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Abstract 

Background: CRISPR-Cas9 dropout screens are formidable tools for investigating biol-
ogy with unprecedented precision and scale. However, biases in data lead to potential 
confounding effects on interpretation and compromise overall quality. The activity 
of Cas9 is influenced by structural features of the target site, including copy number 
amplifications (CN bias). More worryingly, proximal targeted loci tend to generate 
similar gene-independent responses to CRISPR-Cas9 targeting (proximity bias), possibly 
due to Cas9-induced whole chromosome-arm truncations or other genomic structural 
features and different chromatin accessibility levels.

Results: We benchmarked eight computational methods, rigorously evaluating 
their ability to reduce both CN and proximity bias in the two largest publicly available 
cell-line-based CRISPR-Cas9 screens to date. We also evaluated the capability of each 
method to preserve data quality and heterogeneity by assessing the extent to which 
the processed data allows accurate detection of true positive essential genes, estab-
lished oncogenetic addictions, and known/novel biomarkers of cancer dependency.

Our analysis sheds light on the ability of each method to correct biases under different 
scenarios. AC-Chronos outperforms other methods in correcting both CN and proxim-
ity biases when jointly processing multiple screens of models with available CN infor-
mation, whereas CRISPRcleanR is the top performing method for individual screens 
or when CN information is not available. In addition, Chronos and AC-Chronos yield 
a final dataset better able to recapitulate known sets of essential and non-essential 
genes.

Conclusions: Overall, our investigation provides guidance for the selection 
of the most appropriate bias-correction method, based on its strengths, weaknesses 
and experimental settings.
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Background
CRISPR-Cas9-mediated loss of function screens are revolutionizing molecular biology 
and genomic research, offering an unparalleled ability to manipulate the DNA of model 
systems and living organisms with exquisite precision, ease, and scale. This ground-
breaking technology has empowered researchers to systematically explore the functions 
of individual genes on a genome-wide scale. Furthermore, it has opened up exciting pos-
sibilities for reconstructing gene-regulatory networks, delving deep into the mechanisms 
of human diseases, and uncovering novel therapeutic targets alongside their associated 
biomarkers, paving powerful new avenues towards the realization of personalized medi-
cine [1–7].

The CRISPR-Cas9 system is based on two components: the Cas9 enzyme and a single-
guide RNA (sgRNA). The sgRNA binds to a specific region in the genome, where Cas9 
is subsequently recruited, and guides the enzyme to induce DNA double-strand breaks 
(DSBs) at a specific genomic locus [8–11]. These DSBs trigger the cell to repair the DNA 
through non-homologous end joining, an error-prone mechanism that introduces small 
insertions/deletions. When this occurs within an intragenic locus, it gives rise to prema-
ture stop codons, effectively silencing the targeted gene [12].

One of the most promising applications of CRISPR-Cas9 technology has been screen-
ing large panels of immortalized human cancer cell lines. This is achieved through 
genome-wide libraries of sgRNAs used in a pooled fashion to systematically knock out 
individual genes, allowing for a thorough assessment of the resulting perturbations on 
cellular viability [3, 5, 6, 13]. This is quantified by the relative abundance of each individ-
ual sgRNA, which scars the genome of the receiving cells and can be used as a barcode 
for counting them via NGS sequencing of the final population of cells (expanded after a 
certain amount of time post-library transduction) [14].

Integrative analyses of the genetic dependency profiles derived from these screens 
have allowed identifying cancer vulnerabilities specific to different genomic contexts, 
contributing to the discovery of new anti-cancer therapeutic targets [7, 15, 16] and rep-
resenting the core data source underlying a comprehensive cancer dependency map 
[17–22].

While the CRISPR-Cas9 technology holds significant translational potential, the 
robust detection of genes and pathways crucial for the viability of cancer cells through 
this tool requires particular attention [23].

Complications arise from the mechanism of action of the Cas9 enzyme itself, which 
is influenced by structural features of the targeted loci resulting in biases that can neg-
atively impact the overall quality of the screens, hampering their interpretation and 
leading to false positives while identifying genes whose function is essential for cellular 
viability (essential or fitness genes).

In addition to sgRNA off-target effects resulting in unintended DNA cleavages and 
other hindering factors (e.g., heterogeneous guide on-target efficiency [24–26] and 
sub-optimal experimental conditions [27–29]), two primary factors related to the struc-
tural properties of the targeted genome have been associated with gene-independent 
responses to CRISPR-Cas9 targeting, hence identified as sources of bias in related data.

The first source of bias is genomic copy number (CN) amplifications [30–34], i.e., aris-
ing when a region targeted by a given sgRNA is present in multiple copies in the genome 
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(Fig.  1A, B). It has been demonstrated that this causes Cas9 inducing a large number 
of DSBs which results in cell cycle arrest and cell death. This causes genes within CN-
amplified regions to be mistakenly identified as essential for cell viability (fitness genes) 
regardless of their function, expression, and actual presence, as this effect is observed 
also when targeting CN-amplified inter-genic loci [30–32]. Subsequently, we reported 
that biases observed in CRISPR-Cas9 screens arising from CN alterations are non-lin-
ear and heterogeneous, with variations between segments of differing CNs and varia-
tions within segments of the same CNs (Fig. 1C, D) [34]. This motivated a further study, 
which demonstrated that CN biases in CRISPR-Cas9 screens are specific to tandem and 
interspersed CN amplifications with intensities proportional to CN of the targeted gene/
region relative to that of its hosting chromosome [33].

A second, more general source of bias, related to sets of proximal genes yielding sus-
piciously similar fitness effects when targeted with the CRISPR-Cas9 system (proximity 
bias), in an experiment-specific fashion and independently from their function/expres-
sion, was first reported by us [34] and exploited for the development of an unsupervised 
correction algorithm (CRISPRcleanR), which does not make any assumption on the bias 
cause. This proximity bias has been recently confirmed and linked to whole chromo-
some harm truncations resulting from the accumulation of DSBs in adjacent regions 
[35]. Furthermore, this has recently sparked concern in the community as Lazar and col-
leagues [35] have reported that the proximity bias is present and clearly visible in recent 
and widely used cancer dependency map datasets (such as the Broad Institute DepMap 
CRISPR 19Q3 and 22Q2), in which CRISPR-Cas9 induced viability phenotypes of genes 
located on the same chromosome arm are highly correlated, even when this data is post-
processed with state-of-the-art tools (Fig. 1E, F).

