
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you 
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise 
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

RESEARCH

Mellis et al. Genome Biology          (2024) 25:217  
https://doi.org/10.1186/s13059-024-03351-2

Genome Biology

Prevalence of and gene regulatory 
constraints on transcriptional adaptation 
in single cells
Ian A. Mellis1,2*, Madeline E. Melzer3,4,5, Nicholas Bodkin3,4,5 and Yogesh Goyal3,4,5,6*    

Abstract 

Background:  Cells and tissues have a remarkable ability to adapt to genetic per-
turbations via a variety of molecular mechanisms. Nonsense-induced transcriptional 
compensation, a form of transcriptional adaptation, has recently emerged as one such 
mechanism, in which nonsense mutations in a gene trigger upregulation of related 
genes, possibly conferring robustness at cellular and organismal levels. However, 
beyond a handful of developmental contexts and curated sets of genes, no compre-
hensive genome-wide investigation of this behavior has been undertaken for mamma-
lian cell types and conditions. How the regulatory-level effects of inherently stochastic 
compensatory gene networks contribute to phenotypic penetrance in single cells 
remains unclear.

Results:  We analyze existing bulk and single-cell transcriptomic datasets to uncover 
the prevalence of transcriptional adaptation in mammalian systems across diverse 
contexts and cell types. We perform regulon gene expression analyses of transcription 
factor target sets in both bulk and pooled single-cell genetic perturbation datasets. 
Our results reveal greater robustness in expression of regulons of transcription fac-
tors exhibiting transcriptional adaptation compared to those of transcription factors 
that do not. Stochastic mathematical modeling of minimal compensatory gene net-
works qualitatively recapitulates several aspects of transcriptional adaptation, includ-
ing paralog upregulation and robustness to mutation. Combined with machine learn-
ing analysis of network features of interest, our framework offers potential explanations 
for which regulatory steps are most important for transcriptional adaptation.

Conclusions:  Our integrative approach identifies several putative hits—genes 
demonstrating possible transcriptional adaptation—to follow-up on experimentally 
and provides a formal quantitative framework to test and refine models of transcrip-
tional adaptation.
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Background
Cells can sense changing conditions and exhibit robustness in response to perturbations 
[1–9]. Several mechanisms underpinning this plasticity have been proposed and more 
continue to be reported. These mechanisms—operational at multiple levels of biologi-
cal organization—include protein feedback loops, adaptive mutations, and single-cell 
molecular variabilities [10–16]. One recently reported robustness mechanism is a type 
of transcriptional adaptation, wherein nonsense mutations, i.e., mutations that result 
in premature termination of protein synthesis, can trigger the transcription of related 
genes, including paralogs [14, 15, 17–19]. This adaptation, known as nonsense-induced 
transcriptional compensation, can enable cells and tissues to escape otherwise fatal 
mutations and function normally [14, 15]. Besides revealing a new kind of transcrip-
tional regulation, this discovery proposed a resolution of the long-standing discrepancy 
in molecular and morphological phenotypes between many knockdowns and knockouts 
of the same gene across several animal model systems [2, 20–23]. In particular, reducing 
the expression of a gene by using antisense oligos (including morpholinos) often results 
in more severe defects than for a gene knockout, contrary to the expectation that com-
plete removal of the  gene would, in principle, result in a stronger phenotype. Various 
existing explanations prior to these studies, including off-target effects associated with 
knockdowns [2], could not fully account for the paradox.

Mechanisms underlying nonsense-induced transcriptional compensation have been 
studied for a handful of curated genes in select developmental settings, particularly in 
vertebrates and C. elegans [18, 19, 24–30]. Recent studies identified components of the 
COMPASS complex, a histone methylase, and regulators of nonsense-mediated decay, 
including Upf genes [14, 15, 31],  as important mediators of nonsense-induced tran-
scriptional compensation. For example, premature termination codons in gene egfl7 in 
zebrafish caused upregulation of the Emilin gene family via protein Upf1, resulting in 
a near-absence of vascular defects in zebrafish [26]. However, it is unclear if this com-
pensatory behavior is pervasive in other genes, species, and contexts. While some stud-
ies have indicated the absence of this kind of compensation in organisms such as yeast 
[32, 33], to date, no genome-wide investigation of this behavior has been undertaken 
for different mammalian cell types and contexts. As a result, several questions remain 
unanswered. For example, is this adaptive behavior limited to certain genes associated 
with specific signaling pathways? Similarly, do such compensating gene families tend to 
be functionally similar, e.g., transcription factors, cytoskeleton molecules, or enzymes? 
Moreover, is this behavior intrinsic to a gene or dependent on its extrinsic environment 
(i.e., cell type or local regulation)? Furthermore, how prevalent is this behavior across 
mammalian systems and contexts, e.g., cancer or differentiation? One hypothesis is that 
nonsense-induced transcriptional compensation occurs only in very specific biological 
circumstances and organisms. Alternatively, it is possible that the transcriptional adap-
tation as a mode of cellular robustness is ubiquitous and occurs more commonly than 
hitherto appreciated. Both of these scenarios have different implications. For instance, 
the latter hypothesis implies that functional genetic screens for phenotypic outcomes 
will need to account for transcriptional adaptation. Computational analysis of existing 
datasets can lead the way in resolving these alternatives, which can subsequently be 
tested experimentally.
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Another set of questions center around the regulatory constraints on upregulated paral-
ogs and their downstream effector molecules [34, 35]. In particular, nonsense-induced tran-
scriptional compensation can result in incomplete phenotypic penetrance, such that there 
are either attenuated defects or a subset of cells or organisms which continue to have strong 
defects despite compensation. In some cases, compensation can happen without necessar-
ily rescuing a phenotypic defect induced by knockout mutations [28, 36–38]. These obser-
vations, coupled with the documented evidence that transcription is bursty [39], raise the 
possibility that inherent stochasticity underlying the compensatory gene regulatory net-
works may translate into single-cell differences. Single-cell differences, in turn, could result 
in incomplete penetrance, particularly for phenotypes resulting from variable downstream 
effects on relevant effector gene expression. However, precisely how compensated expres-
sion fluctuations manifest into downstream effects has not been formally investigated. For 
example, what is the ensemble of gene expression distributions of effector molecules post-
compensation? Under what conditions can we expect the system to exhibit robustness of 
the distribution shape and mean? In a similar vein, does the answer depend on the nature 
of interactions or network size (negative or positive; one or multiple paralogs)? Resolving 
these single-cell possibilities with the  analysis of single-cell sequencing datasets coupled 
with theoretical formulations can provide plausible mechanistic bases for the observed 
phenotypic penetrance, and aid in the design of predictive experiments, especially as single-
cell technologies become more accessible [40, 41].

Here, we combine computational analysis of existing datasets with mathematical mod-
eling of stochastic gene regulatory interactions to address the questions posed above. First, 
we argue that a systematic bioinformatic analysis of publicly available transcriptome-wide 
datasets that rely on CRISPR-Cas9-mediated mutagenesis can, in principle, suggest the 
presence of transcriptional adaptation, or lack thereof. Indeed, our unbiased computa-
tional pipeline surveying dozens of publicly available datasets, spanning both bulk and sin-
gle-cell-resolved datasets, not only recovers known and validated gene targets that display 
nonsense-induced transcriptional compensation but also reveals the breadth of genes, cell 
types, and biological contexts across which nonsense-induced transcriptional compensa-
tion can be operational. Second, we extend the analysis of nonsense-induced compensatory 
effects to downstream regulatory targets of mutated genes, using annotated transcription 
factor regulons. We show that transcription factors that display potential transcriptional 
adaptation have more stable downstream regulatory targets after mutation. Lastly, we 
develop stochastic mathematical models of biallelic gene regulation and simulate over tens 
of millions of cells. We find that even a relatively parsimonious model of transcriptional 
adaptation can recapitulate paralog upregulation after mutation and diverse population-
level gene expression distributions of downstream effectors qualitatively similar to those 
observed in real data. Our integrative framework is generalizable and lays the foundation 
for future work to test our findings experimentally and to refine models of transcriptional 
compensation.
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Results
A generalizable framework for analyzing CRISPR‑Cas9 knockouts paired 

with RNA‑sequencing reveals upregulation of knockout‑target paralogs

We wondered whether transcriptional adaptation to mutation—specifically nonsense-
induced transcriptional compensation—is common in vertebrates, and if so, does it 
occur in specific genes belonging to specific signaling pathways or in broader gene sets 
across biological contexts. To address this question, we took advantage of a feature com-
mon in published experimental designs: CRISPR-Cas9-based knockout engineering. 
When paired with a guide RNA, Cas9 creates a double-stranded DNA break at a prede-
fined site in a target gene, after which endogenous non-homologous end joining repair 
processes induce a random insertion-deletion (indel) mutation [42–45]. On average, two 
thirds of indels in coding regions will induce a frameshift by random chance. In turn, 
this frameshift will render the resulting open reading frame of the mutant different from 
the wild-type and cause a premature termination codon [46]. Since nonsense-induced 
transcriptional compensation is proposed to occur as a result of premature termination 
codons, we hypothesized that transcriptomic data from Cas9-based knockout experi-
ments could reveal the presence—or absence—of potential nonsense-induced transcrip-
tional compensation (Fig.  1A). Furthermore, even if a specific nonsense or frameshift 
allele is not isolated and expanded (i.e., the mutated population is polyclonal), at least 
two thirds of Cas9-affected alleles in Cas9-treated cells will be nonsense mutants.

Since nonsense-induced transcriptional compensation can depend on sequence 
homology [14, 15], we first developed a robust methodology for choosing genes that may 
compensate for a knockout target. There are several documented methods for choos-
ing related, potentially compensatory, genes. These range from considering whole pro-
tein families to identifying more recently ancestrally related paralog genes to performing 
genome-wide local alignment searches [14, 26]. We decided to use paralog genes in our 
analysis as they are consistently annotated, and identifying Ensembl-annotated paralogs 
does not depend on individually optimized local alignment search parameters [47]. We 
then performed a comprehensive literature search for published, publicly available data-
sets for CRISPR-Cas9 knockout experiments paired with bulk RNA sequencing of both 
nontemplate controls and knockout target samples. We analyzed mouse and human 
samples. Furthermore, we prioritized published datasets that included multiple paral-
lel knockout experiments. In total, we screened over 200 datasets in the NIH’s Gene 
Expression Omnibus (GEO) and identified 36 GEO entries with a total of 220 initially 
analyzable CRISPR gene targets meeting our experimental design criteria, including 76 
in mice and 144 in humans (Fig. 1B, Additional File 1: Table S1). After quality control, 
paralog lookup, and differential expression filters, we proceeded to analyze a total of 74 
gene targets and their respective nontemplate controls (see the “Methods” section). The 
datasets analyzed include knockouts engineered for the study of a variety of biological 
phenomena, including organ development, reprogramming to pluripotency, and tumor 
responses to targeted therapies, among others (Additional File 1: Table S1).

With our collection of quality-controlled datasets, we examined whether non-
sense-induced transcriptional compensation may exist more widely than previously 
reported. Specifically, we asked whether paralogs of knockout targets were upregu-
lated after knockout more frequently than would be expected by random chance (see 



Page 5 of 43Mellis et al. Genome Biology          (2024) 25:217 	

the “Methods” section). We found that 16 out of 74 knockout targets had significant 
upregulation of their paralogs (Fig. 1C,D, Additional File 2: Fig. S1A, Additional File 1: 
Table  S2). We confirmed this result was not specific to our thresholds for differential 
expression (adj. p-value < 0.05 and log2(fold change) > 0.5) by repeating the analysis using 
other differential expression or average expression paralog inclusion criteria (Additional 
File 2: Fig. S1B,C). Gene hits include ASH1L, KLF6, RB1, RUNX3, SP1, TLR4, and ZEB2 
in humans and Actb, Apc, Lmna, Macf1, Myc, Nes, Nsd1, Trim71, and Zfp281 in mice. 
Our analysis is largely consistent with the published findings of related-gene upregula-
tion after nonsense mutation of 3 target genes found to demonstrate nonsense-induced 
transcriptional compensation by El-Brolosy et al., 2019 (Fermt2, Actg1, Actb; Additional 
File 2: Fig. S1D). It is also important to note that our work recapitulated these earlier 
findings despite using different related-gene-inclusion criteria (local alignment in El-
Brolosy et  al., 2019, vs. paralog identity here). Furthermore, while we observed some 
degree of transcriptional upregulation in paralogs of all 3 target genes, only Actb was 
deemed significant by our bootstrap analysis pipeline. This result suggests that beyond 
the 16 significant hits reported in our study, our paralog-based analysis is relatively more 
stringent, perhaps leading to false-negative findings. Remarkably, there were 2 CRISPR 

Fig. 1  Inferring prevalence of transcriptional adaptation in transcriptomic datasets. A Schematic of 
transcriptional adaptation after Cas9-mediated mutagenesis. After indel mutations, frameshifts often 
occur, leading to premature termination codon formation and resultant nonsense-mediated decay. 
We hypothesized that paralogs may be upregulated in genes with nonsense-induced transcriptional 
compensation-type transcriptional adaptation. B Schematic of analytical workflow. We mined publicly 
available RNA-seq datasets for differential expression of paralogs of CRISPR/Cas9 knockout targets after 
mutation. Randomly selected bootstrap sampled genes are chosen to have similar average expression levels 
as respective paralogs of interest. C Per-knockout-target paralog differential expression results. The -log10 
bootstrap p-value compared to the observed fraction of upregulated paralogs. Paralog differential expression 
counted if log2 fold-change > 0.5 and adjusted p-value < 0.05. D Per-upregulated-paralog differential 
expression magnitude. For significantly upregulated paralogs of knockout targets showing transcriptional 
adaptation in C, log2 fold-change relative to controls. Knockout targets on x axis in arbitrary order
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targets in our dataset that are paralogs of each other, Lmna and Nes, and we found that 
both were classified as hits. Moreover, for both Lmna and Nes, their mutual paralog 
gene Nefl was upregulated upon mutation of either Lmna or Nes (Fig. 1D). Therefore, 
despite conservative cutoffs, the shared upregulation of compensating, mutually paralo-
gous genes across independent experiments illustrates the power of our approach and 
the reliability of our findings.

