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Abstract 

Background:  Gene regulatory network (GRN) models that are formulated as ordi-
nary differential equations (ODEs) can accurately explain temporal gene expression 
patterns and promise to yield new insights into important cellular processes, disease 
progression, and intervention design. Learning such gene regulatory ODEs is chal-
lenging, since we want to predict the evolution of gene expression in a way that accu-
rately encodes the underlying GRN governing the dynamics and the nonlinear 
functional relationships between genes. Most widely used ODE estimation methods 
either impose too many parametric restrictions or are not guided by meaningful bio-
logical insights, both of which impede either scalability, explainability, or both.

Results:  We developed PHOENIX, a modeling framework based on neural ordinary dif-
ferential equations (NeuralODEs) and Hill-Langmuir kinetics, that overcomes limitations 
of other methods by flexibly incorporating prior domain knowledge and biological 
constraints to promote sparse, biologically interpretable representations of GRN ODEs. 
We tested the accuracy of PHOENIX in a series of in silico experiments, benchmarking 
it against several currently used tools. We demonstrated PHOENIX’s flexibility by mod-
eling regulation of oscillating expression profiles obtained from synchronized yeast 
cells. We also assessed the scalability of PHOENIX by modeling genome-scale GRNs 
for breast cancer samples ordered in pseudotime and for B cells treated with Rituximab.

Conclusions:  PHOENIX uses a combination of user-defined prior knowledge 
and functional forms from systems biology to encode biological “first principles” as soft 
constraints on the GRN allowing us to predict subsequent gene expression patterns 
in a biologically explainable manner.

Background
Biological systems are complex with phenotypic states, including those representing 
health and disease, defined by the expression states in the entire genome. Transitions 
between these states occur over time through the action of highly interconnected regu-
latory processes driven by transcription factors. Modeling molecular mechanisms that 
govern these transitions is essential if we are to understand the behavior of biological 
systems and design interventions that can more effectively induce a specific phenotypic 
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outcome. But this is challenging since we want not only to predict gene expression at 
unobserved time points but also to make these predictions in a way that explains any 
prior knowledge of transcription factor binding sites. Models that accurately encode 
such interactions between transcription factors (TFs) and target genes within gene regu-
latory networks (GRNs) can provide insights into important cellular processes, such as 
disease-progression and cell-fate decisions [1–4].

Given that many dynamical systems can be described using ordinary differential equa-
tions (ODEs), a logical approach to modeling GRNs is to estimate ODEs for gene expres-
sion using an appropriate statistical learning technique [3–6]. Although estimating gene 
regulatory ODEs ideally requires time-course data, obtaining such data in biological 
systems might be difficult. One can instead use pseudotime methods applied to cross-
sectional data to order samples and subsequently estimate ODEs that capture the regula-
tory structure [7, 8].

While a variety of ODE estimation methods have been proposed, most suffer from crit-
ical issues that limit their applicability in modeling genome-wide regulatory networks. 
Some systems biology models (such as those built using COPASI [9]) formulate ODEs 
based solely on biochemical principles of gene regulation and use the available data to 
parameterize these equations. However, such methods impose several restrictions on 
the ODEs and cannot flexibly adjust to situations where the underlying assumptions do 
not hold; this increases the risk of model misspecification and hinders scalability to large 
networks, particularly given the enormous number of parameters necessary to specify 
a genome-scale model [10, 11]. Other methods including Dynamo, PRESCIENT, and 
RNA-ODE are based on non-parametric approaches to learning regulatory ODEs, using 
tools such as sparse kernel regression [3], random forests [5], variational auto-encoders 
[7, 12, 13], diffusion processes [4], and neural ordinary differential equations [6, 14], but 
these fail to include biologically relevant associations between regulatory elements and 
genes as constraints on the models.

These latter models can be broadly placed into two classes based on the inputs 
required to estimate the gradient f of the gene regulatory dynamics, where f (x) = dx

dt
 . 

The first class consists of methods like PRESCIENT [4] and RNAForecaster [6] that can 
learn f based only on time series gene expression input {xt0; xt1; . . . ; xtT } without addi-
tional steps or consideration of other regulatory inputs [4, 6, 15]. In the process of learn-
ing transitions between consecutive time points, these “one-step” methods implicitly 
learn the local derivative (in the context of single cell sequencing often referred to as 
“RNA velocity” [16]) dx

dt
|x=xtm , as an intermediary to estimating f. One significant issue 

with these approaches is scalability, and studying meaningfully large dynamical systems 
(ideally those describing the entire genome) has so far been hindered by a large perfor-
mance loss and missing interpretability [4, 6, 17, 18]. This leads to potential issues with 
generalizability as regulatory processes operate genome-wide and even small perturba-
tions can have wide-ranging regulatory effects.

A second class of approaches consists of “two-step” methods such as Dynamo [3], 
RNA-ODE [5], and DeepVelo [12] that instead only require snapshot expression data for 
learning f with two separate steps [3, 5, 12], which allows for much broader applicability 
to standard RNA-seq data at the cost of performance as true time course data is required 
for reliable causal inference. These approaches first explicitly estimate the RNA 
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velocity  dx
dt  for each data point in a preprocessing step, requiring spliced and unspliced 

transcript counts, and one of many available velocity estimation tools [3, 16, 19–23]. In 
the next step, the original task of learning f is reduced to learning a vector field from 
expression-velocity tuples 

[
xi,

(
dx
dt

)
i

]
 and a suitable learning algorithm is deployed. 

Apart from needing additional inputs that may not always be available (for example, 
spliced and unspliced counts are not available for microarray data), these “two-step” 
methods are also sensitive to the velocity estimation tool used, many of which suffer 
from a multitude of weaknesses [19]. Still, the Jacobian of the estimated vector field can 
help inform whether the learned dynamics are biologically meaningful [2, 3, 5, 8].

While the flexibility of both classes of models helps estimate arbitrary dynamics, they 
are “black box” methods whose somewhat opaque nature not only makes them prone to 
over-fitting but also creates challenges in teasing out interpretable mechanistic insights 
into regulatory control [1, 6]. These models are optimized solely to predict RNA veloc-
ity or gene expression levels and so the predictions are not explainable in the sense that 
most cannot be related back to a sparse causal GRN. Another major issue is the scal-
ability of these methods; because of their computational complexity, they have not yet 
been shown to feasibly scale up to tens of thousands of genes―and definitely not to 
the entire genome [3, 4, 7, 12–14]. Consequently, most of these methods either restrict 
themselves to a small set of highly variable genes [4, 6, 7, 12, 14] or resort to dimension-
reduction techniques (PCA, UMAP, latent-space embedding, etc.) [3, 4, 7, 13] as a pre-
processing step . Although dimensional reduction for feature selection has proven useful 
in some instances, such as in developing predictive biomarkers, such use of “metagenes” 
suffers from a lack of interpretability or apparent mechanistic association. Dimensional 
reduction results in certain biological pathways being masked in the dynamics and 
impedes the recovery of causal GRNs. Furthermore, there is no obvious way to incor-
porate biological constraints and prior knowledge to guide model selection and prevent 
over-fitting when using dimensionally reduced data [1, 24]. Given that there is a strong 
desire among biological scientists to understand the dynamic properties of individual 
genes in health and disease, we focused our efforts on developing a method capable of 
scaling to the genome, on the original gene expression space.

We developed PHOENIX (Prior-informed Hill-like ODEs to Enhance Neuralnet Inte-
grals with eXplainability) as a scalable method for estimating dynamical systems govern-
ing gene expression through an ODE-based machine learning framework that is flexible 
enough to avoid model misspecification and is guided by insights from systems biol-
ogy that facilitate biological interpretation of the resulting models [25, 26]. At its core, 
PHOENIX models temporal patterns of gene expression using neural ordinary differ-
ential equations (NeuralODEs) [27, 28], an advanced computational method commen-
surate with the scope of human gene regulatory networks―with more than 25,000 
genes and 1600 TFs―and a limited number of samples. We implement an innovative 
NeuralODE architecture that inherits the universal function approximation property 
(and thus the flexibility) of neural networks while resembling Hill-Langmuir kinetics, 
which have been used to model dynamic transcription factor binding site occupancy [10, 
29, 30]. It can hence reasonably describe gene regulation by modeling the sparse yet syn-
ergistic interactions of genes and transcription factors. Importantly, PHOENIX operates 
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on the original gene expression space and performs without any dimensional reduction, 
thus preventing information loss, especially for lowly expressed genes that are nonethe-
less important for cell fate [4].