Lazar and colleagues [35] illustrate different scenarios that can be triggered by Cas9-
induced DSBs within the cell: (i) DNA repair with resulting restoration, (ii) extensive 
damage leading to cell apoptosis, or (iii) impairment of a biological function and cell 
mitosis with unrepaired DNA (Fig. 1E). The first two cases cause mild to no proximity 

Fig. 1 Overview of main structural features causing biases in CRISPR-Cas9 screens. A Copy number 
amplification bias in CRISPR screening data: when the Cas9 enzyme targets a copy number amplified gene it 
induces multiple double-strand breaks (DSBs) resulting in a high cytotoxic effect independent of the gene’s 
function or expression. B Gene-level depletion log fold change (LFC) values grouped by gene absolute 
copy number (in cyan) and biological functions (positive controls in orange) in the HCC1419 cell line. The 
positive controls are genes involved in housekeeping processes, thus characterized by strong essentiality 
for the viability of any cell (included for comparison). C, D Biased segments of gene depletion LFCs can be 
observed also within genomic segments of normal copy number and the bias can be even positive. C A 
portion of chromosome 3 in the ACH-000585 cell line characterized by negatively biased segments of LFC 
within non-copy-number (CN) altered regions. D A portion of chromosome 18 in the ACH-000098 cell line 
characterized by positively biased segments of depletion LFC within non-CN altered regions. E Proximity 
bias in CRISPR screening data: when a functional p53 or other DNA-repairing factors are present, DSBs cause 
cell cycle arrest (until the genetic damage is fixed) or apoptosis. However, in the absence or reduced levels 
of functional p53, a DSB may not be repaired before mitosis. In this case, DNA segments originating from 
the break site may fail to segregate properly and get lost in future cell generations. The magnitude of this 
effect is strongly affected by the location of the gene along the chromosome arm. F Pairwise cosine similarity 
between genes’ LFCs in the Project Achilles (v23Q2) dataset sorted by chromosome number across the 
human genome and based on genomic coordinates within the same chromosome and quantile normalized 
to a normal distribution with mean 0 and standard deviation 0.2

(See figure on next page.)
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bias, while the latter allows the cell to carry on its cycle at suboptimal rate upon the 
extension of the damage, resulting in a significantly stronger proximity bias. Many 
molecular investigations have suggested that large-scale chromosomal truncations 
occurring in a subset of cells might be responsible for this effect [36–38]. These trun-
cations are responsible for the deletion of entire chromosomal regions that contain 
multiple genes, resulting in a mixed viability reduction profile given by the sum of the 
individual gene death phenotypes.

Several computational methods have been developed to correct biases in CRISPR-
Cas9 screening data in silico, each based on different modeling assumptions.

Here, we present results from a comprehensive benchmark of seven of these meth-
ods, which are state-of-the-art and among the most widely used. We evaluate (for the 

Fig. 1 (See legend on previous page.)
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first time, to the best of our knowledge) the ability of these methods to correct both CN 
and proximity biases in CRISPR-Cas9 screening data while minimizing data distortion, 
ensuring that the potential of this type of data to unveil new therapeutic targets, human 
core-fitness genes, and cancer dependency biomarkers is not compromised. Finally, we 
provide guidance on selecting the most appropriate correction method, based on the 
investigative goal under consideration and the employed experimental settings.

Results
Overview of the benchmarked methods

We compared the performances of CRISPRcleanR (CCR) [34], Chronos [39], Crispy 
[33], Local Drop Out (LDO), Generalized Additive Model (GAM) [40], Model-based 
Analysis of Genome-wide CRISPR-Cas9 Knockout (MAGeCK) based on a maximum 
likelihood estimation method [41, 42], and the recent Geometric method introduced in 
[35], in terms of correction of biases observed in widely used large-scale CRISPR-Cas9 
screening dataset. In addition, we included in our benchmark also Arm-correct Chronos 
(AC-Chronos): a new computational pipeline recently implemented to process the Broad 
Cancer Dependency Map [21] and used since its 23Q2 release (Table 1).

Some of the methods included in our benchmark (CCR and LDO) work in an unsuper-
vised way on the CRISPR-Cas9 screening data only, not requiring additional information 
about the screened model. Some other methods (Chronos, AC-Chronos, Crispy, GAM, 
MAGeCK, Geometric) work in a supervised way, requiring additional data derived from 
the basal characterization of the screened model, typically its profile of CN alteration or 
its basal transcriptional profile.

Furthermore, some methods (CCR, Crispy, GAM, Geometric, LDO) are designed 
to process data from individual screens, whereas others (Chronos, AC-Chronos, 
MAGeCK) work on multiple screens in single executions, considering gene depletion 

Table 1 List of benchmarked methods

Method Input data format Algorithm Additional data 
required

Multiple 
or single-
screen

Source

Model-based Analysis 
of Genome-wide 
CRISPR-Cas9 Knockout 
(MAGeCK)

FASTQ/BAM/sgRNA-
level read counts

Supervised Gene-level CN Multi-screen [41, 42]

Chronos sgRNA-level read 
counts

Supervised Gene-level CN Multi-screen [39]

AC-Chronos sgRNA-level read 
counts

Supervised Gene-level CN Multi-screen [39]

Crispy sgRNA-level read 
counts

Supervised Segment-level CN Single-screen [33]

Generalized Additive 
Model (GAM)

sgRNA-level read 
counts

Supervised Gene-level CN Single-screen [40]

Local Drop Out (LDO) sgRNA-level read 
counts

Unsupervised None Single-screen [40]

CRISPRcleanR (CCR) FASTQ/BAM/sgRNA-
level read counts

Unsupervised None Single-screen [34]

Geometric sgRNA/gene-level LFC Supervised Basal expression, 
genomic coordinates

Single-screen [35]
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signals assembled across multiple screened models to correct genes’ depletion scores in 
the individual screens.

The compared methods implement different algorithms, which are based on hetero-
geneous modeling assumptions that, in turn, build upon different hypotheses on the 
source of biases.

For example, MAGeCK (Model-based Analysis of Genome-wide CRISPR/Cas9 
Knockout) is a method that was originally designed to identify significantly positively 
and negatively selected sgRNAs (possibly collapsed on a targeted gene-basis level) and 
associated statistical scores in genome-wide CRISPR-Cas9 screens [41, 42]. It employs 
a negative binomial distribution to model the overdispersion of CRISPR screening read 
counts, and then it applies a generalized linear model that accounts for sgRNA knockout 
efficiency and other complex experimental settings while determining positive/negative 
hits. In our analyses, we focused on its latest extension (MAGeCK MLE), which imple-
ments a maximum likelihood estimation framework [42]. This version also implements a 
CN bias correction by integrating gene-level CN data of the screened model as a covari-
ate, optimizing model parameters through an expectation–maximization approach. The 
final beta scores represent gene fitness effects after bias correction, which can be inter-
preted as corrected gene depletion log fold changes (LFCs).

Chronos is a supervised method modeling the dynamics of cell population in CRISPR-
Cas9 knockout experiments taking into account several parameters such as sgRNA 
efficiency, heterogeneous outcomes and the delay between the knockout and the emer-
gence of the phenotype [39]. The method maximizes the likelihood of the observed 
matrix of normalized read counts under a negative binomial distribution, like MAGeCK, 
from which gene effects are inferred. To remove CN bias, it constructs a two-dimen-
sional cubic spline from the matrix of inferred gene effects and gene-level CN data. 
Like MAGeCK, Chronos also is designed to work on multiple screens. In AC-Chronos, 
gene fitness scores computed by Chronos across multiple CRISPR screens are further 
normalized within chromosome harms in each screen such that intra-arm median fit-
ness effects in a screen matches the intra-arm median fitness effect across all processed 
screens (Methods).

Crispy utilizes a squared-exponential kernel to model the impact of CN bias in 
CRISPR-Cas9 screens on a single-screen basis [33]. For each screen, the inputs are 
sgRNA read counts together with segment-level CN data. A Gaussian process regres-
sion is used to model nonlinearities between segment CN data and LFCs. After training, 
corrected LFCs are obtained by subtracting the estimated bias from the original LFCs. 
Similarly, GAM [40] is a supervised method that requires the CN profile of the screened 
model data as additional input. It incorporates nonlinear dependencies and it accounts 
for multiple predictor variables for bias correction. Both, Crispy- and GAM-corrected 
scores can be used in place of the original LFC scores and interpreted as corrected LFCs.