Degree and frequency of paralog upregulation are similar across conditions for the same 

genes

We wanted to check whether paralog upregulation frequencies and paralog fold-changes 
were consistent across conditions for the same CRISPR target genes. Therefore, we com-
pared paralog upregulation frequency for all 27 knockout targets that met our inclusion 
criteria for analysis across two conditions in a dataset published in Lackner et al., 2021 
[48] (see the “Methods” section). Lackner and colleagues performed RNA-sequencing 
on different knockout mouse embryonic stem cell lines, both under standard naive stem 
cell culture conditions and after a day of differentiation (Fig. 2A). In our main analysis 
(Fig. 1C, D), we considered the results from Lackner et al., 2021, under standard culture 

Fig. 2  Repeatability of inferring prevalence of transcriptional adaptation across experimental conditions. 
A Schematic of experimental design for analysis of paralog upregulation frequency for 27 knockout targets 
in mouse naive embryonic stem cells (ESCs), adapted from Lackner et al., 2021. B Comparison of paralog 
upregulation frequency in 2i (standard naive ESC culture condition, condition 1, GSE145653-1) versus N24 
(removal of 2i for 24 h, allowing exit from naive pluripotency, condition 2, GSE145653-2) for 27 targets. Color 
indicates the number of paralogs per knockout target. Dotted line indicates y = x. C Comparison of log2 
fold-change of paralog expression across experimental conditions. Each point corresponds to a gene-paralog 
pair. Color indicates the -log10 adjusted p-value calculated from naive ESC dataset (condition 1), with any 
value greater than 15 being represented by the same dark blue. Dotted line indicates y = x. D Comparison of 
log2 fold-change of paralog expression across experimental conditions for individual knockout targets with 
bootstrap p-values < 0.1 (i.e., “hits”) as in C 
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conditions to reduce potential confounding effects on expression changes associated 
with possible divergent differentiation outcomes in each knockout compared against 
differentiated non-template control lines. Nonetheless, we asked whether there is any 
agreement in paralog upregulation frequency across the standard undifferentiated and 
differentiated conditions. We found that for each knockout target, the fraction of paral-
ogs upregulated in standard culture conditions was broadly correlated with the fraction 
of paralogs upregulated after a day of differentiation (Fig. 2B; r = 0.832), as did the degree 
of upregulation of each paralog (Fig. 2C, D, Spearman correlation coefficient = 0.677 for 
paralogs of all targets). Therefore, for the tested targets in mouse embryonic stem cells, 
paralog upregulation frequency is similar in two different conditions, further demon-
strating the robustness of our approach.

Paralog upregulation is also observed in large‑scale pooled single‑cell CRISPR screens

Next, we wondered whether we could identify additional genes that may exhibit non-
sense-induced transcriptional compensation in large pooled knockout experiments with 
single-cell resolution. Perturb-seq, CROP-seq, CRISP-seq, and related methods enable 
pooled parallel single-cell gene expression profiling of dozens or hundreds of knockout 
targets [49–51]. Here again, we reasoned that single-cell pooled datasets utilizing Cas9 
or equivalent perturbation tools would cause indel mutations in the coding regions of 
the genes of interest. In addition to the benefits of single-cell resolution of gene expres-
sion and its high-throughput, Perturb-seq-style data offers consistency by using a com-
mon internal set of non-template-control-treated cells as a comparison for all knockout 
targets. We identified a large, quality-controlled, pre-processed Perturb-seq dataset 
with ~ 750 distinct guide RNAs using Cas9 as the knockout effector in patient-derived 
cancer cells. The dataset includes dozens of non-template-control guides and gene-
targeting guides directed at > 200 target human genes with a wide variety of molecular 
functions, chosen due to their involvement with cell-intrinsic therapy resistance [52]. 
After quality controls, we considered cells representing 143 target genes with 429 total 
targeting guides as well as 37 non-template-control guides in the main analysis (Fig. 3A).

We then asked whether there was a trend toward increased expression at the sin-
gle-cell level of any paralogs of each knockout target when compared against non-
template-controls. Due to known drop-out events in single-cell RNA-sequencing, we 
initially focused our analysis on simply counting the fraction of cells with non-zero 
expression (i.e., “percent positive”) of each paralog of a knockout target. We com-
pared the percent positive cells treated with a targeting guide against cells treated 
with a control guide [53, 54]. For paralogs with a high baseline expression of at least 
75% in control cells, we compared average expression levels instead of percent pos-
itive values. In general, the percent positives (and the means) in targeted cells and 
in controls were well correlated (Fig.  3B). Nonetheless, there were many paralog 
genes in which expression levels may have differed. We rank-ordered the differences 
between targeted and control cells for all 1792 paralog-target gene pairs and high-
lighted the paralogs with the 100 largest absolute increases in percent positive values 
after respective target knockout (or highest mean increases for those highly expressed 
at baseline). Eighty-five of the largest differences detected were observed when con-
sidering either change in percent-positivity or change in mean abundance, suggesting 
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that the identification of a target-paralog pair was not entirely dependent on the 
choice of paralog-upregulation measure (Fig.  3C). There were 43 distinct knockout 
targets with top-100-increase paralogs, including transcription factors, RNA-binding 
proteins, signaling pathway components, cell cycle regulators, and cell surface pro-
teins (Table 1, Additional File 1: Table S3). Additionally, we did a secondary analysis 
on the subset of gene targets that did not pass our conservative total cell filtering yet 
showed potential paralog upregulation (Additional File 2: Fig. S1E). Particularly, 6 of 
the 23 paralogs of TUBB (tubulin beta class I) may have been upregulated after TUBB 
mutation (Additional File 2: Fig. S1E). Intriguingly, others have experimentally shown 
that mutations of tubulins can lead to tubulin paralog upregulation in a mouse model 
of neurodegeneration [36].

We next asked whether any specific annotated biological pathways, molecular func-
tions, or cellular components were enriched for genes that display transcriptional adap-
tation by paralogs, either in bulk or in single-cell datasets. Therefore, we conducted 
gene set enrichment analysis by comparing human knockout targets with significantly 
upregulated paralogs (in bulk data) or paralogs in the top-100-increase sets (in single-
cell data) against the full set of human knockout targets tested (see the “Methods” sec-
tion) [55]. No gene sets were overrepresented among the knockout targets with paralog 

Fig. 3  Inferring prevalence of transcriptional adaptation at single-cell resolution in Perturb-seq data. A 
Schematic of experimental design and paralog gene expression analysis, adapted from Frangieh et al., 2021. 
143 gene targets, with a consistent batch of non-template control-treated cells, passing quality control 
filters (see the “Methods” section). B Perturb-seq-based single-cell paralog expression change after reference 
gene knockout. Per paralog, percentage of cells positive for that paralog’s expression in non-template 
control guide-treated cells on x-axis, percentage of cells positive for that paralog’s expression in cells 
treated with guides targeting a reference CRISPR target for which the gene is a paralog. For paralog genes 
with percent-positive > 75% in non-template controls, mean expression plotted in inset at right. Paralogs 
ranked in the top-100 of absolute increases per quantification method marked in magenta. All paralogs 
of all knockouts shown meeting minimum cell count and UMI count in gray, inclusion criteria listed in the 
“Methods” section. C Venn diagram summarizing the number of paralog-CRISPR target pairs with the top-100 
largest increases in mean expression and/or percent-positive expression levels. 1792 total paralog-target 
pairs, of which 1677 are not in the top-100 largest increase lists. 85 paralog-target pairs in the top-100 largest 
difference list by both mean and percent-positive analysis
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upregulation. Therefore, transcriptional adaptation, at least for the targets tested, may 
not be limited to specific biological contexts, since we observed that it is not strongly 
correlated with functionally defined gene sets or particular signaling pathways.

We also wondered whether higher expression of any genes implicated in the pro-
posed mechanisms of transcriptional adaptation were associated with targets exhib-
iting paralog upregulation. Therefore, from the two largest datasets, one human 
and one mouse, we extracted the expression levels of 12 genes associated with tran-
scriptional adaptation (members of the COMPASS complex and Upf genes impor-
tant for nonsense-mediated decay) [14, 15, 31, 48, 56–58]. We compared these 12 
genes’ expression levels for each knockout-control pairing in the dataset, grouped 
by whether the knockout target displayed paralog upregulation. We did not observe 
any major differences in the 12 genes’ expression levels between targets with signs of 
transcriptional adaptation versus those without, in either humans or mice (Additional 
File 2: Fig. S2). Note, however, that the analysis was limited by low numbers of knock-
out targets, particularly in the groups displaying paralog upregulation. Moreover, it is 
also possible that protein-level, rather than transcript-level, regulation of COMPASS 
complex components, NMD pathway components, and other effectors of transcrip-
tional adaptation drive paralog upregulation [17]. Future high-throughput and multi-
modal studies with more robust datasets will play a critical role in clarifying the role 
of COMPASS complex component or Upf gene expression levels in transcriptional 
adaptation.

Table 1  List of CRISPR targets with multiple paralogs demonstrating large increases in paralog 
expression. All CRISPR targets with more than 1 paralog in the top-100 list (see the “Methods” 
section) and with at least 10% of all annotated paralogs in the top-100 lists. A complete list of CRISPR 
targets with paralogs in the top-100 list is in Additional File 1: Table S3

CRISPR target # paralogs in top-100 # annotated paralogs Fraction of 
paralogs in 
top-100

TMED10 5 9 0.56

ILF2 5 13 0.39

CDK6 8 26 0.31

PABPC1 6 21 0.29

NONO 2 7 0.29

SMAD4 2 7 0.29

IRF4 2 8 0.25

FRZB 3 14 0.21

EIF4A1 7 36 0.19

PPIA 3 16 0.19

RAB27A 11 66 0.17

DDX39A 6 36 0.17

DDX17 5 36 0.14

CCND1 2 17 0.19

HLA-C 2 17 0.19

HLA-F 2 17 0.19

SERPINE2 3 27 0.11

FKBP4 2 18 0.11
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Several knockout target and paralog features are not associated with paralog upregulation

Since we observed variability in upregulation of different paralogs for a target gene 
upon CRISPR mutation, we wondered whether paralog-intrinsic factors might be asso-
ciated with whether a given paralog participates in transcriptional adaptation. Specifi-
cally, recent studies have indicated that genes that have some degree of local sequence 
homology with a nonsense-mutated gene are more likely to be upregulated after muta-
tion, but this has not been systematically investigated [14]. We checked whether paralog 
upregulation has any association with the degree of sequence homology (i.e., transcript-
wide percent homology) with the knockout target. We found no significant correlation 
between the degree of sequence homology and the expression change after mutation for 
bulk CRISPR targets demonstrating transcriptional adaptation (Additional File 2: Fig. 
S3A). Next, given the requirement for degraded transcripts from mutated genes in pro-
posed mechanisms of transcriptional adaptation, we wondered whether longer knock-
out target genes might more often have paralog upregulation. We found no significant 
correlation between length of gene and the paralog upregulation frequency (Additional 
File 2: Fig. S3B).

