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Abstract 

Background: Computational variant effect predictors offer a scalable and increasingly 
reliable means of interpreting human genetic variation, but concerns of circularity 
and bias have limited previous methods for evaluating and comparing predictors. Pop-
ulation-level cohorts of genotyped and phenotyped participants that have not been 
used in predictor training can facilitate an unbiased benchmarking of available meth-
ods. Using a curated set of human gene-trait associations with a reported rare-variant 
burden association, we evaluate the correlations of 24 computational variant effect 
predictors with associated human traits in the UK Biobank and All of Us cohorts.

Results: AlphaMissense outperformed all other predictors in inferring human traits 
based on rare missense variants in UK Biobank and All of Us participants. The overall 
rankings of computational variant effect predictors in these two cohorts showed a sig-
nificant positive correlation.

Conclusion: We describe a method to assess computational variant effect predic-
tors that sidesteps the limitations of previous evaluations. This approach is generaliz-
able to future predictors and could continue to inform predictor choice for personal 
and clinical genetics.

Keywords: Variant effect predictors, Rare missense variation, Benchmarking, Personal 
genomics, UK Biobank, All of Us

Background
The increasing accessibility of genetic sequencing has ushered in a new era of personal 
and clinical genomics. However, a central challenge remains: the phenotypic impact 
of genetic variation at the organismal level cannot be reliably inferred from sequence. 
Given both the pace and promise of human genome sequencing, the need for scalable 
evidence to aid in variant interpretation is critical. While experimental functional assess-
ments can provide evidence of variant effects [51], these measurements remain sparse, 
with a comprehensive atlas of experimental data being far from complete. As a ready 
alternative, computational variant effect predictors (hereafter referred to as predictors) 
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[24, 31] offer an increasingly reliable and already nearly comprehensive means of inter-
preting human genetic variation—though it remains uncertain which predictors are best 
suited to this task.

Although many efforts to compare predictor performance have been reported, confi-
dence in their results has been persistently limited by concerns of circularity and bias. 
More specifically, where training data is skewed towards pathogenic or benign variants 
(e.g., within proteins or protein families) or where training data is later re-used (either 
directly or indirectly) in evaluation, performance estimates for a given predictor may be 
artificially inflated depending on the benchmark set of choice [16, 31]. Given the breadth 
of training data used by the many available predictors, few objective ground truth sets 
remain.

In an initial effort to limit concerns of circularity, Livesey and Marsh benchmarked 
predictor performance against large-scale sequence-function data in the form of ‘vari-
ant effect maps’ [30]. Unfortunately, such maps are available for less than 1% of human 
genes [11] and, in some instances, have already been used in model training (e.g., Deep-
Sequence and VARITY) [30, 42, 58]. More generally, benchmarking strategies have been 
primarily based on either clinically classified variants, which (in addition to having been 
used in training sets) may in themselves be biased, or on biophysical evidence, which, 
importantly, may not correspond to human phenotypic endpoints.

To facilitate a broader and unbiased benchmarking of computational variant effect 
predictors, we describe the use of population-level cohorts of genotyped and phe-
notyped participants (that have not been used in predictor training). We evaluate the 
performance of 24 computational variant effect predictors against a set of previously 
reported gene-trait associations using exome-sequenced UK Biobank participants (UK 
Biobank) [4] and confirm our findings using an independent whole-genome sequenced 
human cohort from All of Us [2].

Results
Evaluating the performance of computational variant effect predictors in the UK Biobank

To assess the correspondence of predicted functional scores with human phenotypes 
(Fig. 1), we 1) assembled 140 gene-trait combinations previously reported in rare-variant 
burden association studies in the UK Biobank (Additional file 1: Table S1) [8, 10, 22, 54], 
2) extracted rare missense variants from the corresponding 99 genes; and 3) collected 
predicted functional scores from 24 computational variant effect predictors (Additional 
file 2: Table S2) [1, 3, 5–7, 12, 15, 19–21, 26, 33–35, 38, 39, 43–46, 49, 55, 58].