In the optimization step of PHOENIX, we introduce user-defined prior knowledge in 
the form of a “network prior.” Here, we derive a prior based on TF binding motif enrich-
ment that is predicated on the understanding that the direct regulators of gene expres-
sion are transcription factors that bind in the region around a gene’s transcription start 
site (TSS). Because most transcription factors bind to distinct sequence motifs, each 
transcription factor has the potential to regulate only a fixed subset of genes. This reg-
ulatory constraint can be expressed as a network prior by mapping transcription fac-
tors to the promoter sequence of regulated genes, using tools such as FIMO [31] and 
GenomicRanges [32].

The incorporation of user-defined prior knowledge of likely network structure ensures 
that a trained PHOENIX model is explainable―it not only predicts temporal gene 
expression patterns but also encodes an extractable GRN that captures key mechanis-
tic properties of regulation such as activating (and repressive) edges and strength of 
regulation.

Results
As shown below, we formulated the PHOENIX model such that it utilizes a novel bio-
logically motivated NeuralODE architecture and also incorporates structural domain 
knowledge. In subsequent experiments, we demonstrated the utility of PHOENIX for 
estimating gene expression dynamics by performing a series of in silico benchmark-
ing experiments, where PHOENIX exceeded even the most optimistic performance of 
popular black box RNA dynamics estimation methods. We demonstrated the scalability 
of PHOENIX by applying it to genome-scale breast cancer microarray samples ordered 
in pseudotime and investigated how scaling to the complete data set improves a repre-
sentation of key pathways. We further applied PHOENIX to yeast cell cycle microarray 
data to show that it can capture oscillatory dynamics by flexibly deviating from Hill-like 
assumptions when necessary. Finally, to test PHOENIX with a different data modality, 
we investigated available genome-scale time course RNASeq data of Rituximab treated B 
cells, where PHOENIX is able to capture key molecular changes in the main mechanism 
of action of Rituximab.

The PHOENIX model

Given a time series gene expression data set, the NeuralODEs of PHOENIX implic-
itly estimate the local derivative (RNA velocity) at an input data point with a neural 
network (NN). We designed activation functions that resemble Hill kinetics and thus 
allow the NN to sparsely represent different patterns of transcriptional co-regulation 
by combining separate additive and multiplicative blocks that operate on the linear 
and logarithmic scales respectively. An ODE solver then integrates the estimated 
derivative to reconstruct the steps taken from an input xi at time ti to a predicted 
output x̂i+1 at time ti+1 [27]. The trained neural network block thus encodes the 
ODEs governing the dynamics of gene expression and hence encodes the underly-
ing vector field and GRN. An important advantage of incorporating an ODE solver 
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is that we can predict expression changes for arbitrarily long time intervals without 
relying on predefined Euler discretizations, as is required by many other methods 
[4, 12, 18]. We further augmented this framework by allowing users to include prior 
knowledge of gene regulation in a flexible way, which acts as a domain-knowledge-
informed regularizer or soft constraint of the NeuralODE [24] (Fig.  1). By combin-
ing the mechanism-driven approach of systems biology-inspired functional forms and 
prior knowledge with the data-driven approach of powerful machine learning tools, 
PHOENIX scales up to full-genome data sets and learns meaningful models of gene 
regulatory dynamics.

Neural ordinary differential equations (NeuralODEs)

NeuralODEs [27] learn dynamical systems by parameterizing the underlying deriva-
tives with neural networks:

Given an initial condition, the output at any given time-point can now be approxi-
mated using a numerical ODE solver S of adaptive step size

This is the basic architecture of a NeuralODE [27], and it lends itself to loss func-
tions L (here, ℓ2 loss) of the form

dx(t)

dt
= f (x(t), t) ≈ NNθ (x(t), t).

x̂(t1) = x(t0)+

∫ t1

t0

NNθ (x(t), t)dt = S(x(t0);NNθ ; t0; t1).

Fig. 1  PHOENIX is powered by a NeuralODE engine. Given an expression vector g(ti) ∈ R
#genes at time ti , a 

neural network (dotted rectangle) estimates the local derivative dg(ti)/dt , and an ODE solver integrates this 
value to predict expression at subsequent time points ĝ(ti+1) . The neural network is equipped with activation 
functions ( φ� and φ� ) that resemble Hill-Langmuir kinetics and two separate single-layer blocks ( NNsums and 
NNprods ) that operate on the linear and logarithmic scales to model additive and multiplicative co-regulation 
respectively. A third block ( NNcombine ) then flexibly combines the additive and multiplicative synergies. 
PHOENIX incorporates two levels of back-propagation to parameterize the neural network while inducing 
domain knowledge-specific properties; the first (red arrows with weight �data ) aims to match the observed 
data, while the second (blue arrow with weight �prior ) uses simulated expression vectors γ (ti) ∈ R

#genes to 
implement soft constraints defined by user-supplied prior models ( P∗ ) of putative regulatory interactions. 
Since the γ (ti) s were simulated expression values, we also refer to them as “ghost inputs.” More details about 
their operationalization can be found in Additional File 2: Section 1.2
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To perform back-propagation, the gradient of the loss function with respect to all 
parameters θ must be computed, which is done using the adjoint sensitivity method 
[27]. Building off of the NeuralODE author’s model implementation in PyTorch [28], 
we made biologically motivated modifications to the architecture and incorporated user-
defined prior domain knowledge, as described below.

Model formulation and neural network architecture

Most models for co-regulation of gene expression are structured as a simple feedback 
process [29]. Given that gene regulation can be influenced by perturbations across an 
entire regulatory network of n genes, the gene expression of all genes gj(t) can affect a 
specific gi(t) at time point t:

where g(t) = {gi(t)}
n
i=1 , freg : R

n → Rn , and freg is approximated with a neural network. 
To model additive as well as multiplicative effects within freg , we used an innovative 
neural network architecture equipped with activation functions that emulate—and can 
thus sparsely encode—Hill kinetics (see Fig. 1). The Hill-Langmuir equation H(P) was 
originally derived to model the binding of ligands to macromolecules [30] and can be 
used to model transcription factor occupancy of gene regulatory binding sites [10]:

which resembles the softsign activation function φsoft(y) = 1/(1+
∣∣y
∣∣) . For better neu-

ral network trainability, however, we shifted it to the center of the expression values. To 
approximate suitable exponents α , we further log-transformed H, since composing addi-
tive operations in the log-transformed space with a Hadamard exp ◦ function can repre-
sent multiplicative effects.

were employed as activation functions to define two neural network blocks ( NNsums and 
NNprods ), representing additive and multiplicative effects

The concatenated vectors c�(g(t))⊕ c�(g(t)) served as input to a third block 
NNcombine (with weights W ∪ ∈ Rn×2m ) that flexibly combined these additive and multi-
plicative effects. We found that a single linear layer was sufficient for this purpose. Given 
that ODEs have difficulty with learning zero gradients, we found it necessary (see Addi-
tional File 1: Figure S5) to introduce gene-specific multipliers υ ∈ Rn for modeling genes 
that do not exhibit any temporal variation 

(
dgi(t)
dt

= 0, ∀t
)
 . We initialized υ using i.i.d. 

random standard uniform values.

L
(
x(t1), x̂(t1)

)
= L(x(t1),S(x(t0);NNθ ; t0; t1)).

dg(t)

dt
= freg (g(t))− g(t),

H(P) =
Pα

κα + Pα
=

(P/κ)α

1+ (P/κ)α
=

Y

1+ Y
, with Y = (P/κ)α ,

φ�(x) =
x − 0.5

1+ | x − 0.5 |
, φ�(x) = log

(
x − 0.5

1+ | x − 0.5 |
+ 1

)

c�(g(t)) = W�φ�(g(t))+ b� c�(g(t)) = exp ◦(W�φ�(g(t))+ b�).
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Accordingly, the output derivative for each gene i was multiplied with 
ReLU(υi) = max{(υi, 0)} . We expressed this using the Hadamard product ( ⊙ ) of the pre-
vious output and the elementwise ReLU of υ as

The trainable parameters θ = (W� ,W�, b� , b�,W ∪,υ) were learned based on 
observed data and prior domain knowledge (details in Additional File 2: Section 1).