Next, we asked whether shared genomic regulatory elements, including enhancers and 
promoters, between a paralog and its respective CRISPR target was associated with par-
alog upregulation after knockout. First, we mined the GeneHancer database of human 
enhancers and promoters annotated with their regulated genes [59]. We found only two 
paralogs that shared enhancers or promoters with their respective CRISPR target (out 
of 489 paralog-target pairs with both genes in the database). There was no difference in 
odds of paralog upregulation between the two paralogs with shared enhancers or pro-
moters and those without (Fisher’s exact test p-value = 0.13, see the “Methods” section). 
In Caenorhabditis elegans, studies have shown for at least one pair of genes that tran-
scriptional adaptation requires partial homology between a promoter and a subsequence 
of the mutated transcript [29]. We hypothesized that even for genes not related to each 
other, sharing an upstream regulatory element with the CRISPR target may predispose 
another gene to upregulation. Our hypothesis, coupled with the fact that  the number 
of paralogs with shared regulatory elements was low, led us to further extend the check 
for association between sharing regulatory elements and upregulation after knockout to 
any genes in the database. Therefore, we repeated a check of shared regulatory elements 
for all genes in a given experiment in the GeneHancer database with the CRISPR tar-
get. Here again, we found no clear association between a gene being upregulated and 
whether it shared an enhancer or promoter with the CRISPR target (Fisher’s exact test 
p-value range (0.12, 1) across human CRISPR targets; see the “Methods” section).

We also checked whether 3D genome architecture may be associated with paralog 
upregulation after target knockout. We mined the TADKB database [60] of human top-
ologically associated domains to check for knockout target-paralog pairs both located 
in shared annotated domains in any available human cell type (see the “Methods” sec-
tion). We considered genes co-located in the same topologically-associated domain 
if any Ensembl-annotated transcription start sites for both genes occurred within the 
domain. We found that only 4 out of 562 target-paralog pairs tested were co-located in 
the same topologically-associated domains. There was no difference in odds of paralog 
upregulation between the few paralogs with shared domains and those without (Fisher’s 
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exact test p-value = 0.23). There is evidence that transcriptional adaptation may lead 
to the mutated gene’s own upregulation, such as at an unmutated allele in the case of 
heterozygosity or endogenous loci if mutated transcripts are injected into the cell [61]. 
Therefore, we hypothesized that if there were an association between 3D chromatin 
architecture and gene upregulation by transcriptional adaptation, it is possible that any 
neighboring gene with shared architectural regulatory features is more often upregu-
lated. We repeated a check of shared domain co-location for CRISPR targets and any 
genes for which differential expression could be calculated. As with paralogs, we found 
minimal association between any gene sharing a topologically-associated domain with 
the CRISPR target and whether that gene was upregulated (unadjusted Fisher’s exact test 
p-value range (0.039, 1); adjusted range (0.79, 1); see the “Methods” section). The only 
gene with an unadjusted p-value < 0.05 was SMARCA4 (p = 0.039), which was not a hit 
in the main analysis of paralog upregulation after SMARCA4 mutation and which with 
adjustment for multiple hypothesis testing did not meet a false-discovery rate threshold 
of < 0.05 (adjusted p-value = 0.79).

We then wondered whether paralog expression similarity to knockout target expres-
sion across contexts is predictive of paralog upregulation after target mutation. There-
fore, we performed an analysis at a functional level of genomic regulation, agnostic of 
specific regulatory features. Specifically, we calculated paralog expression level cor-
relation with knockout target expression level across 54 human tissue types in the 
GTEx dataset (see the “Methods” section). We then compared the correlation coeffi-
cient for the expression of each gene-paralog pair against that pair’s paralog expression 
change after target mutation (Additional File 2: Fig. S1F). We found no positive asso-
ciation between gene expression correlation and paralog expression change after target 
knockout (instead, in fact, there was a slight anticorrelation (Spearman rho =  − 0.11, 
p-value = 0.01).) Of note, most paralogs have positive average expression correlation 
with the respective target genes across tissues, consistent with prior results [62].

Taken together, our results suggest that nonsense-induced transcriptional compensa-
tion may exist for several vertebrate genes, and the paralog(s) that get upregulated do not 
necessarily depend linearly on the degree of sequence homology or mutated gene length. 
Nor does paralog upregulation appear to be associated with sharing annotated enhanc-
ers or promoters or topologically associated domains with the mutated gene, granted the 
datasets were sparse and few. As new genomic datasets continue to be reported, future 
studies may systematically explore whether alternative paralog- or knockout-target-spe-
cific characteristics are associated with upregulation after mutation.

Robustness of regulons at bulk and single‑cell resolution for transcription factors 

exhibiting transcriptional adaptation

Previous studies have shown that paralog upregulation via transcriptional adaptation 
can enable the preservation or robustness of molecular and morphological phenotypes 
downstream of mutated regulators. Therefore, we wondered whether we would observe 
relative downstream buffering effects for targets exhibiting transcriptional adapta-
tion versus those that do not. Specifically, we wanted to know if there was robustness 
of expression distribution shape and average level for downstream targets of transcrip-
tion factors—which can activate or repress downstream genes—that showed signs 
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of transcriptional adaptation via paralog upregulation (Fig.  4A). To address this ques-
tion, we isolated transcription factors from the bulk RNA-seq and Perturb-seq single-
cell RNA-seq datasets previously analyzed for paralog upregulation (Additional File 1: 
Table S1 and [52]).

For the bulk RNA-seq datasets, we first checked whether any CRISPR targets with sig-
nificant paralog upregulation were transcription factors. Next, we searched the DoRo-
thEA regulon database for common downstream targets of CRISPR targets and their 
paralogs (i.e., common regulons) [63, 64]. We found common regulons with high-qual-
ity annotations for 4 target-paralog pairs for targets demonstrating possible transcrip-
tional adaptation: RUNX3-RUNX1, SP1-SP4, ZEB2-ZEB1, and Myc-Mycn. In parallel, we 
repeated regulon searches for all target-paralog pairs for targets that did not appear to 
demonstrate transcriptional adaptation, as well. We hypothesized that transcriptional 
adaptation by transcription factor paralogs should, on average, buffer extreme changes 
in the expression of downstream genes after CRISPR target mutation. To test our 
hypothesis, we calculated differential expression of common regulon genes after CRISPR 
target knockout. We found that common regulon genes downstream of transcription 
factors with signs of transcriptional adaptation were significantly less often differen-
tially expressed (10.2% of regulon genes) than those downstream of transcription factors 

Fig. 4  Robustness of regulon expression associated with transcription factor transcriptional adaptation. 
A Analysis schematic: is there differential regulon gene expression robustness after mutation of upstream 
transcription factors, associated with whether the transcription factors demonstrate transcriptional 
adaptation by paralogs? B Change in gene expression for each regulon gene after reference CRISPR 
transcription factor target mutation, compared against respective controls (log2(fold change) from 
DESeq2). Each point represents one downstream regulon member gene. Gray: regulon genes downstream 
of CRISPR target-paralog pairs not appearing to be involved in transcriptional adaptation. Red: regulon 
genes downstream of CRISPR target-paralog pairs with apparent transcriptional adaptation. Regulon 
genes called differentially expressed if DESeq2 adjusted p-value < 0.05 and abs(log2(fold change)) > 0.5. 
Fisher’s exact test for difference of odds of differential expression between the two groups of CRISPR 
target regulons, p = 1.82 × 10−4. C Gene expression distributions of a representative transcription factor 
that demonstrates possible transcriptional adaptation: SMAD4, in non-template controls (“control”, gray) 
and in SMAD4-guide-treated cells (“targeted”, orange). Fisher’s exact test p-values for difference in odds 
of cells being positive in control vs. targeted populations. Abundance values log(TPM + 1) reported by 
[52]. D Gene expression distributions of a representative top-100 paralog gene of a transcription factor 
that demonstrates possible transcriptional adaptation: SMAD1, a paralog of SMAD4, in non-template 
controls (gray) and in SMAD4-guide-treated cells (orange). Fisher’s exact test p-values for difference in odds 
of cells being positive in control vs. targeted populations. Abundance values log(TPM + 1) reported by 
[52]. E Gene expression distributions of three representative regulon genes of a transcription factor that 
demonstrates possible transcriptional adaptation: ID3, TNFRSF11B, and ID2, regulon genes of both SMAD4 
and SMAD1, in non-template controls (gray) and in SMAD4-guide-treated cells (orange). Fisher’s exact 
test p-values for difference in odds of cells being positive in control vs. targeted populations. Bimodality 
coefficient calculated for non-zero subpopulation of each distribution. Abundance values log(TPM + 1) 
reported by [52]. F Change in gene expression for each regulon gene after reference CRISPR transcription 
factor target mutation, compared against non-template controls (i.e., percent-positive in CRISPR targeted 
cells minus percent-positive in non-template control-treated cells, for genes 75% or less in non-template 
controls). Each point represents one downstream regulon member gene. Gray: regulon genes downstream 
of CRISPR target-paralog pairs not appearing to be involved in transcriptional adaptation. Orange: 
regulon genes downstream of CRISPR target-paralog pairs with apparent transcriptional adaptation. 
Asymptotic test of difference in coefficient of variation for groups of unequal size, p = 0.0017. G Empirical 
distribution of standard deviation of change in percent-positive for downsampled (n = 49, same as 
transcriptional-adaptation group size) no-transcriptional-adaptation group regulon members without 
replacement, 1000 downsamples, in gray. Observed standard deviation of change in percent-positive 
transcriptional-adaptation group standard deviation to this distribution, in orange

(See figure on next page.)
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without signs of transcriptional adaptation (34.1% of regulon genes; Fisher’s exact test 
p-value = 1.82 × 10−4; Fig. 4B).

For the Perturb-seq single-cell dataset, we asked whether any of the top-100 upregu-
lated paralogs were paralogs of known human transcription factors. Six pairs of top-100 
CRISPR targets-paralog genes spanning 4 distinct CRISPR targets were transcription 
factors. We then searched the DoRothEA regulon database for common downstream 
targets of CRISPR targets and their paralogs (i.e., common regulons) [63, 64]. We found 
overlapping regulons with high-quality annotations for 3 of the 6 top-100 target-paralog 
pairs: IRF4-IRF1, SMAD4-SMAD1, and TFAP2A-TFAP2C (Fig.  4C–E). For each regu-
lon, we then plotted single-cell transcript abundances for the CRISPR target (Fig. 4C), 
the paralog (Fig.  4D), and downstream genes (Fig.  4E) both in non-template control 
cells and in cells treated with guides specific to the CRISPR target. By inspection, we 
observed that some downstream genes demonstrated robust, consistent gene expression 

Fig. 4  (See legend on previous page.)
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distribution shapes, while others demonstrated partial expression robustness with pos-
sible new modes of gene expression (i.e., the possible presence of bimodality or multi-
modality, with some gene expression distribution differences showing modest increases 
in bimodality coefficient; see the “Methods” section) or decreased average expression 
(Fig. 4E).

As with the bulk RNA-seq datasets, we hypothesized that transcriptional adaptation 
by transcription factor paralogs would, on average, buffer extreme changes in down-
stream genes after CRISPR target mutation. Therefore, we repeated regulon searches 
and calculated the change in downstream gene expression for target-paralog pairs that 
did not appear to demonstrate transcriptional adaptation and for those exhibiting tran-
scriptional adaptation. Compared to regulons of CRISPR target transcription factor-par-
alog pairs that do not appear to demonstrate transcriptional adaptation, the spread of 
gene expression changes downstream of top-100 target-paralog pairs was indeed nar-
rower (p = 0.0017, see the “Methods” section) (Fig. 4F, G). In summary, transcriptional 
adaptation by paralogs of mutated transcription factors is associated with buffering of 
extreme expression changes in their mutual downstream regulon genes, in both bulk 
and single-cell datasets.

Building a minimal network model of the effects of nonsense‑induced transcriptional 

compensation

We demonstrated the existence of transcriptional adaptation in mice and humans across 
multiple contexts. Particularly, the results from Perturb-seq datasets suggest incomplete 
penetrance of transcriptional adaptation at a population level, with single-cell differ-
ences in the frequency and magnitude of related paralog upregulation (Fig. 3) as well as 
downstream effector molecules (Fig. 4). While such publicly-available datasets provide 
an important view of nonsense-induced transcriptional compensation, several questions 
related remain unanswered. For example, can simple gene regulatory networks recapit-
ulate single-cell variability in compensating paralogs? Furthermore, under what condi-
tions is transcriptional adaptation capable of inducing robustness across a population of 
cells, in that the compensating paralog expression precisely mimics wild-type expression 
at a single-cell level? Of note, robust paralog expression alone may not be sufficient, as 
paralog activity (e.g., that of a paralogous enzyme or a transcription factor) can differ 
substantially from the original gene. Similarly, gene regulatory network effects can result 
in distributions of effector molecules in single cells that are non-trivial to predict, yet 
they can have profound phenotypic implications. For example, mutations in regulators 
of C. elegans intestinal fate can result in downstream effector expression heterogene-
ity, further dependent on the continued function of other regulatory network compo-
nents [65]. Therefore, it is important to identify the major control knobs that may confer 
robustness, or lack thereof, to (1) qualitatively recapitulate the computational findings 
from experimental datasets and (2) obtain a plausible ensemble of single-cell variabilities 
and their sources in networks exhibiting transcriptional adaptation.