Of the 99 trait-associated genes, 73 were associated with only one trait and the remain-
ing 26 were associated with multiple traits. For instance, LDLR [17], which encodes the 
low-density lipoprotein (LDL) receptor, was associated with 5 traits, each relating to cir-
culating LDL levels, statin use, or atherosclerotic heart disease (UK Biobank field IDs 
30,780, 20,002–1473, 20,003–1141146234, 6153–1 and 41270-I25).

We extracted missense variants for the 99 trait-associated genes from the UK Biobank 
whole-exome release (UK Biobank field ID 23157). Since clinical and experimental evi-
dence is especially sparse for rare variants, we restricted our benchmarking effort to var-
iants with a minor allele frequency (MAF) < 0.1%. In this range, predictor performance is 
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especially critical [47] given that rare variants are more likely than common variants to 
have large phenotypic effects [9].

We obtained predicted functional scores from the 24 predictors, finding that each 
provided scores for more than 90% of the missense variants in the UK Biobank set 
(Additional file  3: Table  S3). In evaluating performance for individual genes, we only 
considered predictors making 10 or more predictions for a given gene; for 84/99 genes, 
this criterion was met by all 24 predictors (Additional file 4: Table S5). We had initially 
intended to evaluate EVE [14] but because it only provided predictions for 41% of the 
variants in our set and provided no scores at all for more than half of the 99 genes, it was 
not included.

Fig. 1 Schematic overview of predictor benchmarking in population-based cohorts based on human 
gene-trait associations. A Participant-level genotypes and phenotypes were extracted from the UK 
Biobank and All of Us cohorts for the corresponding sets of gene-trait combinations, and (B) predicted 
functional scores were collected for a set of 24 computational variant effect predictors. C In order to 
assess predictor performance, the area under the balanced precision-recall curve (AUBPRC) and Pearson 
correlation coefficient (PCC) was measured for binary and quantitative traits, respectively. To estimate the 
uncertainty in these measurements, participants were resampled with replacement and performance 
measures recalculated for each resampled set. D For each gene-trait combination, predictors were 
ranked by mean performance (AUBPRC or PCC), and a false discovery rate (FDR) was calculated to assess 
whether performance differences were statistically significant. E To summarize comparisons across all 
gene-trait combinations, we (left) summed the number of combinations for which a predictor was either 
best performing or tied (FDR ≥ 10%) for best, and (right) compared the overall difference in performance 
measures between predictor pairs across all gene-trait combinations
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We measured predictor performance using one of  two methods, depending on 
whether a trait was binary or quantitative. For gene-trait combinations for which the 
trait was binary [including categorical traits that could be treated as binary (e.g., self-
reported medication use; UK Biobank field ID 6153)], we evaluated the area under the 
balanced precision-recall curve (AUBPRC). Here, precision is the fraction of positive 
predictions (i.e., predictions that a given participant has a given trait) that are correct, 
and recall is the fraction of participants with the given trait that were detected. More 
specifically, because the precision measure is affected by the prevalence of positive 
events, we evaluated the balanced precision—defined as the precision when the prior 
probability of a positive event is 50% [58]. Where participants carried multiple mis-
sense variants in a given gene, we took the sum of predicted scores, an approach that 
models variant effects as though they are additive. We note that, because only ~ 1% of 
participants carried multiple variants in a given gene, more sophisticated models would 
be unlikely to alter our results. For quantitative traits, we assessed the correspondence 
between predicted variant impact and trait value using the Pearson Correlation Coef-
ficient (PCC). Where multiple participants carried the same variant for a given trait, 
quantitative values were averaged.

To estimate the uncertainty in each of these performance measures, we carried out 
a 10  k-iteration bootstrap resampling, in which participants were re-sampled with 
replacement and performance measures recalculated for each resampled set. For each 
gene-trait combination and every predictor, this yielded a distribution of performance 
measures from which we extracted the mean and 95% confidence interval (CI).