Structural domain knowledge incorporation

One challenge we found in interpreting PHOENIX is that NeuralODEs have multiple 
solutions [33], of which many are inconsistent with our understanding of the process by 
which specific transcription factors (TFs) regulate the expression of other genes within 
the genome. Most solutions accurately represent gene-gene correlations but do not nec-
essarily reflect biologically established TF gene regulation processes. Inspired by recent 
developments in physics-informed deep learning [24], we introduced biologically moti-
vated soft constraints to regularize the search for a parsimonious approximation. We 
started with the NeuralODE prediction for the gene expression vector

We found that the unregularized PHOENIX provides an observed gene expression-
based approximation for the local derivative dg(t)dt  , but often we have additional struc-
tural information available about which TFs are more likely to regulate certain target 
genes. Hence, one could also formulate a domain knowledge-informed P∗(g(t)) that is a 
prior-based approximation as

By promoting our NeuralODE to flexibly align with such structural domain knowl-
edge, we automatically searched for biologically more realistic models that still explained 
the observed gene expression data. To this end, we designed a modified loss function 
Lmod that incorporated the effect of prior model P∗ using a set of K simulated (“ghost”) 
expression vectors {γk ∈ Rn}Kk=1 . This induced a preference for consistency with prior 
domain knowledge.

d̂g(t)

dt
= ReLU(υ)⊙ [W ∪{c�(g(t))⊕ c�(g(t))} − g(t)].

ĝ(t1) = g(t0)+

∫ t1

t0

ReLU(υ)⊙ [W ∪{c�(g(t))⊕ c�(g(t))} − g(t)]dt

= S(g(t0);ReLU(υ)⊙ [W ∪{c�(g(t))⊕ c�(g(t))} − g(t)]; t0; t1).

ReLU(υ)⊙ [W ∪{c�(g(t))⊕ c�(g(t))} − g(t)]︸ ︷︷ ︸
PHOENIX (based on observed gene expression data)

≈
dg(t)

dt
≈ P∗(g(t))︸ ︷︷ ︸

prior-based

.

Lmod

(
g(t1), ĝ(t1)

)

= �

loss based on matching observed gene expression data︷ ︸︸ ︷
L[g(t1),S(g(t0);ReLU(υ)⊙ [W ∪{c�(g(t))⊕ c�(g(t))} − g(t)]; t0; t1)]

+ (1− �)
1

K

K∑

k=1

L
[
P

∗(γk ), ReLU(υ)⊙ [W ∪{c�(γk )⊕ c�(γk )} − γk ]
]

︸ ︷︷ ︸
loss based on matching prior model

.
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Here, � is a tuning parameter for flexibly controlling how much weight is given to the 
prior-based optimization, which we tuned with cross-validation, and L[x, x̂] is the pri-
mary loss function, set to the L = ℓ2 loss in our experiments.

While our modeling framework is flexible regarding the nature of the prior model P∗ , 
we incorporated a simple linear model, a common choice for chemical reaction net-
works or simple oscillating physical systems [34] as

Here, A is the adjacency matrix of likely network structure based on prior domain 
knowledge, such as experimentally validated interactions and TF-gene binding infor-
mation derived from motif scans, with Aij ∈ {+1,−1, 0} representing an activating, 
repressive, or no prior interaction, respectively. For cases where the signs (activating/
repressive) of prior interactions were unknown, we found that formulating A simply 
based on prior interaction existence, or Aij ∈ {1, 0} , would suffice (see Additional File 1: 
Table S3).

PHOENIX accurately and explainably learns temporal evolution of in silico dynamical 

systems

We began our validation studies with simulated gene expression time-series data so that 
the underlying dynamical system that produced the system’s patterns of gene expres-
sion was known. We adapted SimulatorGRN [29, 35] to generate time-series expres-
sion data from two synthetic S. cerevisiae gene regulatory systems (SIM350 and SIM690, 
consisting of 350 and 690 genes respectively). The activating and repressive interactions 
in each in silico system were used to synthesize noisy expression “trajectories” for each 
gene across multiple time points (see the “Defining a ground truth dynamical system” 
and “Simulating time series gene expression data” sections). We split up the trajecto-
ries into training (88%), validation (6% for hyperparameter tuning), and testing (6%) and 
compared PHOENIX predictions on the test set against the “known”/ground truth tra-
jectories. Since PHOENIX uses user-defined prior knowledge as a regularizer, we also 
corrupted the prior model at a level commensurate with the “experimental” noise level 
(see Additional File 2: Section  4.2), reflecting the fact that transcription factor-gene 
binding is itself noisy.

We found that PHOENIX accurately learned the temporal evolution of the SIM350 
and SIM690 systems (Fig.  2) and was able to recover the true test set trajectories 
(that is, test set trajectories pre-noise) with a reasonably high accuracy even when 
the training trajectories included high levels of noise and the prior knowledge model 
was altered to exclude transcription factor-gene interactions explicitly involved in 
expression (see Additional File 1: Table S1, Additional File 1: Table S2). Furthermore, 
the shapes of the predicted trajectories (and hence the predicted steady-state lev-
els) obtained from feeding initial values (expression at t = 0 ) into the trained model 
remained robust to noise, suggesting that a trained PHOENIX model could be used 
to estimate the temporal effects of cellular perturbations. Since the primary predic-
tion engine of PHOENIX is a NeuralODE, we wanted to benchmark its performance 
relative to “out-of-the-box” (OOTB) NeuralODE models (such as RNAForecaster [6]) 
to understand the contributions of our modifications to the NeuralODE architecture. 

P∗(γk) = A · γk − γk = (A− I) · γk .
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We tested a range of OOTB models where we adjusted the total number of train-
able parameters to be similar to that of PHOENIX (see Additional File 2: Section 3.2). 
Because PHOENIX uses a domain prior of likely gene-regulation interactions in its 
optimization scheme, we also tested a version ( PHX0 ) where the weight of the prior 
was set to zero ( �prior = 0 ). For each of SIM350 and SIM690, we observed that PHOE-
NIX outperformed OOTB NeuralODEs on the test set in noiseless settings (Addi-
tional File 1: Figure S2 and Additional File 1: Table  S4). When we added noise, the 
PHOENIX models still generally outperformed the OOTB models, especially PHX0 . 
The test MSEs were more comparable between all the models in very high noise set-
tings. The consistently strong performance of PHOENIX suggests that using a Hill 
kinetics-inspired architecture better captures the dynamics of the regulatory pro-
cess, in part because it models the binding kinetics of transcription factor-gene 
interactions.

In terms of the contribution of the prior constraints to PHOENIX’s performance, we 
saw that PHOENIX was generally outperformed by PHX0 , its unregularized version 
(Additional File 1: Figure S2 and Additional File 1: Table S4). However, given that the 
prior can be interpreted as soft biological constraints on the estimated dynamical system 
[24], an important question is whether PHX0 (as well as OOTB models) makes accurate 

Fig. 2  We applied PHOENIX to simulated gene expression data originating from in silico dynamical systems 
SIM350 (A) and SIM690 (B) that simulate the temporal expression of 350 and 690 genes respectively. Each 
simulated trajectory consisted of five time points ( t = 0, 2, 3, 7, 9 ) and was subjected to varying levels of 
Gaussian noise ( noise σ

mean
 = 0%, 5%, 10%, 20%, higher noise settings in Additional File 1: Figure S6). Since 

PHOENIX uses a user-defined prior network model as a regularizer, we also corrupted the prior models up 
to an amount commensurate with the noise level. For each noise setting, we trained PHOENIX on 140 of 
these “observed” trajectories and validated on 10. The performance on the validation trajectories was used 
to determine the optimal value of �prior . We then tested the trained model on 10 new test set trajectories. 
We display both observed and predicted test set trajectories for four arbitrary genes in both SIM350 and 
SIM690, across all noise settings. We display the mean squared error (MSE) between the predictions and the 
10 pre-noise test set trajectories
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temporal predictions by correctly learning elements of the causal biology or whether the 
lack of prior information results in an alternate learned representation of the dynamics, 
which―despite predicting these particular trajectories well―does not explain the 
true biological regulatory process.

To this end, we recognized that the parameters of a trained PHOENIX model encode 
an estimate of the ground-truth gene regulatory network (GRN) that causally governs 
the system’s evolution over time. We therefore inferred encoded GRNs from trained 
PHOENIX models and compared them to the ground truth networks GRN350 and 
GRN690 used to synthesize SIM350 and SIM690 respectively (see Additional File 2: Sec-
tion 2). Given PHOENIX’s simple NeuralODE architecture, we were able to develop a 
GRN inference algorithm that could predict edge existence, direction, strength, and sign, 
using just model coefficients, without any need for time-consuming sensitivity analyses 
(unlike other approaches [2, 12]). For comparison, we wanted to extract GRNs from the 
most predictive OOTB models; given their black box nature, OOTB model GRNs had to 
be obtained via sensitivity analyses (see Additional File 2: Section 3.2).