LDO [40] and CRISPRcleanR [34] are unsupervised methods for identifying genomic 
segments in which long lists of neighboring genes display similar and strong drop-out 
values, suggestive of a bias which might or might be not due to CN amplification, i.e., 
these methods do not make any assumption on the source of observed bias.

LDO implements a regression tree to estimate this effect, which is then removed from 
the original LFC scores. CRISPRcleanR (CCR) applies a circular binary segmentation 
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algorithm [43, 44] directly to genome-sorted sgRNA depletion LFCs across individual 
chromosomes in a screened model. The LFCs of the sgRNAs targeting genes in the 
detected seemingly biased genomic segments are then mean-centered, thus smoothing 
fitness effects that are putatively gene-independent.

The Geometric method, recently introduced by Lazar and colleagues [35], has been 
specifically designed to address the proximity bias. For each gene on a given chromo-
some arm, this method subtracts to its LFC the average LFC value of the unexpressed 
genes on the same chromosome arm.

CCR and MAGeCK can take in input FASTQ or BAM files, while all the other meth-
ods generally require processed read count files with the exception of the Geometric 
method which takes input pre-computed sgRNA depletion LFCs.

Across all the benchmarked methods, CCR and LDO are the only ones working in 
a completely unsupervised fashion not requiring any additional data other than the 
CRISPR-Cas9 screen to process. The Geometric method requires the basal expression 
profiles of the screened model and thus cannot be considered a purely unsupervised 
approach. All remaining algorithms work in a supervised manner, requiring some type 
of information about the CN status of the genes: MAGeCK, Chronos, AC-Chronos, and 
GAM require gene-level CN data, while Crispy works with segment-level CN data.

Overview of the benchmark analysis and employed data

We benchmarked the eight methods described in the previous section by using them to 
process the two largest to date publicly available Cancer Dependency Map (DepMap) 
datasets [17, 22]: Project Achilles [45] and Project Score [7, 15, 46] (Table  2, Meth-
ods). These projects encompass data derived from genome-wide CRISPR-Cas9 viability 
screens of 1018 immortalized human cancer cell lines and 18,535 genes (Project Achil-
les) obtained employing the AVANA sgRNA library [25] and 339 immortalized human 
cancer cell lines and 18,009 genes (Project Score) screened with the Sanger KY library 
[6].

Quality control filtering of these two datasets and removal of cell lines and genes for 
which CN alteration and basal gene expression data were not available in the DepMap 
portal (depmap.org) yielded 17,596 genes screened across 956 cell lines for Project Achil-
les and 17,161 genes screened across 249 cell lines for Project Score (Table 2, Methods).

We tested all the methods with default settings as described in their respective intro-
ductory publications and processed the datasets in a multi-screen fashion when the 
tested method required that. Due to its significant memory and time requirement 
to process large-scale datasets, we executed MAGeCK on the two tested datasets in 
batches of optimal size (N = 50), which was determined in a data-driven way (Additional 
file 1: Fig. S1, Methods).

Table 2 Description of the datasets used to assess the benchmarked methods

Dataset Version No. of cell lines (with CRISPR, 
expression and CN data 
available)

No. of genes (with CRISPR, 
expression and CN data 
available)

Source

Project Achilles 23Q2 956 17,596 [45]

Project Score Release 1 249 17,161 [7, 15]
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We evaluated the ability of each method to reduce CN and proximity biases in the 
analyzed dependency profiles while minimizing data distortion, thus preserving screen-
ing quality and the ability to detect true positive essential genes. We evaluated the latter 
aspects by computing quality scores and indicators of true biological signals’ preserva-
tion in the screens after they have been processed with the tested methods. Particularly, 
we computed receiver operating characteristic (ROC) indicators, considering each pro-
cessed screen as a classifier and highly CN-amplified unexpressed genes, or gold-stand-
ard common essential genes as true positive hits, for the two tasks respectively. Finally, 
we evaluated the ability of the processed screens to detect genomic context-specific 
dependencies (such as oncogenic addictions) and to unveil significant biomarkers asso-
ciated with gene dependency, thus preserving data heterogeneity.

Copy number bias correction comparison

In a reliable, unbiased screen, targeting unexpressed genes with the CRISPR-Cas9 sys-
tem should not exert any effect on cellular fitness. In a typical (uncorrected) CRISPR-
Cas9 screen, CN amplifications generate gene-independent detrimental effects on 
cellular fitness, leading to highly CN-amplified genes being detected as strongly essen-
tial, regardless of their function or expression [30].

In light of this, to evaluate the performances of the tested methods in correcting the 
CN bias, we focused on cell line specific unexpressed genes (transcripts per million reads 
mapped, TPM < 1) and grouped them according to their absolute CN value in each indi-
vidual cell line, using PICNIC processed data [47] from the GDSC database [48]. Then, 
we compared gene LFCs before and after correction with each of the tested methods 
across CN bins, assessing the degree to which median values were realigned towards 0. 
We observed variable results across methods with optimal realignments obtained when 
processing the two datasets with GAM and CCR (residual difference averaged across 
CN-bins, ARD = 0.136 and 0.305 respectively, for Project Achilles and ARD = 0.09 and 
0.341 respectively, for Project Score). Conversely, we observed reduced yet evident rea-
lignments for Chronos, AC-Chronos, and Crispy (ARD = 0.829, 0.794, and 0.436 respec-
tively, for Project Achilles and ARD = 0.698, 0.667, and 0.552 respectively, for Project 
Score, Fig. 2A and Additional file 1: S2A, Table S1, Methods).

Next, for each method and dataset, we considered each processed screen as a rank-
based classifier of essential genes (with ranks determined on the basis of their LFCs). 
We assessed the tendency of such classifiers to predict as essential those genes that 
were highly CN-amplified (top 1%) but not expressed (TPM < 1) in the screened cell line 
(median number across cell lines = 7028), using the remaining unexpressed genes as 
outgroup and computing areas under the recall curve (AURC, one for each screen).

For the screens processed with CCR, GAM, Crispy, and especially Chronos and AC-
Chronos, we observed AURCs for amplified but non-expressed genes that were closer 
to what would be expected from a random classifier. This indicated their effectiveness in 
correcting CN bias.

The screens processed with CCR, Crispy, and GAM exhibited slightly higher average 
AURC but generally more stable scores across cell lines (mean AURC across cell lines 
of 0.544, 0.532, and 0.515 for Project Achilles, and 0.543, 0.531, and 0.521 for Project 
Score, respectively, as shown in Fig.  2B and Additional file  1: S2B, Methods). On the 
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other hand, Chronos and AC-Chronos, on average, demonstrated an average AURC 
more akin to those of a random classifier but with a broader distribution (mean across 
cell lines of 0.487 and 0.489 respectively, for Project Achilles and 0.512 and 0.516 respec-
tively, for Project Score, as depicted in Fig. 2B and Additional file 1: S2B, and detailed in 
Table S1, Methods), indicating a potential inclination towards improved but less consist-
ent performances.