To assess whether performance differences between predictors were statistically sig-
nificant, we calculated a p-value for every pairwise combination of predictors for each 
of the 140 gene-trait combinations. Here, for each predictor pair (e.g., predictors a and 
b), our empirical p-value is the fraction of resampled participant sets in which predic-
tor a is outperformed by predictor b. This generated a distribution of p-values, one 
for every pairwise comparison, from which we calculated Storey’s q-values to measure 
the false discovery rate (FDR) [48]. We consider a given predictor to significantly out-
perform another if the comparison yielded an FDR (i.e., a q-value) < 10%. To illustrate 
this approach, we show the AUBPRC and PCC values for all 24 predictors for a binary 
phenotype (use of the cholesterol-lowering medication atorvastatin) and a quantitative 
phenotype (blood LDL-C level) associated with LDLR (Fig. 2). For both gene-trait com-
binations, AlphaMissense was the top-performing predictor; however, it was statistically 
indistinguishable (FDR ≥ 10%) from ESM-1v, VARITY, and MPC in inferring atorvasta-
tin use, and indistinguishable from VARITY in inferring LDL-C.

To summarize similar comparisons across all 140 gene-trait combinations, we summed 
the number of combinations for which a predictor was either best performing (accord-
ing to mean AUBPRC or PCC) or was tied (i.e., yielded an FDR ≥ 10% in the comparison) 
with the numerically best-performing predictor. To assess the significance of the overall 
difference in performance measures between predictor pairs, we performed a two-tailed 
Wilcoxon signed-rank test comparing the distributions of mean performance measures 
across all gene-trait combinations for each pair of predictors. From this test statistic, we 
extracted p-values and again calculated Storey’s q-values to estimate the false discovery 
rate, judging performance to be statistically different at an FDR < 10%. Where predictors 
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were tied (i.e., were best or tied for best in the same number of gene-trait combinations), 
ties were broken first based on the number of pairwise comparisons for which a given 
predictor statistically outperformed another across all gene-trait combinations; and sec-
ond, where necessary, based on the number of comparisons for which a given predictor 
yielded lower q-values than the predictor with which it was tied. Thus, we assessed both 
the number of gene-trait combinations in which each predictor was either best or tied 
for best and also, for each pair of predictors, directly assessed differences in performance 
across all gene-trait combinations.

In benchmarking all 24 predictors for each of the 140 gene-trait combinations in the 
UK Biobank cohort, we found AlphaMissense to be either best (or tied for best) in 132 
(out of 140) gene-trait combinations, exceeding all other predictors (Fig.  3A). Moreo-
ver, the pairwise comparison between AlphaMissense and each other predictor, which 
evaluated the difference in the distribution of performance measures across all gene-
trait combinations, found that AlphaMissense yielded significantly higher performance 
than each other predictor, with the exception of VARITY, for which the FDR was > 10% 
(q-value = 0.16) (Fig. 3B).

Evaluating the performance of computational variant effect predictors in All of Us

We next sought to benchmark predictors in the independent whole-genome sequenced 
and phenotyped All of Us cohort of 245,400 participants. Of the 140 gene-trait combina-
tions in our UK Biobank analysis, 116 had matching phenotypes in All of Us (Additional 

Fig. 2 The performance of 24 computational variant effect predictors in predicting two cholesterol-related 
phenotypes based on the presence of rare LDLR missense variants. Performance comparisons measured 
the ability of predictors to infer (A) whether participants were taking the cholesterol-lowering medication 
atorvastatin (AUBPRC) and (B) circulating LDL-C levels (PCC) based on participant LDLR genotype. Mean 
performance measures were derived from a 10 k-iteration bootstrap resampling, error bars indicate the 95th 
percentile confidence interval. In each ranking, predictors that were statistically indistinguishable (FDR ≥ 10%) 
from the top predictor (AlphaMissense) are indicated
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file  1: Table  S1). We extracted missense variants (MAF < 0.1%) for these genes and 
assembled functional scores from the same 24 predictors evaluated above. Each predic-
tor provided scores for more than 90% of missense variants in the All of Us set (Addi-
tional file 3: Table S4), and 74/87 genes had 10 or more predictions from all 24 predictors 
(Additional file 4: Table S5).

