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Abstract 

The precision-recall curve (PRC) and the area under the precision-recall curve (AUPRC) 
are useful for quantifying classification performance. They are commonly used in situ‑
ations with imbalanced classes, such as cancer diagnosis and cell type annotation. We 
evaluate 10 popular tools for plotting PRC and computing AUPRC, which were collec‑
tively used in more than 3000 published studies. We find the AUPRC values computed 
by the tools rank classifiers differently and some tools produce overly-optimistic results.

Introduction
Many problems in computational biology can be formulated as binary classification, in 
which the goal is to infer whether an entity (e.g., a cell) belongs to a target class (e.g., a 
cell type). Accuracy, precision, sensitivity (i.e., recall), specificity, and F1 score (Addi-
tional file 1: Fig. S1) are some of the measures commonly used to quantify classification 
performance, but they all require a threshold of the classification score to assign every 
entity to either the target class or not. The receiver operating characteristic (ROC) and 
precision-recall curve (PRC) avoid this problem by considering multiple thresholds [1], 
which allows detailed examination of the trade-off between identifying entities of the 
target class and wrongly including entities not of this class. It is common to summa-
rize these curves by the area under them (AUROC and AUPRC, respectively), which 
is a value between 0 and 1, with a larger value corresponding to better classification 
performance.

When the different classes have imbalanced sizes (e.g., the target cell type has few 
cells), AUPRC is a more sensitive measure than AUROC [1–4], especially when there are 
errors among the top predictions (Additional file 1: Fig. S2). As a result, AUPRC has been 
used in a variety of applications, such as reconstructing biological networks  [5], iden-
tifying cancer genes  [6] and essential genes  [7], determining protein binding sites  [8], 
imputing sparse experimental data [9], and predicting patient treatment response [10]. 
AUPRC has also been extensively used as a performance measure in benchmarking 
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studies, such as the ones for comparing methods for analyzing differential gene expres-
sion [11], identifying gene regulatory interactions [12], and inferring cell-cell communi-
cations [13] from single-cell RNA sequencing data.

Given the importance of PRC and AUPRC, we analyzed commonly used software tools 
and found that they produce contrasting results, some of which are overly-optimistic.

Results
Basics

For each entity, a classifier outputs a score to indicate how likely it belongs to the target 
(i.e., “positive”) class. Depending on the classifier, the score can be discrete (e.g., ran-
dom forest) or continuous (e.g., artificial neural network). Using a threshold t, the clas-
sification scores can be turned into binary predictions by considering all entities with 
a score ≥ t as belonging to the positive class and all other entities as not. When these 
predictions are compared to the actual classes of the entities, precision is defined as the 
proportion of entities predicted to be positive that are actually positive, while recall is 
defined as the proportion of actually positive entities that are predicted to be positive 
(Additional file 1: Fig. S1).

The PRC is a curve that shows how precision changes with recall. In the most common 
way to produce the PRC, each unique classification score observed is used as a threshold 
to compute a pair of precision and recall values, which forms an anchor point on the 
PRC. Adjacent anchor points are then connected to produce the PRC.

When no two entities have the same score (Fig.  1a), it is common to connect adja-
cent anchor points directly by a straight line [14–19] (Fig. 1b). Another method uses an 
expectation formula, which we will explain below, to connect discrete points by piece-
wise linear lines [20] (Fig. 1c). The third method is to use the same expectation formula 
to produce a continuous curve between adjacent anchor points  [17, 21] (Fig.  1d). A 
fourth method that has gained popularity, known as Average Precision (AP), connects 
adjacent anchor points by step curves  [15, 19, 22, 23] (Fig.  1e). In all four cases, PRC 
estimates a function of precision in terms of recall based on the observed classification 
scores of the entities, and AUPRC estimates the integral of this function using trapezoids 
(in the direct straight line case), interpolation lines/curves (in the expectation cases), or 
rectangles (in the AP case).

