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Abstract 

The advent of genome-wide ancient DNA analysis has revolutionized our understand-
ing of prehistoric societies. However, studying biological relatedness in these groups 
requires tailored approaches due to the challenges of analyzing ancient DNA. READv2, 
an optimized Python3 implementation of the most widely used tool for this purpose, 
addresses these challenges while surpassing its predecessor in speed and accuracy. 
For sufficient amounts of data, it can classify up to third-degree relatedness and dif-
ferentiate between the two types of first-degree relatedness, full siblings and parent-
offspring. READv2 enables user-friendly, efficient, and nuanced analysis of biological 
relatedness, facilitating a deeper understanding of past social structures.
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Background
The analysis of biological relatedness has become an established part of the archaeog-
enomic toolkit [1, 2]. It has provided us with important insights into the social struc-
tures of prehistoric groups [3–26], including Neandertals [27]. Furthermore, it serves as 
a quality control (QC) step in many bioinformatic pipelines to identify sample dupli-
cates or exclude close relatives from population genomic analyses. This development has 
been facilitated by advances in both ancient DNA wet lab procedures and specifically 
designed bioinformatic methods, as the specific properties of ancient DNA do not allow 
the application of most approaches used with modern DNA [2]. Studies of biological 
relatedness in prehistoric groups are now reaching up to 100 and more individuals from 
the same site [22, 26], highlighting the need for further development of methods to pro-
duce optimized and efficient tools in this area.

In 2018, we published READ (Relationship Estimation from Ancient DNA) [28] 
as one of the first tools specifically designed to infer biological relatedness from 
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ultra-low coverage ancient DNA data. READ uses pseudo-haploid input data and 
divides the genome into 1-Mbp windows, estimating the pairwise mismatch rate 
(P0) [29] per window and then using the genome-wide mean for relationship clas-
sification. The values are normalized by the expected P0 for an unrelated pair of 
individuals from the same population to account for differences in background relat-
edness due to population diversity and SNP ascertainment. READ then uses this 
normalized P0 to classify pairs of individuals as identical/twins, first-degree relatives 
(parent–offspring and full siblings), second-degree relatives (nephew/niece-uncle/
aunt, grandparent-grandchild or half-siblings), or unrelated. This has been shown 
to work quite well with as little as 0.1 × shotgun coverage per genome [28]. Recent 
years have seen the introduction or application of more advanced methods into the 
field which work with lower amounts of data (Table 1), provide resolution for more 
distant degrees of relatedness, and/or are able to differentiate between different 
types of relationships for the same degree (e.g., parent–offspring versus full siblings) 
[30–36].

Nevertheless, READ continues to be a popular tool in the field partly for its user-
friendliness. Since READ uses pseudo-haploid genotype calls as input, it allows the use 
of the same files used for other population genetic analysis without the need to generate 
files including sequencing read counts, calculate genotype likelihoods, or use imputa-
tion. Furthermore, READ has very simple assumptions estimating the expected pairwise 
mismatch rate from the data without the need for population allele frequencies, which 
allows using it as part of initial QC procedures or in populations (or species) for which 
little additional information is available.

READ [28] had been implemented as a Python 2 script, taking plain text Plink files 
(tped/tfam) as input. However, the last version of Python 2 was released in 2020 and 
some systems have already stopped supporting the language. Furthermore, READ 
wrote a large number of temporary files to the hard disk which were then analyzed by 
a separate R script called from the Python script. The output of the R script was then 
again read into Python and the final output was prepared. This back and forth between 
two scripts in different languages created ample possibilities for incompatibilities and 
unhandled errors. As READ continues to be used by many researchers in the archae-
ogenomics community, a re-implementation in Python 3 is warranted and provides the 
opportunity to add new features and improvements to its resource usage to be prepared 
for larger datasets.

Here, we re-implement the original READ [28] (READv1 hereafter) in Python 3 as 
READv2. The input file format has been changed from plain text Plink tped/tfam to 
binary Plink bed/bim/fam, requiring less space on the hard disk. All analyses are carried 
out within the same Python script using NumPy [38] and pandas [39] libraries, avoiding 
the excessive use of temporary files and the calling of a separate R script. Furthermore, 
by using a simulated dataset with known relationships and aDNA characteristics, we 
tested different window sizes which, in READv1, had been set to a default value without 
proper comparison. Consequently, we change the default values, obtaining a minor gain 
in accuracy. When the amount of data is sufficient, we further add and test new features 
for classifying third-degree relatives and for distinguishing between siblings and par-
ent–offspring when a pair has been classified as first-degree relatives. Finally, we made 
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it possible to run READv2 with diploid data without pseudo-haploidization to allow its 
application on the growing number of high coverage or imputed ancient genomes, a 
modification which increases accuracy by using more information.