We measured predictor performance in All of Us for each gene-trait combination as 
above (i.e., AUBPRC or PCC) and recalculated performance measures for each of the 
10 k resampled sets of participants. From this, we again determined the number of gene-
trait combinations for which each predictor performed best or was statistically indistin-
guishable from the best predictor, and assessed the statistical significance of quantitative 

Fig. 3 Predictor rankings across all gene-trait combinations in the UK Biobank (top) and All of Us (bottom) 
cohorts. A and C The number of gene-trait combinations for which a given predictor was either best 
performing (in terms of mean AUBPRC or PCC) or tied (FDR ≥ 10%) with the best-performing predictor in 
the UK Biobank and All of Us cohorts, respectively. In the UK Biobank cohort, 140 gene-trait combinations 
were considered; from this, 116 gene-trait combinations were matched in the All of Us cohort. B and D 
The overall difference in performance measures between predictor pairs was assessed using a two-tailed 
Wilcoxon signed-rank test comparing the distributions of mean performance measures across all gene-trait 
combinations for each pair; the predictors in a given pair are considered statistically different at an 
FDR < 10% (indicated in blue-grey). Where predictors were tied in the overall ranking (i.e., were best or tied 
for best in the same number of gene-trait combinations) ties were broken first based on the number of 
pairwise comparisons for which a given predictor statistically outperformed another across all gene-trait 
combinations; and second, where necessary, based on the number of comparisons for which a given 
predictor yielded lower q-values than the predictor with which it was tied. The overall ranking of predictors 
in the UK Biobank and All of Us cohorts showed significant positive correlation (Kendall’s Tau = 0.75; 
p-value = 1 ×  10–8)



Page 7 of 14Tabet et al. Genome Biology          (2024) 25:172  

differences in performance across all gene-trait combinations as was done for the UK 
Biobank cohort.

In benchmarking all 24 predictors for each of the 116 gene-trait combinations in All 
of Us, we found AlphaMissense and REVEL to be either the best (or tied for best) in 
110 (out of 116) gene-trait combinations, which was more than every other predictor 
(Fig.  3C). Ties were again broken, as described above. In comparing the quantitative 
performance of predictors across all gene-trait combinations, we found that AlphaMis-
sense statistically outperformed all predictors except REVEL (q-value = 0.99), VARITY 
(q-value = 0.22), Esm1b (q-value = 0.41) and Esm-1v (q-value = 0.21) for which FDRs 
exceeded our cutoff of 10% (Fig.  3D). Although AlphaMissense and REVEL were tied 
(i.e., both were best or tied for best in 110/116 gene-trait combinations), AlphaMissense 
was statistically better than 19 of the 23 other predictors, whereas REVEL only statisti-
cally outperformed 16 out of the 23 other predictors. Thus, we again deem AlphaMis-
sense to be the top-performing predictor. The overall ranking of computational variant 
effect predictors in the UK Biobank and All of Us cohorts showed significant positive 
correlation (Kendall’s Tau = 0.75; p-value = 1 ×  10–8), with AlphaMissense being the top 
performer in both rankings. Overall rankings were also similar among lesser-performing 
predictors, with the bottom 7 predictors in the UK Biobank set all  falling amongst the 
bottom 8 predictors in All of Us. Thus, the evaluation of predictors in the independent 
All of Us cohort yielded results consistent with those in UK Biobank.

Discussion
Here, we evaluate the performance of 24 computational variant effect predictors using 
a set of rare-variant burden associated gene-trait combinations in the UK Biobank and 
All of Us cohorts. Because none of the computational predictors we assessed had been 
trained on data from either of these sources, our evaluation avoids the issues of perfor-
mance inflation that can arise when a predictor is benchmarked against an evaluation 
set on which it has previously been trained (i.e., circularity). By assessing each predictor 
across a range of human genes and traits, we were able to determine which predictor 
performed best overall in a comprehensive ranking.

Notably, the top-performing predictor(s) in the UK Biobank and All of Us cohorts were 
recently-developed unsupervised predictors (i.e., AlphaMissense, ESM1b, and ESM-
1v), which substantially outperformed previous unsupervised methods. Among the top 
predictors, several were meta-predictors (i.e., MutPred2, REVEL, and VARITY), which 
integrate the outputs of other predictors as features in their own predictions. It can be 
particularly challenging to establish ground truth sets for meta-predictors that have not 
been used in training either for the predictor itself or in training for any of the predic-
tors used as features. That said, the predictors used as input for VARITY were limited to 
unsupervised methods (i.e., predictors that made no direct use of clinical annotations).