When there are ties with multiple entities having the same score, which happens more 
easily with classifiers that produce discrete scores, these entities together define only one 
anchor point (Fig. 1f). There are again four common methods for connecting such an anchor 
point to the previous anchor point, which correspond to the four methods for connect-
ing anchor points when there are no ties (details in Additional file 1: Supplementary Text). 
The first method is to connect the two anchor points by a straight line [15, 18, 19] (Fig. 1g). 
This method is known to easily produce overly-optimistic AUPRC values [2, 24], which we 
will explain below. The second method is to interpolate additional points between the two 
anchor points using a non-linear function and then connect the points by straight lines [14, 
17, 20] (Fig.  1h). The interpolated points appear at their expected coordinates under the 
assumption that all possible orders of the entities with the same score have equal probability. 
The third method uses the same interpolation formula as the second method but instead 
of creating a finite number of interpolated points, it connects the two anchor points by a 
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continuous curve [17, 21] (Fig. 1i). Finally, the fourth method comes naturally from the AP 
approach, which uses step curves to connect the anchor points [15, 19, 22, 23] (Fig. 1j).

Using the four methods to connect anchor points when there are no ties and the four 
methods when there are ties can lead to very different AUPRC values (Fig. 1, Additional 
file 1: Fig. S3 and Supplementary Text).

Conceptual and implementation issues of some popular software tools

We analyzed 10 tools commonly used to produce PRC and AUPRC (Additional file 1: 
Table  S1). Based on citations and keywords, we estimated that these tools have been 
used in more than 3000 published studies in total (Methods).

Fig. 1  Different methods for connecting adjacent anchor points on the PRC. a An illustrative data set with no 
two entities receiving the same classification score. b–e Different methods for connecting adjacent anchor 
points when there are no ties in classification scores, namely b direct straight line, c discrete expectation, 
d continuous expectation, and e AP. f An illustrative data set with different entities receiving the same 
classification score. Each group of entities with the same classification score defines a single anchor point (A, 
B, C, and D, from 3, 7, 2, and 1 entities, respectively). g–j Different methods for connecting anchor point B to 
its previous anchor point, A, namely g linear interpolation, h discrete expectation, i continuous expectation, 
and j AP. In c and h, tp is set to 0.5 and 1 in Formula 1, respectively (Additional file 1: Supplementary Text)
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The 10 tools use different methods to connect anchor points on the PRC and therefore 
they can produce different AUPRC values (Table 1, Additional file 1: Fig. S4–S7 and Sup-
plementary Text). As a comparison, all 10 tools can also compute AUROC, and we found 
most of them to produce identical values (Additional file 1: Supplementary Text).

We found five conceptual issues with some of these tools when computing AUPRC 
values (Table 1):
➀ Using the linear interpolation method to handle ties, which can produce overly-

optimistic AUPRC values [2, 24]. When interpolating between two anchor points, linear 
interpolation produces higher AUPRC than the other three methods under conditions 
that can easily happen in real situations (Additional file 1: Supplementary Text)
➁ Always using (0, 1) as the starting point of the PRC (procedurally produced or con-

ceptually derived, same for ➂ and ➄ below), which is inconsistent with the concepts 
behind the AP and non-linear expectation methods when the first anchor point with a 
non-zero recall does not have a precision of one (Additional file 1: Supplementary Text)
➂ Not producing a complete PRC that covers the full range of recall values from zero 

to one
➃ Ordering entities with the same classification score by their order in the input and 

then handling them as if they have distinct classification scores
➄ Not putting all anchor points on the PRC
These issues can lead to overly-optimistic AUPRC values or change the order of two 

AUPRC values (Additional file 1: Supplementary Text and Fig. S8-S13).
Some of these tools also produce a visualization of the PRC. We found three types of 

issues with these visualizations (Table 1):