To address this gap, we built a theoretical framework to model the ensemble of single-
cell transcriptional-adaptation-containing network output possibilities with a minimal 
set of stochastic biochemical reactions. We chose to model cells in which a gene that 
exhibits nonsense-induced transcriptional compensation controls the expression of a 
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downstream effector molecule. Briefly, in our initial minimalistic model comprised of 13 
parameters (see the “Methods” section), we simulate transcription of an upstream regu-
lator, A, with a paralog, A’, exhibiting nonsense-induced transcriptional compensation, 
and a downstream target, B, in a diploid genome (Fig. 5A, the “Methods” section). Gene 
product A in wild-type regulates the transcription of downstream pathway member, B. 
Mutation of A is compensated for by nonsense-mediated expression enhancement of A’, 
which also regulates transcription of B when present (Fig. 5A and Additional File 2: Sup-
plementary Note).

To model the effect of nonsense-mediated expression enhancement of A’ on B, we 
used an expanded version of the telegraph model of transcription [66] as a building 
block in our model: each gene can reversibly switch between a transcriptionally inac-
tive state (to which, roff) and one or more active states (to which, ron) (Additional File 
2: Fig. S4A). When active, the gene product is transcribed in a Poisson process at a rate 
(rprod). Degradation of each product also occurs as a Poisson process (rdeg). We specify 
the directed interaction between mutated gene A regulating the transcription of paralog 
gene A’, which represents nonsense-induced transcriptional compensation, by adding a 
parameter (radd

NITC) with dependency on the real-time abundance of mutated A gene 
product modified by a Hill function (Hill coefficient n), to account for the nonlinearity of 
gene regulatory interactions. We combine steps leading to transcription by making the 
quasi-equilibrium assumption, commonly used in models of gene regulatory networks 
due to differences in individual reaction timescales [67, 68]. We represent the differen-
tial regulation of B by A and A’ by specifying two distinct active states for B: the active 
state directed by A and the active state directed by A’. The active states of B each have a 
respective production rate. In sum, our minimalistic model includes 12 varying param-
eters and 1 fixed parameter. We condensed the parameter search space to 8 independent 
and interpretable variables by focusing on parameter relationships in relation to a subset 
of critical network parameters (see the “Methods” section, Fig. S4A-D).

Gene expression distribution shape varies widely across the parameter search space

To understand how relationships between the parameters in the model relate to network 
output, we simulated the network model using eight independent variables [69] (see the 
“Methods” section, Supplementary Note, Fig. SN1). We chose parameter search ranges 
based on studies empirically documenting transcriptional burst kinetics in mammalian 
cells, when available [66, 70–72]. An autocorrelation analysis on simulations confirmed 
that they are ergodic, thus enabling us to condense long-timescale traces into “single-
cell-like sub-simulations” (Additional File 2: Fig. S5, Supplementary Note).

Manual inspection of distributions of random samples showed that the distributions 
tended to fall into 5 general classes of distribution shape: low-expression, unimodal sym-
metric, left-skewed, right-skewed, and bimodal (or multimodal) (Fig. 5B, C, Additional 
File 2: Fig. S6A, B). We next sought to automate the process of describing the expression 
level distributions per gene per genotype in each simulation for several tens of thousands 
of simulation runs (see Additional File 2: Fig. S4E, Supplementary Note). To systemati-
cally classify distribution shapes, we developed a heuristic algorithm based on summary 
statistics and verified the accuracy with manual checks (see the “Methods” section, Sup-
plementary Note). With our fairly accurate classifier (80–100% per class; Additional File 
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Fig. 5  Outputs of simulated gene regulatory networks with transcriptional adaptation and robustness to 
mutation dependency on model parameters. A Schematic of a gene regulatory network with transcriptional 
adaptation to mutation. Two alleles of each gene, with bursty transcription of gene products at each allele. 
A mutated reference gene, A (dark gray), regulates downstream effector gene B (orange). When mutated, 
nonsense copies of A product upregulate a paralog of A, called A’ (light gray). A’ can also regulate B, albeit 
with different strengths. Hill functions are used in propensities for regulatory relationships between gene 
products and target alleles. See the “Methods” section for full model specification. Parameter descriptions 
in the table at right of the panel. B Example simulation output and inference of single-cell expression 
distributions from pseudo-single-cells taken every 300 time-steps. See the “Methods” section. C Example 
classification of gene expression distribution shapes. See the “Methods” section for classification algorithm. D 
Analysis schematic: under what network conditions does the network output (i.e., distribution of B expression 
levels) remain unchanged, either in shape or in average expression level, after mutation of gene A? E Decision 
tree trained on model parameters to classify parameter sets, restricted to those in which B is unimodal 
symmetric in the wildtype genotype, by whether B distribution remains unimodal symmetric or if it changes 
distribution shape class. Nodes marked “robust”: > 70% of considered parameter sets robust, “maybe”: 30–70% 
robust, “not robust”: < 30% robust. F Analysis schematic: How parameter subspaces for terminal decision 
tree nodes relate to rules. Each rule limits the parameter subspace for the terminal node. Colored planes 
correspond to the decision rule-defined thresholds. When a subspace only encodes one decision rule for a 
given parameter, the subspace range is limited to the corresponding full parameter space boundary (e.g., 
if a decision rule sets only a new minimum parameter value, then the maximum parameter value for the 
subspace is the maximum parameter value of the full parameter space). G Mean B expression changes after 
mutation in each decision tree leaf for unimodal symmetric robust parameter sets. H Parameter subspace 
bounded by decision tree rules for nodes 15 + 16 in E, resampled. I Enrichment of robustness of both shape 
and mean for unimodal symmetric distributions of B after mutation, subsampled from the full parameter 
space and from the subspace marked in D. Robustness of mean here defined as absolute log2 fold-change 
after mutation < 0.35



Page 17 of 43Mellis et al. Genome Biology          (2024) 25:217 	

2: Fig. S7A), we asked if we could capture the frequency of distribution shape change 
(or lack of shape change) after mutation as a proxy for robustness in distribution shape. 
For gene product B, we found that while many simulations demonstrated shape class 
changes after mutation, a large number instead did not (Additional File 2: Fig. S4E), 
qualitatively similar to our analysis on published datasets (Fig. 4). This robustness in dis-
tribution shape after mutation could translate into downstream phenotypic robustness.

In our initial set of simulations, we considered paralogs with no basal expression, i.e., 
paralogs regulated exclusively by transcriptional compensation. Since paralogs exhibit 
basal expression in many real world datasets, we ran new simulations incorporat-
ing basal paralog expression (adding an additional independent variable: basal paralog 
expression level). We observed qualitatively similar results in that the simulations pro-
duced all 5 distribution classes observed in the original model with no basal expression 
and that some parameter sets exhibited robustness of distribution shape to mutation 
(Additional File 2: Fig. S8 and Supplementary Note).

As many human and mouse genes have multiple annotated paralogs [47], we built a 
model incorporating multiple compensatory paralogs (see the “Methods” section and 
Additional File 2: Fig. S9). We observed qualitatively similar results on the diversity of 
distribution shapes and robustness of effector molecule B (Additional File 2: Fig. S9B, C, 
Supplementary Note, Fig. SN2-4). Similarly, since transcription factors can be repressors 
[73], we also simulated networks with repressive effects on downstream targets (see the 
“Methods” section; Additional File 2: Fig. S10), and found the resulting distributions to 
be broadly consistent with activating networks (Additional File 2: Fig. S10B, C; Supple-
mentary Note, Fig. SN5, 6).

Gene expression distribution shape depends on model parameters

The shape and variability of a single cell’s gene expression distribution can affect pheno-
typic penetrance and disease progression. We questioned how compensatory gene regu-
latory mechanisms might control the shape of emerging population-level distributions. 
Using summary statistics describing gene B in the heterozygous genotype, we checked 
whether there were any associations between independent model variables and gene 
expression distribution summary statistics. Bimodality coefficient features prominently 
in the distribution shape classification algorithm, so we first focused on parameter asso-
ciations with bimodality coefficient. We found that the log ratio of B production rates in 
A- versus A’-directed on-states was more strongly correlated with bimodality coefficient 
(r = 0.32) than other relevant variables (Additional File 2: Fig. S7B).

Beyond associations between individual parameters and summary statistics, we 
wondered whether parameter combinations were more likely to give rise to particu-
lar distribution shape classes upon mutation. While we could visualize the (com-
plicated) densities of different distribution shapes in two dimensions at a time 
(Additional File 2: Fig. S11), we wanted to quantitatively assess the combined effects 
of all eight independent variables on the emergent network output. To address this 
question, we trained decision trees to classify all 5 distribution shapes at once, 
restricting the tree depth to varying degrees (see the “Methods” section, Addi-
tional File 2: Fig. S12). We found that multiple parameter combinations could lead 
to enrichment or depletion of different distribution shapes. To better understand 



Page 18 of 43Mellis et al. Genome Biology          (2024) 25:217 

parameter combinations predictive of individual distribution shapes, we separately 
trained decision tree classifiers for each observed distribution class alone: unimodal 
symmetric, bimodal, right-skewed, left-skewed, and low-average (see Additional 
File 2: Supplementary Note, Fig. SN1, 7–10). Our analysis highlighted the variable 
complexity of parameter subspaces leading to distribution shapes of gene B in the 
heterozygous genotype (see Additional File 2: Supplementary Note, Fig. SN1). Addi-
tionally, there are multiple routes or parameter combinations that each can lead to 
a particular distribution shape. For example, the unimodal symmetric decision tree 
had a total of 31 significant decision rules up to 6 layers deep per combination (see 
Additional File 2: Supplementary Note, Fig. SN1). We next asked whether the sub-
spaces defined by a tree’s decision rules were indeed predictive of a particular distri-
bution shape and, if so, how strongly so. Resampling of new parameter combinations 
from constrained subspaces identified by decision trees resulted in strong enrich-
ment of the respective class, demonstrating the utility of our approach (Additional 
File 2: Fig. S13).

In further exploring the data, we identified an unexpected gene expression shape in one 
out of more than a hundred randomly inspected gene B expression distributions: trimodal 
with 3 non-zero modes (Additional File 2: Fig. S6C, D, and Supplementary Note). Exami-
nation of the gene expression traces suggested that the rate of B mRNA degradation was 
too slow to reach zero before an allele was activated by A or A’ (Additional File 2: Fig. S6C, 
D). To verify whether this distribution was associated with specific parameter combina-
tions, we resampled parameter combinations from four progressively larger subspaces cen-
tered around the originally observed parameter set, ran new simulations, and inspected the 
output to check for trimodality (Additional File 2: Fig. S6E, F). Indeed, we found a strong 
enrichment of trimodal distributions (as high as 94% in the smallest subspace centered 
around the original parameter set) compared to the full original parameter space (< 1%) 
(Additional File 2: Fig. S6G). As expected, the enrichment decreased monotonically with 
increasing size of the sampling hypercube (Additional File 2: Fig. S6G). In sum, this analy-
sis further established that we can use parameter set combinations to predict distribution 
shapes.

Gene expression distribution robustness to mutation is dependent on model parameters

We next asked whether we could identify model predictors of robustness to mutation, 
insofar as robustness could exist in our model (Fig.  5D). Focusing on unimodal sym-
metric distributions in the wild-type state, we trained a classifier on whether or not a 
given parameter set resulted in gene B remaining unimodal symmetric in the heterozy-
gous mutant-A genotype. We found a limited number of significant decision rules for 
unimodal symmetric robustness: a total of 11 decision rules, up to 5 layers deep, with 
12 total groupings (terminal nodes) of parameter sets (Fig. 5E). This parameter space is 
bounded by the three condensed decision rules: (1) ratio of radd

NITC to ron,basal,A ≤ 1.32 
(up to moderate strength NITC), (2) ratio of radd of A on B to radd of A’ on B > 2.07 (rela-
tively less frequent A’-directed bursting of B), and (3) ratio of rprod of B in the A-directed 
on state to the rprod of B in the A’-directed on state > 0.37 (A’-directed B production rate 
can be either weaker or stronger than A-directed, but not by too much) (Fig.  5E, F). 
When we further accounted for average expression of B as a measure of robustness, only 
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2 out of 5 terminal nodes (nodes 15 and 16) from shape robustness analysis remained 
(Fig. 5G). New parameter sets resampled from within the node 15 + 16 parameter sub-
space were strongly enriched for robustness of shape and average expression level as 
compared to all parameters (Fig.  5H, I). These results may aid in generating hypothe-
ses for future experiments, for example, to test the constraints on differences between 
CRISPR target and paralog transcription factors’ differential affinity for binding to target 
regulatory regions (since these constraints could, in theory, map to activation or produc-
tion ratio differences, for appropriately chosen networks).