Proximity bias correction comparison

Several studies have shown that the activity of the Cas9 enzyme may lead to undesired 
on-target edits in genomic regions proximal to the targeted gene, also known as “prox-
imity bias”, ranging from kilobase-scale deletions to whole chromosome truncation 
[36–38, 49, 50]. While many efforts have been put forward to mitigate the off-target 
effects of the Cas9 enzyme, the phenomenon of chromosome loss remains a concern 

Fig. 2 Evaluation of copy number and proximity bias correction for Project Achilles. A Gene depletion log 
fold changes (LFCs) of unexpressed genes (TPM < 1) on a per-cell line basis in the Project Achilles dataset 
grouped according to genes’ absolute copy number value before (uncorrected) and after each method’s 
correction. B Screen-wise area under the recall curve (AURC) of the top 1% amplified unexpressed genes 
for unprocessed data and across correction methods using the remaining unexpressed genes as outgroup. 
C Chromosome arm-level proximity bias quantified by the Brunner-Munzel test statistics for the Project 
Achilles dataset before (uncorrected) and after each method’s correction. Each point is a chromosome 
arm. D Chromosome arm-level proximity bias as in C but from cell lines split based on the TP53 status. All 
boxplots represent distributions with central lines indicating median values and lower and upper whiskers 
encompassing scores within − 1.5 and 1.5 times the interquartile range
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and it is not fully understood. The proximity bias has been recently highlighted by Lazar 
and colleagues [35], who observed a stronger pan-cancer correlation between depend-
ency profiles of genes located on the same chromosome arm compared to distant genes. 
The extent to which this phenomenon biases data derived from a genome-wide CRISPR-
Cas9 screen is measured by Lazar and colleagues through a generalized Wilcoxon test, 
also known as Brunner-Munzel test statistic [51], against the null hypothesis that two 
random numbers (sampled from two different populations) can be equiprobably larger 
than each other. Particularly, this test quantifies how the patterns of depletion LFCs of 
genes on the same chromosome arm are significantly more similar than those of genes in 
different chromosome arms, overall screens in a given dataset.

We employed this method on the Project Achilles and Project Score datasets before 
and after correction with all tested methods to assess their ability and performances in 
correcting the proximity bias (Methods). Particularly, for each chromosome arm, we 
derived an intra-arm cosine similarity distribution, comparing the pattern of deple-
tion LFCs of gene pairs in the same arm. Similarly, we derived an inter-arm distribu-
tion, comparing patterns of depletion LFCs for gene pairs where the first one was from 
the chromosome arm under consideration and the second one from another chromo-
some arm. From these two distributions, we then computed for each chromosome arm 
a Brunner-Munzel probability of intra-arm similarities being significantly larger than 
inter-arm ones (BMP).

As expected, we observed probability values larger than 0.5, indicative of larger intra-
arm similarity over inter-arm ones, thus the presence of a proximity bias, in Project 
Achilles and Project Score datasets (unprocessed versions) both (average BMP across 
chromosome arms = 0.628 and 0.646, respectively for Project Achilles and Project Score, 
Fig. 2C and Additional file 1: S3A, Tables S2 and S3).

Across the tested methods, AC-Chronos showed the largest reduction of proximity 
bias (average BMP across chromosome arms = 0.501 in both datasets, and t-test p from 
contrasting corrected versus uncorrected data = 8.56 ×  10−22 and 1.11 ×  10−14, respec-
tively for Project Achilles and Project Score). Unsurprisingly, we observed a large and 
significant proximity bias reduction when processing both tested datasets with the 
Geometric method, designed by Lazar and colleagues specifically for this purpose [35] 
(average BMP across chromosome arms = 0.508 and 0.52, and t-test p from contrast-
ing corrected versus uncorrected data = 1.52 ×  10−22 and 8.69 ×  10−12, respectively for 
Project Achilles and Project Score). Processing both datasets with CCR also resulted in 
a large and significant proximity bias reduction for both datasets (average BMP across 
chromosome arms = 0.52 and 0.521, and t-test p data = 4.69 ×  10−21 and 7.89 ×  10−13, 
respectively for Project Achilles and Project Score). We observed very mild, not signifi-
cant reductions for the other methods and a significant increase of the proximity bias 
consistently across both Project Achilles or Project Score when processing them with 
Chronos only (average BMP across chromosome arms = 0.716 and 0.726, with t-test 
p = 5.59 ×  10−11 and 2.1 ×  10−5, respectively, Fig. 2C and Additional file 1: S3A, Tables 
S2 and S3).

TP53 expression has been suggested to reduce chromosomal loss in CRISPR-Cas9 
editing [52–54] due to its involvement in the DNA repair mechanism. Consistently, we 
observed an increased intra-arm similarity in screening data derived from cell lines with 
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loss-of-function TP53 mutations compared to TP53 wild-type ones, when considering 
the uncorrected version of each dataset as well as post-processing them with each tested 
method (Fig. 2D and Additional file 1: S3B, Table S2 and S3). Nevertheless, AC-Chronos 
and Geometric not only yielded the largest reduction of average BMP across chromo-
some arms but were also able to minimize the difference of this value across TP53 wild-
type and TP53 mutant cell lines (average ratio of 9.998 ×  10−1 and 1.002 respectively, for 
Project Achilles and AR = 9.992 ×  10−1 and 1.001 respectively, for Project Score). Nota-
bly, we observed a larger residual difference in the proximity bias between TP53 mutant 
and TP53 wild-type cell lines in the Chronos, Crispy, and GAM post-corrected version 
of Project Achilles and Project Score (AR = 1.029, 1.053, 1.051 respectively, for Project 
Achilles and 1.043, 1.062, 1.056 respectively, for Project Score).

Assessment of data distortion

We determined the extent to which the correction methods applied to the Project Achil-
les and Project Score alter the overall essentiality profiles of the screened cell lines, com-
promising the ability to derive functional genomics and pharmacogenomics findings 
from such data. Particularly, we focused on three main features of the processed screens 
that might be impacted by the correction methods: (i) the detection of common human 
essential genes among the significantly depleted ones, (ii) the detection of cell line-spe-
cific oncogenic addictions, and (iii) the identification of genomic biomarkers of cancer 
dependencies.

Recall of common essential genes and oncogenic addiction relationships

A commonly employed method for evaluating the quality and reliability of a gene 
essentiality profile obtained from a genome-wide CRISPR-Cas9 screen is to assess the 
degree to which positive controls, like well-known human essential genes (or core-fit-
ness genes), are identified among the significantly depleted or essential genes [55, 56]. In 
contrast, negative controls, such as non-essential or non-expressed genes, should not be 
identified as significantly depleted or essential.

We performed this assessment by means of receiver operating characteristic (ROC) 
analysis [57] on all the gene essentiality profiles included in Project Achilles and Project 
Score, before and after processing them with each of the tested correction methods. To 
this aim, we considered each genome-wide profile of gene LFCs derived from screening 
a cell line as a rank-based classifier of common essential and non-essential genes [58, 
59], with genes’ rank positions determined by their depletion LFC, in increasing order 
(Methods). We then calculated a true positive rate (TPR or recall), a false positive rate 
(FPR), and a positive predicted value (Precision) for each rank position. This involved 
considering all genes from the top of the ranked list down to that specific rank position 
as predicted essential genes (i.e., predicted positives). We compiled TPR/FPR (or ROC) 
and precision-recall curves by aggregating values across rank positions.