Table 1  Methods used by the different software tools to connect anchor points and issues found 
in their calculation of AUPRC and construction of the PRC. For tools that can connect anchor points 
in multiple ways, we show each of them in a separate row. The AUPRC and PRC issues are defined in 
the text and detailed in Additional file 1: Supplementary Text. “—” means no issues found. a PerfMeas 
orders entities with the same classification score by their order in the input and then defines anchor 
points as if there are no ties. b The source code of TorchEval states that it uses Riemann integral to 
compute AUPRC, which is equivalent to AP

Tool Anchor point connection AUPRC issues PRC issues

Without ties With ties

ROCR Direct straight line Discrete expectation ➁➄ ||

Weka AP AP — ||

scikit-learn Direct straight line Linear interpolation ➀➁ (No visualization)

AP AP — |||

PerfMeas Direct straight line Direct straight linea ➂➃ |

PRROC Direct straight line Discrete expectation —

Continuous expectation Continuous expectation — —

TensorFlow Continuous expectation Continuous expectation (No visualization)

precrec Discrete expectation Discrete expectation — —

TorchEval APb AP — (No visualization)

MLeval Direct straight line Linear interpolation ➀➂ |

yardstick Direct straight line Linear interpolation ➀➁ |

AP AP — (No visualization)
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	 I.	 Producing a visualization of PRC that has the same issue(s) as in the calculation of 
AUPRC

	II.	 Producing a PRC visualization that does not always start the curve at a point with 
zero recall

	III.	 Producing a PRC visualization that always starts at (0, 1)

Finally, we also found some programming bugs and noticed that some tools require 
special attention for correct usage (both marked by  in Table 1).

Inconsistent AUPRC values and contrasting classifier ranks produced by the popular tools

To see how the use of different methods by the 10 tools and their other issues affect PRC 
analysis in practice, we applied them to evaluate classifiers in four realistic scenarios.

In the first scenario, we analyzed data from a COVID-19 study  [25] in which patient 
blood samples were subjected to Cellular Indexing of Transcriptomes and Epitopes by 
Sequencing (CITE-seq) assays  [26]. We constructed a classifier for predicting CD4+ T 
cells, which groups the cells based on their transcriptome data alone and assigns a single 
cell type label to each group. Using cell type labels defined by the original authors as ref-
erence, which were obtained using both antibody-derived tags (ADTs) and transcriptome 
data, we computed the AUPRC of the classifier. Figure 2a shows that the 10 tools pro-
duced 6 different AUPRC values, ranging from 0.416 to 0.684. In line with the conceptual 
discussions above, the AP method generally produced the smallest AUPRC values while 
the linear interpolation method generally produced the largest, although individual issues 
of the tools created additional variations of the AUPRC values computed.

In the second scenario, we compared the performance of different classifiers that pre-
dict whether a patient has the ulcerative colitis (UC) subtype of inflammatory bowel 
disease (IBD) or does not have IBD, based on metagenomic data (processed taxonomy-
based profile) [27]. The predictions made by these classifiers were submitted to the sbv 
IMPROVER Metagenomics Diagnosis for IBD Challenge. Their performance was deter-
mined by comparing against diagnosis of these patients based on clinical, endoscopic, 
and histological criteria. Figure 2b shows that based on the AUPRC values computed, 
the 10 tools ranked the classifiers differently. For example, among the top 8 submissions 
with the highest performance, the classifier in submission 26 was ranked first in 8 cases, 
sole second place in 2 cases, and tied second place with another classifier in 4 cases 
(Fig. 2b and Additional file 1: Fig. S14). We observed similar rank flips when considering 
the top 30 submissions (Additional file 1: Fig. S15 and S16).