Discussion
We developed a computational framework integrating bioinformatic analysis, math-
ematical modeling, and machine learning to uncover the genome-wide prevalence and 
gene regulatory constraints on a recently reported kind of transcriptional adaptation, 
nonsense-induced transcriptional compensation, in single mammalian cells. We found 
transcriptional upregulation of paralogs after reference gene mutation to be pervasive, 
but not necessarily ubiquitous, across cell types and contexts, including cancer, devel-
opment, and cellular reprogramming. Furthermore, the genes identified as exhibiting 
possible transcriptional adaptation were neither associated with any single signaling 
pathway nor did they exhibit any observable molecular functional congruence between 
each other. Additionally, we did not observe correlation between expression levels of 
proposed mediators of transcriptional adaptation (e.g., COMPASS complex compo-
nents) and whether a CRISPR target demonstrated paralog upregulation. Our relatively 
parsimonious model consisting of transcriptional bursting and stochastic interactions 
between genes in a biallelic compensatory network could produce a range of popula-
tion-level distributions of downstream targets upon compensation, underscoring the 
complex ensemble of fate-space that compensatory networks can access. Finally, our 
regulon robustness results synthesize two separate earlier analyses: paralog upregula-
tion bioinformatic analysis and single-cell network simulations, in that transcriptional 
adaptation was associated with downstream regulon gene robustness after transcription 
factor mutation. Collectively, our computational framework provides a basis for further 
mechanistic experimental and computational studies on the origins and manifestations 
of nonsense-mediated transcriptional adaptation.

The fact that transcriptional adaptation occurred across a wide range of processes 
and for gene sets not necessarily belonging to a single regulatory module or signaling 
pathway highlights the need to consider their implications when screening for any phe-
notypic outcomes. One way to address this concern is to perform screens with perturba-
tion methods that avoid nonsense mutations. Techniques such as CRISPRi, already being 
used in pooled screens [74, 75], or other methods of engineering knockdowns, could be 
helpful. Alternatively, if knockout is a requirement of the experimental design, engineer-
ing whole-gene deletion alleles could help decouple effects of transcriptional adapta-
tion from that of specific gene knockouts. Another opportunity is presented by recently 
reported combinatorial CRISPR screens (e.g., [24, 74]), which include paired knockout 
of two or more genes in the same cells, which could identify gene sets for which tran-
scriptional adaptation confounds the outcomes. For example, combined knockout of 
a reference gene and its paralogs could help to overcome the effects of transcriptional 
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adaptation, while paired knockout of a reference gene and other interacting genes could 
help to disentangle reference- vs. paralog-specific functions. When such experimental 
designs are impractical or infeasible, the interpretation of nonsense-based knockout 
results could account for possible transcriptional adaptation by concurrent measure-
ment of the expression of paralogs of the knockout target. In this way, caution must be 
taken in interpreting the phenotypic changes, or lack thereof, if a knockout target shows 
paralog upregulation.

Recent advances in sequencing and genome editing technologies have enabled pertur-
bation and profiling of the molecular makeup of single cells at unprecedented through-
put. For greater resolution of differences between genetic perturbation methods, 
high-throughput parallel treatments of the same target genes with RNA interference, 
CRISPRi, and Cas9-based knockouts could reveal specific effects of post-transcriptional, 
epigenetic, or mutation-based methods. Perhaps such parallel experiments could reveal 
transcriptional adaptation, or yet unknown mechanisms, by which cells retain robustness 
to genetic perturbations. Similarly, the adoption of recent single-cell CRISPR screen-
ing frameworks, such as CROP-seq and Perturb-seq [49–51], coupled with high-depth 
sequencing can lead the way in identifying single-cell manifestations of transcriptional 
adaptation. These experimental findings can, in principle and if at higher quantitative 
resolution, be projected onto the distributions from our theoretical formulations. Given 
the non-linearities associated with sequencing datasets, bona fide gene targets identi-
fied from sequencing studies can be tested in single cells with single-molecule fluores-
cent in situ techniques, which measure the absolute expression counts in individual cells 
for greater quantitative resolution [76]. Similarly, single-cell methods such as CROP-seq 
and Perturb-seq [49–51] only offer fixed snapshots in time, limiting our ability to dis-
criminate between two conceptually distinct scenarios possible: mutation-induced rela-
tive increases of paralog expression in surviving cells irrespective of initial expression 
levels vs. selection for pre-existing stably relatively higher paralog-expressing (rare) cells 
in the baseline population. Coupling single-cell RNA sequencing datasets with cellular 
lineage information, leveraging recently reported barcoding technologies [8, 77, 78] that 
enable longitudinal tracking of individual cells before and after nonsense mutation for 
genes exhibiting transcriptional adaptation, can address such questions on the dynamics 
of transcriptional adaptation in single cells.

The mapping between simulation and wet-lab experiment can uncover plausible 
network and parameter constraints for individual compensating genes and could pro-
vide evidence for particular compensating gene regulatory steps affected by tran-
scriptional adaptation. For example, one study used single-molecule approaches to 
study the effect of nonsense-mediated decay in U2OS cells with and without nonsense 
immunoglobulin-μ genes. They showed that UPF1 depletion increased the speed of 
transcriptional elongation in the wild-type but not in the nonsense immunoglobulin-μ 
gene [79]. Furthermore, regulatory network mappings at a single-cell level could also 
help explain incomplete phenotypic penetrance reported in association with transcrip-
tional adaptation. Another set of questions center around whether gene length, number 
of introns and exons, chromosomal locations, and chromatin landscape play a role in 
which gene families exhibit nonsense-induced transcriptional compensation. Addition-
ally, such mappings can help with the design and interpretation of functional genetic 
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screens by taking into account genes known to be exhibiting transcriptional adaptation 
and the extent of its impact. The breadth of genes that appear to have transcriptional 
compensation also invites study of potential negative consequences of nonsense-induced 
paralog—or other related gene—upregulation. Might some compensatory changes be 
deleterious and, if so, could such deleterious changes explain select negative phenotypes 
previously ascribed to haploinsufficiency or gene dosage effects [80]? In a similar vein, 
our framework could be extended to analyze cases where paralogs are downregulated 
upon Cas9-induced nonsense mutations, potentially revealing new biology.

During the process of mining published datasets from disparate studies, we found 
several cases where the phenomenology could reflect what the two landmark studies 
[14, 15] term as “transcriptional adaptation,” but the results were not explicitly contex-
tualized (nor definitively proven) as such. Localization of UPF proteins to compensat-
ing loci dependent on nonsense-mutated RNA in [79], tubulin family upregulation after 
Tubb4a mutation in [36], and others, such as the knockdown-knockout discrepancies 
reviewed in [2], could contribute to the field of transcriptional adaptation. Since our 
work and other recent studies point to the plausible presence of transcriptional adapta-
tion across many contexts, e.g., even for coupling between maternal and zygotic gene 
regulation during early embryogenesis [81], we propose a push towards consistent 
and universal usage of the term “transcriptional adaptation” to describe upregulation 
of compensating related genes after a mutation dependent on the mutated transcript. 
A common consensus may facilitate faster discovery and reconciliation of paradoxical 
findings across contexts moving forward.

One limitation of our work is that a majority of the analysis was performed on data-
sets from bulk RNA sequencing studies, limiting a quantitative single-cell mapping with 
simulations. As single-cell sequencing datasets, and single-cell transcriptomics via other 
methods that enable absolute expression counts, such as SeqFISH, MERFISH, and opti-
cal pooled screens [82–84], become more accessible, bioinformatic analysis can inform 
model architecture and parameters and move towards more predictive models. Another 
limitation of our framework is that we focused primarily on mice and human datasets 
given the breadth of available datasets. In principle, our bioinformatic pipeline can be 
generalized to include other animal systems to reveal both species-specific and universal 
gene targets displaying transcriptional compensation [14, 15]. Lastly, simulations of gene 
regulatory networks are inherently simplifying, and while we specified reactions and 
assumptions that have been shown to model small numbers of interacting genes well 
[71, 72, 85], these models do not account for all regulatory interactions in a cell explicitly 
[39, 66, 86].

Conclusions
In summary, our integrative analyses highlight the genome-wide prevalence of and gene 
regulatory constraints on transcriptional adaptation in mammalian cells. We show that 
upregulation of paralogs after reference gene mutation is common, but not necessar-
ily ubiquitous, across cell types and contexts. This behavior is not restricted to genes 
in specific pathways or encoding products with specific molecular functions. Transcrip-
tion factors that show evidence of transcriptional adaptation have downstream regu-
lons that are more robust to the transcription factor’s mutation compared to regulons 
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of transcription factors without mutation-induced paralog upregulation. Lastly, simu-
lations of a gene regulatory network with transcriptional adaptation produce a variety 
of expression distributions of downstream targets upon compensation, recapitulating 
observed diverse regulon expression changes after transcription factor mutation. Alto-
gether, our work provides a strong foundation for future mechanistic experimental and 
computational studies of transcriptional adaptation.

Methods
Selection of CRISPR‑Cas9 transcriptomics datasets

We searched published literature, preprints, and the Gene Expression Omnibus (GEO: 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/) for RNA sequencing datasets generated from 
experiments designed to measure differential gene expression after Cas9-mediated 
knockout of a gene of interest. We used the following search terms: “CRISPR/Cas9” or 
“CRISPR-Cas9” and “RNA-seq.” We focused our search for publicly available data on the 
GEO RNA-seq Experiments Interactive Navigator (GREIN). GREIN contains processed 
data from thousands of GEO entries with human, mouse, and rat RNA-seq samples 
using a common pipeline for alignment, quality control, and transcript quantification 
[87]. In GREIN, we used search terms “CRISPR/Cas9” or “CRISPR-Cas9.” Based on these 
search results, we manually checked the experimental designs of more than 200 publicly 
available RNA-seq experiments. We only considered experiments in which (1) there was 
CRISPR/Cas9-based knockout of the target, in which the stated strategy was not to tar-
get intergenic regulatory sequences, (2) annotated matched control samples treated with 
non-template control gRNA, and (3) multiple replicates of both targeted and control 
RNA-seq samples. We prioritized studies with multiple knockout targets, which enabled 
us to check for the presence or absence of paralog upregulation for as many targets as 
possible. For the few non-GREIN datasets included here, we only considered studies that 
provided mapped read counts per gene ID or, optimally, also provided processed differ-
ential gene expression calculations. Ultimately, we found 36 studies with datasets meet-
ing inclusion criteria described above, described in Additional File 1: Table S1 [14, 48, 
50, 58, 88–115].

Identification of paralogs of knockout targets

For bulk RNA-seq datasets, we queried the Ensembl database version 110 for paral-
ogs of knockout targets, using Ensembl REST API (Version 15.6) [47]. We searched by 
Gene Symbol, and extracted paralogs of all returned Ensembl IDs. We extracted both 
gene identifiers and Ensembl-annotated coding sequence overlap percentages between 
knockout targets and each of their paralogs. Ensembl gene IDs were then converted to 
standardized gene names using g:Profiler (Version e109_eg56_p17_1d3191d) [116]. For 
Perturb-seq data from [52], we used the BiomaRt package v2.40.5 in R v3.6.1 to search 
Ensembl version 105 for paralogs, searching by Gene Symbol and extracting all returned 
paralog Gene Symbols [117].

Differential gene expression assessment

We wanted to identify differentially expressed genes across the dozens of knockout sam-
ples we reanalyzed. We used DESeq2 for differential expression analysis [118]. When 

https://www.ncbi.nlm.nih.gov/geo/
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available, we used author-provided gene expression change calculations based on 
DESeq2 (for results from [58]). For all remaining datasets, for which DESeq2 results 
were not already available, the authors did provide mapped count data on GEO and/or 
they were available on GREIN. For these count-based results, we implemented DESeq2 
ourselves, using the PyDESeq2 package, using default settings, comparing knockout 
samples against the matched controls from their respective studies [119].