Finally, we measured the area under the ROC and precision-recall curves (AUROC 
and AUPRC) and considered these values as final indicators of gene essentiality quality/
reliability for both Project Achilles (Fig. 3A, B) and Project Score (Additional file 1: Fig. 
S4AB, Methods).
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Fig. 3 Assessment of data distortion and heterogeneity in Project Achilles. A, B Screen-wise area under 
the receiver operating characteristic (AUROC) curve (A) and area under the precision-recall curve (AUPRC) 
(B) obtained when considering all the screens in Project Achilles (uncorrected version and processed 
with all tested methods) as rank-based classifiers of common-essential/non-essential genes, based on the 
depletion log fold change (LFC). C Screen-wise null-normalized median difference (NNMD) between the 
distribution of LFCs of common essential and non-essential LFC distributions for the screens in Project 
Achilles (uncorrected version and processed with all tested methods). D, E Screen-wise recall at a 5% false 
discovery rate was obtained when considering each screen as in ABC but using different gene sets as 
positive controls (i.e., common essential genes, set of core-fitness genes from MsigDB (E) and non-essential 
genes (N)) for the Project Achilles dataset (uncorrected version and processed with all tested methods). F 
Number of tissue-specific statistically significant (FDR < 5%) cancer functional events (CFEs)/gene-essentiality 
associations identified in Project Achilles (unprocessed version and across correction methods) via a 
systematic two-sided t-test. This test assesses differential gene essentiality (as measured by the gene 
depletion LFC) across two sub-populations of cell lines stratified based on the presence/absence of the 
considered CFE
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Across all tested methods, Crispy, GAM, Geometric, LDO, and MAGeCK substan-
tially preserved the high median AUROC and AUPRC scores observed in the uncor-
rected version of both Project Achilles (0.949 and 0.972, respectively, Table S4) and 
Project Score (0.936 and 0.969, respectively, Table  S5). Chronos and AC-Chronos 
slightly improved these scores (0.961 and 0.96 respectively, for AUROC in Project 
Achilles; 0.954 and 0.952 respectively, for AUROC in Project Score; 0.98 and 0.979 
respectively, for AUPRC in Project Achilles; 0.978 and 0.977 respectively, for AUPRC 
in Project Score) consistently with these methods analyzing multiple screens in a 
joint fashion, which boosts the signals of genes that tend to be essential across cell 
lines (thus of common essential genes), improving the quality of screens exhibiting a 
lower phenotype penetrance. In contrast, CCR slightly reduced AUROC and AUPRC 
for both Project Achilles (0.93 and 0.963, respectively) and Project Score (0.92 and 
0.964, respectively), consistently with its unsupervised approach that smooths deple-
tion signals overall.

An alternative method for assessing the quality and reliability of genome-wide 
essentiality profile derived from a CRISPR-Cas9 screen consists of evaluating how 
well separated the distributions of depletion LFCs of common essential and non-
essential genes are. A measure of this separation is the null-normalized mean differ-
ence (NNMD) [45, 46] defined as the difference between the median of the common 
essential and non-essential genes’ LFC distributions divided by the median absolute 
standard deviation of the non-essential genes’ LFC distribution, which yields large 
negative values for high-quality data Methods).

We observed large negative median NNMD values for the uncorrected versions 
of Project Achilles and Project Scores (− 5.19 and − 5.04, respectively), which were 
largely preserved following correction with the majority of the tested methods, mildly 
improved by Chronos (− 5.93 and − 5.74, respectively) and especially AC-Chronos 
(− 6.09 and − 5.91, respectively), and slightly worsened by CCR (− 4.7 and − 4.91, 
respectively, Fig. 3C and Additional file 1: S4C, Table S4 and S5).

These results were confirmed when extending our analysis to the recall at a fixed 
level of 5% false discovery rate (FDR) and including additional sets of prior known 
essential genes (from Pacini et al. [46] and the molecular signature database (MsigDB) 
[60], assembled as detailed in Iorio et  al. [34]) (Fig.  3D and Additional file  1: S4D, 
Tables S6 and S7, Methods).

Finally, we assessed the extent to which the tested correction methods impacted 
the detection of false positive essential genes. To this aim, we computed the recall of 
non-essential genes (from [58]) at a fixed level of 5% FDR, across individual screens 
before and after the correction of both tested datasets with all considered methods. 
Also in this case, values were largely conserved across all tested methods and proxi-
mal to zero, i.e., median ~ 0.08 for both datasets, before and after correction with all 
tested methods. Of interest is the comparison between CCR and LDO as they stand 
as the only unsupervised single-screen methods. This becomes paramount when 
researchers are confronted with constraints such as a limited availability of CRISPR 
screens and an absence of additional omics data (e.g., CN data). Notably, CCR dem-
onstrates better ability over LDO in addressing CN and proximity biases associated 
with CRISPR-Cas9 screening data. Conversely, LDO exhibits a lower impact on data 
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quality upon correction as elucidated by higher recall of common essential genes, 
while CCR shows a lower recall of nonessential genes, effectively trading sensitivity 
for specificity.

Next, we examined the ability of each screen to detect known selective dependen-
cies across cell lines and how this was impacted by the assessed correction methods. 
The constitutive function of oncogenes harboring gain-of-function mutations tends to 
become addictive to the cancer model harboring these alterations. As such, mutated 
oncogenes tend to be detected as selectively essential when genomically altered in can-
cer cells. Based on this, we implemented an approach similar to that pursued in our 
previous work [46] and sought to assemble a set of positive/negative selective depend-
encies, considering a set of oncogenes from OncoKB [61] (338 in total, of which 329 
was screened in Project Achilles, and 327 in Project Score, Methods). First, we scaled 
genome-wide LFC profiles for better cross-screen comparability (i.e., median LFC 
score of − 1 and 0, respectively for common essential and non-essential genes across 
cell lines) as done in previous works [46, 56]. We then determined the status of these 
oncogenes in each screened cell line focusing on each of the two tested datasets in turn 
(using their multi-omic characterization from the DepMap portal), collating cell-line 
specific mutated oncogenes in a collective set of positive controls (n = 7861 and 2210, 
respectively for Project Achilles and Project Score) and cell-line specific wild-type and 
unexpressed (TPM < 1) in a collective set of negative controls (n = 81,577 and 19,456, 
for Project Achilles and Project Score respectively). Next, we pooled all oncogenes’ 
LFCs across screens in a unique list of 290,624 and 72,957 entries, respectively for Pro-
ject Achilles and Project Score, and considered it as a rank-based classifier of selective 
dependencies, with gene rank positions determined on the basis of the gene’s scaled 
LFC, using the assembled list collective positive/negative controls. Finally, we assessed 
the performances of such a classifier by means of ROC analysis, computing AUROCs for 
both datasets before and after processing them with each tested method.

We observed slightly better than random performances for both Project Achilles and 
Project Score (uncorrected versions, AUROC = 0.649 and 0.641, respectively, Additional 
file 1: Fig. S5AB) which were mostly preserved by the Geometric, LDO, and MAGeCK 
methods, with MAGeCK resulting as the top-performing method for Project Achilles 
(AUROC = 0.655) and LDO and Geometric for Project Score (AUROC = 0.647) (Tables 
S4 and S5).