In the third scenario, we compared the performance of different classifiers in identify-
ing preterm prelabor rupture of the membranes (PPROM) cases from normal pregnancy 
in the DREAM Preterm Birth Prediction Challenge  [28]. Based on the AUPRC values 
produced by the 10 tools, the 13 participating teams were ranked very differently (Fig. 2c 
and Additional file 1: Fig. S17). For example, Team “GZCDC” was ranked first (i.e., high-
est) in 3 cases, tenth in 4 cases, and thirteenth (i.e., lowest) in 7 cases. In addition to 
differences in the ranks, some of the AUPRC values themselves are also very different. 
For example, the AUPRC values computed by PerfMeas and MLeval have a Pearson cor-
relation of − 0.759.
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Fig. 2  The AUPRC values computed by the 10 tools in several realistic scenarios. a Predicting CD4+ T cells 
from single-cell transcriptomic data. b Predicting inflammatory bowel disease cases that belong to the 
ulcerative colitis subtype in the sbv IMPROVER Metagenomics Diagnosis for Inflammatory Bowel Disease 
Challenge. Only the top 8 submissions according to PRROC (discrete expectation) AUPRC values are included. 
c Predicting cases with preterm prelabor rupture of membranes in the DREAM Preterm Birth Prediction 
Challenge. In b and c, each entry shows the AUPRC value and the background color indicates its rank among 
the competitors
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In the fourth scenario, we compared 29 classifiers that predicted target genes of tran-
scription factors in the DREAM5 challenge  [29]. Again, some classifiers received very 
different ranking based on the AUPRC values computed by the different tools (Addi-
tional file 1: Fig. S18 and S19). For example, the classifier named “Other4” was ranked 
second based on the AUPRC values computed by PerfMeas but it was ranked twenty-
fifth based on the AUPRC values computed by MLeval. In general, tools that use the 
discrete expectation, continuous expectation, and AP methods are in good agreements 
in this scenario, but they differ substantially from tools that use the linear interpolation 
method.

Conclusions
Due to their highly technical nature, it is easy to overlook the inconsistencies and issues 
of the software tools used for producing PRC and AUPRC. Some possible consequences 
include reporting overly-optimistic AUPRC, ranking classifiers differently by different 
tools, and introducing biases to the evaluation process, such as inflating the AUPRC of 
classifiers that produce discrete scores.

To address the problems, it is crucial to use tools that are free of the bugs described 
and avoid using the linear interpolation method (Table 1). It is also necessary to state 
clearly in manuscripts both the tool used (with its version number) and the underly-
ing methods implemented by the tool for producing PRC and AUPRC. Whenever fea-
sible, the adoption of multiple tools that implement different methods (e.g., one based 
on continuous expectation and one based on AP) is recommended, with comprehensive 
reporting of all their results.

Methods
Information about the tools

In this study, we included 12 tools commonly used for PRC and ROC analyses (Addi-
tional file  1: Table  S1). For each tool, we analyzed the latest stable version of it as of 
August 15, 2023. Because TorchEval had not released a stable version, we analyzed the 
latest version of it, version 0.0.6. Among the 12 tools, ten can compute both AUROC 
and AUPRC, while the remaining two can only compute AUROC. We focused on these 
10 tools in the study of PRC and AUPRC. Some tools provide multiple methods for com-
puting AUROC/AUPRC.

For tools with an associated publication, we obtained its citation count from Google 
Scholar. If a tool has multiple associated publications, we selected the one with the larg-
est number of citations. As a result, the citation counts we report in Additional file 1: 
Table S1 are underestimates if different publications associated with the same tool are 
not always cited together.

The Comprehensive R Archive Network (CRAN) packages PerfMeas and MLeval did 
not have an associated formal publication but only release notes. In each of these cases, 
we used the package name as keyword to search on Google Scholar and then manually 
checked the publications returned to determine the number of publications that cited 
these packages.

The CRAN package yardstick also did not have an associated formal publication. How-
ever, we were not able to use the same strategy as PerMeas and MLeval to determine the 
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number of publications that cited the yardstick package since “yardstick” is an English 
word and the search returned too many publications to be verified manually. Therefore, 
we only counted the number of publications that cited yardstick’s release note, which is 
likely an underestimate of the number of publications that cited yardstick.