We compared inferred and ground truth GRNs in terms of several metrics, including 
edge recovery, out-degree correlations, and induced sparsity. We obtained near-perfect 
edge recovery for PHOENIX (AUC ∈ [0.96, 0.99] ) as well as high out-degree correla-
tions across all noise settings (Fig. 3 and Additional File 1: Table S5). Most notably, we 
observed that PHOENIX predicted dynamics in a more robustly explainable way than 
PHX0 and the OOTB models. We measured induced sparsity by reverse engineering 
a metric Cmax based on maximizing classification accuracy (see Additional File 2: Sec-
tion 2) and found that PHOENIX resulted in much sparser dynamics than PHX0 (Addi-
tional File 1: Table S6). To further assess this phenomenon, we computed the estimated 
model effect between every gene pair in SIM350 and compared these values between 
PHOENIX and PHX0 . We found that the incorporation of priors helped PHOENIX 
identify core elements of the dynamics and predict gene expression patterns in a biologi-
cally parsimonious manner (Additional File 1: Figure S4).

Since the inclusion of such static prior knowledge greatly increased the explainability 
of the inferred dynamics, we also investigated how explainability was affected by mis-
specification of the prior. In our in silico experiments, we had randomly corrupted (mis-
specified) the prior by an amount commensurate with the noise level (see Additional File 
2: Section 4.2). We compared network representations of these misspecified prior con-
straints to GRNs extracted from the PHOENIX models that used these very priors. We 
found that PHOENIX was able to appropriately learn causal elements of the dynamics 
beyond what was encoded in the priors (Additional File 1: Table S1). This trend persisted 
when we made the model explicitly naive to subsets of domain-information by omitting 
them from the prior (Additional File 1: Table S2). These results indicate that even though 
the user-defined priors enhance explainability, PHOENIX can deviate from them when 
necessary and learn regulatory interactions from the data itself.

PHOENIX exceeds the most optimistic performances of current black box methods in silico

Having established PHOENIX models as both predictive and explainable, we compared 
its performance to other existing methods for gene expression ODE estimation in silico 
(Additional File 1: Table S8). As discussed earlier, these can be placed into two groups 
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based on the input data. The “one-step” methods estimate dynamics by directly using 
expression trajectories; these include RNAForecaster [6] (which is an out-of-the-box 
NeuralODE), and PRESCIENT [4], among others [14, 15]. PHOENIX is more similar to 
these methods.

“Two-step” methods such as Dynamo [3], RNA-ODE [5], and DeepVelo [12] were 
not directly designed for time series data, but are applicable to snapshot RNA-seq with 
quantified isoforms. They estimate dynamics by first reconstructing RNA velocity using 
inputs such as spliced and unspliced mRNA counts and then estimating a vector field 
mapping expression to velocity. While this comparison is not the ideal setting for such 
two step approaches, we did compensate for their disadvantage by providing the ground 
truth velocities as input―information that none of the one-step approaches have―
into their second step (see Additional File 2: Section  3.1). Furthermore, we used the 
validation set to optimize key hyperparameters of all the methods (Additional File 1: 
Table  S8, right-most column) before finally testing predictive performance on expres-
sion values from held-out test trajectories. Most of the methods also provide a means 
for extracting a gene network that we used to evaluate each method’s explainability (see 
Additional File 2: Section 3.3).

In these comparisons, we confirm that the “one-step” trajectory-based methods gen-
erally yield better predictions than the “two-step” velocity-based methods (although 
Dynamo sometimes achieved performance compared to the single-step methods), which 
comes as little surprise as these methods were originally designed for a slightly different 
setting. Overall, at reasonable noise levels, PHOENIX outperformed even the optimistic 
versions of the black box methods by large margins both in terms of predicting gene 
expression (Additional File 1: Table  S4) and explainability (based on consistency with 

Fig. 3  We extracted encoded GRNs from the trained PHOENIX models and the best-performing 
out-of-the-box NeuralODE models, for both in silico dynamical systems SIM350 (A) and SIM690 (B) across all 
noise settings (see Additional File 1: Figure S3 for more noise settings). We compared these GRN estimates 
to the corresponding ground truth GRNs used to formulate SIM350 and SIM690 and obtained AUC values 
as well as out-degree correlations ( ρout ). We also reverse-engineered a metric ( Cmax ) to inform how sparsely 
PHOENIX had inferred the dynamics (see Additional File 2: Section 2). Furthermore, we used these Cmax values 
to obtain optimal true positive and true negative rates ( TPRmax and TNRmax ) that were independent of any 
cutoff value, allowing us to compare between “best possible” networks across all settings
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the ground truth network; Additional File 1: Table S5). We found that Dynamo was the 
most explainable competing method in SIM350 but that, in SIM690, DeepVelo was more 
explainable. Finally, we found that the dynamics estimated by PHOENIX were generally 
much sparser than any other method and that sparsity generally decreased with noise 
levels (Additional File 1: Table S6).

Further ODE estimation approaches (not included in our experiments) and their func-
tionalities are discussed in Additional File 1: Table S7 [7, 8, 13, 14, 36]. Code for per-
forming such methodological benchmarks is included with the PHOENIX release [37].

PHOENIX predicts temporal evolution of yeast cell‑cycle genes in an explainable way

We tested PHOENIX using an experimental data set [38] from a study [39] of cell-cycle 
synchronized yeast cells, consisting of two technical replicates of expression values for 
3551 genes across 24 time points (see the “Data processing and normalization” section 
for data processing).

Since there were two technical replicates (or trajectories), we used one of the two yeast 
replicates for training, and the other replicate for testing (not seen in any way during 
training). Furthermore, within the replicate for training, we used the contiguous seg-
ment of time points t = 45, 50, 55 min for validation (to choose �prior ). This scheme 
ensured that the train and validation sets were disjunct and that we were measuring 
predictive performance on a test set that was independent of the training data (see the 
“Model setup for training and testing” section). For the domain prior, we used a simple 
adjacency-matrix-based prior model derived from TF motif enrichment analysis in pro-
moters of each of the 3551 genes (see the “Model setup for training and testing” section). 
We tuned the prior weight (to �prior = 0.05 ) using the validation set to induce higher 
explainability by promoting a biologically anchored structure to the dynamics.

PHOENIX was able to learn the temporal evolution of gene expression across the yeast 
cycle explaining over 69% of the variation in the test set (Fig.  4B and Table  1). Nota-
bly, when we visualized the estimated dynamics by extrapolating from just initial values 
(expression at t = 0 ), we found that PHOENIX plausibly predicted continued periodic 
oscillations in gene expression, even though the training data consisted of only two full 
cell cycles (Fig. 4A). The amplitude of the predicted trajectories dampened across time 
points, which is expected given that yeast array data tends to exhibit underdamped har-
monic oscillation during cell division possibly reflecting de-synchronization of the yeast 
cells over time [40]. This performance on non Hill-like oscillatory dynamics is indica-
tive of the high flexibility of PHOENIX. It inherits the universal function approximation 
property from NeuralODEs, allowing it to deviate from Hill-like assumptions when nec-
essary, while still remaining explainable due to the integration of prior knowledge.

To test the biological explainability of the learned dynamical system, we extracted 
the encoded GRN from the trained PHOENIX model (with optimal �prior = 0.05 
as determined by the validation set) and compared it to a validation network of 
ChIP-chip transcription factor (TF) binding data [41]. PHOENIX had very impres-
sive accuracy in predicting TF binding (AUC = 0.93), indicating that it had learned 
transcription factor binding information in the process of explaining temporal pat-
terns in expression (Fig. 4C). In the absence of any prior knowledge ( �prior = 0 ), the 
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explainability was poor, highlighting the importance of such knowledge-based guid-
ance in black box models [24, 25] as well as the importance of correctly tuning �prior.

Similar to the in silico experiments, we saw that PHOENIX’s ability to predict TF 
binding was greater than that obtained by comparing just the prior to the validation 
data (Additional File 1: Table S1). This suggested that PHOENIX had used the prior 
knowledge of cell cycle progression as a starting point to anchor the dynamics and 
then used the data itself to learn improved regulatory rules.

In order to contextualize PHOENIX’s impressive performance on this data set, we per-
formed comparative analyses against Dynamo [3], RNA-ODE [5], DeepVelo [12], and 
out-of-the-box NeuralODEs. As discussed in Additional File 1: Table S8, Dynamo, RNA-
ODE, and DeepVelo are “two-step” snapshot based methods that require RNA velocity 

Fig. 4  A We applied PHOENIX ( �prior = 0.05 ) to 2 technical replicates of gene expression of 3551 genes each, 
collected across 24 time points in a yeast cell-cycle time course [38]. We trained on 40 transition pairs, used 
3 for validation, and tested predictive accuracy on the remaining 3. We display both observed and predicted 
trajectories for 3 arbitrary genes, where the predicted trajectories are extrapolations into future time points 
based on just initial values (gene expression at t = 0 ). Additional results in Additional File 1: Figure S6 and 
Additional File 1: Table S9. B We correlated observed versus predicted expression levels of all 3551 genes for 
the 3 expression vectors in the test set; ρ = 0.8308 implying R2 = 0.69 . C We tested the explainability of the 
learned dynamics by comparing encoded GRNs retrieved from a series of trained models (of varying prior 
dependencies) against ChIP-chip data [41] to obtain ROC curves. The �prior = 0.05 model was the one chosen 
based on the validation set MSE (see Additional File 2: Section 1)



Page 14 of 29Hossain et al. Genome Biology          (2024) 25:127 

at every time point as an additional input [3, 5, 12]. Given that this information was not 
available in the data set, we estimated RNA velocity using a method of finite differences 
applied to smooth splines through the expression trajectories [42] (see Additional File 
2: Section 3.1). Furthermore, given that it is a common approach for current methods 
to only consider a subset of top-k highly variable genes [4, 6, 7, 12, 14], we additonally 
performed a subsetted analysis considering only the 500 most variable genes along the 
trajectory.