For these studies, we implemented filters to consider knockout targets that we would 
a priori expect to have some detectable loss of gene dosage that would need to be com-
pensated for by transcriptional adaptation. We first confirmed that the average library 
size of considered samples was at least approximately 1 million reads per sample. We 
then included genes only if they were expressed at a level of 10 raw counts or higher 
across all samples. We chose to classify paralogs as upregulated if DESeq2 reported an 
adjusted p-value ≤ 0.05 and a log2 fold-change ≥ 0.5. In supplementary analyses, we 
also show results when paralogs are classified as upregulated using either (1) only the 
adjusted p-value ≤ 0.05 filter or (2) adjusted p-value ≤ 0.05, log2 fold-change ≥ 0.5, and 
basemean ≥ 10 filters. The final analysis included all knockout target genes with any sig-
nificant paralog differential expression, up or down, irrespective of log2 fold-change.

Checking for genomic regulatory feature association with paralog upregulation

We downloaded annotated associations between human enhancer or promoter ele-
ments and human genes from the GeneHancer v5.19 database (https://​www.​genec​ards.​
org/​Guide/​Datas​etReq​uest, last accessed April 4, 2024). We converted gene identifiers 
to GeneCards IDs using gprofiler2 in R. We mined the GeneHancer database for asso-
ciations between enhancers or promoters and genes. For assessment of paralogs only, 
we considered all knockout target-paralog pairs together. We checked for a difference in 
odds of paralog upregulation based on whether the paralog and CRISPR target shared 
any annotated enhancer or promoter using Fisher’s exact test in R. For the analysis of all 
genes, for each CRISPR target, we repeated the check of shared enhancers or promot-
ers, and for each CRISPR target checked for a difference in odds of upregulation using 
Fisher’s exact test.

We downloaded annotated topologically-associated domains (TAD) coordinates in the 
hg19 human genome (http://​dna.​cs.​miami.​edu/​TADKB/​downl​oad/​TAD_​annot​ations.​
tar.​gz, last accessed April 29, 2024). We considered annotated transcription start sites 
for any Ensembl transcript for each considered gene, identified using biomaRt, pulling 
from the February 2014 build of hg19. Consistent with the publicly accessible browser 
built by the authors of TADKB [60], we considered annotated TADs at 50  kb resolu-
tion called using the directionality index method, in any of the human cell types in the 
database. For each CRISPR target, paralog, or any other gene, we searched for anno-
tated TADs overlapping any of their annotated transcription start sites. For the paralog 
analysis, we combined all paralog-target pairs together and checked for a difference in 
odds of paralog upregulation based on co-location in any TAD shared with the knockout 
target using Fisher’s exact test in R. For the analysis of all genes, for each CRISPR target, 
we repeated the check of overlapping TADs, and for each CRISPR target, we checked 

https://www.genecards.org/Guide/DatasetRequest
https://www.genecards.org/Guide/DatasetRequest
http://dna.cs.miami.edu/TADKB/download/TAD_annotations.tar.gz
http://dna.cs.miami.edu/TADKB/download/TAD_annotations.tar.gz
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for a difference in odds of other-gene upregulation using Fisher’s exact test. For p-value 
adjustment, we used the Benjamini–Hochberg method in p.adjust() in R.

Gene expression correlation analysis

For human genes, we downloaded GTEx Analysis V8 median expression levels (in TPM) 
in each tissue from the GTEx portal on April 15, 2024 (GTEx_Analysis_2017-06-05_v8_
RNASeQCv1.1.9_gene_median_tpm.gct.gz). For each pair of genes, one knockout target 
and one paralog, we plotted the median expression in each tissue of the respective spe-
cies and calculated a Spearman correlation coefficient on log(TPM + 1). We then com-
pared this correlation coefficient to the log2fold-change of the paralog as a check for 
association between cross-tissue average expression level correlation with the CRISPR 
target and whether a paralog displayed upregulation after CRISPR target knockout. We 
further calculated a Spearman correlation coefficient to check for association between 
the pairwise correlations and paralog log2(fold changes).

Estimation of expected frequency of paralog upregulation per knockout target

The null hypothesis for analysis of paralog upregulation is that for any group of paralogs 
of a knockout target, the number of paralog genes upregulated after knockout is simply 
reflective of randomly selecting any similarly expressed genes in the dataset and check-
ing whether they were upregulated. In order to check whether the paralog upregulation 
pattern observed for a particular knockout target was reflective of randomly selecting 
similarly expressed genes in the dataset (instead of the paralogs), we developed an algo-
rithm for bootstrapping the null distribution of paralog upregulation frequency for each 
knockout target. For each knockout target, the algorithm is implemented as follows:

1.	 Rank order all genes in the dataset by basemean across all samples
2.	 For each paralog, randomly select a gene within 51 ranks
3.	 For each randomly selected similarly expressed gene, check the fold change after 

knockout and whether the gene qualifies as upregulated based on dataset-specific 
thresholds (in figure legends)

4.	 Count the number of upregulated randomly selected genes and divide by the total 
number of paralogs for a bootstrap sample of the paralog upregulation frequency

5.	 Repeat steps 2–4 10,000 times to build an empirical null distribution of the paralog 
upregulation frequency

6.	 To calculate a p-value, calculate the fraction of the empirical null distribution that is 
at least as large as the observed fraction of paralogs that are upregulated

Perturb‑seq‑based single‑cell gene expression reanalysis

We wanted to identify possible changes in single-cell gene expression distributions after 
knockout of a library of CRISPR targets. Therefore, we reanalyzed Cas9-based pooled 
knockout single-cell RNA-seq, Perturb-seq, data from [52]. We downloaded published 
processed log-transformed UMI-based transcript quantification tables (in log(TPM + 1)) 
from https://​singl​ecell.​broad​insti​tute.​org/, accession SCP1064, “Control” condition, last 

https://singlecell.broadinstitute.org/
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accessed June 15, 2023. For the main analysis, we only considered knockout targets with 
sufficient cells for a minimal quantitative analysis: a minimum of 2000 UMI per cell, at 
least 30 cells total, with no fewer than 5 cells annotated in any one of the three included 
targeting guide RNAs. In a supplementary analysis to identify lower-confidence targets 
with possible transcriptional adaptation, we considered removing the 30-cell and 5-cell 
filters. For transcript quantification, within each guide, we either counted the number 
of cells with non-zero expression and divided by total cells for that guide (for percent-
positive), or we averaged expression levels over all cells for that guide (for mean). Within 
each gene within a given condition (nontemplate controls or targeted for a given gene), 
we averaged over all appropriate guides.

Regulon robustness analysis

For bulk RNA-seq data-derived regulon gene expression analyses, we focused on human 
and mouse transcription factors, as defined by the most recent version of AnimalT-
FDB3, last accessed November 21, 2023 [120]. We searched for overlapping regulons 
between a knockout target and the paralog gene of interest in DoRothEA, only consid-
ering downstream genes with annotation confidence level A, B, or C (out of a possible 
range of A-E, see original source for evidence level descriptions) [63, 64]. We compared 
regulon genes for transcription factor CRISPR target-paralog pairs in the bulk RNA-seq 
dataset that demonstrated possible transcriptional adaptation as defined by significant 
paralog upregulation frequency (p < 0.1, see the “Estimation of expected frequency” sec-
tion, above). There were 68 annotated regulon genes across the four target-paralog pairs 
with transcriptional adaptation versus 138 annotated regulon genes for all target-paralog 
pairs without transcriptional adaptation. Regulon genes were considered differentially 
expressed if DESeq2 adjusted p-value < 0.05 and abs(log2FoldChange) > 0.5. We cal-
culated a p-value between the groups of regulon genes using Fisher’s exact test, test-
ing whether the odds of regulon gene differential expression were different between the 
transcriptional-adaptation and no-transcriptional-adaptation groups.

For Perturb-seq data-derived gene expression distribution analyses, we chose to focus 
on human transcription factor genes, as defined by the most recent version of AnimalT-
FDB3, last accessed July 28, 2023 [120]. We searched for overlapping regulons between a 
knockout target and the paralog gene of interest in DoRothEA, only considering down-
stream genes with annotation confidence level A, B, or C (out of a possible range of A-E, 
see original source for evidence level descriptions) [63, 64]. We compared regulon genes 
for transcription factor CRISPR target-paralog pairs in the Perturb-seq dataset that 
demonstrated possible transcriptional adaptation as defined by having a top-100 par-
alog, versus all pairs that that did not demonstrate transcriptional adaptation, as defined 
by both not having any top-100 paralogs and being a pair in the interquartile range of 
changes in paralog expression after knockout. There were 55 annotated regulon genes 
for the three target-paralog pairs with transcriptional adaptation versus 439 annotated 
regulon genes for all target-paralog pairs without transcriptional adaptation.

The average difference in expression of regulon genes in both groups was approxi-
mately zero, with a spread of values about that mean (Fig. 4B). In order to test for tran-
scriptional adaptation-associated buffering of gene expression changes of regulon genes 
after CRISPR target mutation, we performed two checks for significance of a difference 
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in the spread size between the two groups; a larger spread would indicate a larger num-
ber of extreme expression changes. The first test was an asymptotic test of difference in 
coefficient of variation for groups of unequal size, using the cvequality v0.1.3 package in 
R [121, 122]. The second test was a check of the plausibility of the null hypothesis that 
equal size samples from the transcriptional-adaptation and no-transcriptional-adap-
tation groups have the same standard deviation. We empirically downsampled (n = 49 
with percent-positive < 75% in controls, of 55 total genes, same as transcriptional-adap-
tation group size) the no-transcriptional-adaptation group without replacement, 1000 
times, to generate an empirical null distribution of sample standard deviations from the 
no-transcriptional-adaptation group. We then compared the observed transcriptional-
adaptation group standard deviation to this distribution and observed that it was among 
the lowest downsampled values (Fig. 4G), suggesting that the transcriptional-adaptation 
group is unlikely to have a similar sample standard deviation to the no-transcriptional-
adaptation group.

Gene set enrichment analysis

We wondered whether genes involved in any specific biological processes or contexts 
were overrepresented in the set of genes whose paralogs were significantly upregulated. 
Therefore, we performed gene set enrichment analysis to check for over-enrichment 
of any Gene Ontology—Biological Process terms, comparing the following sets of hits 
against their respective background sets of tested CRISPR targets.

1.	 Bulk RNA-seq CRISPR targets with bootstrap p-value < 0.1, against a background set 
of all fully analyzed, human genes only.

2.	 Single-cell RNA-seq CRISPR targets from Frangieh et al., 2021, among those meet-
ing minimum cell count thresholds above, with any paralog in the top-100 largest 
increase in percent positive list, or if control percent positive > 0.75 with any paralog 
in top-100 largest increase in mean list, against background of all targets in library

3.	 Combined (1) and (2) hits against their combined respective backgrounds

We used the clusterProfiler R package v3.12.0 for gene ontology over-representation 
testing [55].

Networks

Gene regulatory networks are represented as directed graphs. Genes are nodes, and 
regulatory relationships are edges (e.g., A stimulates B leads to an edge from node A 
to node B; Fig. 5). The biological mechanism presented in recent studies on nonsense-
induced transcriptional compensation implies a minimum set of regulatory relationships 
between an ancestral regulator, its paralog genes, and a downstream target gene [14, 15]. 
We model gene regulatory networks with, for each gene, two alleles with transcriptional 
burst activity independent of each other, consistent with observations of transcriptional 
burst regulation [123]. The edges between a given regulator gene product and the target 
gene alleles are set at equal weight, reflecting no regulatory differences at the allele level.

For an upstream regulator gene A that has nonsense-induced transcriptional compen-
sation, there is at least one compensating gene, A’ (referred to as a paralog here). Gene 



Page 27 of 43Mellis et al. Genome Biology          (2024) 25:217 	

A’ encodes product A′ . The downstream regulatory target of A and A’ is gene B. Gene B 
encodes product B . Upon mutation of A, the mutant allele of gene A produces product 
Anonsense instead of product Awt . During nonsense-induced transcriptional compensa-
tion, Anonsense can regulate alleles of gene A (mutated or not), as well as gene A’, but no 
longer regulates gene B.

Core transcriptional bursting model

Our network is built of component genes whose alleles are each modeled with an 
expanded version of the classic telegraph model, similar to prior work (Fig. 5; [66]). Each 
allele can reversibly enter an active (“on”; transcribing) or inactive (“off”; quiescent) state, 
with high or low (by default 0) production rates of that gene’s product, respectively. 
We assume that any gene product is effectively immediately translated or processed to 
the relevant functional form capable of regulating a downstream target. In the case of 
{Awt ,A

′,B} , this assumption applies to post-transcriptional regulation, translation, and 
post-translational processing. In the case of Anonsense , this assumption applies to the 
hypothesized but unknown mechanisms of nonsense-induced transcriptional compen-
sation. Therefore, for alleles of genes A and A’, and their respective products, there are 
five consistent reactions:

Since for all genes we assume there is no leaky expression in the off state, in the fol-
lowing sections we ignore the possible off → off +mRNA reaction. Alleles of gene B are 
described by a related but larger set of reactions to reflect the different consequences of 
regulation by {A,A′} , and are described below.