All citation counts were collected on October 9, 2023.
For tools with an associated formal publication, based on our collected lists of publi-

cations citing the tools, we further estimated the number of times the tools were actu-
ally used in the studies by performing keyword-based filtering. Specifically, if the main 
text or figure captions of a publication contains either one of the keywords “AUC” and 
“AUROC,” we assumed that the tool was used in that published study to perform ROC 
analysis. In the case of PRC, we performed filtering in two different ways and reported 
both sets of results in Additional file 1: Table S1. In the first way, we assumed a tool was 
used in a published study if the main text or figure captions of the publication contains 
any one of the following keywords: “AUPR,” “AU-PR,” “AUPRC,” “AU-PRC,” “AUCPR,” 
“AUC-PR,” “PRAUC,” “PR-AUC,” “area under the precision recall,” and “area under preci-
sion recall.” In the second way, we assumed a tool was used in a published study if the 
main text or figure captions of the publication contains both “area under” and “precision 
recall.”

For the CRAN packages PerfMeas and MLeval, we estimated the number of published 
studies that actually used them by searching Google Scholar using the above three key-
word sets each with the package name appended. We found that for all the publications 
we considered as using the packages in this way, they were also on our lists of publica-
tions that cite these packages. We used the same strategy to identify published studies 
that used the CRAN package yardstick. We found that some of these publications were 
not on our original list of publications that cite yardstick, and therefore we added them 
to the list and updated the citation count accordingly.

TorchEval was officially embedded into PyTorch in 2022. Due to its short history, 
among the publications that cite the PyTorch publication, we could not find any of them 
that used the TorchEval library.

Data collection and processing
We used four realistic scenarios to illustrate the issues of the AUPRC calculations.

In the first scenario, we downloaded CITE-seq data produced from COVID-19 patient 
blood samples by the COVID-19 Multi-Omic Blood ATlas (COMBAT) consortium [25]. 
We downloaded the data from Zenodo [30] and used the data in the “COMBAT-CIT-
ESeq-DATA” archive in this study. We then used a standard procedure to cluster the cells 
based on the transcriptome data and identified CD4+ T cells. Specifically, we extracted 
the raw count matrix of the transcriptome data and ADT features (“X” object) and the 
annotation data frame (“obs” object) from the H5AD file. We dropped all ADT features 
(features with names starting with “AB-”) and put the transcriptome data along with the 
annotation data frame into Seurat (version 4.1.1). We then log-normalized the transcrip-
tome data (method “NormalizeData(),” default parameters), identified highly-variable 
genes (method “FindVariableFeatures(),” number of variable genes set to 10,000), scaled 
the data (method “ScaleData(),” default parameters), performed principal component 
analysis (method “RunPCA(),” number of principal components set to 50), constructed 
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the shared/k-nearest neighbor (SNN/kNN) graph (method “FindNeighbours(),” default 
parameters), and performed Louvain clustering of the cells (method “FindClusters(),” 
default parameters). We then extracted the clustering labels generated and concate-
nated them with cell type, major subtype, and minor subtype annotations provided by 
the original authors, which were manually curated using both ADT and transcriptome 
information.

Our procedure produced 29 clusters, which contained 836,148 cells in total. To mimic 
a classifier that predicts CD4+ T cells using the transcriptome data alone, we selected 
one cluster and “predicted” all cells in it as CD4+ T cells and all cells in the other 28 
clusters as not, based on which we computed an AUPRC value by comparing these “pre-
dictions” with the original authors’ annotations. We repeated this process for each of the 
29 clusters in turn, and chose the one that gave the highest AUPRC as the final cluster of 
predicted CD4+ T cells.