Table 1  Comparison of various available kinship inferring methods in terms of minimum 
coverage and minimum inferred relationship degree. The values shown here are retrieved from 
the original papers. It is important to note that the numbers of SNPs and coverages are not always 
straightforward to compare between studies due to differences in (the size of ) the underlying SNP 
panel and the background relatedness of the population

a Estimated from the input data
b Optional, can be estimated from the data
c The required input files for KIN [the number of overlapping sites, the number of pairwise differences, and the probability 
of runs of homozygosity (ROH) in the windows where individuals have the same long allele sequence] are created by 
KINgaroo, which is provided together with the KIN package, by using these.bam files
d Imputed genotypes are created with GLIMPSE [37] by using aligned sequence data (.bam files) as a part of the pipeline
e The authors of correctKin report their results using the term “overlapping markers,” which stands for the percentage of 
markers shared by both genotypes
f Absolute numbers of SNPs, not effective numbers scaled with the normalization value
g This classification is not automatically performed by the tool but can be achieved by comparing different statistics against 
each other

Method Min. coverage Size of SNP 
panel used

Degree up to Within-degree 
differentiation

Type of input

lcMLkin [30] 2 ×  100,000 Third First-degreeg Biallelic genotypes 
or genotype 
likelihoods, and 
population allele 
frequenciesa

ngsRelate [31] 1 ×  100,000 Third First-degree, 
some second-
degree, and 
some third-
degreeg

Genotype 
likelihoods and 
population allele 
frequenciesb

TKGWV2 [32] 0.026 ×   ~ 22,000,000 Second None Pseudo-haploid 
genotypes and 
population allele 
frequencies

KIN [33] 0.05 ×  Not specified Third First-degree Aligned readsc 
(.bam files)

BREADR [34] 0.04 ×   ~ 29,000,000 Second None Pseudo-haploid 
genotypes

ancIBD [36] 0.25 × (WGS) or 
1 × (1240 k SNP 
capture)

 ~ 1,200,000 Sixth First- and some 
second-degreeg

Imputed 
genotypesd

correctKin [35]  ~ 85,000 overlap-
ping markerse

 ~ 1,200,000 Fourth None Pseudo-haploid 
genotypes

READv1 [28] 0.1 ×   ~ 1,200,000 Second None Pseudo-haploid 
genotypes

READv2 (this 
study)

0.05 × or ~ 500f 
SNPs (first-
degree)
0.1 × or ~ 2000f 
SNPs (second-
degree)
0.3 × or ~ 15,000f 
SNPs (third-
degree)

200,000 Third First-degree Pseudo-haploid 
genotypes
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Results
Resource demands

As some of the choices made during re-implementation are aimed at increasing the 
computational speed of READv2, we first test the resource demand using an empiri-
cal dataset. Rivollat et  al. [22] recently reconstructed pedigrees from 94 individu-
als genotyped at ~ 1.15 million autosomal SNPs. READv2 analyzed the 4371 pairs 
in this dataset in ~ 7 min compared to 3.5 h for READv1 (Fig. 1A, B). This substan-
tial performance gain can be attributed to the use of binary input files, loading the 
full data into memory, and using NumPy [38] and pandas [39] for the analysis. The 
gain in running time comes at the cost of an increased memory demand when the 
number of individuals is small (Fig. 1C), but the memory demand is lower than for 
READv1 for larger sample sizes and SNP numbers. The required RAM is well within 
the standard resources provided by current personal computers. Running time scales 
approximately quadratically with the number of individuals (Fig. 1A) due to the pair-
wise comparisons, and linearly with the number of SNPs (Fig. 1B). Notably, READv1 
requires a certain amount of memory allocation (~ 2  GB) regardless of the num-
ber of SNPs (Fig.  1D), likely related to the fact that the number of 1-Mbp windows 
is independent of the total number of SNPs while larger numbers of SNPs require 
additional memory. Aside from this exception, the memory allocation follows similar 
trends as the running time (Fig. 1C, D). Using READv2, it was even feasible to analyze 
a full simulated dataset of 696 individuals and 241,860 pairs of individuals (see the 
“Methods” section and [40]) in less than 163 min requiring ~ 65 GB of memory. This 

Fig. 1  Time (A, B) and memory usage (C, D) comparison of READv1 and READv2 in a cluster node with 
two Intel Xeon E5 2630 v4 at 2.20 GHz/core CPUs and 128 GB RAM. The resource usage was tested with the 
dataset from Rivollat et al. [22] with 94 individuals. From the full data, individuals (A, C) and SNPs (B, D) were 
down-sampled to 75%, 50%, 25%, and 10%. Both tools were run in default settings
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highlights that even for such extremely large datasets, READv2 provides an option to 
analyze the full dataset at once if enough memory is available (e.g., on clusters).