Identification of biomarkers

The identification of context-specific genetic dependencies is one of the key aims of 
cancer pharmacogenomics and is pivotal for the development of future therapies with 
associated predictive markers. These can be identified in CRISPR-Cas9 screening data-
sets by focusing on genes eliciting a strong reduction of viability in a subset of cell lines 
upon CRISPR-Cas9 knockout. These context-specific dependency genes often show a 
statistically significant differential dependency when contrasting cell lines based on the 
presence/absence of a given molecular feature (such as a gene mutation or CN ampli-
fication). Such features can then be used as the basis for the development of therapeu-
tic biomarkers  and might also  provide mechanistic insights on the associated genetic 
dependency, unveiling the involved biological pathways [7, 28, 46].
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We investigated the extent to which tissue-specific biomarkers associated with cancer 
dependencies can be identified in the unprocessed datasets and following the applica-
tion of each benchmarked method (Methods).

To achieve this, we considered a set of 1073 tissue-specific clinically relevant cancer 
functional events (CFEs), including somatic mutations in well-established cancer driver 
genes, genomic segments that are recurrently CN-altered in cancer, and hypermethyl-
ated gene promoters as identified in our previous work [48]. We considered 25 different 
tissues.

For each possible combination of CFE, tissue, processing method, and dataset, we 
performed Student’s t-test to evaluate the differential essentiality of a strongly selective 
dependency (SSD) gene (Methods). This involved comparing the gene’s depletion LFCs 
across two sub-populations of screened cell lines from the specific tissue and dataset 
(uncorrected or processed with the chosen method), stratified based on the presence or 
absence of the considered CFE. We tested a total of 3,553,680 and 2,183,328 CFE/SSD 
pairs with suitable sample sizes (i.e., at least 3 cell lines in the contrasted subpopulations, 
Fig. 3F and Additional file 1: S4F).

Most of the tested correction methods increased the number of significant (< 5% 
FDR) CFE/SSD associations compared to those detectable in the unprocessed versions 
of both datasets. CCR processed Project Achilles dataset unveiled the highest number 
of significant associations (n = 2240) compared to the other methods, while Chronos, 
AC-Chronos, and Geometric processing performed the best for Project Score by a large 
margin (n = 645, 637, and 620, respectively), followed by CCR (n = 493, Table S8).

Discussion
Genome-wide CRISPR-Cas9 screens have increasingly become essential tools in func-
tional genomics and early drug discovery, owing to their potential to unveil synthetic 
lethal gene pairs or genes responsible for drug resistance/sensitivity. However, correctly 
interpreting and analyzing data from such screens is hampered by false positive hits 
arising from technology-specific biases. These relate to the mode of action of the Cas9 
enzyme, which generates gene-independent viability reduction responses when target-
ing copy number amplified genomic regions [30] or are due to whole chromosome harm 
truncations [35] (causing genes in proximal positions to elicit similar effects on cellular 
fitness upon CRISPR-Cas9 targeting regardless of their function or expression).

Many algorithms have been proposed to correct such biases in silico. Here, we per-
formed a benchmark analysis assessing the most recent eight of these [24, 33–35, 39–42, 
62] and assessed their bias correction performances. We also estimated their impact on 
data quality under different use cases. Although there have been previously published 
studies benchmarking common algorithms for the analysis of pooled CRISPR screens 
[63], our analysis is the first one thoroughly benchmarking recently published methods 
specifically designed to address biases in CRISPR-Cas9 screening data associated with 
established [30] or recently reported [34, 35] structural features of the targeted genomic 
regions.

Among the tested methods, we found that Chronos showed lower effectiveness in 
proximity bias correction (Fig. 4A). CCR, GAM, Crispy, and especially Chronos and AC-
Chronos obtained the best performances in addressing the CN bias. On the other hand, 
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we observed no clear distinction in performance between supervised (i.e., requiring CN 
or other kind of omics data) and unsupervised methods. A possible explanation is that 
CRISPR-Cas9 screening data are affected by multiple source of biases and supervised 
methods are designed to address only one (i.e., CN bias) or two (i.e., CN and proxim-
ity biases) of them, missing others such as off-target effects or differences in cellular 
responses. Of note, CCR, not requiring any additional information beyond the (indi-
vidual) CRISPR-Cas9 screen to process, shows good performances in correcting both 
the CN and proximity bias, while Geometric, needing basal expression profiles of the 
screened models and genomic target coordinates of the employed sgRNA library, effi-
ciently removes the proximity bias but tends to under-correct the CN bias. However, we 
observed that AC-Chronos, the new pipeline developed on top of the original Chronos, 
is the best at addressing both the CN and proximity biases.

Further, we estimated the distortion introduced by each method’s correction on the 
gene essentiality profiles derived from each processed screen, considering them as rank-
based classifiers of pre-defined sets of core-fitness-essential/non-essential genes (with 
gene rank positions determined by the extent of viability reduction observed upon 
CRISPR-Cas9 targeting) (Fig. 4B). Finally, we assessed the extent to which each correc-
tion method preserved the ability of the processed datasets to unveil synthetic lethalities 
and markers of gene essentiality (Fig. 4C).

Results confirmed that, by modeling the essentiality signal of each gene by borrow-
ing information across screens in the same dataset, AC-Chronos and Chronos yield 
corrected screens that are generally better predictors of core-fitness essential genes. In 
particular, AC-Chronos is the best method for the correction of both types of struc-
tural biases, and it also yields more stable correction outcomes compared to the other 

Fig. 4 Summary of tested methods’ ability to correct for structural biases associated with CRISPR-Cas9 
screens and their impact on data quality and heterogeneity. A Tested methods’ performances (individual 
points) in correcting copy number (CN) bias (x-axis) and proximity bias (y-axis). Coordinate on the y-axis 
indicate the mean reduction of proximity bias with respect to uncorrected data averaged across datasets. 
Each dot is a method with shapes indicating types of additional data required for correction, supervised 
(i.e., requiring CN or trasncriptomic data) or unsupervised, and colors indicating to the mode of action of 
the underlying algorithm, single- or multi-screen. Coordinates on the x-axis indicate the mean area under 
the recall curve (AURC) considering the correction as percentage change with respect to the uncorrected 
version, and averaged across datasets. B Tested methods’ performances (individual points) in addressing 
the impact on data quality: mean null-normalized median difference (NNMD) (y-axis) of common essential 
and non-essential genes expressed as percentage change with respect to the uncorrected version and 
averaged across datasets. C Summary of tested method’s performances (individual points) in addressing the 
impact on data heterogeneity: number of tissue-specific statistically significant (FDR < 5%) cancer functional 
events (CFEs)/gene-essentiality associations (y-axis) expressed as percentage change with respect to the 
uncorrected version and averaged across datasets
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methods. On the other hand, the correction performed by CCR comes at the expense 
of the gene essentiality signals which are slightly smoothed in the individual screens 
leading to weaker performances in classifying essential/non-essential genes. In addi-
tion, AC-Chronos and Chronos seem to also preserve individual screens’ heterogeneity, 
allowing for the identification of a larger number of biomarker/gene-essentiality asso-
ciations compared to other methods. They are also better able to improve data quality 
overall and they are best suited for modeling complex experimental settings (for exam-
ple, accounting for gene essentiality data at multiple time points or integrating multiple 
screens performed with different sgRNA libraries).

Conclusions
Our benchmark unveiled the strengths and weaknesses of each method across the main 
factors that may affect the analysis and interpretation of data derived from CRISPR-Cas9 
screens. Based on our results, AC-Chronos should be the primary choice for the cor-
rection of CN and proximity biases as well as for its ability to minimize the impact on 
data quality, when processing multiple screens with available CN-information jointly. 
AC-Chronos also allows the identification of a larger number of total clinically relevant 
biomarker/dependency associations. Nonetheless, CCR offers very good performances 
for the correction of CN and proximity biases and its ability to work on a single-screen 
basis without any additional omic data makes it the method of choice in case of limited 
data availability.