In both sets of analysis, we found PHOENIX to be both the most predictive 
R2 ∈ (69%, 75%) and by far the most explainable in terms of AUC ∈ (0.93, 0.99) (Table 1). 
Dynamo, RNA-ODE, and DeepVelo were designed for a predictive setting, and we see 
that they do perform well on the subsetted analysis when looking at predictive perfor-
mance, albeit worse than PHOENIX. In terms of reconstruction of the underlying GRN, 
they however perform poorly considering the AUC, with a difference of about 0.30 or 
more to PHOENIX. When taken in conjunction with the poor predictive performance 
of out-of-the-box NeuralODEs ( R2 ∈ [30%, 39%] ), as well as the poor explainability of 
all black box methods, this highlights the unique strength of PHOENIX to appropriately 
model important biological processes, such as cell cycle progression, while being highly 
predictive on time course data.

PHOENIX infers genome‑wide dynamics of breast cancer progression and identifies central 

pathways

Although there are several tools for inferring the dynamics of regulatory networks, 
most do not scale beyond a few hundreds of genes without losing explainability, fall-
ing far short of the 25,000 genes in the human genome (Additional File 1: Table S8). 
Given the performance improvements we saw that were driven by PHOENIX’s use 
of soft constraints, we wanted to test whether PHOENIX could be extended to 
human-genome scale networks. Due to the dearth of longitudinal human studies with 
genome-wide expression measurements, we used data from a cross-sectional breast 
cancer study (GEO accession GSE7390 [43]) consisting of microarray expression val-
ues for 22000 genes from 198 breast cancer patients and ordered these samples in 

Table 1  Comparison of PHOENIX with competitor methods on yeast data with all 3551 genes and, 
separately, the 500 most variable genes. Snapshot-based methods (Dynamo, RNA-ODE, Deepvelo) 
require RNA velocity at every time point as an additional input [3, 5, 12]. Given that this information 
was not available in the data set, we estimated RNA velocity using a method of finite differences 
applied to smooth splines through the expression trajectories [42] (see Additional File 2: Section 3.1). 
Predictive performance is reported as the R2 on the test set. Explainabilty AUC was calculated 
by comparing encoded GRNs retrieved from each trained model (Additional File 2: Section  2 and 
Additional File 2: Section 3.3) against ChIP-chip data [41]

Trained on 500 genes Trained on 3551 genes

 Model Test-set R2 AUC​ Test-set R2 AUC​

PHOENIX 74.62% 0.988 69.03% 0.934
Out-of-the-box NeuralODE 38.94% 0.430 30.07% 0.511

Dynamo 70.30% 0.693 60.90% 0.527

RNA ODE 69.60% 0.675 59.83% 0.536

DeepVelo 68.75% 0.538 59.10% 0.502
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pseudotime. For consistency in pseudotime ordering, we reused a version of this data 
[44] that was already preprocessed and ordered (using a random-walk-based pseudo-
time approach) in the PROB paper [8].

After further processing (see  the “Testing on breast cancer pseudotime data” sec-
tion), we obtained a single pseudotrajectory of expression values for ng = 11165 genes 
across 186 patients, each at a distinct pseudotimepoint. To explore whether PHOE-
NIX’s performance depends on the size of the data set, we also created pseudotra-
jectories for ng = 500 , 2000, and 4000 genes by subsetting the data set to its ng most 
variable genes. We split up the 186 time points into contiguous intervals for train-
ing (170, 90% ), validation (8, 5% ), and test (8, 5% ). For the domain prior network, we 
again used a simplistic prior model derived from a motif map of promoter targets and 
tuned �prior using the validation set. See the “Model setup for training and testing” 
section for further details.

For each pseudotrajectory of size ng , we trained a separate PHOENIX model, and 
measured predictive performance as the variation explained ( R2 ) in the test trajec-
tory by predicting the trajectory through the model from just the initial time point 
(see the “Model setup for training and testing” section). We observed encouragingly 
high values of R2 ∈ (92%, 97%) (Fig. 5, top) that are, however, not what to expect given 
this is frozen tumor tissue. Upon further investigation, we found that the high R2 was 
partly driven by most genes not showing enough dynamic expression, which hence 
are easily predicted with a constant trajectory. When we instead focused on evalu-
ating only the top most variable genes, we observed more reasonable values of R2 
(Additional File 1: Figure S10, blue line). We also considered alternate strategies of 
measuring predictive performance in this setting but found this to oversimplify the 
task (Additional File 1: Figure S10, red line). We note here that PHOENIX’s computa-
tional cost was not excessive even when ng = 11, 165 (see Additional File 1: Table S13).

Next, we investigated PHOENIX’s ability to identify biologically relevant and 
actionable information regarding gene regulation in breast cancer. First, we tested 
the performance of the learned dynamical system to reconstruct a gene regulatory 
network and predict TF-gene interactions. While the ground truth GRN is unknown, 
we can estimate performance by comparing a validation network of experimental 
ChIP-chip binding information [45] to a subnetwork of the encoded GRN of a trained 
PHOENIX model. We found excellent alignment between the two GRNs with AUC 
∈ (0.90, 0.96) , even when we scaled up to ng = 11165 genes (Fig. 5). It is important to 
note that the PHOENIX-based concordance with experimental data was much greater 
than that obtained by comparing just the prior knowledge to the validation network 
(Additional File 1: Table S1), indicating that PHOENIX was improving upon the GRN 
suggested by the prior knowledge, in addition to learning a dynamical model.

To better understand the benefits of PHOENIX’s scalability, we investigated how esti-
mating regulatory dynamics based on a subset of only the ng most variable genes can 
alter the perceived importance of individual genes to the regulatory system in question. 
We reasoned that a model trained on all assayed genes should reconstruct biological 
information better than those that are restricted to a subset of genes [6, 12, 14]. First, we 
performed a gene-level analysis by perturbing in silico the PHOENIX-estimated dynami-
cal system from each value of ng (500, 2000, 4000, 11165). This yielded “influence scores” 
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representing how changes in initial ( t = 0 ) expression of each gene affected subsequent 
( t > 0 ) predicted expression of all other genes (see the “Gene influence scores” section). 
As might be expected, the influence scores grew increasingly more concordant with cen-
trality measures in the ChIP validation network, consistent with the key roles played by 
transcription factor genes in large GRNs (Additional File 1: Table S13).

We observed that highly variable genes with known involvement in breast cancer 
(such as WT1 [46], ESR1 [47], AR [48], and FOXM1 [49]) were generally influential 
across all values of ng (Additional File 1: Figure S7). It is interesting to note that both 

Fig. 5  We applied PHOENIX to a pseudotrajectory of 186 breast cancer samples (ordered along subsequent 
“pseudotimepoints”) consisting of ng = 11, 165 genes [44]. We split up the 186 time points into contiguous 
intervals for training (170, 90% ), validation to tune �prior(8, 5% ), and test (8, 5% ). We also repeated the analysis 
on smaller subsets of genes ng = 500, 2000, 4000 , where we subsetted the full trajectory to only the ng most 
variable genes in the pseudotrajectory. We measured predictive performance as the R2 on the test trajectory 
by applying the trained model to just the first test time point (see the “Model setup for training and testing” 
section). We evaluated explainability performance as the AUC from comparing encoded GRNs from trained 
models against a ChIP-seq validation network [45]. Finally, we used the trained PHOENIX models to extract 
permutation-based influence scores for pathways in the Reactome database [55] (see the “Gene influence 
scores” and “Pathway influence scores” sections) and visualized influence scores for a collection of the most 
central pathways. See Additional File 1: Table S10, Additional File 1: Table S11, and Additional File 1: Table S12 
for detailed results
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FOXM1 and AR were very influential in the ng = 500 system, but their score dropped 
in the full genome ( ng = 11165 ) system. This is likely due to the way in which we con-
structed the smaller subsets of the whole genome―by selecting the most variable 
genes. One would expect that the most variable transcription factor genes falling within 
any subset would be highly correlated in expression with other genes falling in the same 
set and that the overall effect would be diluted by adding more―potentially uncor-
related―genes to the system. It is more interesting that genes missing in the smaller 
subsets (due to low expression variability) were identified as central to the dynamics in 
the full ( ng = 11165 ) system. Among these genes, we can find some encoding cancer-
relevant transcription factors such as E2F1 [50, 51] CTCF [52], and ERG [53] and DNA 
methyltransferase enzymes (DNMT1 [54]).