Window size

READv1 [28] used a default window size of 1,000,000 bp which was inspired by GRAB 
[41], but it was never tested whether other window sizes could result in better accuracy. 
Therefore, we tested different window sizes (ranging from 100 kbp to 20 Mbp) on simu-
lated data with known degrees of relationship [40]. In addition to this window-based 
approach where the test statistic P0 is estimated from the mean across all windows, we 
tested calculating a genome-wide P0 without splitting the genomes into separate win-
dows. Interestingly, READv2 seemed to perform slightly better for smaller compared to 
larger window sizes, and overall the genome-wide estimate worked best (Fig. 2, see Addi-
tional file 1: Fig. S1 for additional window sizes). The differences are more pronounced 
for second-degree relationships. At 0.05 × and 0.1 × , we observe high false positive rates 
for second- and third-degree relatedness as many unrelated pairs are classified into these 
categories (Additional file 1: Fig. S2). At 0.01 × , unrelated individuals are even classified 
as first-degree or identical twins (Additional file 1: Fig. S2), resulting in a reduced false 
positive rate for second- and third-degree but an increased false positive rate for first-
degree. Overall, READv2 performs well down to at least 0.1 × sequence data in the sim-
ulated dataset. This corresponded to on average about 1878 overlapping SNPs for each 
pair of individuals at an expected mismatch for unrelated individuals of ~ 0.247 (Fig. 3). 
For the implementation of READv2, we set the genome-wide estimates as default, but 
users can adjust the settings if they wish to use different window sizes. All analyses 
below are based on the new default settings.

We need to note that the normalization value, i.e., the expected pairwise mis-
match between unrelated individuals, can be seen as a useful approximation for the 

Fig. 2  The power (i.e., the proportion of correctly classified pairs) and false positive rates (proportion of 
unrelated pairs classified into the respective degree) of READv2 assignment using simulated first-degree 
(n = 118), second-degree (n = 150), and third-degree pairs (n = 144). The analyses were performed using 
varying window sizes (1 Mb, 5 Mb, 20 Mb) (additional window sizes are shown in Additional file 1: Fig. S1) and 
for the genome-wide estimate (“Whole genome”), and also using varying coverages (0.01 × , 0.05 × , 0.1 × , 
0.2 × , 0.3 × , 0.4 × , 0.5 × , 1 × , 5 ×). Classification proportions are shown in Additional file 1: Fig. S2. Overall, 
the genome-wide estimate performs better than any of the window-based methods
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average amount of information per SNP in a dataset. The average P0 for unrelated 
pairs is expected to reflect average heterozygosity under Hardy–Weinberg equilibrium 
for the SNP set used and it can vary substantially between populations and ascertain-
ment schemes [28]. Therefore, an accurate assessment of the performance requires tak-
ing both the number of overlapping SNPs as well as the average mismatch for unrelated 
pairs into account. We use the product of these two values as the expected number of 
different alleles between the sample pair if they were unrelated (or “expected number 
of mismatches” in short) for our analyses below in order to make the number of SNPs 
needed more comparable across datasets with different SNP panels or population back-
ground diversities. The “expected number of mismatches” can thus be considered to rep-
resent a measure of the amount of information available for a pair to be used in kinship 
estimation.

Third‑degree relationships

For READv1, we did not introduce the option to classify pairs of individuals as third-
degree relatives. One reason was that we expected most applications with very low cov-
erage data, so the ranges for second-degree, third-degree, and unrelated pairs would 
overlap substantially, leading to false classifications. Furthermore, the 1000 Genomes 
Project [42] dataset that was used for testing only included a very limited number of 
third-degree relatives. Nevertheless, other researchers have modified READv1 to clas-
sify up to third-degree relatives [25], suggesting that the READ approach might be able 
to perform such classifications in certain situations. For Fig. 2, we also tested the ability 

Fig. 3  Number of overlapping SNPs in the simulated dataset (corresponding to the analysis shown 
in Figs. 2 and S1). Averages of the number of overlapping SNPs out of 200,000 (A) and the expected 
number of mismatches (B) are shown for each simulated coverage. The error bars show the minimum and 
maximum values of each corresponding measure. The expected number of mismatches is calculated by 
the multiplication of the number of overlapping SNPs and the expected pairwise mismatch proportion of 
unrelated individuals
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of READv2 to classify third-degree relatives. As expected, the third-degree classifica-
tion requires more data than second- or first-degree classifications. For low amounts 
of data, we see third-degree relatives frequently being assigned to other categories and 
unrelated pairs being classified as third-degree (Additional file 1: Fig. S2). From about 
0.3 × sequencing coverage, power (~ 77% for 3rd, ~ 93% for 2nd, and ~ 98% for 1st) and 
false positive rates (less than 3% for all degrees) are at acceptable levels for all three 
categories (Fig.  2). Therefore, we decided to implement a threshold for the amount 
of overlapping data below which pairs falling into the third-degree category are auto-
matically classified as “Unrelated/consistent with third degree” while a confident third-
degree classification is performed for larger amounts of data. Sequencing coverage of 
0.2 × corresponds to ~ 6700 overlapping SNPs in this simulated data or ~ 1700 “expected 
mismatches” when this value is multiplied by the expected distance of unrelated pairs. 
To avoid false classifications in empirical data, we implement a conservative threshold 
of 3000 “expected mismatches,” below which we do not attempt to classify third-degree 
relatives.

