE115746 [44] and phs001790 [45], 
respectively. GSE115746 is a study that involves gene expression profiling to explore the 
diversity of cell types in the mouse cerebral cortex. On the other hand, phs001790 is a 
genomics study that focuses on the cell types within the human middle temporal gyrus 
(MTG). In the experiment involving pancreatic cells, human pancreatic cells and mouse 
pancreatic cells were sourced from GSE84133 [28], a single-cell transcriptome study 
investigating the various cell types in both human and mouse pancreases.

The cross-temporal developmental experiment data were sourced from GSE132188 
[46]. This dataset consists of scRNA-seq data from uniform mouse pancreatic epithelial 
cells at four different embryonic stages, obtained using the 10X platform. We utilized 
the samples GSM3852753-GSM3852755 [46], representing the embryonic stages E13_5, 
E14_5, and E15_5, respectively.

(16)LMSE =

∑n
i=1||Z

A
i,: − ZP

i,:||
2

n
,

(17)LReconstruction = MSE
(
KNNGraph(ZA),A1

)
+MSE

(
KNNGraph(ZA),A2

)
,

(18)Loss = α

(
LCE

(
Z
A

)
+LMSE (ConvA1,ConvP1)+LMSE (ConvA2,ConvP2)

)
+ (1− α)(LReconstruction)
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Within the clinical data, the Human Artery dataset includes six sets of experimental 
data from GSE159677 [47]. Specifically, GSM4837523 and GSM4837524 [47] represent 
sequencing data from the diseased and non-diseased tissues of patient 1, GSM4837525 
and GSM4837526 [47] from patient 2, and GSM4837527 and GSM4837528 [47] from 
patient 3. The Human Bone dataset was derived from the human osteoarthritis data-
set GSE152805 [48]. We focused our selection on six specific datasets: GSM4626766, 
GSM4626767, GSM4626768, GSM4626769, GSM4626770, and GSM4626771 [48].

Drug‑response data

In the drug response experiment, we employed drug response data for 1074 cancer cell 
lines across 226 drugs, which were acquired from the GDSC database [49, 50] through 
CaDRReS-Sc [51], as our experimental dataset. We employed the Half-Maximal Inhibi-
tory Concentration (IC50) as the metric for assessing drug responses.

Criteria for benchmark selection

The criteria for selecting benchmarks in the comparative experiments between scPri-
orGraph and other models are as follows. (1) The reference dataset and the query data-
set should not have too large a disparity in cell types. (2) The number of genes in the 
sequencing data should generally be greater than 2000. The genes in the expression data 
used for benchmarks should also overlap significantly with the Pathways. (3) The vast 
majority of cell type in the dataset must have a sufficient number of cells to support 
model training. Based on experience, the number of cell samples for rare cell types pre-
sent in the reference dataset should be at least 20. We have listed all the reference-query 
data pairs we used in this work in Additional file 1: Table. S13.

Data preprocessing

In our comparative experiments, if a method can operate independently of log-normal-
ization or other data preprocessing procedures, we use raw count data as input for that 
method. If data preprocessing is essential for certain methods, where its absence would 
impact the method’s performance, or if the preprocessing steps are embedded within the 
method, then we follow the tutorials provided by the authors to preprocess the data. We 

Table 2  Setting details for method comparison

Method Version Input data Method Version Input data

CHETAH 1.14.0 Raw count scANVI 1.1.2 Log-normalized

scPoli 0.6.1 Raw count expiMap + treeArches 0.6.1 Log-normalized

scLearn 1.0 Raw count MarkerCount 0.6.6 Log-normalized

scmapCell 1.20.2 Raw count scGPT 0.2.1 Log-normalized

scClassify 1.5.1 Raw count Seurat 5.0.1 Log-normalized

SingleR 2.0.0 Raw count scBert 1.0.0 Log-normalized

singleCellNet 0.1.0 Raw count scPred 1.9.2 Log-normalized

TOSICA 1.0.0 Raw count scType Releases Jan 13, 2022 Log-normalized

sciBet 0.1.0 Raw count scTyper(a2bi) 0.1.0 Log-normalized

simple linear SVM 1.3.0 z-score CellAnn 1.0 Log-normalized
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have organized the version numbers of the methods used in our comparisons as well as 
the data used, and have included this information in Table 2.

Approaches to obtain cell embeddings

In Fig. 2c, we compare the clustering performance of scPriorGraph with scPred, CHE-
TAH, and SingleR. Regarding scPred, after training on the reference dataset, the un-
dimension-reduced query dataset is input into the scPredict() method, which returns a 
Seurat object. Accessing $scpred@cell.embeddings retrieves a 50-dimensional reduced 
expression matrix for all cells, which we use as the embedding output of scPred. For 
CHETAH, after inputting the reference and query datasets into the CHETAHclassi-
fier() method, assuming the output from CHETAHclassifier() is stored in output, access-
ing output$int_colData$CHETAH$correlations retrieves the correlations of cells with 
respect to various classification nodes produced by the CHETAH method. We use this 
matrix as the embeddings for the CHETAH method. Regarding SingleR, its output 
includes probability scores for each cell type. We have extracted these scores and used 
them as the embeddings for SingleR.
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