We found that the more computationally manageable systems ( ng = 500, ng = 2000 ) 
yielded an incomplete picture of gene-level influences since the method used in con-
structing these subsets hinders the mechanistic explainability of the resulting regulatory 
model. Certain genes exhibit relatively low variability in expression but are still central to 
disease-relevant genome-level dynamics; compared to methods that exclude such genes 
to make computation tractable [4, 6, 12], PHOENIX can correctly identify them as cen-
tral because of its ability to model subtle but important genome-scale dynamics.

Finally, we performed a pathway-based functional enrichment analysis by translat-
ing these gene influence scores to pathway influence scores using permutation tests on 
the Reactome pathway database [55] (see the  “Pathway influence scores” section). We 
reasoned that a more complete network, to have practical advantages over smaller and 
more manageable models, should be able to capture a more complete picture of biologi-
cal processes that are involved in the cancer pseudotime. Not surprisingly, the dynami-
cal systems with fewer genes missed many pathways known to be associated with breast 
cancer that were identified as over-represented in the genome-scale ( ng = 11, 165 ) sys-
tem (Fig. 5 and Additional File 1: Table S10). Notably, the pathways missed in the smaller 
networks include apoptosis regulation (a hallmark of cancer [56]) and TP53 regulation 
of caspases (relevant to apoptosis control in tumors [57]), while terms for the estrogen-
related signaling and GLI/Hedgehog signaling (whose role in cancer is well documented 
[58, 59]) would have been missed or underestimated by the smaller models.

In a parallel analysis testing for functional enrichment of GO biological process terms, 
we again found the smaller systems to overlook important pathways that were clearly 
influential in the genome-scale analysis; these included a wide array of RNA metabolism 
processes that are increasingly recognized as being significant to breast cancer develop-
ment [60] (Additional File 1: Figure S8). Finally, while the GO molecular function terms 
are consistently dominated by binding terms, we can notice how the larger models are 
capable of detecting more specific terms such as BHLH TF binding and E-box binding, 
which are subgroups of the more TF binding term that are known for the regulation of 
well known cancer-related genes such as NOTCH1 and MYC [61, 62] (Additional File 1: 
Figure S9).

These results clearly demonstrate the importance of scalable methods such as PHOE-
NIX that can explainably model genome-wide dynamics. Our reduced gene sets from 
which we built the smaller PHOENIX models consisted of the 500, 2000, or 4000 most 
variable genes. These gene sets likely consist of variable genes that are correlated with 
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each other, meaning that we are sampling only a portion of the biological processes driv-
ing the temporal changes in breast cancer; the full picture only emerges when looking 
at regulatory processes across the spectrum of genes that can contribute. Alternative 
approaches, such as concentrating on specific pathways, risk introducing self-fulfilling 
biases in the discovery process. Similarly, methods that use low-dimensional embedding 
(PCA, UMAP, etc.) to reduce the complexity of modeling dynamics risk losing valuable, 
biologically relevant insights. PHOENIX’s ability to scale while remaining explainable 
offers the best potential for the discovery of interpretable insights about the phenotypes 
under study.

In order to test whether the ability to remain explainable while scaling genome-wide is 
unique to PHOENIX, we performed comparative analyses on the full set of ng = 11, 165 
genes against Dynamo [3], RNA-ODE [5], DeepVelo [12], and out-of-the-box Neural-
ODEs. Analogous to the yeast example, RNA velocity information was unavailable, 
and hence estimated using finite differences on smooth splines[42] for the “two-step” 
snapshot based methods [3, 5, 12] (see Additional File 2: Section 3.1). In order to better 
understand how well a model trained at genome-level is still able to capture biologically 
meaningful nuances all across the gene-network, we obtained the predicted ĜRN  (each 
with ng = 11165 nodes) from each trained model (Additional File 2: Section  2, Addi-
tional File 2: Section 3.3) but measured explainability in an incremental manner. For N 
ranging from 50 to 11165, we calculated the concordance between the induced subgraph 
of each ĜRN  spanned by the N-most variable genes against the corresponding ChIP-seq 
validation subnetwork [45].

The results indicated that PHOENIX is on par with the existing black box approaches 
in terms of test set predictive accuracy (Additional File 1: Table S14) while offering inter-
pretable, biologically meaningful results. This is reflected in the achieved AUC (Fig. 6), 
where only PHOENIX is able to properly reconstruct the underlying GRN. Most black 
box methods fulfill their goal of being highly predictive without offering much insight 
into the (interpretable) underlying processes. Notably, RNA-ODE recovers a GRN when 
considering only the top 100 most variable genes, which is, however, arguably not use-
ful in practice. PHOENIX was the only approach that both scales to the full set of genes, 
being highly predictive, while being interpretable.

PHOENIX recovers key gene regulatory changes in Rituximab treated B cells

To challenge PHOENIX with a different data modality, we considered a longitudi-
nal RNA-seq experiment of B cells followed over a course of 15 h, where cells where 
either treated with Rituximab or kept untreated [63]. Rituximab is used as treatment 
for specific leukemia, non-hodgkin lymphoma as well as rheumatoid arthritis, bind-
ing to B cells inducing cell death through apoptosis, NK cell-mediated cytotoxicity, or 
macrophage-mediated phagocytosis. Both treated and untreated B cells were sampled 
at t = 0, 1, 2, 4, 7, and 15 h, and two replicates were available for analysis.

We trained two separate PHOENIX models, one each for the treated and untreated 
cells, respectively. This allowed us to compare the gene regulatory changes after 
Rituximab treatment by examining the differences between the gene regulatory net-
works encoded by the two trained PHOENIX models. We split the time points in 
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each condition into training ( 80% ) and validation ( 20% ). For the domain prior net-
work, we use a TF-binding derived prior similar to the breast cancer study above (see 
the  “Model setup for training and GRN extraction” section) and tuned �prior using 
the validation set. We observed that PHOENIX was able to model gene expression 
dynamics in both conditions well, with R2 values between 89 and 92% (Additional 
File 1: Table S16). We extracted the two encoded GRNs (one each from the PHOE-
NIX model trained on the two conditions) and subsequently sought to examine the 
changes of the regulatory dynamics that were visible between untreated B cells and 
those treated with Rituximab.

Aggregating the regulatory effects of a protein (input) across all (output) genes, we 
then compute log-fold changes of these regulatory potentials between the two GRNs. 
On a closer look at the top 50 regulators in terms of changes in regulatory dynamics 
(Additional File 1: Table  S15), we find several key regulators of apoptosis, the main 
mechanism of action of Rituximab in this experiment, as neither macrophages nor 
NK cells are present to enable NK-mediated cytotoxicity or M-mediated phagocytosis. 
Among others, we find PPP2R3C, a key inhibitor of B cell receptor-induced apopto-
sis [64], PHLPP2, which acts by dephosphorylation of AKT family members on apopto-
sis [65], RAB1A, which is part of the RAS signaling cascade that acts anti-apoptotic [66], 

Fig. 6  We compared the performance of PHOENIX to other methods of regulatory dynamics estimation on 
a pseudotrajectory of 186 breast cancer samples (ordered along subsequent “pseudotimepoints”) consisting 
of ng = 11165 genes [44]. The data was processed for model fitting via the steps described in the “Model 
setup for training and testing” section. Snapshot-based methods (Dynamo, RNA-ODE, Deepvelo) require RNA 
velocity at every time point as an additional input [3, 5, 12]. Given that this information was not available 
in the data set, we estimated RNA velocity using a method of finite differences applied to smooth splines 
through the expression trajectories [42] (see Additional File 2: Section 3.1). Once each model was trained, 
we sought to measure explainability by obtaining the predicted GRN from it (Additional File 2: Section 2, 
Additional File 2: Section 3.3). Then, for N ranging from 50 to 11165, we calculated the concordance 
between the subgraph of each ĜRN spanned by the top-N most variable genes in the data set against the 
corresponding ChIP-seq validation subnetwork [45]
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and CLUH that regulates the mTORC1 signaling pathway and hence apoptosis [67]. All 
of these show a more than 2x log-fold change in terms of regulatory dynamics between 
the two conditions. Examining the two main pathways of action of Rituximab, apop-
tosis, and B cell receptor signaling, we further observe a generally strong regulatory 
difference of genes annotated for those pathways between treatment and control (see 
Additional File 1: Figure S11 and Additional File 1: Figure S12). Our analysis provides 
further evidence that PHOENIX reflects meaningful biological signals also on RNA-seq 
data, even when only few unevenly sampled measurements are available.