Distinguishing between parent–offspring and siblings

Based on the estimate for a normalized P0, READ classifies pairs of individuals into 
degrees of relationship. For first-degree relatives, two options exist: parent–offspring 
and full siblings. Parent–offspring pairs share exactly one chromosome for each 
position of the genome while siblings should approximately share zero or two chro-
mosomes for about one-quarter of the genome each, and one chromosome for the 
remaining half of the genome. By plotting the variation in the pairwise mismatch rate 
across the genome, some studies have resolved individual pairs of first-degree rela-
tives [22, 43], while ancIBD [36] and KIN [33] implicitly model this as part of their 
Hidden Markov Models (HMM). We explored whether READv2 could use the empir-
ical distribution across windows to distinguish between parent–offspring and full-
sibling relationships. Larger windows appear more suitable for this purpose (Figs. S3 
and S4), as there will be very few IBD status changes along the chromosome with a 
segment length of 50 cM on average (where 1 cM ~ 1 Mb in humans). In default set-
tings, READv2 will assess the degree of relationship based on a genome-wide esti-
mate of the pairwise mismatch rate, followed by a separate round of classification for 
first-degree relatives based on 20-Mb windows. As a test statistic, we use the propor-
tion of windows classified as unrelated (i.e., no shared chromosome) or identical (i.e., 
both chromosomes shared), corresponding to Cotterman coefficients k0 and k2 [44], 
respectively. As expected, this proportion is low for parent–offspring and around 0.5 
for full siblings when sufficient data are available (Fig.  4). For low amounts of data, 
the proportion of k0 and k2 windows first starts to increase for parent–offspring pairs 
and later also for siblings. While the two types are well separated ≥ 0.5 × coverage in 
the simulated dataset (or ~ 8000 “expected mismatches”), they overlap at ≤ 0.2 × . We 
used these results to set thresholds for the separation of parent–offspring from full 
siblings based on the proportion of windows classified as unrelated or identical. A 
pair of first-degree relatives is classified as parent–offspring if the proportion is below 
0.3, as siblings if the proportion is between 0.35 and 0.6, and as “N/A” otherwise. 
Since low amounts of overlapping data result in proportions > 0.6, this allows us to 
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avoid a classification if the amount of data is insufficient. There is, however, the risk 
that parent–offspring would be classified as full siblings for a specific range of over-
lapping data (between ~ 1600 and ~ 5000 expected mismatches).

To test this feature in an independent dataset, we selected SNP genotype data from 
the 1000 Genomes Project [42] where individuals from different populations have 
been genotyped using the Illumina Omni2.5 M chip HD genotype SNP array includ-
ing 2,458,861 SNPs. We selected the populations CHS (Han Chinese South) and YRI 
(Yoruba) which contained the largest number of first-degree relatives: 105 parent–
offspring pairs and 8 sibling pairs for CHS, and 112 parent–offspring pairs and 4 sib-
ling pairs for YRI (Additional file 1: Table S1). The overall number of full siblings in 
the dataset is low, not allowing for proper testing of the feature. However, as siblings 
would be classified as “N/A” for increased noise, the critical test is whether parent–
offspring pairs are classified as siblings at reduced amounts of data. These tests have 
been performed in each population separately. Similar to the simulations, parent–
offspring pairs are correctly classified when the amount of overlapping data is large 
(> 14,000 expected mismatches, Fig.  5). Below this point, initially, parent–offspring 
pairs are increasingly classified as “N/A” (~ 10,000 expected mismatches). Later, we 
see substantial numbers of parent–offspring pairs wrongly classified as siblings. For 

Fig. 4  Proportion of windows that are classified as either unrelated or identical/twins. The analysis was done 
by using a window size of 20 Mb with 68 parent–offspring and 49 sibling pairs. Dashed lines indicate the 
thresholds chosen to distinguish between parent–offspring and siblings in the classification. The area under 
the blue dashed line shows the “parent-offspring” zone, while the area between the red lines presents the 
“siblings” zone. The separation is clear for coverages over 0.5 × and roughly 8000 expected mismatches. As 
the coverage and the number of expected mismatches reduce, the distributions begin to overlap and the 
proportions increase overall. Note that the average expected mismatches are slightly different from Fig. 3 as a 
different subsampling of the full dataset was used for the analysis in Figs. 2 and 3
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Fig. 5  Classification of known parent–offspring pairs in empirical data. The feature was tested with CHS 
(Han Chinese South) and YRI (Yoruban) populations from the 1000 Genomes Project for different amounts of 
overlapping SNPs (n = 105 and 122, respectively). Similar to the result of the analysis made with the simulated 
data, parent–offspring pairs are correctly classified for high numbers of expected mismatches for both 
populations. As this number reduces, more siblings and N/A classifications start to be seen
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very low amounts of overlapping data (< 2000 expected mismatches), all are classi-
fied as “N/A.” These results are qualitatively similar to the results seen for the simu-
lated data, although the exact line where the classifications become uncertain differs 
slightly between datasets: ~ 8000 expected mismatches in the simulations and ~ 10,000 
expected mismatches for the 1000 Genomes data. It is possible that this is related 
to background linkage disequilibrium which will differ between populations. By cre-
ating the founders of our simulated data from SNP allele frequency data alone, we 
have eliminated any existing background linkage disequilibrium in the simulated pop-
ulation. To be conservative and avoid wrongly classifying parent–offspring pairs as 
siblings, we implement a default cutoff of 10,000 expected mismatches below which 
classification is not performed.