For the second scenario, we obtained the data set used in the sbv IMPROVER (Systems 
Biology Verification combined with Industrial Methodology for PROcess VErification in 
Research) challenge on inflammatory bowel disease diagnosis based on metagenomics 
data [27]. The challenge involved 12 different tasks, and we focused on the task of iden-
tifying UC samples from non-IBD samples using the processed taxonomy-based profile 
as features. The data set contained 32 UC samples and 42 non-IBD samples, and there-
fore the baseline AUPRC was 32

32+42
= 0.432 . There were 60 submissions in total, which 

used a variety of classifiers. We obtained the classification scores in the submissions 
from Supplementary Information 4 of the original publication [27]. When we extracted 
the classification scores of each submission, we put the actual positive entities before 
the actual negative entities. This ordering did not affect the AUPRC calculations of most 
tools except those of PerfMeas, which depend on the input order of the entities with the 
same classification score.

To see how the different tools rank the top submissions, we first computed the AUPRC 
of each submission using PRROC (option that uses the discrete expectation method to 
handle ties) since we did not find any issues with its AUPRC calculations (Table 1). We 
then analyzed the AUPRC values produced by the 10 tools based on either the top 8 
(Fig.  2b and Additional file  1: Fig.  S14) or top 30 (Additional file  1: Fig.  S15 and  S16) 
submissions.

For the third scenario, we downloaded the data set used in the Dialogue on Reverse 
Engineering Assessment and Methods (DREAM) Preterm Birth Prediction Chal-
lenge  [28] from https://​www.​synap​se.​org/#​!Synap​se:​syn22​127152. We collected the 
classification scores, from the object “prpile” in each team’s RData file, and the actual 
classes produced based on clinical evidence, from “anoSC2_v21_withkey.RData” 
(https://​www.​synap​se.​org/#​!Synap​se:​syn22​127343). The challenge contained 7 sce-
narios, each of which had 2 binary classification tasks. For each scenario, 10 differ-
ent partitioning of the data into training and testing sets were provided. We focused 
on the task of identifying PPROM cases from the controls under the D2 scenario 
defined by the challenge. For this task, the baseline AUPRC value averaged across the 
10 testing sets was 0.386. There were 13 participating teams in total. For each team, 
we extracted its classification scores and placed the actual positive entities before the 
actual negative entities. For submissions that contained negative classification scores, 

https://www.synapse.org/#%21Synapse:syn22127152
https://www.synapse.org/#%21Synapse:syn22127343
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we re-scaled all the scores to the range between 0 and 1 without changing their order 
since TensorFlow expects all classification scores to be between zero and one (Addi-
tional file  1: Supplementary Text). Finally, for each team, we computed its AUPRC 
using each of the 10 testing sets and reported their average. We note that the results 
we obtained by using PRROC (option that uses the continuous expectation method to 
handle ties) were identical to those reported by the challenge organizer.

For the fourth scenario, we obtained the data set used in the DREAM5 challenge 
on reconstructing transcription factor-target networks based on gene expression 
data [29]. The challenge included multiple networks and we focused on the E. coli in 
silico Network 1, which has a structure that corresponds to the real E. coli transcrip-
tional regulatory network [29]. We obtained the data from Supplementary Data of the 
original publication [29]. There were 29 submissions in total. For each submission, we 
extracted the classification scores of the predicted node pairs (each pair involves one 
potential transcription factor and one gene it potentially regulates) from Supplemen-
tary Data 3 and compared them with the actual classes (positive if the transcription 
factor actually regulates the gene; negative if not) in the gold-standard network from 
Supplementary Data 1. Both the submissions and the gold-standard were not required 
to include all node pairs. To handle this, we excluded all node pairs in a submission 
that were not included in the gold-standard (because we could not judge whether they 
are actual positives or actual negatives), and assigned a classification score of 0 to all 
node pairs in the gold-standard that were not included in a submission (because the 
submission did not give a classification score to them). The gold-standard contained 
4012 interacting node pairs and 274,380 non-interacting node pairs, and therefore the 
baseline AUPRC value was 4012

4012+274380
= 0.014.
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