Discussion
The predictive accuracy, scalability, flexibility, and biological explainability of PHOE-
NIX can be attributed primarily to two things. First, our novel NeuralODE architecture 
includes the use of Hill-like activation functions for capturing the kinetic properties of 
molecular binding provides a massive advantage in terms of predictive power. Second, 
the introduction of soft constraints based on prior knowledge of putative network struc-
ture leads to a scalable and biologically explainable estimate of the underlying dynamics.

Using simulated data we have shown that PHOENIX outperforms other models for infer-
ring regulatory dynamics (including other NeuralODE-based models), particularly in the 
presence of experimental noise. Also, an application to data from the yeast cell cycle eluci-
dates PHOENIX’s flexibility in modeling arbitrary dynamics. More importantly, PHOENIX 
is the only NeuralODE method capable of extending its modeling to capture genome-scale 
regulatory processes, while remaining explainable. Using data from breast cancer patients 
organized in pseudotime, we not only illustrate the ability of PHOENIX to faithfully model 
genome-scale networks but also demonstrate the power of extending regulatory modeling 
to capture seemingly subtle but biologically important regulatory processes.

One of the challenges in modeling the evolution of network processes, of course, is 
obtaining data sets for which temporal data are available. However, we recognize that 
in any data set, the individual samples represent a continuum of states between health 
and disease and so can use pseudotemporal ordered samples. But this too has some limi-
tations as there is as of yet no established method for ordering bulk samples-although 
there have been some methods for single-cell data adapted to “bulk” tissue samples [68]. 
This admits an interesting possibility: one could use additional information (such as 
RNA velocities, provided they are reliable) from which one could infer pseudotime (or 
real-time) trajectories. In that sense, one may argue that PHOENIX provides a general 
approach to infer interpretable GRNs and ODE models from outputs of other methods 
(such as Dynamo [3]), which are currently less transparent. This could provide the best 
of both worlds with a reduced dimensional approach to temporal ordering providing 
input for a more complete and interpretable final model.

Although PHOENIX, in its current implementation, is designed with one “layer” of 
regulation to model TF-gene interactions, we recognize that there are other regulatory 
elements or higher order regulatory effects in the cell that contribute to the control of 
gene expression. Such additional effects could potentially be modeled by increasing the 
complexity of the NeuralODE solver by introducing additional layers to the NeuralODE 
framework. However, this would increase the computational requirements by PHOE-
NIX and reduce its current advantage of being a light-weight method.
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Conclusions
Given the importance of regulatory networks and their dynamics, there has been a tre-
mendous interest in inferring and modeling their physical and temporal behavior. The 
use of NeuralODEs represents an extremely promising technology for inferring such 
networks, but so far, attempts to implement NeuralODE-based network modeling have 
encountered significant problems, not the least of which has been their inability to scale 
to modeling genome-wide dynamics in a biologically explainable manner.

PHOENIX represents an important new methodological extension to the NeuralODE 
framework that is not only scaleable to the full human genome but also biologically well 
interpretable and able to capture explicitly both additive as well as multiplicative ways 
in which transcription factors cooperate in regulating gene expression. For a simplified 
analysis, the underlying gene regulatory network can also be extracted from a learned 
model and compared with experimental evidence. An optional feature of PHOENIX 
that contributes significantly to its explainability is that it can be guided by (structural) 
domain knowledge. Notably, PHOENIX also remains flexible to deviate from domain 
knowledge when necessary and learn novel insights consistent with the training data.

Methods
Testing on simulated data

Defining a ground truth dynamical system

We created a ground truth gene regulatory network (GRN) by sampling from S. cerevi-
siae (yeast) regulatory networks obtained from the SynTReN v1.2 supplementary data 
in simple interaction format (SIF) [69]. The SynTReN file provides a directional GRN 
containing 690 genes and 1094 edges with annotations (activating vs repressive) for 
edge types; we defined this GRN to be a ground-truth network G690 . To obtain G350 , we 
sampled a subnetwork of 350 genes and 590 edges from G690 . We used the connectivity 
structure of G350 and G690 , to define systems of ODEs (SIM350 and SIM690) with ran-
domly assigned coefficients. This entire pipeline was executed using SimulatorGRN 
[35], a framework used extensively by the R/Bioconductor package dcanr [29]. Please 
see Additional File 2: Section 4.1 for further ODE formulation details.

Simulating time series gene expression data

For each n ∈ {350, 690} , we used the ground truth dynamical system SIMn to generate 
expression vectors g(t) ∈ Rn , across time points t. We started by i.i.d. sampling 160 
standard uniform Rn vectors to act as initial (t = 0) conditions. We used these initial 
conditions to integrate SIMn and obtain 160 expression trajectories across 
t ∈ T = {0, 2, 3, 7, 9} using R’s desolve package: {{g(t)i}t∈T }160i=1 . We used only five time 
points to emulate potential scarcities of time-series information in real data sets, while 
the range t = 0 to 9 generally covered the transition from initial to steady state. Lastly, 
we added Gaussian noise vectors ε(t, σ)i

i.i.d
∼ N (0, σ 2I) of varying σ to get noisy data 

sets: 
{{{

g(t)i + ε(t, σ)i
}
t∈T

}160
i=1

}
σ∈S

 . Since the average simulated expression value was 

≈ 0.5 , using σ ∈ S =

{
0, 1

40 ,
1
20 ,

1
10

}
 corresponded roughly to average noise levels of 

0%, 5%, 10%, 20%.
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Model setup for training and testing

For each simulation scenario, there were 160 simulated trajectories, out of which we 
used 140 (88%) for training, 10 (6%) for validation (hyperparameter tuning), and 10 
(6%) for testing. We provide some details on PHOENIX implementation (such as train-
ing strategy and prior incorporation) in Additional File 2: Section  1 and include finer 
technicalities (including learning rates) in our GitHub repository [37]. For prior domain 
knowledge model, we used the simple linear model: P∗(γk) = Aσ% · γk − γk , where we 
chose Aσ% to be noisy/corrupted versions of the adjacency matrices of ground truth net-
works G350 and G690 (details in Additional File 2: Section 4.2). We set activating edges 
in Aσ% to + 1 and repressive edges to − 1. “No interaction” was represented using 0. To 
validate explainability, we extracted GRNs from trained models and compared to ground 
truth G350 and G690 for the existence of edges, out-degree correlations, and induced spar-
sity (details in Additional File 2: Section 2).

Testing on experimental yeast cell cycle data
Data processing and normalization

GPR files were downloaded from the Gene Expression Omnibus (accession GSE4987 
[38]) and consisted of two dye-swap technical replicates measured every 5 min for 120 
min. Each of two replicates were separately ma-normalized using the maNorm() func-
tion in the marray library in R/Bioconductor [70]. The data were batch-corrected 
[71] using the ComBat() function in the sva library [72] and probe set mapping to the 
same gene were averaged, resulting in expression values for 5088 genes across fifty con-
ditions. Two samples (corresponding to the 105 minute time point) were excluded for 
data-quality reasons, as noted in the original publication, and genes without motif infor-
mation were then removed, resulting in an expression data set containing 48 samples (24 
time points in each replicate) and 3551 genes.

Model setup for training and testing

Given that the data set contained two technical replicates of gene expression trajecto-
ries, we used one replicate for training and the other for testing (not seen in any way 
during training). Furthermore, within the replicate for training, we used a the expression 
values of contiguous segment of time points t = 45, 50, 55 min for validation (to choose 
�prior ). The two remaining intervals t ∈ [0, 40] and t ∈ [60, 120] in this replicate were 
used for training. This scheme resulted in train (87%) and validation (13%) sets that were 
disjoint and, crucially, a test set that was independent of the training data. We provide 
more details on PHOENIX implementation (such as training strategy and prior incorpo-
ration) in Additional File 2: Section 1 and include finer technicalities (including learning 
rate schedule) in our GitHub repository [37].