Comparison of samples with diploid genotypes

Diploid ancient genomes are becoming increasingly available through high-coverage 
sequencing of well-preserved samples or imputation [37, 45, 46], which motivated us to 
modify the READ algorithm to allow processing of diploid data, in addition to pseudo-
haploid data. READv2 now accepts data where pairs can have either of diploid-diploid, 
diploid-haploid, and haploid-haploid genotypes as input (in a diploid-haploid pair, one 
would have a diploid and the other a pseudo-haploid data) by counting heterozygous 
sites as half matches/mismatches. P0 statistics calculated in this manner should, theo-
retically, be more accurate than only using pseudo-haploid data. To test this, we studied 
the standard error (SE) of non-normalized P0 values in diploid-diploid, diploid-haploid, 
and haploid-haploid comparisons at various numbers of overlapping SNPs (Fig. 6). For 
all coverages and all relatedness types, the SE decreased systematically from haploid to 
diploid comparisons (Kruskal–Wallis test, p < 10−17). This effect was more prominent 
especially for low SNP numbers, i.e., cases where one individual is of exceptional preser-
vation while only very low coverage pseudo-haploid data is available for the other. As a 
consequence of the more precise P0 estimates, one can expect better classification accu-
racy into different relatedness categories.

Fig. 6  Standard errors of non-normalized P0 values calculated using diploid-diploid, haploid-diploid, and 
haploid-haploid comparisons based on simulated genome pairs with known relatedness degrees. Different 
amounts of overlapping SNPs ranging from 2000 to 50,000 are shown on the x-axis
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Empirical data application: Rivollat et al. [22]

A recent study conducted the tremendous effort of obtaining genome-wide data for 94 
individuals from the same site in Neolithic France, Gurgy “les Noisats,” and then recon-
structing pedigrees for the individuals buried at the site [22]. The authors first ran READ 
[28] to estimate the degree of relatedness for each pair of individuals, followed by lcM-
Lkin [30] to differentiate between parent–offspring and siblings among first-degree rela-
tionships. They further used BREADR [34] for individual pairs as well as imputation and 
ancIBD [36] for higher degrees. We have already shown that READv2 can process this 
dataset much faster than READv1 (Fig. 1A). By adding the new feature to differentiate 
parent–offspring and siblings, we are able to perform the analysis that originally needed 
two different tools with different input files in a single analysis that is orders of magni-
tude faster than the first step of the original analysis alone. About 94% of the pairs of 
individuals in this dataset have more than 40,000 overlapping SNPs at an expected pair-
wise mismatch rate for unrelated individuals of 0.245, i.e., the product for most of them 
is > 10,000 representing a situation where the new feature of READv2 should be applica-
ble. All 86 first-degree pairs identified by READv1 in the original study were confirmed 
by READv2 (Additional file  2). For 81 of them, READv2 was able to discern parent–
offspring and siblings, all in agreement with the pedigree in [22]. Four of the remain-
ing five were not classified due to their low amounts of overlapping data (less than 7000 
expected mismatches), and of these, two parent–offspring pairs would have been classi-
fied as siblings if the threshold had not been in place. Further, due to low coverage, two 
of these four were only classified by context in [22] rather than by a clear signal in the 
classification softwares. The fifth pair had sufficient data but fell between the ranges of 
sibling and parent–offspring used by READv2.

Notably, both READv1 and READv2 identified one additional pair of first-degree rela-
tives (GLN207A-GLN279) that the original study did not detect with READv1. This 
likely reflects the stochasticity of random sequencing read sampling in the independent 
genotype calls as the original study had them just above the first-degree P0 classifica-
tion threshold, while our results have them just below the threshold. The stochasticity 
of random sequencing read sampling manifests in slightly different normalization val-
ues (0.2453 for the original study, 0.2488 in our re-analysis). Using our slightly higher 
value would have led to a first-degree classification of the pair. Rivollat et al. had them 
as siblings in their pedigree based on the classification of other relatives and the lcM-
Lkin results. READv2 also classified them as siblings. Another notable pair is GLN285A-
GLN285B, which lcMLkin had as an outlier suggestive of a sibling relationship. READv2 
classified them as parent-offspring. Rivollat et al. did not directly classify them as par-
ent–offspring but excluded a sibling relationship due to the presence and absence of 
relationships with other individuals. Another pair, GLN288-GLN289B, was not classified 
by lcMLkin due to the low coverage of GLN289B. READv2 classified this pair as parent–
offspring as also concluded by [22] due to the classification of other related individuals.