As previously described, we make use of reaction propensities under the assumption 
of the law of mass action, where each propensity function pi(x)dt gives the probability 
of reaction Ri occurring in the time step dt , for a small dt . In the models presented here, 
gene regulation affects either the reaction rate of an allele entering the active state or 
entering the inactive state.

Activation (positive regulation) model

In a model of activating interacting genes in a gene regulatory network, all regulation 
affects the reaction rate of activation of target alleles. In order to simulate differential 
effects of A-stimulated B alleles versus A’-stimulated B alleles, we used an expanded 
gene model for B. The expanded model allows for multiple on-states, corresponding to 

off → on

on → off

off → off +mRNA

on → on+mRNA

mRNA → ∅
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the different upstream regulators; the different on-states are allowed to have different 
production rates. These different production rates can reflect biological differences in 
gene regulation at B loci, including, but not limited to, chromatin changes, differences 
in transcription factor recruitment, and effects on transcriptional machinery. Therefore, 
for gene B the full set of reactions is:

The rates in the reactions described in Fig. 5, S4 are:

Parameter Description

ron Activation rate of an allele

roff Inactivation rate of an allele

rprod Production rate of mRNA from an active allele

rdeg Degradation rate of mRNA

rNITCadd
Additional activation of an allele (A or A’) upon nonsense-induced transcriptional compensation 
caused by product Anonsense

rA,Badd , rA′,Badd
Activation of B by A or A’ to one of two respective B active states specified in the model

d Factor by which the mRNA production rate of B is lower in the A’-directed B active state than in 
A-directed B active state

n Hill coefficient

k Dissociation constant of the Hill function

The full model is therefore described as follows. The basal on-rates of A’ and B alleles 
are assumed to be 0. The mRNA production rate in the off state of all alleles is fixed at 0.

Reaction Reaction rate Reaction propensity

Gene A alleles, wildtype
off → on rAon + rNITCadd

Anonsense
n

kn+Anonsense
n (rAon + rNITCadd

Anonsense
n

kn+Anonsense
n ) ∗ off

on → off roff roff ∗ on

on → on+ Awt rprod rprod ∗ on

Awt → ∅ rdeg rdeg ∗ Awt

Gene A alleles, nonsense mutant
off → on rAon + rNITCadd

Anonsense
n

kn+Anonsense
n (rAon + rNITCadd

Anonsense
n

kn+Anonsense
n ) ∗ off

on → off roff roff ∗ on

off → on(A)

off → on(A
′)

on(A) → off

on(A′) → off

on(A) → on(A) + B

on(A′) → on(A′) + B

B → ∅
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Reaction Reaction rate Reaction propensity

on → on+ Anonsense rprod rprod ∗ on

Anonsense → ∅ rdeg rdeg ∗ Anonsense

Gene A’ alleles
off → on rA

′

on + rNITCadd
Anonsense

n

kn+Anonsense
n (rA

′

on + rNITCadd
Anonsense

n

kn+Anonsense
n ) ∗ off

on → off roff roff ∗ on

on → on+ A′ rprod rprod ∗ on

A′ → ∅ rdeg rdeg ∗ A′

Gene B alleles

off → on(A) rA,Badd
Awt

n

kn+Awt
n (rA,Badd

Awt
n

kn+Awt
n ) ∗ off

off → on(A
′) rA′,Badd

A′n

kn+A′n (rA
′ ,B

add
A′

n

kn+A′n
) ∗ off   

on(A) → off roff roff ∗ on(A)

on(A
′) → off roff roff ∗ on(A

′)

on(A) → on(A) + B rprod rprod ∗ on
(A)

on(A
′) → on(A

′) + B
rprod
d

rprod
d

∗ on(A
′)

B → ∅ rdeg rdeg ∗ B

where on, on(A
′), on(A

′), off ∈ {0, 1} , for A and A’ on+ off = 1 , for B 
on(A) + on(A′) + off = 1 . Products Awt ,Anonsense,A

′,B represent the count of their 
respective gene products at a given time. Parameter values in reaction rates are 
explained in the previous table, above.

Multiple‑paralog model

Several real genes have multiple annotated paralogs, which in principle could all 
potentially compensate for mutations in the CRISPR-target gene [14, 15, 47]. There-
fore, we also developed a gene regulatory network model in which gene A can be 
compensated for by two paralogs, genes A’1 and A’2 with products A′

1,A
′
2 respec-

tively. Similar to the model in the previous section, each allele of A’1 and A’2 is regu-
lated by nonsense-induced transcriptional compensation for A. An expanded model 
accounting for differences in regulation of B alleles by gene products A′

1,A
′
2 leads to 

3 possible on states: those directed by Awt ,A
′
1,A

′
2 respectively.

Gene B alleles

off → on(A) rA,Badd
Awt

n

kn+Awt
n (rA,Badd

Awt
n

kn+Awt
n ) ∗ off

off → on(A
′
1) r

A′1,B
add

A′1
n

kn+A′1
n (rA

′
1,B

add
A′1

n

kn+A′1
n ) ∗ off

off → on(A
′
2) r

A′2,B
add

A′2
n

kn+A′2
n (rA

′
2,B

add
A′2

n

kn+A′2
n ) ∗ off

on(A) → off roff roff ∗ on(A)

on(A
′
1) → off roff roff ∗ on(A

′
1)

on(A
′
2) → off roff roff ∗ on(A

′
2)

on(A) → on(A) + B rprod rprod ∗ on
(A)

on(A′) → on(A
′
1) + B

rprod
d

rprod
d

∗ on(A
′
1)

on(A′) → on(A
′
2) + B

rprod
d∗s

rprod
d∗s

∗ on(A
′
2)

B → ∅ rdeg rdeg ∗ B
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where on(A
′
1), on(A

′
2) ∈ {0, 1} , for A and A’ on+ off = 1 , for B 

on(A) + on(A
′
1) + on(A

′
2) + off = 1 . Parameter values in reaction rates are explained in 

the previous section, above, with the addition of a new ratio:

Parameter Description

s Factor by which the mRNA production rate of B is lower in the A1’-directed B active state than in 
A’2-directed B active state

Repression (negative regulation) model

We also explored gene regulatory network models in which the regulator products 
A,A′ are inhibitors of gene B rather than activators. In this model, although nonsense-
induced transcriptional compensation continues to activate expression of A and A’, A,A′ 
products increase the rate of B allele inactivation instead of activation. To simulate dif-
ferential effects on B alleles, inspired by differential gene regulatory effects such as chro-
matin modifications and repressive transcription factor recruitment, we changed the 
gene model of B to include two off states (one directed by A and one byA′ ), with one on 
state. The two off states could have different rates of reversion to the active state, thereby 
simulating more or less repressed loci. Therefore, while the model confined to the regu-
lation of genes A and A’ remain the same as above, the model for gene B becomes:

Gene B alleles

off (A) → on ron ron ∗ off
(A)

off (A′) → on
ron
dinh

ron
dinh

∗ off (A′)

on → off (A)
rA,Badd

Awt
n

kn+Awt
n rA,Badd

Awt
n

kn+Awt
n ∗ on

on → off (A′)
rA

′ ,B
add

A′
n

kn+A′n
rA

′ ,B
add

A′
n

kn+A′n
∗ on

on → on+ B rprod rprod ∗ on

B → ∅ rdeg rdeg ∗ B

Parameters

We sought to characterize the breadth of possible gene regulatory network outputs 
given the presence of a transcriptional adaptation regulatory interaction under biologi-
cally plausible conditions [70, 72]. Extensive prior research has established transcrip-
tional bursting as a core model of gene expression in eukaryotes. In the bursting model 
with zero leaky expression as presented here, upon activation of an allele the steady 
state expected mRNA abundance derived from that allele rises from 0 to rprod/rdeg . 
When mRNA abundance is high enough to exceed a threshold specified by the dissocia-
tion constant of the Hill function ( k ) above, there is a higher probability of activation of 
alleles of downstream targets, further modulated by radd parameters, above. The disso-
ciation constant is defined as:

k = x ∗
rprod

rdeg
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where x is the fraction of the active-steady-state expression level required to be exceeded 
for regulation of the target allele. In our simulations, we use x = 0.5 to represent regula-
tion that can occur with some degree of expression of an upstream regulator, so that 
regulation is not presumed to require prolonged active high-expression states, consist-
ent with published burst duration measurements [70]. Other studies have also simulated 
transcriptional bursts in gene regulatory networks based on these parameter ranges [72].

Published telegraph model inferred parameter ranges based on allele-resolved 
single-cell RNA sequencing data provide a useful guide to ranges for the core 
allele-level parameters [70]. We reanalyzed the data in Larsson et al., 2019, to sum-
marize, for each reported gene expressed in mouse fibroblasts, relative to the deg-
radation rate ( rdeg  arbitrarily fixed at 1), what are the inferred values of ron, roff , rprod . 
In order to preserve overall burst frequency and duration ranges, we focused on 
the calculated values of: ron, ronroff

, rprod . Based on the observed results, we conducted 

simulations over parameter ranges spanning approximately 2–3 orders of 
magnitude:

Parameter Meaning Lower limit Upper limit

rdeg Degradation rate of mRNA 1 1

rprod Production rate of mRNA in on state 1 1000

ron Activation rate of an allele (by default, an A allele) 0.1 10

On/off ratio ron
roff

 ; the factor by which the rate of inactivation is lower 

than activation

0.01 2

Consistent with prior studies, we also explored a range of values of Hill coefficient 
n , to ensure that we adequately sampled over different steepness levels of the Hill 
function representing regulatory relationships [66].

Parameter Meaning Lower limit Upper limit

Hill coefficient n ; the Hill coefficient. How “switch-like” regulatory effects are 0.1 5

Extending the basic allele-level telegraph model to our nonsense-induced tran-
scriptional compensation gene regulatory network model, we needed to pick rea-
sonable ranges for other parameters. For the primary simulations discussed in 
Fig. 5, we assumed zero basal activation of paralog A’ alleles. We focused on char-
acterizing the relative strengths of interactions, as that directly reflects the differ-
ences between a regulator, its paralog, and their downstream target rather than 
absolute simulation parameter values. Therefore, in order to explore network out-
puts over similarly large ranges of other interaction strengths (roughly two orders 
of magnitude), and to ensure that activation rates were at least partially overlap-
ping with the observed rates from Larsson et al., 2019, we further considered rate 
ratios as follows:

Parameter Meaning Lower limit Upper limit

NITC ratio ( δN) r
(A)
on

rNITCadd  ; the factor by which the NITC-mediated contribution to activa-
tion rate compares to the reference gene (A) activation rate

0.1 10
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For each of the different models, we sampled over several other rate and ratio model 
parameters.

In the base case, a model with one paralog and stimulating regulation of gene B, we 
also considered:

Parameter Meaning Lower limit Upper limit

rA,Badd
Contribution to activation of B by A to A-directed B active 
state

0.1 10

A/A’ activation ratio ( δA) r
A,B
add

r
A′,B
add  ; the factor by which A is more effective at activating 
B alleles to A-directed active state than A’ to A’-directed 
active state

0.1 10

A/A’ production ratio ( δP) d ; the factor by which the mRNA production rate of B is 
lower in the A’-directed B active state than in A-directed 
B active state

0.1 10

In a set of simulations of the stimulatory model including non-zero paralog A’ expres-
sion at baseline, we also sampled over:

Parameter Meaning Lower limit Upper limit

Basal A’ ratio r
(A)
on

r
(A′)
on  ; the factor by which A allele activation rates are higher than A’ 
alleles at baseline

1 100

In the model expanded to consider multiple paralogs, we conducted simulations with 
and without basal paralog expression. In one set of simulations, we fixed the effects of 
both paralogs, A’1 and A’2, on B, to be equal. In another set of simulations, we sampled 
over values of a new ratio describing how expression varies between A’1-directed and 
A’2-directed B-active states.

Parameter Meaning Lower limit Upper limit

A’1/A’2 prod ratio ( δR) s ; Factor by which the mRNA production rate of B is lower in 
the A’1-directed B active state than in A’2-directed B active 
state

1 100

In a model of inhibitory regulation of gene B, instead of A/A’ add-on ratio and A/A’ 
prod ratio, we sampled over parameter ratios: A/A’ add-off ratio and B,A/B,A’ on ratio, 
to reflect the regulator contributions to inactivation rates to their respective B off states 
and their respective off states’ rates of activation (to a common single active state; see 
Additional File 2: Fig. S10), which could differ.