For prior domain knowledge model, we used the following simple linear model: 
P∗(γk) = A · γk − γk . We based our choice of A on the regulatory network structure of 
a motif map [41] that has been used in other methods, such as PANDA [26]. The map is 
based on predicted binding sites for 204 yeast transcription factors (TFs) [73]. These data 
include 4360 genes with tandem promoters. Three thousand five hundred fifty-one of 
these genes are also covered on the yeast cell cycle gene expression array. One hundred 
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five total TFs in this data set target the promoter of one of these 3551 genes. The motif 
map between these 105 TFs and 3551 target genes provides the adjacency matrix A of 
0s and 1s, representing whether or not a prior interaction is likely between TF and gene.

We used ChIP-chip data [41] to create a network of TF-target interactions and used 
this as a validation network to test explainability. The targets of transcription factors in 
this ChIP-chip data set were filtered using the criterion p < 0.001 . We calculated AUC 
values by comparing the encoded GRN retrieved from the trained models (see Addi-
tional File 2: Section 2) to the validation network.

Testing on breast cancer pseudotime data
Data procurement and psuedotime ordering

The original data set comes from a cross-sectional breast cancer study (GEO accession 
GSE7390 [43]) consisting of microarray expression values for 22,000 genes from 198 
breast cancer patients that we sorted along a pseudotime axis. We noted that the same 
data set was also used in the PROB [8] paper. PROB is a GRN inference method that 
infers a random-walk-based pseudotime to sort cross-sectional samples and reconstruct 
the GRN. For consistency and convenience in pseudotime inference, we obtained the 
same version of this data [44] that was already preprocessed and sorted by PROB. We 
normalized the expression values to be between 0 and 1. We limited our analysis to the 
genes that had measurable expression and appeared in our prior model and obtained a 
pseudotrajectory of expression values for 11165 genes across 186 patients. We also cre-
ated pseudotrajectories for ng = 500 , 2000, and 4000 genes by subsetting to the ng high-
est variance genes.

Model setup for training and testing

We noted that the processed data set contained expression across 186 “pseudo” time 
points. We excised a contiguous interval of expression across 8 time points for testing 
(5%), and split up the remaining 178 time points into training (170, 90% ) and validation 
for tuning �prior (8, 5% ). To measure predictive accuracy of the trained model, we used it 
calculated a predicted trajectory based on just the first time point in the test set. We cal-
culated the R2 between this prediction and the remaining 7 points of the test trajectory. 
Further implementation details are in Additional File 2: Section 1 and GitHub [37].

For the prior domain knowledge model, we used the simple linear model: 
P∗(γk) = W0 · γk − γk . We based our choice of W0 on a motif map [74], similar to that 
used in the breast cancer analysis in OTTER [75]. The network W0 is derived from the 
human reference genome, for the breast tissue specifically. W0 is a binary matrix with 
W0i,j ∈ {0, 1} where 1 indicates a TF sequence motif in the promoter of the target gene. 
Sequence motif mapping was performed using the FIMO software [31] from the MEME 
suite [76] and the R package GenomicRanges [32].

Validation of explainability was challenging since there are only a few data sets that 
have ChIP-seq data for many TFs from the same cells. We used a validation network [45] 
of TF-target interactions based on ChIP-seq data for the MCF7 cell line (breast cancer, 
62 TFs) in the ReMap2018 database [77]. We calculated AUC values by comparing the 
encoded GRNs retrieved from the trained models (see Additional File 2: Section 2) to 
the validation network.
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Gene influence scores

Given Mng a PHOENIX model trained on the pseudotrajectory consisting of only the ng 
most variable genes ( ng ∈ {500, 2000, 4000, 11165} ), we performed perturbation analy-
ses to compute gene influence scores ISng ,j . We randomly generated 200 initial ( t = 0 ) 
expression vectors via i.i.d standard uniform sampling {g(0)k ∈ Rng }200k=1 . Next, for each 
gene j in Mng , we created a perturbed version of these initial value vectors {gj(0)k}200k=1 , 
where only gene j was perturbed in each unperturbed vector of {g(0)k}200k=1 . We then 
fed both sets of initial values into Mng to obtain two sets of predicted trajectories 
{{̂g(t)k}t∈T ∈ Rng }200k=1 and {{̂gj(t)k}t∈T ∈ Rng }200k=1 across a set of time points T. We cal-
culated influence as the average absolute difference between the two sets of predictions 
that represented how changes in initial ( t = 0 ) expression of gene j affected subsequent 
( t > 0 ) predicted expression of all other genes in the ng-dimensional system:

Pathway influence scores

Having computed gene influence scores ISng ,j for each gene j in each dynamical system 
of dimension ng genes, we translated these gene influence scores into pathway influence 
scores. We used the Reactome pathway data set, GO biological process terms, and GO 
molecular function terms from MSigDB [78] which map each biological pathway/pro-
cess to the genes that are involved in it. For each system of size ng , we obtained the path-
way (p) influence scores ( PSng ,p ) as the sum of the influence scores of all genes involved 
in that pathway:

We statistically tested whether each pathway influence score is higher than expected 
by chance using empirical null distributions. We randomly permuted the gene influence 
scores across the genes to recompute “null” values PS0

ng ,p
 . For each pathway, we per-

formed K = 1000 permutations to obtain a null distribution 
{
PS0

ng ,p,k

}K

k=1
 that can be 

compared to PSng ,p . We could then compute an empirical p-value as 
p = 1

K

∑K
k=1 IPS

0
ng ,p,k

>PSng ,p
 , where I is the indicator function. Finally, we used the mean 

( µ0(ng ,p) ) and variance 
(
σ 2
0(ng ,p)

)
 of the null distribution 

{
PS0

ng ,p,k

}K

k=1
 to obtain and vis-

ualize pathway z-scores that are comparable across pathways and subset sizes ( ng):

ISng ,j =
1

200

200�

k=1




1

|T |

�

t ∈ T
t �= 0




1

ng

ng�

i = 1
i �= j

����gi(t)k − �gij(t)k
���







PSng ,p =
∑

j∈p

ISng ,j

z(ng ,p) =
PSng ,p − µ0(ng ,p)√

σ 2
0(ng ,p)
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Testing on B cell RNASeq data
Data procurement and processing

RNA-seq data of B cells has been downloaded from the Gene expression omnibus (GEO 
accession GSE100441 [63]). Filtering out genes that show zero expression in all samples 
and genes that are not in the prior, we are left with n = 14691 genes with log(FPKM + 1) 
transformed gene expression values. We use the same prior as in the breast cancer 
experiment described above. The data spans across seven time points (t = 0 h, 1 h, 2 h, 4 
h, 7 h, 15 h after treatment start) for B cells treated with Rituximab as well as parallel 
untreated B cells as control. Two replicates are available for each condition.

Model setup for training and GRN extraction

Given that the data set for each condition consists of 2 technical replicates of 6 time 
points each, we note that it contains 10 different transition pairs, where a transition pair 
consists of two consecutive expression vectors in the data set ( g(ti) , g(ti+1) ). We ran-
domly split these 10 transition pairs into training (8, 80% ) and validation (2, 20% ), where 
the validation set was used to tune �prior as well as inform an early stopping criteria. 
Further details on the implementation are in Additional File 2: Section 1 and our GitHub 
repository [37]. For the prior domain knowledge model, we used the same motif-based 
prior as in our breast cancer analysis (the  “Model setup for training and testing” sec-
tion) P∗(γk) = W0 · γk − γk.

Rituximab pathway analysis

To examine whether PHOENIX recovers meaningful biology in this challenging data-
set, we focused on analyzing the differences between the derived GRNs of the Rituxi-
mab-treated and control group. Focusing on changes of regulators, we first aggregate 
the influence score si of each regulator i by summing the weights of outgoing edges, 
si =

∑n
j=1 Dji , a common approach in node-centric analysis in GRNs. Note that our 

dynamics matrix D incorporates the scaling factor but is not normalized per gene, 
to enable a comparison between the dynamics of two networks (here: treated and 
untreated). To examine the change of regulatory influence of each protein, we then com-
pute the log-fold change between influence scores in the two conditions as

where sti and sci  are the influence score in the GRN of the treatment respectively control 
group. As the primary mechanism of action of Rituximab is known—directly induced 
apoptosis, complement-dependent cytotoxicity, NK-mediated cytotoxicity, and mac-
rophage-mediated phagocytosis—we focused on analyzing the molecular changes 
within these mechanisms, with a particular focus on the top 50 most changing regula-
tors (see Additional File 1: Table S15). As the experiment contained only B cells, hence 
NK and macrophages were not available for cell destruction, we focused on apoptosis 
and cytotoxicity related to B cell receptor signaling. We provide pathway maps of these 
pathways colored by (normalized) δi in Additional File 1: Figure S11 and Additional File 
1: Figure S12, which were visualized using the Pathview package (version 1.42.0) [79] 
in R (version 4.3.2).

δi = log2 s
t
i − log2 s

c
i ,
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