This re-analysis of the data from Gurgy “les Noisats” [22] illustrates that READv2 
alone can lead to very similar results as the combination of READv1 and lcMLkin in the 
original study. Both of these latter approaches appear to miss some cases that were only 
resolved through context or by excluding certain types of relationships with additional 
data (e.g., uniparental markers, age at death). This highlights that READv2 can be used 
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in such studies to resolve large pedigrees when combined with additional data. READv2 
has the advantage that it is much faster than the combined approach and all results can 
be obtained by running a single tool.

Discussion
We introduce a new version of the popular tool for inferring biological relatedness from 
ancient DNA data, READ. Firstly, READv2 is a Python 3 re-implementation of READv1 
with substantially improved running times. Beyond speed, the implementation in a sin-
gle language should also increase portability and avoid possible version conflicts. Sec-
ondly, READv2 has an updated default behavior as the pairwise mismatch rate is not 
derived from the mean across genomic windows but as a genome-wide estimate, lead-
ing to up to 5% improvement in classification accuracies. Finally, we added three new 
features: the ability to classify up to third-degree relatives, which requires at least 3000 
expected mismatches; the ability to differentiate between different types of first-degree 
relationships, i.e., full siblings and parent-offspring, which requires at least 10,000 
expected mismatches; and the possibility to perform comparisons involving diploid 
genotypes. The introduction of “expected number of mismatches” as a measurement of 
the amount of available data should also make studies and datasets more comparable. 
Previous benchmarking studies mostly compared the raw number of overlapping SNPs 
or sequencing depth without taking the information content per SNP into account (e.g., 
[40, 47]). Using “expected number of mismatches” will now increase the possibility of 
generalizing from such benchmarking results. At the same time, because the “expected 
number of mismatches” summarizes the allele frequency spectrum of the SNP panel 
in the population, these numbers will not be directly comparable to SNP numbers in 
approaches using the full population allele frequency information as additional input 
(Table 1).

The preparation and filtering of input data is crucial for any ancient DNA analysis. 
For example, cytosine deamination (causing C > T and G > A changes) would increase the 
amount of mismatches in pairwise comparisons using both transition and transversion 
sites. While our simulated data included cytosine deamination, the extent was identi-
cal for all individuals which should elevate the number of mismatches for comparisons 
equally. In practice, we recommend either using data where such damages have been 
repaired enzymatically or restricting the analysis to transversion polymorphisms as 
unequal levels of deamination might bias pairwise mismatch statistics. A READ-spe-
cific step before classification is the estimation of a normalization value expressing the 
expected P0 for a pair of unrelated individuals from the same population which serves as 
a baseline and helps to overcome potential biases arising from, e.g., general population 
diversity or SNP ascertainment. Obtaining a good estimate is crucial and in default set-
tings, this value is estimated from the median of all pairwise comparisons in the dataset 
which usually works well for dataset sizes of 4 and higher if there is no genetic sub-struc-
ture within the data [28]. There might be situations, however, where that approach could 
fail, especially for small sample sizes, e.g., for a trio (mother, father, child where only one 
out of three comparisons is unrelated). Therefore, READ offers the possibility to manu-
ally input a normalization value which could be estimated from a different dataset or 
only using the pairwise mismatch between the parents in a suspected trio. One could 
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even consider multiple DNA extractions from the same individual as technical replicates 
and then multiply their pairwise distance by 2 to obtain an expected value of unrelated 
individuals (as the expected normalized P0 for identical twins/duplicates is 0.5).

We introduced READv2 as a version with increased efficiency and compared it to 
READv1. Other studies have already covered comparing the general READ approach 
to other methods used in the field [32–34, 40, 47]. Methods such as ancIBD [36], KIN 
[33], and TKGWV2 [32] as well as the genotype likelihood-based lcMLkin [30] and 
ngsRelate [31] have specific advantages, either by providing more precise results with 
lower amounts of data or by being able to detect higher than second-degree relatedness 
confidently. In contrast to READ, they often require additional data preparation and/
or information, such as read counts, estimation of genotype likelihoods, imputation, or 
population allele frequencies, which are often difficult to obtain for aDNA data or simply 
not available for certain populations. ancIBD [36] and KIN [33] were both specifically 
designed for ancient DNA data and their HMM approaches allow for the classification of 
higher degrees of relatedness as well as the differentiation between siblings and parent–
offspring pairs. READv2 is very similar in its approach to BREADR [34] and TKGWV2 
[32], with each tool having its own unique feature. READv2 has the functionality to sep-
arate the different first-degree relationships and to include diploid individuals, BREADR 
has a better quantification of uncertainty, and TKGWV2 works well with lower amounts 
of input data. We expect READv2 to find its own niche in this ecosystem of different 
methods. The combination of increased efficiency and READ’s user-friendliness with 
a single input file qualifies it as a QC step in data processing pipelines or as the first 
tool in an analysis of biological relatedness, which can be followed up with other tools 
to detect more fine-scale patterns or to verify results. Adding the possibility of differ-
entiation between siblings and parent–offspring pairs when sufficient amounts of data 
are available provides additional value for such an initial analysis. This feature requires 
about 10,000 “expected mismatches,” which, assuming the popular 1240 K SNP capture 
panel with 1.15 million autosomal SNPs and European Neolithic populations, would 
correspond to about 0.2 × coverage per individual which is the case for a large propor-
tion of all published human ancient genome-wide data [48]. As substantial amounts of 
generated data are also shotgun-sequenced, even lower coverages might allow for this 
type of analysis but the exact coverages and numbers of SNPs needed would depend 
on the SNP ascertainment and the population the study is focused on. Furthermore, 
the increased resolution of potentially classifying individuals as third-degree relatives 
for larger amounts of overlapping data (> 3000 expected mismatches) will improve the 
reconstruction of more complex pedigrees. Finally, we expect that the substantially 
improved running times make READ analysis feasible for future data sets, which will 
undoubtedly increase in sample sizes.