One application where computational variant effect predictors are particularly useful 
is in improving the detection of gene-trait associations in burden association studies, 
which  seek differences in the observed frequency (i.e., burden) of genetic variation at 
particular genetic loci between people with (or without) a given trait [28, 36]. Predictors 
can improve the correlation between traits and variant burden by filtering out milder or 
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neutral variants that are less likely to affect a given trait. By benchmarking predictors 
against population phenotypes, our study facilitates an informed selection of top predic-
tors for this task, the use of which should improve both the power and accuracy of future 
burden association tests.

We acknowledge limitations of our study. First, we note that various predictors had 
previously been employed in the original rare-variant burden analyses that led us to 
select the 140 gene-trait combinations for the evaluation. Indeed, this might tend to 
advantage the predictors used in the original identification of the 140 gene-trait combi-
nations and may well have affected the relative performance of some pairs of predictors. 
However, most of the top-performing predictors (i.e., AlphaMissense, ESM1b, ESM-1v, 
MutPred2, and VARITY) had not been used in any of the rare-variant burden scans on 
which we relied to choose the 140 gene-trait combinations.

Second, we did not evaluate all known published predictors, mainly due to the sheer 
number of available methods. We were, however, able to assess many widely used pre-
dictors and several recent predictors reported to have superior performance. Notably 
absent from our study is the predictor EVE, which was excluded because it provided too 
few scores to be assessed fairly.

Third, we did not consider the correlation between traits. For instance, gene-trait com-
binations for the gene LDLR included multiple interrelated traits, and so our analysis 
will have been influenced by some phenotypic endpoints more than others. That said, no 
one gene or trait disproportionately dominated the set of 140 gene-trait combinations: 
body mass index was the most recurrent trait (involved in 23 gene-trait combinations) 
and LDLR was the most recurrent gene (involved in 5 gene-trait combinations).

It may cause concern for some that many UK Biobank and All of Us participants car-
ried variants that will have been seen in training by many of the predictors in our assess-
ment. However, it is unlikely that many of these variants would have been deposited 
or annotated in ClinVar or the Human Gene Mutation Database (HGMD) on the basis 
of having been observed in either of these population cohorts, especially given that we 
excluded common variants. Taken together with the fact that the traits of UK Biobank 
and All of Us participants arose independently from knowledge of pre-existing variant 
annotations, the ability of a predictor to infer traits in these cohorts cannot be attributed 
to overfitting.

It is very likely that (with the addition of more nuance to our analysis) computational 
predictors can infer human traits with greater accuracy than we observed here. For 
example, the quantitative traits examined in our study were not adjusted for the known 
dependencies of traits on other variables (e.g., we might have corrected LDL choles-
terol levels by age and sex [25]). Using trait values that have been adjusted for additional 
dependencies might better isolate those aspects of a trait that are attributable to patient 
genotype and therefore show improved correlation with predicted scores. However, 
restricting to the genetically determined component of traits seems unlikely a priori to 
favour one predictor over another, so we argue that the simpler analysis described here 
meets the goal of assessing predictors relative to one another.

Importantly, the All of Us dataset allowed us to benchmark performance in a racially 
and ethnically diverse population. While the UK Biobank cohort has strong demo-
graphic and ethnic biases (> 90% European ancestry) [50], more than 50% of participants 
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in the All of Us cohort identify as racial and ethnic minorities. Assessing predictor per-
formance in a diverse population is of critical importance if variant effect predictors are 
to be used to guide fundamental research (e.g., by empowering burden scanning) and 
as evidence in clinical variant classification [41]. That AlphaMissense was the top-per-
forming predictor in both cohorts and that overall predictor rankings were similar will 
facilitate predictor choice in applications involving diverse populations. Future bench-
marking efforts should continue to be extended in increasingly diverse population-level 
cohorts as they become available.