On the other hand, the corrected datasets yielded by AC-Chronos and Chronos, which 
borrows information across screens, had a lower impact on the data quality and, thus, 
we were better able to recapitulate priori known common essential and non-essential 
genes.

Overall, there is no one-size-fits-all method that outperforms the others across the 
analyses we carried out; rather, it is up to the researchers to carefully pick the method 
best suited for their needs according to their use case. Finally, our analyses can be 
applied to forthcoming and additional CRISPR-Cas9 datasets, enabling a more extensive 
coverage of each method’s correction performances.

Methods
Pre-processing of cancer dependency datasets

We focused on the two largest genome-wide CRISPR-Cas9 screen datasets to date: Pro-
ject Score (release 1), screened using the KY library [6, 7], and Project Achilles release 
23Q2, screened using the AVANA library [25]. We downloaded the raw read count ver-
sions of both datasets from the DepMap portal (https:// depmap. org/ portal/ downl oad/ 
all/). These datasets were already pre-processed with the DepMap pipeline up to the 
computation of raw read counts (README.txt, https:// depmap. org/ portal/ downl oad/ 
all/), yielding 1018 cell lines and 18,535 for the Project Achilles dataset and 339 cell lines 
and 18,009 genes for the Project Score dataset. We then applied the following procedure: 

• Single-guide RNAs (sgRNAs) and technical replicates that did not pass the quality 
control were removed based on the quality report files available on the DepMap web 
portal (i.e., [Lib]GuideMap.csv file for the sgRNAs quality, where [Lib] stands for the 
library used to generate a given dataset (“Avana” or “KY”); AchillesSequenceQCRe-

https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
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port.csv file for the quality of the technical replicates of both datasets). Low-quality 
sgRNAs were defined as those having multiple alignments to the same gene or multi-
ple genes, no alignments, only intergenic alignments, or being the only passing guide 
targeting a gene.

Low-quality replicates were defined as those having less than 185 mean read counts 
per guide, a Pearson coefficient < 0.41 with at least one other replicate when looking at 
genes with the highest variance in gene effect across cell lines, and a null-normalized 
median difference (NNMD) from the log fold change (LFC) > -1.25. NNMD is computed 
as follows:

where ẼG and NẼG are the median LFC values of the essential and non-essential refer-
ence gene sets, and  MADNEG is the median absolute deviation of the non-essential ref-
erence genes as computed in [46]. This yielded 971 cell lines and 17,787 for the Project 
Achilles dataset and 317 cell lines and 17,349 genes for the Project Score dataset.

• For raw read counts, NAs were replaced with 0.

Considering each method has different input requirements, we derived the corrected 
datasets as follows: we ran MAGeCK MLE directly on the raw read counts as it required 
to implement a design matrix contrasting for each cell line the technical replicates post-
library transduction against the reference plasmid DNA counts. CRISPRcleanR and 
Crispy were run on the sgRNA-level raw LFCs, applying the following steps:

LFCs were computed by scaling the raw read counts post-library transduction by the 
reference plasmid DNA counts for each replicate.
LFC scores per guide were averaged across high-quality replicates to obtain sgRNA-
level LFCs for each cell line.

Geometric, LDO and GAM methods were applied to gene-level LFCs and the datasets 
were further processed as follows:

• Raw gene-level LFCs were obtained by taking the median value among the same 
gene-targeting sgRNAs per screened cell line.

Chronos, instead, needs to be trained on the dependency data to optimize the param-
eters of its mechanistic model of cell population dynamics. This includes the removal of 
clonal outgrowths and the inference of uncorrected gene effects [39]. To avoid retraining 
the model as the results were already available, we downloaded the inferred gene effects 
from the DepMap portal (ScreenGeneEffectUncorrected.csv, https:// depmap. org/ por-
tal/ downl oad/ all/). Then, we applied for each dataset the Chronos correction strategy for 
copy number bias.

Finally, we intersected the corrected dependency datasets considering only cell lines 
and genes in common for the quantification of biases and data distortion analyses. This 
yielded 956 cell lines and 17,596 genes for Project Achilles and 249 cell lines and 17,161 
genes for Project Score.

NNMD =
EG−NEG

MADNEG

https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
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Arm-corrected Chronos

To correct the proximity bias post-Chronos processing, the median gene effect of each 
chromosome arm is aligned to be the same across all screens. This involves finding the 
median gene effect per screen ms for all genes g in a given chromosome arm within a cell 
line. The difference between ms and the median med(ms) across all cell lines is then sub-
tracted from the gene effect of all genes on the arm eg, yielding the corrected gene effect 
for that arm as follows:

This correction is applied to all chromosome arms with > 5 genes.

In-house implementation of the geometric method

As the code for the Geometric method has not been made publicly available yet, we 
implemented our in-house version of this method following the description provided 
in Lazar et al. [35] and considered as unexpressed those genes with a transcript per mil-
lion (TPM) < 1 for a given cell line in the DepMap release 23Q2 [45], using basal RNAseq 
bulk profiles of the same cell line available on the DepMap portal (https:// depmap. org/), 
preprocessed following the DepMap Omics processing pipeline available at: https:// 
github. com/ broad insti tute/ depmap_ omics.

Batch-wise execution of MAGeCK MLE

Unlike other tested methods, MAGeCK MLE’s execution on the entire Project Achil-
les and Score datasets required prohibitive amounts of memory and time, making it 
impractical to execute the correction in a single run. For example, when tested on the 
entire Project Achilles dataset on the institute’s in-house high-performance computing 
cluster, allocating 300 GB of memory and the maximum computing time available (i.e., 
2 weeks) the job still failed due to an out-of-memory issue.

To take full advantage of MAGeCK MLE’s capabilities to process and correct CRISPR-
Cas9 knock-out screens in a pooled fashion, we devised a practical solution by running 
the method in batches of screens. First, we explored the impact of this batching strategy 
on result stability and accuracy as follows: we randomly split the dataset (i.e., Project 
Achilles or Project Score) into batches of different sizes (i.e., 5, 10, 20 and 50 cell lines) at 
a fixed seed and combined the corrected batches back into a final dataset. We then com-
puted the pointwise difference between MAGeCK beta scores obtained using batches of 
different sizes (Additional file 1: Fig. S1AB). This is defined as the difference between the 
same cell-gene coordinates across datasets of different batch sizes. We observed that the 
bulk of the distribution was very narrow and centered at around 0 with the differences 
between MAGeCK beta scores shrinking across datasets as we increased the batch size. 
In particular, when binning these pointwise differences between the respective datasets 
processed in batches of 20 and 50 cell lines, more than 99.9% were less than 0.1, consid-
ering beta scores have a range approximately between − 7 and 9 for the datasets under 
consideration (Additional file 1: Fig. S1CD). We then focused on a batch size of 50 as it 
was the largest amount of cell lines possible to process without out-of-memory issues.

Finally, to test MAGeCK robustness, we derived 100 corrected datasets, processed 
in batches of 50 cell lines, using different seed values each time and computed the 

ecg = eg − (ms −med(ms))

https://depmap.org/
https://github.com/broadinstitute/depmap_omics
https://github.com/broadinstitute/depmap_omics
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pointwise standard deviation (Additional file 1: Fig. S1EF). This is defined as taking each 
time the same cell-gene coordinates across seeded datasets and computing the standard 
deviation on the resulting vector. The vast majority of data points show great stability 
and very low standard deviation. Thus, these results motivated us to process the datasets 
in batches of 50 cell lines for MAGeCK MLE.