Conclusions
We present READv2, an optimized Python 3 implementation of the most widely used 
tool for kinship classification from ancient DNA data. Through the newly implemented 
features and the increased computational efficiency, READv2 will enable user-friendly, 
efficient, and nuanced analysis of biological relatedness, facilitating a deeper under-
standing of past social structures.
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Methods
READ re‑implementation

READv1 [28] was written in Python2 and R, with an R script called from the Python 
script to carry out specific analyses. A description of the READ workflow can be found 
in the “Background” section. The first step of this project was to re-implement READv1 
in Python 3, in order to update the script, increase efficiency and portability, and avoid 
possible version conflicts. The R script parts of READv1 were now implemented using 
the Pandas library [39] in Python 3. Furthermore, with the re-implementation, the 
input file format was changed to binary PLINK bed/bim/fam files using the PLINKIO 
library (https://​github.​com/​mfran​berg/​libpl​inkio). In order to avoid excessive loops 
and improve the method’s runtime, the pairwise comparison was implemented with 
the NumPy [38] library. In addition to the window-based approach for estimating the 
pairwise mismatch rate (P0), a single genome-wide estimate using all covered sites was 
implemented. In this case, the uncertainty for the pairwise mismatch rate is estimated 
using a block-jackknife approach with block sizes of 5  Mb as commonly employed in 
human population genomic studies [49].

For READv1, the classification thresholds were set to the mid-point between the 
expected P0 values for each degree. Consequently, we also set the cutoff for third-degree 
classifications halfway between the expected P0 for unrelated individuals (i.e., 1.0) 
and third-degree relatives (0.9375). Pairs of individuals with a normalized P0 between 
0.90625 and 0.953125 are now classified as third-degree relatives if the number of 
expected mismatches (number of overlapping SNPs times the pairwise mismatch rate 
expected for unrelated individuals) is 3000 or higher; otherwise, they are classified as 
unrelated.

To differentiate between parent–offspring and sibling pairs, the genome is divided into 
windows of 20 Mb and the classification is made based on the proportion of windows 
that are classified as either “identical/twin,” “unrelated,” or “third degree.” If that pro-
portion is less than 0.3, the pair is classified as “parent-offspring”; if it is between 0.35 
and 0.6, the pair is classified as “siblings.” For other proportions, or when the number of 
expected mismatches is below 10,000, the type is not specified beyond “first-degree.”

To allow for diploid-diploid and diploid-haploid comparisons, READv2 treats any 
comparison involving a heterozygous position in one individual as 1/2 match and 1/2 
mismatch, irrespective of the other individual’s genotype. We explain the logic here 
using an example locus with two alleles, A and a, which presents three possibilities:

•	 Individual 1 has Aa and individual 2 has Aa genotype, which means 2 mismatches in 
4 comparisons, and hence an average of 1/2 mismatch.

•	 Individual 1 has Aa and individual 2 has AA or aa genotypes, which means 2 mis-
matches in 4 comparisons, and hence an average of 1/2 mismatch.

•	 Individual 1 has Aa and individual 2 has A/a pseudo-haploid genotype, which means 
1 mismatch in 2 comparisons, and hence 1/2 mismatch.

Furthermore, we expanded the output table by including information such as the 
number of overlapping SNPs, the number of expected mismatches, and the kinship coef-
ficient θ (= 1 − normalized P0) as well as its confidence interval to fulfill several user 

https://github.com/mfranberg/libplinkio
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requests. An overview of the READv2 workflow can be found in Fig. 7. READv2 is avail-
able with instructions on its usage at https://​github.​com/​Gunth​erLab/​READv2.

Simulated data and processing

The next step after the re-implementation was to perform a benchmark with simulated 
data with known relationships. We used previously simulated pedigree data comprised 
of first-, second-, and third-degree related ancient genomes from Aktürk et al. [40]. This 
pedigree simulation was performed using the pedigree simulator software PED-SIM 
(v 1.3) [50]. For this simulation, founder genotype data was created from scratch using 
8,677,101 biallelic autosomal SNPs with MAF ≥ 0.01 among Tuscan (TSI) individuals of 
the 1000 Genomes Project v3 [51]. The founders were generated by choosing two alleles 
for each SNP proportional to their population allele frequencies. This way, 120 unre-
lated founders for first-degree and 240 unrelated founders for second- and third-degree 
pedigree simulations were generated. The method of generating founder data employed 
here leads to the elimination of any background relatedness among founders and the 
homozygosity blocks within founder genomes.