While the methodology we describe here was used to compare the performance of 
computational predictors to one another, we note that this approach could also be used 
to evaluate the growing body of experimental assay data used to infer variant effects 
(e.g., variant effect maps) [13, 51, 57], both to benchmark experimental evidence from 
multiple sources and to compare the relative performance of experimental and com-
putational methods for inferring human traits. Finally, we note that each predictor was 
evaluated based only on  its variant rankings,  and that we  did not evaluate the  choice 
of score thresholds (e.g., from AlphaMissense or any other predictor) for the purpose of 
clinical variant classification.

Conclusion
Computational variant effect predictors offer an increasingly reliable means of inter-
preting human genetic variation, but previous methods to evaluate and compare per-
formance have been limited by concerns of circularity and bias. Our method to assess 
predictor performance, based on population-level cohorts of genotyped and phenotyped 
participants, sidesteps previous limitations. We applied this method to benchmark 24 
computational variant effect predictors based on their ability to infer human traits in 
the UK Biobank and All of Us cohorts, finding AlphaMissense to be the top performer in 
each. The approach we outline here is generalizable to future predictors and can, there-
fore, continue to inform predictor choice for personal and clinical genetics.

Methods
Sequenced cohorts

This study was conducted with whole-exome sequencing data from the UK Biobank 
exome release (469,779 participants, UK Biobank field ID 23157) [4]. Variants were 
retrieved from the OQFE version [27, 40, 50] of the whole-exome VCF files (field ID 
23157). The transfer of human data was approved and overseen by the UK Biobank Eth-
ics Advisory Committee (project ID 51135). Participants who withdrew from the UK 
Biobank study (as of April 25th, 2023) were excluded from our sequenced cohort. For 
the remaining participants, the canonical isoform of each gene examined was defined 
according to the Ensembl database (GRCh38) [18], with exonic coding regions defined 
according to the CCDS database [37]. The corresponding coding variants were extracted 
from raw VCF files, with filtering adapted from the UK Biobank [50]: Phred quality 
score > 20, individual missingness < 10%, minimum read coverage depth of 7, and car-
ried by at least one participant passed the allele balance threshold of 0.15. Variants 
were mapped to canonical transcripts and this set was further restricted to rare variants 
(MAF < 0.1%) in the gnomAD [23] and the UK Biobank cohorts.
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Our orthogonal validation was conducted with short-read whole-genome sequencing 
data from the All of Us Controlled Tier Dataset v7 (245,400 participants). Post-sequenc-
ing, variant and sample QC was performed by the All of Us Data and Research Center 
[2]. The canonical isoform of each gene examined was defined according to the Ensembl 
database (GRCh38) [18]. The corresponding coding variants were extracted from Hail 
MatrixTables (version 0.2.107, Hail Team) and filtered for Phred quality score > 20, indi-
vidual missingness < 10%, minimum read coverage depth of 7, and presence in at least 
one participant passed the allele balance threshold of 0.20. This set was further restricted 
to variants that were rare (MAF < 0.1%) in both the gnomAD v2 [23] and the All of Us 
cohorts.

Phenotype processing

Phenotypes were extracted for all UK Biobank participants based on field IDs (listed 
in Additional file 1: Table S1). For a given phenotype, where participants had multiple 
measurements from repeat assessments, only measurements from the initial assessment 
were retained. All categorical phenotypes were treated as binary. Phenotypes for which 
less than 10 participants had a given trait, or for which there were less than 10 measure-
ments for a given trait, in the case of quantitative phenotypes, were excluded from fur-
ther analysis.

Phenotypes in the All of Us cohort were selected to match those from the UK Biobank 
set. Of the 55 UK Biobank traits, 43 had an equivalent measurement or set of measure-
ments in All of Us (Additional file 1: Table S1) which resulted in 127 matching gene-trait 
combinations. Of these, a further 11 gene-trait combinations failed to pass the minimum 
participant cutoff of 10, and so were excluded. In all, 116 gene-trait combinations were 
matched between the UK Biobank and All of Us sets, comprising 87 genes and 38 traits. 
For each quantitative trait, units were harmonized and non-physiologic values were 
removed.