Quantification of copy number bias 

For each dataset, we assessed each method’s capability to correct for copy number 
(CN) bias by computing the area under the recall curve (AURC) of the amplified non-
expressed gene sets. These genes were defined as those in the top 1% highest CN score 
which are not expressed (TPM < 1) for a given cell line. Remaining non expressed genes 
were used as outgroup. The AURC is independent of a fixed LFC threshold. For each 
rank position k, we derived the corresponding threshold-specific recall. Finally, we 
applied the trapz function from the pracma R package (v2.4.2) on the set of recall scores 
to obtain the AURC.

In addition, we grouped gene-level LFCs by their PICNIC absolute CN score [47] from 
the GDSC resource [48]. Then, for each method, we computed the average residual dif-
ference (ARD) across CN-binned LFCs as follows:

where x̃i and si are the median score and the standard deviation derived from the LFC 
distribution binned for ith absolute CN value of a given method, respectively. C is the 
maximum absolute CN value. This metric indicates the goodness of a method in center-
ing the LFC distributions towards 0.

Quantification of proximity bias 

For each method and dataset, after correction, we computed the pairwise cosine similar-
ity between gene targets and ordered them by chromosome position along the human 
genome. The results were then quantile normalized in order to have a mean of 0 and a 
standard deviation of 0.2, following the same procedure by [35]. To test the proximity 
bias according to TP53 status, we first split the datasets in TP53 wild-type and mutated 
cell lines and repeated the aforementioned pipeline on each block.

Next, we utilized the Brunner-Munzel test statistic [51] to assess the presence of prox-
imity bias on a genome-wide scale. For each chromosome arm, we compared the intra-
arm cosine similarity distribution, where both genes belong to the same arm, and the 
inter-arm distribution, where only one of the two genes belongs to the arm under con-
sideration while the other belongs to any other chromosome arm.

Recall of common essential genes

We considered two sets of a priori known common essential and non-essential genes 
as positive and negative classes to estimate the impact of each method’s correction 
on the data quality. These sets were downloaded from the DepMap portal (https:// 
depmap. org/ portal/ downl oad/ all/): files AchillesCommonEssentialControls.csv, 
resulting from the intersection of the Hart and Blomen essential genes [5, 59], and 

ARD =

1

C
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https://depmap.org/portal/download/all/
https://depmap.org/portal/download/all/
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AchillesNonessentialControls.csv, containing the Hart reference non-essentials [58]. For 
each dataset, algorithm, and cell line, we computed the area under the receiver oper-
ating characteristic (AUROC) and the area under the precision-recall curve (AUPRC) 
using the ccr.ROC_Curve and ccr.PrRc_Curve functions in the CRISPRcleanR R package 
(https:// github. com/ franc escojm/ CRISP Rclea nR) [34, 62]. Final sets of positive and neg-
ative controls were determined by intersecting the common essential/non-essential gene 
sets with the genes screened in the dataset under consideration (either Project Achilles 
or Project Score) across all algorithms. In addition, we calculated the cell-wise NNMD 
between the two gene sets as the difference in the median LFC of positive and negative 
controls, normalized by the median absolute deviation of the negative controls.

Dependency biomarkers’ analysis

We downloaded a comprehensive table of annotated cancer genetic variants in can-
cer from the OncoKB database (https:// www. oncokb. org/ cance rGenes, 12/21/2023 as 
last update). To ensure the relevance of the data, we focused on genes marked as hav-
ing gain-of-function or switch-of-function alterations (i.e., annotated genes with a clear 
oncogenic role).

First, we scaled the genome-wide essentiality profiles for each method and data-
set tested so that the median LFC scores of common essential and non-essential genes 
were − 1 and 0, respectively, across cell lines, allowing cross-screen comparability.

For each specific oncogene, we utilized somatic mutation and fusion calls from the 
DepMap portal release 23Q2: oncogenes found mutated in a given cell line were deemed 
as positive controls, while those that were found wild-type and not expressed (TPM < 1) 
were considered as negative controls. In addition, only oncogenes with at least one pos-
itive and one negative control were retained. Finally, for each method and dataset we 
calculated the AUROC curve on the pooled oncogene LFC scores using the ccr.ROC_
Curve function in the CRISPRcleanR R package (https:// github. com/ franc escojm/ CRISP 
Rclea nR) [34, 62] to estimate each method’s ability to recall oncogenic addictions.

Recall of predefined gene sets of essential/non-essential genes

We considered three predefined sets of genes: common essential and non-essential 
genes derived from the DepMap portal and additional essential genes derived from the 
Molecular Signature Database (MsigDB) (https:// www. gsea- msigdb. org/ gsea/ msigdb) 
[60]. To generate MsigDB sets of prior essential genes, we downloaded gene sets from 
[46], originally derived from MSigDB (v7.2). The gene sets used from KEGG were 
KEGG_DNA_REPLICATION, KEGG_RNA_POLYMERASE, KEGG_SPLICEOSOME, 
KEGG_RIBOSOME, and KEGG_PROTEASOME. For the histone gene set, we com-
bined two Reactome gene sets, namely REACTOME_HATS_ACETYLATE_HISTONES 
and REACTOME_HDACS_DEACETYLATE_HISTONES, as well as the curated his-
tones gene set from [7].

For these gene sets, we computed the recall at 5% false discovery rate (FDR) across 
methods and datasets. Considering an essentiality profile, we ranked the LFC scores of 
the reference common essential (E) and non-essential (N) genes in increasing order. For 
each ranked position k, a set of predicted essential genes is found:

https://github.com/francescojm/CRISPRcleanR
https://www.oncokb.org/cancerGenes
https://github.com/francescojm/CRISPRcleanR
https://github.com/francescojm/CRISPRcleanR
https://www.gsea-msigdb.org/gsea/msigdb
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where rs indicates the rank position of s, and the corresponding positive predictive value 
(PPV) is computed as follows:

We then determined the lowest threshold of LFC (LFC*) in rank position k* with 
PPVk ≥ 0.95. This is equivalent to an FDR ≤ 0.05. The LFC* threshold corresponds to 
rs = k*. All genes with an LFC score ≤ LFC* were deemed essential at 5% FDR. Given 
one of the three gene sets G (i.e., common essential, MsigDB essential or non-essen-
tial), the recall at 5% FDR is defined as:

where G* is the subset of genes in G below the LFC* threshold.

Systematic association between cancer functional events and gene dependencies

For each method, dataset, CFE and lineage, we systematically performed a two-sided 
unpaired t-test to assess the differential essentiality of each strongly selective depend-
ency (SSD) against the status (presence/absence) of predefined cancer functional 
events (i.e., somatic mutations, recurrently aberrant copy number segments and 
hypermethylated sites) [48]. These SSDs were identified using a likelihood ratio test as 
described in [28, 46]. The null hypothesis assumed equal means in the compared pop-
ulations, while the alternative hypothesis suggested an association between the tested 
CFE/gene-dependency pair. To account for multiple hypothesis testing, we corrected 
the obtained p-values using the Benjamini–Hochberg method. The associations with 
an FDR of less than 5% were deemed significant.
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