Seventy-two pedigrees for first-degree relationships, 96 for second-degree relation-
ships, and 96 for third-degree relationships were simulated. The founders of each pedi-
gree and simulated individuals from distinct pedigrees were treated as “unrelated.” For 
each relationship type, we chose n = 48 pairs. For instance, we simulated n = 72 indi-
viduals (n = 24 trios) for parent–offspring relationships, resulting in 48 unique pairs. 
Consequently, the dataset comprises 696 individuals (n = 72 for parent-offspring, grand-
parent-grandchild, and great-grandparent-great-grandchild and n = 96 for siblings, half-
sibling, avuncular, first cousin, and grand avuncular relationships).

To test diploid-diploid and diploid-haploid comparisons, we used these simulated 
genotypes without missing data or ancient DNA damages. From the simulated geno-
types, we chose 2000, 5000, 10,000, 20,000, 35,000, and 50,000 shared SNPs as perfect 

Fig. 7  Flowchart of READv2. The novel steps and classification results that differ from READv1 have been 
highlighted in gray

https://github.com/GuntherLab/READv2
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genotypes for all relatedness degrees to resemble diploid data and their pseudo-hap-
loidized versions for comparisons. This approach allowed us to test the effect of diploid 
comparisons on the standard errors of P0 without being dependent on mapping, diploid 
calling, and imputation pipelines.

For all other testing, the simulated data was processed further to resemble realistic 
ancient DNA data. Out of the ~ 8.7 million SNPs, 200,000 were chosen at random for 
the kinship analysis of simulated ancient DNA data. Sequencing data was then gener-
ated using the gargammel software [52], which introduces post-mortem damage and 
sequencing errors to the sequencing reads. The extent of deamination damage was iden-
tical for all individuals [40]. For the processing of simulated NGS data, we followed the 
same approach as applied to ancient genome sequencing data in the field [14, 53]. BAM 
files are available from Zenodo [40, 54, 55].

Genotypes were called from the BAM files using ANGSD v0.933 [56] with the options 
-checkBamHeaders 0 -doHaploCall 1 -doCounts 1 -doGeno -4 -doPost 2 -doPlink 2 
-minMapQ 30 -minQ 30 -doMajorMinor 1 -GL 1 -domaf 1. Pseudo-haploid tped/tfam 
files were then generated with the ANGSD tool haploToPlink and converted to binary 
Plink files using Plink [57].

Benchmarking

In order to reduce the memory and runtime of the window size comparisons, the dataset 
was divided into groups of 70 by involving all related individuals, i.e., all 3 individuals 
(two parents and one offspring) in a parent–offspring relationship, in a group with Plink 
–keep-fam command. The normalization value was calculated as the median mismatch 
per subsample of the data. To test the performance of READ for different coverages, the 
original simulation data was down-sampled with SAMTOOLS view -s [58]. In order to 
see how window size affects the results and compare the window-based and genome-
wide approaches, the power of the method (TP/(TP + FN)) and the proportion of unre-
lated pairs classified as related (false positive rate) were calculated for each coverage and 
window size (results shown in Fig. 1).

While the window size comparisons were performed on the dataset separated into 
groups of 70, the tests for distinguishing between siblings and parent–offspring were 
conducted on the full dataset at once.

Empirical data from the 1000 Genomes Project [42] with known relationships were 
used for further testing. The autosomal Illumina Omni2.5  M chip HD genotype SNP 
array data consists of 2368 individuals from 15 different populations with 2,458,861 
SNPs. The populations with the most parent–offspring pairs, namely YRI (Yoruba in 
Ibadan, Nigeria) and CHS (Southern Han Chinese, China), were selected for further 
steps. The populations were separated into different.bed files with the PLINK –keep-fam 
option and later SNPs were down-sampled with the PLINK –thin option. Since the data 
was from modern samples and contained diploid genotype calls, the data were made 
homozygous by randomly selecting one allele at each position.

Empirical data application

We downloaded 1240K SNP capture BAM files for 94 individuals excavated in Gurgy 
“les Noisats” [22, 59] from the European Nucleotide Archive [60]. Genotypes at ~ 1.15 
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million autosomal SNPs were called using ANGSD v0.933 [56] with the options -check-
BamHeaders 0 -doHaploCall 1 -doCounts 1 -doGeno -4 -doPost 2 -doPlink 2 -minMapQ 
30 -minQ 30 -doMajorMinor 1 -GL 1 -domaf 1. Pseudo-haploid tped/tfam files were 
then generated with the ANGSD tool haploToPlink which were converted to bed/bim/
fam with Plink v1.90b4.9 [61]. We then ran READv2 in default settings. To compare the 
resources needed from running READv1 and READv2, we also sub-sampled the number 
of individuals (with the Plink command –thin-indiv) and the number of SNPs (with the 
Plink command –thin).
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