Variant effect predictors

We considered 24 computational variant effect predictors (Additional file 2: Table S2). 
Precomputed scores were available for most predictors, many of which were retrieved 
from dbNSFP v4 (accessed May 2023) [29]. Pre-computed ESM1v scores, calculated as 
in [32], were kindly provided by B. Livesey and J. Marsh. Precomputed scores for CADD 
v1.7 [44] and MutPred2 [35] were kindly provided by T. Maass and M. Kircher and by 
V. Pejaver and his group, respectively. A predictor was only included in a comparison 
if it provided scores for at least 10 missense variants for a given gene. For predictors 
that assign low scores to predicted damaging variants (i.e., ESM1b, ESM-1v, FATHMM, 
LRT, PROVEAN and SIFT) scores were negated. All 24 predictors provided scores for 
more than 90% of the missense variants in both the UK Biobank and All of Us cohorts. 
All 24 predictors provided 10 or more predictions for 84/99 and 74/87 genes in the UK 
Biobank and All of Us sets, respectively.

Predictor benchmarking

Predictor comparisons were conducted separately for each gene-trait combination, using 
different methods depending on whether the trait was binary or quantitative. For binary 
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traits, predictor scores were rescaled to reduce the impact of outliers: we set a floor and 
ceiling at the 5th and 95th percentiles and normalized scores (0–1), with 0 correspond-
ing to neutral variants and 1 corresponding to functionally damaging variants. We then 
computed a participant-centric variant score under an additive model (i.e., two missense 
variants with a score of 0.5 aggregate to a participant-centric score of 1). Predictor per-
formance was assessed by measuring the area under the balanced precision-recall curve 
(AUBPRC). At a given score threshold (s) precision is defined as TPPP ; where true positives 
(TP) are participants with a variant score ≥ s and a given trait, and predicted positives 
(PP) are participants with variant scores ≥ s . Correspondingly, recall is defined as TPP  ; where 
positives (P) are participants with a given trait. Because precision is affected by the preva-
lence of positive events, we evaluated the balanced precision (i.e., the precision expected in 
a test set with an equal number of positive and negative entries) as described in Wu et al. 
[58]. The AUBPRC was calculated using the yogiroc R package [56]. For quantitative traits, 
where multiple participants harboured the same variant, trait values were averaged across 
all carriers and the pearson correlation coefficient (PCC) was measured. Here, each variant 
has one averaged trait value and one predicted variant effect score for a given predictor.

To estimate uncertainty in each of these measures, we carried out a 10  k-iteration 
bootstrap resampling (random sampling of participants with replacement) which gen-
erated a distribution of AUBPRC or PCC values for each predictor and each gene-trait 
combination. For quantitative traits, participants were resampled and variant-level mean 
trait values were recalculated for each sample. From this, we empirically determined the 
mean AUBPRC or PCC and the 95% CI of the distribution. To give equal weight to posi-
tive and negative correlations of similar strength, we used  PCC2 instead of PCC.

For each of the 140 gene-trait combinations, we carried out a pairwise comparison of 
variant effect predictors based on mean performance values and calculated an empirical 
p-value for each pair. Here, for each predictor pair (e.g., predictors a and b), our empiri-
cal p-value is the fraction of measurements from the above resamplings where predictor 
a is outperformed by predictor b (i.e., p value = ((predictora−predictorb)≤0)

iresamplings  ). To account 
for multiple hypothesis testing, we extracted the distribution of p-values (one for every 
pairwise comparison) and calculated Storey’s q-values to estimate the false discovery 
rate [48]. For each gene-trait combination, we consider the top-performing predictor to 
be the one with the highest mean performance and subsequently set an FDR threshold 
of 10%, above which a predictor is considered tied for best.

As an overall qualitative evaluation of each predictor, we summed the number of gene-
trait combinations for which a predictor was either best performing (mean AUBPRC or 
PCC), or statistically indistinguishable from the numerically best predictor (FDR ≥ 10%). 
To assess quantitative performance differences between each pair of predictors, we per-
formed a two-tailed Wilcoxon signed-rank test comparing mean performance measures 
across all gene-trait combinations. From this test statistic, we extracted p-values and cal-
culated Storey’s q-values to correct for the false discovery rate. In this overall ranking, 
we deemed a predictor to have significantly outperformed another if the comparison 
yielded an FDR of less than 10%.
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