Parameter Meaning Lower limit Upper limit

rA,Badd,off
Contribution to inactivation of B by A to A-directed B inactive 
state

0.1 10

A/A’ add-off ratio r
A,B
add,off

r
A′,B
add,off  ; the factor by which A is more effective at inactivating 
B alleles to A-directed inactive state than A’ to A’-directed 
inactive state

0.1 10

A/A’ B-activation ratio dinh ; factor by which the activation rate of B is lower in the A’-
directed B inactive state than in A-directed B inactive state

0.1 10
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The parameter sets (spanning 8 or 9 parameters or parameter ratios, depending on the 
model and assumptions) for each set of simulations are described in Additional File 1: 
Table S4.

For each primary set of simulations, we used Latin hypercube sampling to homogene-
ously sample over the multidimensional parameter spaces. In each case, we drew 10,000 
parameter sets from within the upper and lower boundaries of each log10-transformed 
parameter range (https://​www.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​45793-​
latin-​hyper​cube). Log transformation was used to more evenly sample over orders of 
magnitude.

Simulations

We simulated each of the 3 network models under at least 2 different assumed condi-
tions related to differential effects or paralog expression (see Figures), for approximately 
10,000 parameter sets, resulting in a total of approximately 60,000 simulations across 
3 network models, each containing consecutive time periods simulating 3 genotypes: 
wildtype (neither A allele mutated), heterozygous (one A allele mutated), and homozy-
gous-mutant (two A alleles mutated). We also conducted parameter subspace resam-
pling for smaller numbers of parameter sets. We used Gillespie’s next reaction method, 
as previously described [39, 66, 69]. We computed for a total of 300,000 timesteps per 
simulation, i.e., 100,000 in each genotype. In each simulation, at time t = 0 all alleles were 
in the inactive state and the mRNA count was fixed at 1 for A and 0 for all other prod-
ucts. We implemented the simulations in MATLAB R2017a, R2021b, and R2024a [66]. 
Each simulation took between 30 s and 12 min to run, depending on the parameter val-
ues, leading to a total simulation time of approximately two weeks using 8 cores running 
in parallel.

Pseudo‑single‑cell analysis and autocorrelation

In order to simulate snapshot single-cell population measurements of gene expression 
from these simulations, we split the simulation traces into 300-timestep-unit segments 
and used the first set of values (of DNA activation states and product abundances) as a 
sampled “pseudo-single-cell” measurement, as discussed in prior work [66]. We needed 
to confirm that our sub-simulation samples were not susceptible to unexpected autocor-
relation that might interfere with using these samples as independent pseudo-random 
samples of single cells drawn from the underlying distributions emergent from the net-
work simulations. Therefore, we used the stats::acf function in R to show that 100-step 
lags were within the 95% confidence intervals for random autocorrelation for a random 
sample of parameter sets, and set the lag at an even higher value, 300, out of an abun-
dance of caution given the range of possible parameter combinations.

Steady state analysis

We also wanted to confirm that the output of our numerically simulated stochastic net-
work models fitted with other ways of estimating the outputs of these same networks, 
both as a quality control and to highlight the added benefits related to simulating vari-
ability with stochastic simulations in studies of complex networks. Therefore, we used 
the ode45 solver in MATLAB R2017a to deterministically estimate the steady state 

https://www.mathworks.com/matlabcentral/fileexchange/45793-latin-hypercube
https://www.mathworks.com/matlabcentral/fileexchange/45793-latin-hypercube
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outputs of all gene product levels in each genotype for 100 parameter sets. The systems 
of differential equations for each model included 18, 25, and 18 equations each, for the 
single-paralog stimulation, two-paralog stimulation, and single-paralog repression mod-
els, respectively. Initial conditions included all alleles set to the off state and all mRNA 
levels set to 0. A timespan of 500 units was used, and a random sample of results were 
inspected to ensure that mRNA level estimates had reached steady state. We then com-
pared these estimated steady state outputs to the pseudo-single-cell population means 
from our simulations and observed very high concordance at the absolute abundance 
level (Additional File 2: Fig. S14). The simulations in which a gene product did not have 
a pseudo-single-cell mean similar to the ode45 steady state solution were most often for 
parameter sets with high Hill coefficients ( n ), reflecting high non-linearity in regulatory 
interactions.

Distribution shape statistics

We sought to describe the variability in gene expression emerging from gene regula-
tory networks with transcriptional adaptation and to quantify differences in aspects of 
variability between network outputs given different parameter values. Therefore, we cal-
culated several summary statistics related to distribution shape to highlight important 
features of gene expression distributions.

For each gene product in each genotype, we calculated the first four empirical 
moments of gene expression distributions which describe different aspects of distri-
bution shape. Briefly, the first moment is mean ( µ ), which would parallel steady state 
output for a symmetric unimodal distribution. The second moment is variance, for an 
overall estimate of spread in the distribution. Instead of variance ( σ 2 ) specifically, we 
focus our analyses instead on the coefficient of variation ( CV = σ

µ
 ), which more directly 

parallels the percentage of spread relative to the mean. The third moment is skewness 
( γ1 ), which will be positive for right-skewed distributions and negative for left-skewed 
distributions. The fourth moment is kurtosis, specifically here the excess kurtosis, ( γ2 ), 
which, among other uses, is positively correlated with the heaviness of a distribution’s 
tails.

We also calculated several additional statistics related to distribution shape. Particularly 
for follow-up analyses, we computed the bimodality coefficient ( BC =

γ 2
1
+1

γ2+3∗
(n−1)2

(n−2)(n−3)

 ) 

[124, 125]. The bimodality coefficient has a number of useful features. It is a statistic with 
value constrained to [0, 1] . Uniform distributions will have BC = 5

9
 , while unimodal dis-

tributions will have values closer to 0 and bimodal (or multimodal) distributions will have 
values closer to 1. Two additional statistics associated with distribution shape are Gini 
coefficient and entropy. Gini coefficient is constrained to [0, 1] , where 1 corresponds to a 
distribution in which one cell has non-zero expression and all others have zero expres-
sion, and 0 corresponds to a distribution in which all cells express the same amount. We 
calculated entropy over the binned expression axis, considering 30 bins spread evenly 
across the range of expression values. As described in the “Results” section, we used these 
distribution shape statistics both directly in analyses of model parameter effects as well as 
indirectly in a shape classifier algorithm, below, which we then also used for analyses of 
model parameter effects on gene expression.
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Normalized distribution shape statistics

Initial exploration of the distribution statistics revealed that several systematically corre-
lated, often nonlinearly, with the overall sample mean. Therefore, to partially correct for 
differences in mean explaining differences in other statistics, we performed local regres-
sion (LOESS) of each statistic against mean, using default settings in the loess function in 
R with span = 0.1. The residual of the observed minus LOESS fitted statistic value at an 
observation’s same mean can be considered as a mean-corrected version of the observed 
statistic. For BC , the LOESS residual is called BCres . One such LOESS-corrected statistic 
(bimodality coefficient) was used in the distribution shape classifier below, in conjunc-
tion with the uncorrected statistic value.

Distribution shape classification

We present several analyses centered on the question of when an expression distribution 
can remain robust to the mutation of an upstream regulator. Therefore, we built an algo-
rithm for classifying distribution shapes to reflect plausibly important differences. We 
were particularly interested in a robust method for identifying whether a distribution 
was unimodal and symmetric, suggesting a degree of homogeneity in expression. For 
distributions that were bimodal (or multimodal), one could imagine different emergent 
properties in a population of cells, e.g., with bistability or other kinds of functional diver-
sity. For distributions that were unimodal but not symmetric, i.e., skewed, one could 
imagine a bias toward low-frequency diversity in behavior, either being very high expres-
sors or very low expressors. Lastly, we also needed to identify when expression levels 
were very low in general, reflecting overall minimal transcriptional activity.

The algorithm sorts distributions into 1 of 5 classes:

1.	 Low-expression
2.	 Unimodal symmetric
3.	 Right-skewed unimodal
4.	 Left-skewed unimodal
5.	 Bimodal (or multimodal)

It starts by considering whether µ < 10 . If so, the distribution is called low-expres-
sion. Next, if BC > 0.555 and if BCres > 0.1 , the distribution is called bimodal (or mul-
timodal). After that, if γ1 > 1 , then the distribution is called right-skewed unimodal, 
and if γ1 < (−1) , then the distribution is called left-skewed unimodal. All remaining 
distributions have relatively high expression, low absolute skewness, and low bimodal-
ity coefficient, and they are called unimodal symmetric. This algorithm was the result 
of numerous modified iterations during algorithm development, paired with manual 
inspections of classifier results on random selections of hundreds of simulation results. 
Classifier result accuracy (i.e., whether a distribution classification by the algorithm is in 
agreement with manual assignment) was high (greater than 80%, often greater than 90%) 
for all distribution shape classes. We focused our analyses on whether or not a distribu-
tion was called unimodal symmetric and whether the unimodal symmetric class could 
be made robust to mutation of an upstream regulator.
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Decision tree analysis

We wanted to check whether there were subspaces of parameter space that are enriched 
for gene regulatory outputs that display behavior of interest, e.g., robustness of shape 
to mutation of an upstream regulator, for unimodal symmetric distributions. There-
fore, as previously described, we trained decision tree classifiers on simulation results 
paired with algorithm-assigned distribution shape classes, particularly for gene product 
B . According to the binary classifications described in the respective sections of Results, 
we performed decision tree optimization in R using partykit v1.2–16 and its associated 
dependencies, with alpha = 0.01, minbucket = 100 for variable selection. For the five-
way shape classifier decision tree in Additional File 2: Fig. S12, we also added a max_
depth = 3 constraint to aid in visualization. As discussed in the respective sections of the 
“Results” section, we validated decision tree results by resampling parameter sets from 
the parameter subspaces bounded by the decision rules enriching for the specific behav-
ior of interest. In each case, we used Latin hypercube sampling, as described above, 
to sample 100 parameter sets from each subspace and conducted simulations, also as 
described above.

Decision tree subspace‑based resampling analysis

We extracted the subspace bounds of decision tree terminal nodes (i.e., leaves in ctree 
objects) using partykit::.list.rules.party() in R, for all 5 decision trees constructed for 
identifying enrichment of different distribution shapes of gene B in the heterozygous 
genotype (see Supplementary Note) using the algorithm in the “Distribution shape clas-
sification” section. When a parameter was only bounded by one decision rule in a sub-
space, we used the full parameter subspace boundary as the corresponding upper or 
lower limit of the subspace. For each parameter, we measured the empirical distribution 
of sub-full-parameter-range subspace range sizes on a log10 scale.

For trimodal shape resampling analysis (Fig. S6), we first specified the original param-
eter set in which we observed the trimodal distribution shape for gene B in the heterozy-
gous genotype. We then picked subspaces in which each parameter range was centered 
on the original parameter set’s respective value, bounded by a range of size (custom-
smaller than minimum, minimum of the empirical distribution, 10th percentile of the 
empirical distribution, or 50th percentile of the empirical distribution). The sampled 
parameter ranges are listed in Additional File 1: Table S4.

Statistical analysis

Unless noted otherwise in figure legends, error bars represent standard error of the 
mean. RNA-seq data analysis, including bootstrap resampling, was performed in 
Python v3.9.15 using gprofiler-official v1.0.0, matplotlib v3.6.2, numpy v1.23.5, pandas 
v1.5.2, pydeseq2 v0.3.5, requests v2.28.1, scipy v1.9.3, and seaborn v0.12.1. Latin hyper-
cube sampling and simulations were run in MATLAB R2017a, R2021b, and R2024a. 
All remaining statistical analysis and graph generation was performed in R v3.6.1 and 
v4.3.2 using packages readxl v1.4.0, partykit v1.2–16, mvtnorm v1.1–3, libcoin v1.0–9, 
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ggalluvial v0.12.3, entropy v1.3.1, svglite v2.1.0, corrplot v0.92, ggrepel v0.9.1, e1071 
v1.7–11, diptest v0.76–0, gridExtra v2.3, Hmisc v4.7–0, Formula v1.2–4, survival v3.3–1, 
lattice v0.20–45, ineq v0.2–13, magrittr v2.0.3, forcats v0.5.1, stringr v1.4.0, dplyr v1.0.9, 
purrr v0.3.4, readr v2.1.2, tidyr v1.2.0, tibble v3.1.7, ggplot2 v3.3.6, tidyverse v1.3.1, and 
gprofiler2 v0.2.3.
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